Skip to content

Iza-3435/QuantEdge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

26 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

QuantEdge

Institutional-Grade Quantitative Analysis Platform

Python Version License: MIT Code Style: Black Platform Contributions Welcome

QuantEdge Banner

Features β€’ Quick Start β€’ Documentation β€’ Architecture


Overview

QuantEdge is a production-grade quantitative analysis platform delivering institutional-quality market intelligence tools for professional traders and analysts. Built with modern Python and featuring a Bloomberg-inspired terminal interface, it combines real-time data processing, machine learning, and advanced analytics in a unified system.

Key Capabilities

πŸ”΄ Real-time Market Analysis     Sub-second latency from multiple exchanges
πŸ€– AI-Powered Insights          ML models for sentiment and pattern recognition
πŸ“Š Portfolio Optimization        Advanced risk management and asset allocation
πŸ”¬ Quantitative Research         Comprehensive backtesting and strategy development

Features

πŸ“ˆ Market Intelligence

  • Professional Research Terminal - AI-powered stock analysis with institutional-grade data
  • Real-time Market Overview - Live indices, sectors, commodities, and currencies
  • Live Dashboard - Auto-refresh streaming data with sub-second updates
  • Sector Performance Analysis - Cross-sector correlation matrices
  • Earnings Calendar - Historical surprise tracking and estimates
  • Dividend Tracker - Yield analysis and payment schedules

πŸ’Ό Portfolio Management

  • Advanced Portfolio Tracker - Real-time P&L analytics and performance metrics
  • Watchlist Management - Customizable alerts and monitoring
  • Multi-factor Stock Screener - Quantitative filtering engine
  • Technical Analysis - 10+ indicators and pattern recognition
  • Options Pricing - Derivatives analytics and Greeks calculation
  • Risk Metrics - VaR, Sharpe ratio, and position sizing

πŸ€– AI & Machine Learning

  • Sentiment Analysis - NLP on news and social media feeds
  • Pattern Recognition - Anomaly detection and trend identification
  • Predictive Modeling - Ensemble methods and neural networks
  • Insider Trading Tracker - Executive and institutional activity monitoring
  • Smart Money Flow - Hedge fund and institutional holdings analysis

Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/yourusername/quantedge.git
cd quantedge

# Install dependencies
pip install -r requirements.txt

# Configure API keys
./setup_api_keys.sh

# Launch platform
./START_HERE.sh

Alternative launch methods:

# Quick launcher
./run.sh

# Direct execution
python3 MAIN_MENU.py

First Run

# Verify installation
python3 scripts/verify_installation.py

# Test API connectivity
python3 scripts/test_api_keys.py

# Run test suite
pytest tests/

Architecture

quantedge/
β”‚
β”œβ”€β”€ apps/                          # Core applications (18+ tools)
β”‚   β”œβ”€β”€ PROFESSIONAL_RESEARCH_TERMINAL.py
β”‚   β”œβ”€β”€ AI_STOCK_PICKER.py
β”‚   β”œβ”€β”€ PORTFOLIO_PRO.py
β”‚   β”œβ”€β”€ MARKET_OVERVIEW.py
β”‚   └── ...
β”‚
β”œβ”€β”€ src/                           # Core engine
β”‚   β”œβ”€β”€ ml/                        # Machine learning models
β”‚   β”œβ”€β”€ data/                      # Data processing pipeline
β”‚   β”œβ”€β”€ api/                       # API integrations
β”‚   └── analysis/                  # Analytics engines
β”‚
β”œβ”€β”€ scripts/                       # Utility scripts
β”‚   β”œβ”€β”€ bloomberg_terminal.py     # Terminal interface
β”‚   β”œβ”€β”€ verify_installation.py    # System diagnostics
β”‚   └── test_api_keys.py          # API validation
β”‚
β”œβ”€β”€ tests/                         # Test suite
β”‚   β”œβ”€β”€ test_api.py
β”‚   β”œβ”€β”€ test_ml.py
β”‚   └── test_complete_system.py
β”‚
β”œβ”€β”€ docs/                          # Documentation
β”‚   β”œβ”€β”€ GET_API_KEYS.md
β”‚   └── PRODUCTION_BEST_PRACTICES.md
β”‚
β”œβ”€β”€ config/                        # Configuration
β”œβ”€β”€ data/                          # Data storage
β”œβ”€β”€ MAIN_MENU.py                   # Application entry point
└── requirements.txt               # Dependencies

Technology Stack

Layer Technologies
Core Python 3.8+, NumPy, Pandas
ML/AI scikit-learn, TensorFlow, PyTorch
Data yfinance, Alpha Vantage, FMP API, News API
Visualization Rich, Plotly, Matplotlib
UI Bloomberg-inspired terminal (Rich library)
Testing pytest, unittest
Deployment Docker, docker-compose

Performance Metrics

  • ⚑ Data Retrieval: Sub-second latency
  • πŸ”„ Concurrent Processing: Intelligent API request pooling
  • πŸ“Š Portfolio Analysis: Optimized for 1000+ position portfolios
  • 🎯 Real-time Streaming: <100ms update intervals
  • πŸ’Ύ Caching: Smart local cache with TTL management

Use Cases

Use Case Features
Day Trading Real-time analysis, technical indicators, live dashboard
Swing Trading Multi-day analysis, risk management, pattern recognition
Portfolio Management Asset allocation, rebalancing, performance tracking
Quantitative Research Strategy backtesting, correlation analysis, factor modeling
Market Intelligence Sector rotation, institutional flow, macro analysis

Data Coverage

  • S&P 500: All 503 constituents
  • Sectors: 11 GICS sectors
  • Dividend Aristocrats: 47 stocks with 25+ year dividend history
  • High Growth Tech: 15+ leading technology stocks
  • FAANG+: 8 mega-cap technology leaders
  • Market Cap Coverage: $500B+ companies

Configuration

Environment Variables

Create a .env file in the root directory:

# API Keys
ALPHA_VANTAGE_KEY=your_alpha_vantage_key
NEWS_API_KEY=your_news_api_key
FMP_API_KEY=your_fmp_api_key

# Optional: Advanced Configuration
CACHE_TTL=3600
LOG_LEVEL=INFO
MAX_CONCURRENT_REQUESTS=5

Customization

  • Stock Universe: Edit apps/stock_universe.py
  • Watchlists: Configure in data/watchlist.json
  • Portfolio: Manage in data/portfolio.json
  • Themes: Customize in individual app files

Testing

# Run full test suite
pytest tests/

# Run specific test module
pytest tests/test_api.py

# Run with coverage
pytest --cov=src tests/

# Verify installation
python3 scripts/verify_installation.py

Documentation


Contributing

We welcome contributions from the community! Please see our Contributing Guidelines for details.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.


Acknowledgments

  • Alpha Vantage - Market data APIs
  • Financial Modeling Prep - Fundamental data
  • News API - News aggregation
  • yfinance - Yahoo Finance integration
  • Rich - Terminal UI framework

Disclaimer

⚠️ Important: This platform is designed for educational and research purposes only.

  • Always conduct your own due diligence before making investment decisions
  • Past performance does not guarantee future results
  • Trading and investing involve risk of loss
  • Consult with a qualified financial advisor before making investment decisions

Built with 🐍 Python β€’ πŸ“Š Machine Learning β€’ πŸ’Ή Financial APIs β€’ 🎯 Professional Analytics

Institutional-grade market intelligence at your fingertips

⬆ back to top

About

AI powered stock research and market intelligence platform

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages