Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 19 additions & 15 deletions torch/utils/tensorboard/writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,21 +297,25 @@ def add_hparams(
:scale: 50 %

"""
torch._C._log_api_usage_once("tensorboard.logging.add_hparams")
if type(hparam_dict) is not dict or type(metric_dict) is not dict:
raise TypeError('hparam_dict and metric_dict should be dictionary.')
exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete)

if not run_name:
run_name = str(time.time())
logdir = os.path.join(self._get_file_writer().get_logdir(), run_name)
with SummaryWriter(log_dir=logdir) as w_hp:
w_hp.file_writer.add_summary(exp)
w_hp.file_writer.add_summary(ssi)
w_hp.file_writer.add_summary(sei)
for k, v in metric_dict.items():
w_hp.add_scalar(k, v)

def add_hparams(self, hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None):
torch._C._log_api_usage_once("tensorboard.logging.add_hparams")
exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete)
self.file_writer.add_summary(exp)
self.file_writer.add_summary(ssi)
self.file_writer.add_summary(sei)
for k, v in metric_dict.items():
if v is not None:
self.add_scalar(k, v)
from torch.utils.tensorboard import SummaryWriter
for i in range(5):
save_metrics = {'train/acc': None, 'train/loss': None}
writer = SummaryWriter(f'runs/{i}')
for step in range(50):
writer.add_scalar('train/acc', 10*i+step, step)
writer.add_scalar('train/loss', 10*i - step, step)
writer.add_hparams({'lr': 0.1*i, 'bsize': i}, save_metrics)
writer.close()

def add_scalar(
self,
tag,
Expand Down