Skip to content

An AI-native database designed for LLM applications, offering lightning-fast hybrid search across dense vectors, sparse vectors, multi-vector tensors, and full-text data.

License

Notifications You must be signed in to change notification settings

Infinities-pro/Infinities

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

fabriclogo

Infinities

Static Badge

Twitter YouTube Discord Website Docs Blog

GitHub top language GitHub last commit License: MIT

Infinity Logo

The AI-native database built for LLM applications, delivering lightning-fast hybrid search across dense embedding, sparse embedding, tensor (multi-vector), and full-text.


Infinity is a cutting-edge AI-native database purpose-built for modern LLM applications. It supports robust hybrid search across diverse data types such as dense vectors, sparse vectors, tensors, full-text, and structured data. This makes it the perfect solution for applications like:

  • Search and Recommendations
  • Question-Answering Systems
  • Conversational AI
  • Copilots
  • Content Generation
  • Retrieval-Augmented Generation (RAG)

πŸš€ Key Features

⚑ Ultra-Fast Performance

  • Sub-millisecond query latency: 0.1ms latency on million-scale vector datasets.
  • Handles 15K+ QPS on vector queries and 12K+ QPS for full-text search on 33M documents.

See the Benchmark Report for detailed performance insights.

πŸ”Ž Hybrid Search

  • Seamlessly combines dense embedding, sparse embedding, tensor (multi-vector), and full-text search.
  • Advanced re-ranking options, including Reciprocal Rank Fusion (RRF), weighted sum, and ColBERT-style ranking.

πŸ“š Rich Data Support

  • Supports diverse data types, including strings, numerics, vectors, tensors, and more.
  • Built to handle structured and semi-structured data efficiently.

🎯 User-Friendly API

  • Python SDK for intuitive integration.
  • A lightweight, single-binary architecture ensures easy deployment.
  • Compatible with both embedded mode and client-server mode.

πŸ›  Getting Started

Infinity offers two modes of operation: embedded mode (for direct integration into Python applications) and client-server mode (for separate backend processes).

βš™ Embedded Mode

Install the embedded SDK:

pip install infinity-embedded-sdk==0.6.0.dev2

Use Infinity for dense vector search:

import infinity_embedded

# Connect to Infinity
infinity_object = infinity_embedded.connect("/absolute/path/to/save/to")

# Retrieve a database object
db_object = infinity_object.get_database("default_db")

# Create a table with multiple column types
table_object = db_object.create_table("my_table", {
    "num": {"type": "integer"},
    "body": {"type": "varchar"},
    "vec": {"type": "vector, 4, float"}
})

# Insert data into the table
table_object.insert([
    {"num": 1, "body": "unnecessary and harmful", "vec": [1.0, 1.2, 0.8, 0.9]},
    {"num": 2, "body": "Office for Harmful Blooms", "vec": [4.0, 4.2, 4.3, 4.5]}
])

# Perform a dense vector search
res = table_object.output(["*"])\
                    .match_dense("vec", [3.0, 2.8, 2.7, 3.1], "float", "ip", 2)\
                    .to_pl()
print(res)

πŸ’‘ Learn more in the Python API Reference.

πŸ”§ Deploy Infinity in Client-Server Mode

For larger-scale deployments, you can set up Infinity in client-server mode. See the Deploy Infinity Server guide for details.


πŸ“ˆ Performance Comparison

Infinity Performance Comparison

πŸ“œ Documentation


🌟 Roadmap

Curious about what’s next for Infinity? Check out the Roadmap 2025 to learn more about upcoming features and improvements.


πŸ™Œ Community

Join the conversation and connect with us:


πŸŽ₯ Demo

Note

Setting up and hosting the AutoGPT Platform yourself is a technical process. If you'd rather something that just works, we recommend joining the waitlist for the cloud-hosted beta.

video.mp4

This tutorial assumes you have Docker, VSCode, git and npm installed.