This repository contains the code for the HO-Cap annotation pipeline.
This code is tested with Python 3.10 and CUDA 11.8 on Ubuntu 20.04. Make sure CUDA 11.8 is installed on your system before running the code.
git clone https://github.com/JWRoboticsVision/HO-Cap-Annotation.gitcd HO-Cap-Annotationconda create -n hocap-annotation python=3.10
conda activate hocap-annotationpython -m pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118 --no-cache-dirbash ./scripts/install_hocap-annotation.shDownload MANO models and code (mano_v1_2.zip) from the MANO website and place the extracted .pkl files under config/mano_models directory. The directory should look like this:
./config/mano_models
├── MANO_LEFT.pkl
└── MANO_RIGHT.pkl
- Initialize and build FoundationPose:
bash ./scripts/install_foundationpose.sh
- Download checkpoints
bash ./scripts/download_models.sh --foundationpose
- Initialize and build SAM2:
bash ./scripts/install_sam2.sh
- Download checkpoints
bash ./scripts/download_models.sh --sam2
python tools/01_video_segmentation.py --sequence_folder <path_to_sequence_folder>| Input Mask | SAM2 Video Segmentation |
|---|---|
![]() |
![]() |
python tools/02_mp_hand_detection.py --sequence_folder <path_to_sequence_folder>python tools/03_mp_3d_joints_generation.py --sequence_folder <path_to_sequence_folder>- Run FoundationPose on each camera view
python tools/04-1_fd_pose_solver.py --sequence_folder <path_to_sequence_folder> --object_idx <object_idx>- Merge the results from all views
python tools/04-2_fd_pose_merger.py --sequence_folder <path_to_sequence_folder>python tools/05_mano_pose_solver.py --sequence_folder <path_to_sequence_folder>python tools/06_object_pose_solver.py --sequence_folder <path_to_sequence_folder>python tools/07_joint_pose_solver.py --sequence_folder <path_to_sequence_folder>python tools/08_holo_pose_solver.py --sequence_folder <path_to_sequence_folder>







