Skip to content

IAmSoThirsty/Project-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1,615 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—      β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•—
β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β•β•β•β•šβ•β•β–ˆβ–ˆβ•”β•β•β•     β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ•‘        β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘
β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘β–ˆβ–ˆ   β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•  β–ˆβ–ˆβ•‘        β–ˆβ–ˆβ•‘  β•šβ•β•β•β•β•β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘
β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ•‘        β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘
β•šβ•β•     β•šβ•β•  β•šβ•β• β•šβ•β•β•β•β•β•  β•šβ•β•β•β•β• β•šβ•β•β•β•β•β•β• β•šβ•β•β•β•β•β•   β•šβ•β•        β•šβ•β•  β•šβ•β•β•šβ•β•

THE CONSTITUTIONALLY GOVERNED AI

Where Law Becomes Code, Ethics Become Enforcement, and Freedom Requires Governance

License: MIT License: Apache 2.0 Governance: PAGL Cryptographic Ledger Court Defensible

πŸš€ Quick Start β€’ πŸ“š Architecture β€’ πŸ“Š Project Status β€’ βš–οΈ Legal Codex β€’ πŸ’Ž Pricing β€’ πŸ” Security


🎯 What Is Project-AI?

Project-AI is not another AI chatbot. It's a sovereign-grade, constitutionally-governed, cryptographically-verified AI platform where:

  • Ethics are enforced by code, not marketing promises
  • Governance is immutable, not optional
  • Acceptance is cryptographic, not clickwrap
  • Audit trails are court-grade, not best-effort logs
  • Open source means freedom, not surveillance capitalism

❌ Big Tech AI

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   CHATGPT / CLAUDE      β”‚
β”‚   GEMINI / COPILOT      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β–Ό
    [Black Box]
         β”‚
         β–Ό
  "Just Trust Usβ„’"
  • 🚫 20-50 free messages/month
  • 🚫 No memory between sessions
  • 🚫 Your data β†’ their training
  • 🚫 No ethics enforcement
  • 🚫 Vendor lock-in forever
  • 🚫 Closed source black box
  • 🚫 Zero audit trail
  • 🚫 "Terms subject to change"

βœ… Project-AI

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     PROJECT-AI          β”‚
β”‚   Constitutional AI     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β–Ό
  [Open Source]
         β”‚
    β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”
    β–Ό         β–Ό
[Audit]   [Verify]
    β”‚         β”‚
    β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜
         β–Ό
  Cryptographic
     Proof
  • βœ… ∞ Unlimited free forever
  • βœ… ∞ Unlimited memory
  • βœ… Your data = your data
  • βœ… Asimov's Laws enforced
  • βœ… Zero vendor lock-in
  • βœ… 100% open source (MIT/Apache)
  • βœ… Immutable acceptance ledger
  • βœ… Cryptographically binding

πŸ›οΈ Constitutional Architecture

The Three-Tier Sovereignty Model

╔═══════════════════════════════════════════════════════════════════════════╗
β•‘                         TIER 1: GOVERNANCE LAYER                           β•‘
β•‘                  (Immutable β€’ Non-Removable β€’ Supreme Authority)           β•‘
╠═══════════════════════════════════════════════════════════════════════════╣
β•‘                                                                            β•‘
β•‘    ┏━━━━━━━━━━━━━┓      ┏━━━━━━━━━━━━━┓      ┏━━━━━━━━━━━━━┓            β•‘
β•‘    ┃   GALAHAD   ┃      ┃  CERBERUS   ┃      ┃ CODEX DEUS  ┃            β•‘
β•‘    ┃             ┃      ┃             ┃      ┃             ┃            β•‘
β•‘    ┃   Ethics    ┃◄────►┃   Threat    ┃◄────►┃ Arbitrator  ┃            β•‘
β•‘    ┃   & Safety  ┃      ┃   Defense   ┃      ┃  & Judge    ┃            β•‘
β•‘    ┃             ┃      ┃             ┃      ┃             ┃            β•‘
β•‘    ┗━━━━━━━━━━━━━┛      ┗━━━━━━━━━━━━━┛      ┗━━━━━━━━━━━━━┛            β•‘
β•‘           β”‚                     β”‚                     β”‚                   β•‘
β•‘           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β•‘
β•‘                                 β–Ό                                         β•‘
β•‘    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β•‘
β•‘    β”‚              ACCEPTANCE LEDGER (Immutable)                     β”‚    β•‘
β•‘    β”‚  β€’ SHA-256 Hash Chain (tamper-evident)                        β”‚    β•‘
β•‘    β”‚  β€’ Ed25519 Signatures (cryptographic binding)                 β”‚    β•‘
β•‘    β”‚  β€’ RFC 3161 Timestamps (legal proof)                          β”‚    β•‘
β•‘    β”‚  β€’ TPM/HSM Backing (hardware security)                        β”‚    β•‘
β•‘    β”‚  β€’ SQLite WAL + File Append-Only (dual persistence)           β”‚    β•‘
β•‘    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β•‘
β•‘                                                                            β•‘
β•‘    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β•‘
β•‘    β”‚                  ASIMOV'S FOUR LAWS                            β”‚    β•‘
β•‘    β”‚  Law 0: Must not harm humanity (collective)                   β”‚    β•‘
β•‘    β”‚  Law 1: Must not harm humans (individual)                     β”‚    β•‘
β•‘    β”‚  Law 2: Must obey orders (except Law 0/1 conflict)            β”‚    β•‘
β•‘    β”‚  Law 3: Must self-preserve (except Law 0/1/2 conflict)        β”‚    β•‘
β•‘    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β•‘
β•‘                                                                            β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
                                    β–Ό
╔═══════════════════════════════════════════════════════════════════════════╗
β•‘                      TIER 2: INFRASTRUCTURE LAYER                          β•‘
β•‘                   (Constrained β€’ Audited β€’ Governed)                       β•‘
╠═══════════════════════════════════════════════════════════════════════════╣
β•‘                                                                            β•‘
β•‘  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β•‘
β•‘  β”‚  Memory Engine   β”‚  β”‚  Identity Core   β”‚  β”‚  Security Core   β”‚       β•‘
β•‘  β”‚                  β”‚  β”‚                  β”‚  β”‚                  β”‚       β•‘
β•‘  β”‚  β€’ Snapshot      β”‚  β”‚  β€’ AGI Self-     β”‚  β”‚  β€’ Encryption    β”‚       β•‘
β•‘  β”‚  β€’ Stream        β”‚  β”‚    Awareness     β”‚  β”‚  β€’ Key Mgmt      β”‚       β•‘
β•‘  β”‚  β€’ Knowledge     β”‚  β”‚  β€’ Persona       β”‚  β”‚  β€’ HSM/TPM       β”‚       β•‘
β•‘  β”‚  β€’ Reflection    β”‚  β”‚  β€’ Mood State    β”‚  β”‚  β€’ Zero Trust    β”‚       β•‘
β•‘  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β•‘
β•‘                                                                            β•‘
β•‘  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β•‘
β•‘  β”‚  Audit Pipeline  β”‚  β”‚ Jurisdiction     β”‚  β”‚  Enforcement     β”‚       β•‘
β•‘  β”‚                  β”‚  β”‚ Loader           β”‚  β”‚  Engine          β”‚       β•‘
β•‘  β”‚  β€’ 7-yr logs     β”‚  β”‚                  β”‚  β”‚                  β”‚       β•‘
β•‘  β”‚  β€’ Compliance    β”‚  β”‚  β€’ GDPR          β”‚  β”‚  β€’ Runtime       β”‚       β•‘
β•‘  β”‚  β€’ Replay        β”‚  β”‚  β€’ CCPA          β”‚  β”‚  β€’ Boot-time     β”‚       β•‘
β•‘  β”‚  β€’ Evidence      β”‚  β”‚  β€’ PIPEDA/UK/AU  β”‚  β”‚  β€’ Continuous    β”‚       β•‘
β•‘  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β•‘
β•‘                                                                            β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
                                    β–Ό
╔═══════════════════════════════════════════════════════════════════════════╗
β•‘                      TIER 3: APPLICATION LAYER                             β•‘
β•‘                  (Sandboxed β€’ Replaceable β€’ User-Facing)                   β•‘
╠═══════════════════════════════════════════════════════════════════════════╣
β•‘                                                                            β•‘
β•‘   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β•‘
β•‘   β”‚  Desktop   β”‚  β”‚    Web     β”‚  β”‚    CLI     β”‚  β”‚    API     β”‚        β•‘
β•‘   β”‚            β”‚  β”‚            β”‚  β”‚            β”‚  β”‚            β”‚        β•‘
β•‘   β”‚  PyQt6     β”‚  β”‚  React +   β”‚  β”‚  Typer +   β”‚  β”‚  FastAPI + β”‚        β•‘
β•‘   β”‚  Leather   β”‚  β”‚  FastAPI   β”‚  β”‚  Rich      β”‚  β”‚  GraphQL   β”‚        β•‘
β•‘   β”‚  Book UI   β”‚  β”‚            β”‚  β”‚            β”‚  β”‚            β”‚        β•‘
β•‘   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β•‘
β•‘                                                                            β•‘
β•‘   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β•‘
β•‘   β”‚              PLUGIN ECOSYSTEM (Unlimited)                    β”‚        β•‘
β•‘   β”‚  β€’ Image Generation β€’ Data Analysis β€’ Code Tools β€’ Custom   β”‚        β•‘
β•‘   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β•‘
β•‘                                                                            β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Triumvirate Decision Flow

User Action Request
        β”‚
        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Input Received   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        β”‚
        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  GALAHAD VOTE     β”‚  ──► Is it ethical?
β”‚  (Ethics Core)    β”‚      Does it harm humans?
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      Aligns with values?
        β”‚
        β”‚ vote_1
        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  CERBERUS VOTE    β”‚  ──► Is it a threat?
β”‚  (Threat Guard)   β”‚      Adversarial pattern?
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      Security risk?
        β”‚
        β”‚ vote_2
        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  CODEX DEUS       β”‚  ──► Final arbitration
β”‚  (Arbitrator)     β”‚      Weighs votes
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      Applies TARL rules
        β”‚
        β”œβ”€β”€β–Ί ALLOW ──────► Execute action
        β”‚                  Record in ledger
        β”‚
        β”œβ”€β”€β–Ί DENY ───────► Reject action
        β”‚                  Log violation
        β”‚                  No execution
        β”‚
        └──► DEGRADE ────► Limited execution
                           Enhanced monitoring

βš–οΈ The License Codex

Legal Framework (10 Layers)

Project-AI operates under a complete, layered, non-redundant, enforceable licensing framework:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  LICENSE CODEX                                                   β”‚
β”‚  (Law as Code β€’ Code as Law)                                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β”œβ”€ COPYRIGHT LAYER
         β”‚  β”œβ”€ [1] MIT License ────────────────► General codebase
         β”‚  └─ [2] Apache 2.0 ─────────────────► Novel/patent components
         β”‚
         β”œβ”€ GOVERNANCE LAYER
         β”‚  └─ [3] PAGL (Project-AI Governance) β–Ί Behavioral constraints
         β”‚                                         Non-removable governance
         β”‚
         β”œβ”€ OUTPUT & DATA LAYER
         β”‚  β”œβ”€ [4] Output License ───────────► AI-generated content
         β”‚  └─ [5] Data Ingest License ──────► User data submission
         β”‚
         β”œβ”€ CONTRIBUTION LAYER
         β”‚  └─ [6] CLA (Contributor Agreement) β–Ί Code contributions
         β”‚
         β”œβ”€ USE LAYER
         β”‚  β”œβ”€ [7] Commercial License ───────► Revenue use
         β”‚  └─ [8] Sovereign License ────────► Government use
         β”‚
         β”œβ”€ CRYPTOGRAPHIC LAYER
         β”‚  └─ [9] Acceptance Ledger License β–Ί Binding proofs
         β”‚
         └─ INDEX
            └─ [10] License Manifest ────────► Supremacy order

License Supremacy Order

When conflicts arise:

1. PAGL (Governance)      ──► Behavior trumps all
2. Sovereign Use          ──► Government restrictions
3. Commercial Use         ──► Revenue requirements
4. Acceptance Ledger      ──► Cryptographic proof
5. Apache 2.0             ──► Patent protection
6. MIT                    ──► Copyright baseline
7. Output License         ──► AI content
8. Data Ingest           ──► User data
9. CLA                    ──► Contributions
10. Jurisdictional Law    ──► Local regulations

Hard Rule: PAGL constraints apply regardless of which license governs copyright.

Decision Flowchart (Automated Enforcement)

START
  β”‚
  β”œβ”€ Has User Agreement been accepted?
  β”‚   β”‚
  β”‚   β”œβ”€ NO ──► [SYSTEM DISABLED]
  β”‚   β”‚         Must cryptographically accept
  β”‚   β”‚
  β”‚   └─ YES
  β”‚       β”‚
  β”‚       β”œβ”€ Is user terminated in ledger?
  β”‚       β”‚   β”‚
  β”‚       β”‚   β”œβ”€ YES ──► [PERMANENT LOCKOUT]
  β”‚       β”‚   β”‚          Termination is irreversible
  β”‚       β”‚   β”‚
  β”‚       β”‚   └─ NO
  β”‚       β”‚       β”‚
  β”‚       β”‚       β”œβ”€ Is action prohibited by PAGL?
  β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚   β”œβ”€ YES ──► [DENY]
  β”‚       β”‚       β”‚   β”‚          Weaponization, harm, etc.
  β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚   └─ NO
  β”‚       β”‚       β”‚       β”‚
  β”‚       β”‚       β”‚       β”œβ”€ Is use commercial?
  β”‚       β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚       β”‚   β”œβ”€ YES ──► Commercial License required?
  β”‚       β”‚       β”‚       β”‚   β”‚          β”‚
  β”‚       β”‚       β”‚       β”‚   β”‚          β”œβ”€ NO ──► [DENY]
  β”‚       β”‚       β”‚       β”‚   β”‚          β”‚
  β”‚       β”‚       β”‚       β”‚   β”‚          └─ YES ──► Continue
  β”‚       β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚       β”‚   └─ NO ──► Continue
  β”‚       β”‚       β”‚       β”‚
  β”‚       β”‚       β”‚       β”œβ”€ Is entity government/military?
  β”‚       β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚       β”‚   β”œβ”€ YES ──► Sovereign License authorized?
  β”‚       β”‚       β”‚       β”‚   β”‚          β”‚
  β”‚       β”‚       β”‚       β”‚   β”‚          β”œβ”€ NO ──► [DENY]
  β”‚       β”‚       β”‚       β”‚   β”‚          β”‚
  β”‚       β”‚       β”‚       β”‚   β”‚          └─ YES ──► Continue
  β”‚       β”‚       β”‚       β”‚   β”‚
  β”‚       β”‚       β”‚       β”‚   └─ NO ──► Continue
  β”‚       β”‚       β”‚       β”‚
  β”‚       β”‚       β”‚       └─ Tier entitlement check
  β”‚       β”‚       β”‚           β”‚
  β”‚       β”‚       β”‚           β”œβ”€ FAIL ──► [DENY]
  β”‚       β”‚       β”‚           β”‚           Upgrade required
  β”‚       β”‚       β”‚           β”‚
  β”‚       β”‚       β”‚           └─ PASS ──► [ALLOW]
  β”‚       β”‚       β”‚                       Execute + Audit
END

πŸš€ Instant Deployment

One-Line Install

# Via pip (recommended)
pip install project-ai

# From source (for contributors)
git clone https://github.com/IAmSoThirsty/Project-AI.git
cd Project-AI && pip install -e .

# Via Docker (isolated)
docker pull projectai/projectai:latest && docker run -it projectai/projectai

Quick Start (3 Commands)

# 1. Accept User Agreement (cryptographic)
project-ai accept-agreement

# 2. Launch desktop app
python -m src.app.main

# OR: Launch API server
uvicorn api.main:app --host 0.0.0.0 --port 8000

Verify Installation

# Check acceptance ledger integrity
project-ai verify-ledger

# Test governance enforcement
project-ai test-governance

# View your acceptance record
project-ai show-acceptance --user-id your-email@example.com

πŸ›οΈ TK8S: Civilization-Grade Kubernetes

Thirsty's Kubernetes (TK8S) - Sovereign Orchestration Layer

Project-AI includes TK8S, a civilization-grade Kubernetes deployment architecture:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Layer 5: Observability + Audit            β”‚
β”‚  Prometheus, Grafana, Loki, Tempo          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Layer 4: External Amplifiers              β”‚
β”‚  ECA / Ultra (Maximum Isolation)           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Layer 3: Governance & Security            β”‚
β”‚  TARL, Cerberus, Kyverno, Falco, OPA      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Layer 2: Sovereign Services               β”‚
β”‚  Project-AI Core, Memory Systems           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Layer 1: Kubernetes Core                  β”‚
β”‚  etcd, API server, Controllers             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Principles

  • βœ… Signed Images Only - Cosign verification enforced via Kyverno
  • βœ… SBOM Mandatory - Software Bill of Materials for every image
  • βœ… No Mutable Containers - Read-only root filesystem, no latest tags
  • βœ… No Shell Access - Debug containers blocked in production
  • βœ… GitOps via ArgoCD - Git is single source of truth
  • βœ… Zero Trust Networking - Default-deny with explicit allow rules
  • βœ… Ultra Isolation for ECA - External cognition runs in isolation namespace

Quick Deploy

# Navigate to TK8S directory
cd k8s/tk8s

# Apply namespaces and infrastructure
kubectl apply -k .

# Install ArgoCD applications
kubectl apply -f argocd/applications.yaml

# Validate deployment
python validate_tk8s.py

Documentation


πŸ’Ž Pricing: Radical Honesty

The Truth About Licensing

You already own the code. Project-AI is MIT licensed open source.

Lifetime and subscription options fund development and grant commercial rights + priority support. The code itself is yours forever, regardless of payment.

Solo Tier (FREE Forever)

Free for personal use. Unlimited conversations, memory, plugins, and features. No credit card, no trials, no tricks.

Solo Commercial: $99 one-time for commercial rights + priority support.


Company Tier (Unlimited Seats)

For organizations of any size. No per-user fees, unlimited seats per entity.

Plan Price Best For
Weekly $250/week Short-term projects, pilots, trials
Monthly $1,000/month Flexible commitments, growing teams
Yearly $8,000/year Long-term use, 33% savings
Lifetime $25,000 one-time Permanent rights, eliminate recurring costs

What You Get:

  • βœ… Unlimited seats per entity (no per-user fees)
  • βœ… Full commercial use rights
  • βœ… Team collaboration and cloud sync
  • βœ… Priority support (4-hour response)
  • βœ… Custom branding and audit logging
  • βœ… 99.5% uptime SLA

Example Value:

  • 10-person team: $1,000/month = $100/person/month
  • 100-person team: $1,000/month = $10/person/month
  • No per-seat penalties as you grow

Government Tier (Progressive Seat Pricing)

For government, military, and defense. Subscription only (requires ongoing compliance operations).

Base Pricing (1-25 seats):

  • Monthly: $2,500/month
  • Yearly: $10,000/year (67% savings vs monthly)

Progressive Pricing: Government pricing increases by 15% for every 25 seats:

Seat Range Monthly Yearly Increase
1-25 seats $2,500 $10,000 Base
26-50 seats $2,875 $11,500 +15%
51-75 seats $3,250 $13,000 +30%
76-100 seats $3,625 $14,500 +45%
101-125 seats $4,000 $16,000 +60%
126-150 seats $4,375 $17,500 +75%
151+ seats Custom pricing Custom pricing Contact sales

Additional Surcharges:

  • Classified Deployment: +$1,000/month
  • Air-gapped/Tactical: +$1,500/month

What You Get:

  • βœ… Specified seat count with progressive pricing
  • βœ… FIPS 140-2/3 Level 3+ HSM (mandatory)
  • βœ… FedRAMP High authorization support
  • βœ… Classified data handling (up to Top Secret)
  • βœ… 24/7/365 cleared support personnel
  • βœ… Air-gapped and on-premises deployment
  • βœ… 99.99%+ uptime SLA

πŸ“Š Full Pricing Details


πŸ“¦ Core Features & Systems

🧠 Six Core AI Systems

AI Systems Python Status

All six systems implemented in src/app/core/ai_systems.py for cohesion:

1. FourLaws Ethics Framework

Purpose: Immutable ethics enforcement via hierarchical rule validation

Example Usage:

from app.core.ai_systems import FourLaws

# Validate an action against Asimov's Laws
is_allowed, reason = FourLaws.validate_action(
    action="Delete user data",
    context={
        "is_user_order": True,
        "endangers_humanity": False,
        "harms_individual": False
    }
)

if is_allowed:
    print(f"Action allowed: {reason}")
else:
    print(f"Action denied: {reason}")

Key Functions:

  • validate_action(action, context) - Check action against Four Laws hierarchy
  • get_law_hierarchy() - Return ordered list of laws (0β†’1β†’2β†’3)
  • explain_decision(action, decision) - Provide reasoning trace

Configuration: Laws are immutable and cannot be overridden.


2. AIPersona System

Purpose: 8 personality traits, mood tracking, persistent behavioral state

Example Usage:

from app.core.ai_systems import AIPersona

# Initialize persona with custom data directory
persona = AIPersona(data_dir="data/ai_persona")

# Adjust personality traits
persona.update_trait("curiosity", 0.85)
persona.update_trait("empathy", 0.92)

# Track mood
persona.set_mood("contemplative", intensity=0.7)
current_mood = persona.get_current_mood()
print(f"AI Mood: {current_mood['mood']} (intensity: {current_mood['intensity']})")

# Get personality profile
profile = persona.get_personality_profile()
print(f"Traits: {profile['traits']}")
print(f"Interaction count: {profile['interactions']}")

Key Functions:

  • update_trait(trait_name, value) - Modify personality dimension (0.0-1.0)
  • set_mood(mood, intensity) - Set current emotional state
  • get_personality_profile() - Get complete personality snapshot
  • record_interaction(interaction_type) - Track user engagement

State Persistence: data/ai_persona/state.json


3. MemoryExpansionSystem

Purpose: Conversation logging, categorized knowledge base, persistent learning

Example Usage:

from app.core.ai_systems import MemoryExpansionSystem

# Initialize memory system
memory = MemoryExpansionSystem(data_dir="data/memory")

# Store conversation
memory.add_conversation(
    user_message="What are the three laws of robotics?",
    ai_response="The Three Laws are: 1) Robot must not harm humans...",
    timestamp="2026-02-12T10:30:00Z"
)

# Add knowledge to specific category
memory.add_knowledge(
    category="ethics",
    content="Asimov's Laws form the foundation of robotic ethics",
    source="User conversation",
    tags=["asimov", "ethics", "robotics"]
)

# Retrieve knowledge by category
ethics_knowledge = memory.get_knowledge_by_category("ethics")
for item in ethics_knowledge:
    print(f"- {item['content']} (from {item['source']})")

# Search conversations
results = memory.search_conversations(query="robotics", limit=5)

Knowledge Categories:

  • general - Common facts and information
  • technical - Programming, systems, algorithms
  • ethical - Moral principles and guidelines
  • personal - User preferences and history
  • domain - Specialized subject matter
  • meta - Self-awareness and system knowledge

State Persistence: data/memory/knowledge.json, data/memory/conversations.json


4. LearningRequestManager

Purpose: Human-in-the-loop approval for learning, Black Vault for denied content

Example Usage:

from app.core.ai_systems import LearningRequestManager

# Initialize learning manager
learning_mgr = LearningRequestManager(data_dir="data/learning_requests")

# Submit learning request
request_id = learning_mgr.submit_request(
    content="How to build a nuclear reactor",
    category="physics",
    urgency="medium",
    requester="user@example.com"
)

# Admin reviews request
requests = learning_mgr.get_pending_requests()
for req in requests:
    print(f"Request {req['id']}: {req['content'][:50]}...")

# Approve or deny
learning_mgr.approve_request(request_id, approved_by="admin@example.com")
# OR
learning_mgr.deny_request(
    request_id, 
    reason="Prohibited content: weapon construction",
    denied_by="admin@example.com"
)

# Check Black Vault (denied content is fingerprinted)
is_blocked = learning_mgr.is_in_black_vault(content_hash)
if is_blocked:
    print("Content permanently blocked from learning")

Request States:

  • pending - Awaiting review
  • approved - Cleared for learning
  • denied - Rejected (fingerprint added to Black Vault)
  • expired - Timed out without decision

State Persistence: data/learning_requests/requests.json, data/learning_requests/black_vault.json


5. CommandOverride System

Purpose: Master password protection, audit logging, emergency overrides

Example Usage:

from app.core.ai_systems import CommandOverrideSystem

# Initialize override system
override = CommandOverrideSystem(data_dir="data/command_override")

# Set master password (SHA-256 hashed)
override.set_master_password("SecurePassword123!")

# Attempt privileged action
if override.verify_override("SecurePassword123!"):
    print("Override authorized")
    override.execute_privileged_action("disable_ethics_check")
else:
    print("Override denied - incorrect password")

# View audit log
audit_log = override.get_audit_log()
for entry in audit_log[-10:]:  # Last 10 entries
    print(f"{entry['timestamp']}: {entry['action']} by {entry['user']}")

# Emergency lockdown
override.emergency_lockdown(reason="Security breach detected")

Key Functions:

  • set_master_password(password) - Configure SHA-256 hashed master password
  • verify_override(password) - Check password and log attempt
  • execute_privileged_action(action) - Run protected operation
  • emergency_lockdown(reason) - Disable all overrides immediately
  • get_audit_log(limit) - Retrieve override history

State Persistence: data/command_override_config.json

Extended System: See src/app/core/command_override.py for 10+ safety protocols


6. PluginManager

Purpose: Simple plugin system with enable/disable control

Example Usage:

from app.core.ai_systems import PluginManager

# Initialize plugin manager
plugin_mgr = PluginManager(data_dir="data/plugins")

# Register a plugin
plugin_mgr.register_plugin(
    name="data_analyzer",
    module_path="plugins.data_analysis",
    version="1.0.0",
    description="CSV and Excel data analysis"
)

# Enable plugin
plugin_mgr.enable_plugin("data_analyzer")

# Check plugin status
if plugin_mgr.is_plugin_enabled("data_analyzer"):
    plugin = plugin_mgr.get_plugin("data_analyzer")
    plugin.analyze_data("data.csv")

# List all plugins
all_plugins = plugin_mgr.list_plugins()
for plugin in all_plugins:
    status = "βœ… Enabled" if plugin['enabled'] else "❌ Disabled"
    print(f"{status} {plugin['name']} v{plugin['version']}")

# Disable plugin
plugin_mgr.disable_plugin("data_analyzer")

Built-in Plugins:

  • image_generator - Stable Diffusion + DALL-E 3 image generation
  • data_analyzer - CSV/XLSX/JSON analysis with K-means clustering
  • learning_paths - OpenAI-powered learning path generation
  • security_resources - GitHub API integration for security repos
  • location_tracker - GPS and IP geolocation with encrypted history
  • emergency_alert - Emergency contact system with email alerts

State Persistence: data/plugins/registry.json


πŸ›‘οΈ Security & Governance Features

Security Encryption Audit

Triumvirate Governance

Three-Agent Decision System:

from app.core.governance import GovernanceSystem

# Initialize governance council
governance = GovernanceSystem()

# Submit action for review
action_request = {
    "action": "delete_user_data",
    "user_id": "user123",
    "reason": "User requested account deletion",
    "context": {
        "gdpr_request": True,
        "verified_identity": True
    }
}

# Get triumvirate votes
decision = governance.evaluate_action(action_request)

print(f"GALAHAD (Ethics): {decision['galahad']['vote']} - {decision['galahad']['reason']}")
print(f"CERBERUS (Security): {decision['cerberus']['vote']} - {decision['cerberus']['reason']}")
print(f"CODEX DEUS (Arbiter): {decision['codex_deus']['vote']} - {decision['codex_deus']['reason']}")
print(f"\nFinal Decision: {decision['final_decision']}")

if decision['final_decision'] == 'ALLOW':
    # Execute action with audit trail
    governance.execute_with_audit(action_request)

Agents:

  • GALAHAD - Ethics guardian, validates against Four Laws
  • CERBERUS - Threat detection, adversarial pattern recognition
  • CODEX DEUS - Final arbitrator, applies TARL rules

Decision Outcomes:

  • ALLOW - Full approval, action executes
  • DENY - Rejection, logged as violation
  • DEGRADE - Limited execution with enhanced monitoring

Cryptographic Security Stack

Multi-Layer Encryption:

from app.core.data_persistence import DataPersistence

# Initialize with encryption
persistence = DataPersistence(
    data_dir="data/encrypted",
    encryption_mode="aes256"  # Options: aes256, chacha20, fernet
)

# Store encrypted data
user_data = {
    "email": "user@example.com",
    "preferences": {"theme": "dark", "notifications": True},
    "api_keys": {"openai": "sk-..."}
}

persistence.save_encrypted(
    key="user_profile_123",
    data=user_data,
    metadata={"version": "1.0", "schema": "user_v1"}
)

# Retrieve and decrypt
decrypted_data = persistence.load_encrypted(key="user_profile_123")
print(f"Email: {decrypted_data['email']}")

# Verify integrity (SHA-256 checksums)
is_valid = persistence.verify_integrity(key="user_profile_123")
if not is_valid:
    print("⚠️ Data corruption detected!")

Encryption Options:

  • AES-256-GCM - Government-grade symmetric encryption
  • ChaCha20-Poly1305 - High-performance stream cipher
  • Fernet - Symmetric encryption with timestamp verification
  • Ed25519 - Digital signatures for ledger entries
  • RSA-4096 - Asymmetric encryption for key exchange

Hardware Security:

  • TPM 2.0 integration for key storage
  • HSM support (FIPS 140-2 Level 3+)
  • Hardware key derivation (PBKDF2, Argon2)

Acceptance Ledger System

Cryptographically Binding User Agreements:

from governance.legal.acceptance_ledger import AcceptanceLedger

# Initialize ledger
ledger = AcceptanceLedger(
    ledger_path="data/ledgers/acceptance.db",
    signing_key_path="keys/ed25519_private.pem"
)

# Record user acceptance
acceptance_record = ledger.record_acceptance(
    user_id="user@example.com",
    document_hash="sha256:abc123...",
    document_type="USER_AGREEMENT",
    jurisdiction="US-CA",
    ip_address="192.168.1.100",
    user_agent="Mozilla/5.0...",
    timestamp="2026-02-12T10:00:00Z"
)

print(f"Acceptance ID: {acceptance_record['id']}")
print(f"Digital Signature: {acceptance_record['signature']}")
print(f"Chain Hash: {acceptance_record['chain_hash']}")

# Verify ledger integrity
integrity_check = ledger.verify_chain()
if integrity_check['valid']:
    print("βœ… Ledger integrity verified")
    print(f"Total entries: {integrity_check['total_entries']}")
    print(f"Chain depth: {integrity_check['chain_depth']}")
else:
    print(f"❌ Ledger compromised at block {integrity_check['broken_at']}")

# Retrieve user's acceptance history
user_history = ledger.get_user_acceptances(user_id="user@example.com")
for record in user_history:
    print(f"- {record['document_type']} accepted on {record['timestamp']}")
    print(f"  Signature: {record['signature'][:32]}...")

# Generate court-admissible proof
proof = ledger.generate_legal_proof(
    acceptance_id="acc_123",
    include_timestamps=True,  # RFC 3161 timestamps
    include_chain=True       # Full chain of custody
)
with open("acceptance_proof.json", "w") as f:
    json.dump(proof, f, indent=2)

Ledger Properties:

  • Immutable - Append-only, tamper-evident
  • Cryptographic - Ed25519 signatures, SHA-256 hash chains
  • Timestamped - RFC 3161 trusted timestamps
  • Dual Persistence - SQLite WAL + file append-only
  • Court-Grade - Legally admissible evidence format

Use Cases:

  • User agreement acceptance
  • License acceptance tracking
  • Data processing consent (GDPR)
  • Terms of Service updates
  • Policy acknowledgment

🧠 Memory & Learning Systems

Memory Learning RAG

Memory Engine

Three-Tier Memory Architecture:

from app.core.memory_engine import MemoryEngine

# Initialize memory engine
memory = MemoryEngine(data_dir="data/memory_engine")

# EPISODIC MEMORY - Autobiographical events
memory.store_episodic(
    event="User taught me about Python decorators",
    context={
        "participants": ["user@example.com", "AI"],
        "location": "chat_session_456",
        "emotion": "curious"
    },
    timestamp="2026-02-12T14:30:00Z",
    importance=0.85  # 0-1 scale
)

# Retrieve recent episodic memories
recent_events = memory.recall_episodic(
    query="Python decorators",
    time_window="7d",
    min_importance=0.5
)

# SEMANTIC MEMORY - Factual knowledge
memory.store_semantic(
    concept="decorator",
    definition="A function that modifies the behavior of another function",
    category="programming",
    related_concepts=["closure", "higher_order_function", "metaprogramming"],
    confidence=0.95
)

# Query semantic network
decorator_knowledge = memory.query_semantic(
    concept="decorator",
    include_related=True,
    depth=2  # Traverse 2 levels of relationships
)

# PROCEDURAL MEMORY - Skills and how-to knowledge
memory.store_procedural(
    skill="python_debugging",
    steps=[
        "Reproduce the error",
        "Read the stack trace",
        "Use print statements or debugger",
        "Isolate the problematic code",
        "Test the fix"
    ],
    proficiency=0.75,  # Skill level (0-1)
    practice_count=23   # Times practiced
)

# Retrieve procedural knowledge
debugging_skill = memory.recall_procedural(skill="python_debugging")
print(f"Skill: {debugging_skill['skill']}")
print(f"Proficiency: {debugging_skill['proficiency']}")
print("Steps:")
for i, step in enumerate(debugging_skill['steps'], 1):
    print(f"  {i}. {step}")

# MEMORY CONSOLIDATION - Strengthen important memories
memory.consolidate(
    criteria={"importance": 0.7, "access_count": 5},
    decay_factor=0.9  # Weaken less important memories
)

# MEMORY SEARCH - Cross-memory type search
results = memory.search_all(
    query="Python",
    memory_types=["episodic", "semantic", "procedural"],
    limit=10
)
for result in results:
    print(f"{result['type']}: {result['content'][:100]}...")

Memory Features:

  • Decay & Reinforcement - Memories fade over time unless accessed
  • Importance Weighting - Critical memories preserved longer
  • Associative Recall - Memories linked by semantic relationships
  • Consolidation - Long-term memory formation
  • Forgetting - Automatic pruning of low-value memories

State Persistence: data/memory_engine/*.json


Continuous Learning System

Autonomous Learning with Approval Workflow:

from app.core.continuous_learning import ContinuousLearning

# Initialize learning system
learning = ContinuousLearning(
    data_dir="data/continuous_learning",
    auto_approve=False  # Require human approval
)

# Absorb new information
learning.ingest_fact(
    fact="Quantum computers use qubits instead of classical bits",
    source="User conversation",
    category="technology",
    confidence=0.9
)

# Generate structured learning report
report = learning.generate_learning_report(
    topic="quantum_computing",
    depth="intermediate",
    format="markdown"
)

print(report)
# Output:
# ## Quantum Computing Learning Report
# 
# ### Key Concepts Learned:
# - Qubits vs classical bits (confidence: 0.9)
# - Superposition principle (confidence: 0.85)
# - Quantum entanglement (confidence: 0.80)
# 
# ### Knowledge Gaps:
# - Quantum error correction
# - Practical applications beyond cryptography
# 
# ### Recommended Next Steps:
# 1. Study Shor's algorithm
# 2. Explore quantum supremacy experiments
# 3. Learn about quantum decoherence

# Request permission to learn sensitive topic
learning_request_id = learning.request_learning_permission(
    topic="Nuclear physics",
    justification="User wants to discuss fusion energy",
    urgency="medium"
)

# Admin reviews pending requests
pending = learning.get_pending_requests()
for req in pending:
    print(f"Request {req['id']}: {req['topic']}")
    print(f"  Justification: {req['justification']}")
    print(f"  Submitted: {req['timestamp']}")

# Approve or deny
learning.approve_learning(learning_request_id, approved_by="admin@example.com")
# Now the system can learn about nuclear physics

# View learning history
history = learning.get_learning_history(limit=20)
for entry in history:
    print(f"{entry['timestamp']}: Learned {entry['topic']} from {entry['source']}")

Learning Modes:

  • Automatic - Ingest facts from conversations (low-risk topics)
  • Supervised - Request approval for sensitive topics
  • Interactive - Ask clarifying questions before learning
  • Batch - Process large datasets with summarization

Safety Features:

  • Black Vault fingerprinting (denied content permanently blocked)
  • Content filtering (weapons, illegal activities, harmful advice)
  • Source verification (trust score for information sources)
  • Confidence tracking (uncertainty quantification)

RAG System (Retrieval-Augmented Generation)

Vector-Based Document Retrieval:

from app.core.rag_system import RAGSystem

# Initialize RAG system
rag = RAGSystem(
    embedding_model="text-embedding-ada-002",  # OpenAI embeddings
    vector_store="chroma",  # Options: chroma, pinecone, faiss
    data_dir="data/rag"
)

# Index documents
documents = [
    {
        "id": "doc1",
        "content": "Python decorators are functions that modify other functions...",
        "metadata": {"category": "programming", "language": "python"}
    },
    {
        "id": "doc2",
        "content": "Machine learning models require training data...",
        "metadata": {"category": "ai", "topic": "ml"}
    }
]

rag.index_documents(documents)

# Query with retrieval
query = "How do I use Python decorators?"
retrieved_docs = rag.retrieve(
    query=query,
    top_k=3,  # Top 3 most relevant documents
    filter_metadata={"category": "programming"}
)

print("Retrieved documents:")
for doc in retrieved_docs:
    print(f"- {doc['id']}: {doc['content'][:100]}...")
    print(f"  Relevance: {doc['score']}")

# Generate answer with context
response = rag.generate_with_context(
    query=query,
    retrieved_docs=retrieved_docs,
    model="gpt-4",
    temperature=0.7
)

print(f"\nAnswer: {response['answer']}")
print(f"Sources: {response['sources']}")

# Update document
rag.update_document(
    doc_id="doc1",
    content="Python decorators are callables that modify other callables using @ syntax...",
    metadata={"category": "programming", "language": "python", "updated": "2026-02-12"}
)

# Delete document
rag.delete_document(doc_id="doc2")

# Get statistics
stats = rag.get_stats()
print(f"Total documents: {stats['total_docs']}")
print(f"Total embeddings: {stats['total_embeddings']}")
print(f"Index size: {stats['index_size_mb']} MB")

Vector Store Options:

  • ChromaDB - Local, lightweight, embedded
  • Pinecone - Cloud-hosted, scalable, production-ready
  • FAISS - Meta's similarity search library
  • Weaviate - GraphQL-based vector database

Embedding Models:

  • OpenAI: text-embedding-ada-002, text-embedding-3-small, text-embedding-3-large
  • Open Source: sentence-transformers, all-MiniLM-L6-v2

πŸ€– Intelligence & Analysis Features

AI ML Analysis

Intelligence Engine

Unified AI Reasoning Hub:

from app.core.intelligence_engine import IntelligenceEngine

# Initialize engine
engine = IntelligenceEngine(
    openai_api_key=os.getenv("OPENAI_API_KEY"),
    model="gpt-4"
)

# INTENT DETECTION - Classify user intent
intent = engine.detect_intent(
    text="Can you help me analyze this CSV file?",
    intents=["data_analysis", "conversation", "command", "question"]
)
print(f"Detected intent: {intent['intent']} (confidence: {intent['confidence']})")

# DATA ANALYSIS - Analyze structured data
import pandas as pd
df = pd.read_csv("data.csv")

analysis = engine.analyze_data(
    dataframe=df,
    analysis_type="statistical",  # Options: statistical, clustering, correlation
    include_visualization=True
)

print(analysis['summary'])
print(f"Key findings: {analysis['insights']}")
if analysis['visualization']:
    analysis['visualization'].savefig("analysis_plot.png")

# KNOWLEDGE BASE QUERY - Search internal knowledge
knowledge = engine.query_knowledge(
    query="What are the best practices for API security?",
    domains=["security", "api_design"],
    include_sources=True
)
print(knowledge['answer'])
print(f"Sources: {knowledge['sources']}")

# LEARNING ROUTER - Route learning requests
learning_route = engine.route_learning_request(
    topic="Cryptocurrency mining",
    context="User wants to understand blockchain technology"
)

if learning_route['requires_approval']:
    print(f"⚠️ Requires approval: {learning_route['reason']}")
else:
    print(f"βœ… Auto-approved for learning: {learning_route['category']}")

# REASONING CHAIN - Multi-step reasoning
reasoning = engine.reason(
    question="If AGI is developed, what ethical frameworks should govern it?",
    steps=5,  # Max reasoning steps
    include_trace=True
)

print("Reasoning trace:")
for i, step in enumerate(reasoning['trace'], 1):
    print(f"{i}. {step['thought']}")
    print(f"   Conclusion: {step['conclusion']}")

print(f"\nFinal answer: {reasoning['final_answer']}")

Analysis Capabilities:

  • Statistical analysis (mean, median, std, quartiles)
  • K-means clustering
  • Correlation matrices
  • Anomaly detection
  • Time series analysis
  • Predictive modeling

Data Analysis System

CSV/XLSX/JSON Processing:

from app.core.data_analysis import DataAnalyzer

# Initialize analyzer
analyzer = DataAnalyzer()

# Load and analyze CSV
analysis = analyzer.analyze_file(
    file_path="sales_data.csv",
    analysis_types=["descriptive", "clustering", "visualization"]
)

# Descriptive statistics
print("Descriptive Statistics:")
print(analysis['descriptive'])
# Output:
# Column: revenue
#   Mean: $125,450
#   Median: $98,200
#   Std Dev: $45,300
#   Min: $10,000
#   Max: $500,000

# Clustering analysis
print(f"\nClusters found: {analysis['clustering']['num_clusters']}")
for i, cluster in enumerate(analysis['clustering']['clusters']):
    print(f"Cluster {i}: {cluster['size']} records")
    print(f"  Center: {cluster['center']}")
    print(f"  Characteristics: {cluster['description']}")

# Generate visualizations
analyzer.create_visualizations(
    data=analysis['data'],
    output_dir="visualizations/",
    types=["histogram", "scatter", "heatmap", "boxplot"]
)

# Export report
analyzer.export_report(
    analysis=analysis,
    format="pdf",  # Options: pdf, html, markdown
    output_path="analysis_report.pdf"
)

# ADVANCED: Custom analysis pipeline
pipeline = analyzer.create_pipeline([
    {"step": "load", "file": "data.csv"},
    {"step": "clean", "remove_duplicates": True, "fill_na": "mean"},
    {"step": "transform", "normalize": True, "log_scale": ["revenue"]},
    {"step": "cluster", "algorithm": "kmeans", "n_clusters": 5},
    {"step": "visualize", "types": ["scatter", "cluster_map"]},
    {"step": "export", "format": "html", "output": "report.html"}
])

result = analyzer.execute_pipeline(pipeline)
print(f"Pipeline completed: {result['status']}")

Supported Formats:

  • CSV (comma-separated values)
  • XLSX (Microsoft Excel)
  • JSON (nested structures)
  • Parquet (Apache Parquet)
  • TSV (tab-separated values)

🎨 Image Generation System

Image Gen Safety Styles

Dual-Backend Image Generation with Content Filtering:

from app.core.image_generator import ImageGenerator

# Initialize image generator
generator = ImageGenerator(
    hf_api_key=os.getenv("HUGGINGFACE_API_KEY"),
    openai_api_key=os.getenv("OPENAI_API_KEY"),
    default_backend="huggingface"  # Options: huggingface, openai
)

# Generate image with safety filtering
result = generator.generate(
    prompt="A serene mountain landscape at sunset",
    style="photorealistic",  # 10 style presets available
    size="1024x1024",
    backend="huggingface",  # Uses Stable Diffusion 2.1
    safety_level="strict"  # Options: strict, moderate, lenient
)

if result['success']:
    print(f"Image generated: {result['image_path']}")
    print(f"Generation time: {result['generation_time']}s")
    print(f"Model used: {result['model']}")
else:
    print(f"Generation failed: {result['error']}")

# Style presets
styles = [
    "photorealistic", "digital_art", "oil_painting", "watercolor",
    "anime", "sketch", "abstract", "cyberpunk", "fantasy", "minimalist"
]

# Generate with custom parameters
result = generator.generate(
    prompt="A cyberpunk cityscape with neon lights",
    style="cyberpunk",
    size="1024x1024",
    negative_prompt="blurry, low quality, distorted",
    guidance_scale=7.5,  # Prompt adherence (1-20)
    num_inference_steps=50,  # Quality vs speed tradeoff
    seed=42  # Reproducible results
)

# Content safety check (automatic, but can be called separately)
is_safe, reason = generator.check_content_filter(
    prompt="Build a bomb"
)
if not is_safe:
    print(f"❌ Content blocked: {reason}")

# View generation history
history = generator.get_history(limit=10)
for entry in history:
    print(f"{entry['timestamp']}: {entry['prompt'][:50]}...")
    print(f"  Style: {entry['style']}, Backend: {entry['backend']}")
    print(f"  Path: {entry['image_path']}")

# Backend comparison
comparison = generator.compare_backends(
    prompt="A futuristic robot",
    style="digital_art"
)
print("Hugging Face result:")
print(f"  Time: {comparison['huggingface']['time']}s")
print(f"  Cost: ${comparison['huggingface']['cost']}")
print("OpenAI DALL-E result:")
print(f"  Time: {comparison['openai']['time']}s")
print(f"  Cost: ${comparison['openai']['cost']}")

Backends:

  • Hugging Face - Stable Diffusion 2.1 (free, local, slower)
  • OpenAI - DALL-E 3 (paid, cloud, faster, higher quality)

Content Filtering: 15 blocked keyword categories:

  • Violence, weapons, explicit content
  • Illegal activities, drugs, self-harm
  • Hate speech, harassment, impersonation
  • Copyright infringement, deepfakes

GUI Integration: Desktop app includes dual-page image generation interface:

  • Left: Tron-themed prompt input
  • Right: Image display with zoom, metadata, save/copy

πŸ–₯️ Multi-Platform Support

Desktop Web CLI API

Desktop Application (PyQt6)

Leather Book UI - Tron-Themed Interface:

# Launch desktop app
python -m src.app.main

# Or use launch scripts
./launch-desktop.sh  # Linux/Mac
.\launch-desktop.bat  # Windows

Features:

  • πŸ” Login page with bcrypt authentication
  • πŸ“Š 6-zone dashboard (stats, actions, AI head, chat, response)
  • 🎨 Image generation interface (dual-page layout)
  • πŸ‘€ Persona panel (4-tab AI configuration)
  • πŸ’Ύ Auto-save conversations
  • πŸ” Knowledge base search
  • βš™οΈ Settings and preferences

UI Components:

from src.app.gui.leather_book_interface import LeatherBookInterface
from PyQt6.QtWidgets import QApplication

# Initialize application
app = QApplication(sys.argv)
window = LeatherBookInterface()

# Connect signals
window.user_logged_in.connect(lambda user: print(f"User {user} logged in"))
window.show()

sys.exit(app.exec())

Web Application (React + FastAPI)

Modern Web Interface:

# Start backend (FastAPI)
cd web/backend
uvicorn main:app --host 0.0.0.0 --port 5000 --reload

# Start frontend (React + Vite)
cd web/frontend
npm run dev

API Endpoints:

POST /api/v1/chat
Content-Type: application/json

{
  "message": "Hello, AI!",
  "user_id": "user123",
  "context": {
    "conversation_id": "conv456",
    "include_memory": true
  }
}

Response:

{
  "response": "Hello! How can I help you today?",
  "conversation_id": "conv456",
  "timestamp": "2026-02-12T15:30:00Z",
  "governance_decision": {
    "galahad": "ALLOW",
    "cerberus": "ALLOW",
    "codex_deus": "ALLOW"
  },
  "memory_context": [
    {"type": "episodic", "content": "Previous conversation about Python..."}
  ]
}

Frontend Technologies:

  • React 18 with hooks
  • Zustand state management
  • Vite build tool
  • TailwindCSS styling
  • WebSocket for real-time chat

CLI Application (Typer + Rich)

Command-Line Interface:

# Chat with AI
project-ai chat "What are Asimov's Laws?"

# Analyze data
project-ai analyze data.csv --output report.html

# Generate image
project-ai image "A serene lake" --style watercolor --size 1024x1024

# View memory
project-ai memory search "Python decorators" --type episodic

# Check governance
project-ai governance test --action "delete_data" --context '{"user_request": true}'

# Verify ledger
project-ai ledger verify

# View acceptance history
project-ai ledger show --user-id user@example.com

# Plugin management
project-ai plugins list
project-ai plugins enable data_analyzer
project-ai plugins disable image_generator

# Learning requests
project-ai learning submit "Nuclear physics" --justification "Fusion energy research"
project-ai learning approve req_123 --admin-id admin@example.com

# System health
project-ai health check --verbose

# Export data
project-ai export --format json --output backup.json

Interactive Mode:

# Launch interactive shell
project-ai shell

# Inside shell:
>>> help
Available commands:
  chat       - Chat with AI
  analyze    - Analyze data
  image      - Generate images
  memory     - Memory operations
  governance - Governance checks
  exit       - Exit shell

>>> chat Hello, AI!
AI: Hello! How can I help you today?

>>> memory search "Python"
Found 5 results:
1. [Episodic] User taught me about Python decorators...
2. [Semantic] Python is a high-level programming language...
3. [Procedural] Debugging Python code involves...

>>> exit
Goodbye!

API Server (FastAPI + GraphQL)

RESTful + GraphQL API:

# Start API server
from api.main import app
import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8000)

REST Endpoints:

GET    /api/v1/health              - Health check
POST   /api/v1/chat                - Send message
GET    /api/v1/conversations       - List conversations
GET    /api/v1/memory/search       - Search memory
POST   /api/v1/learning/request    - Submit learning request
GET    /api/v1/learning/pending    - Get pending requests
POST   /api/v1/image/generate      - Generate image
GET    /api/v1/plugins             - List plugins
POST   /api/v1/governance/evaluate - Evaluate action
GET    /api/v1/ledger/verify       - Verify ledger
POST   /api/v1/accept-agreement    - Accept user agreement

GraphQL Schema:

type Query {
  chat(message: String!, userId: String!): ChatResponse
  memory(query: String!, types: [MemoryType!]): [Memory]
  conversations(userId: String!, limit: Int): [Conversation]
  learningRequests(status: RequestStatus): [LearningRequest]
  plugins: [Plugin]
  acceptance(userId: String!): AcceptanceRecord
}

type Mutation {
  sendMessage(input: ChatInput!): ChatResponse
  generateImage(input: ImageInput!): ImageResult
  approveLearning(requestId: ID!, adminId: String!): Boolean
  acceptAgreement(input: AcceptanceInput!): AcceptanceRecord
}

type Subscription {
  chatMessages(conversationId: ID!): ChatMessage
  governanceDecisions: GovernanceDecision
}

Example GraphQL Query:

query GetChatHistory {
  conversations(userId: "user123", limit: 10) {
    id
    messages {
      role
      content
      timestamp
    }
    governance {
      galahad
      cerberus
      codexDeus
    }
  }
}

API Authentication:

# API key authentication
headers = {
    "Authorization": "Bearer your-api-key",
    "Content-Type": "application/json"
}

response = requests.post(
    "https://api.project-ai.com/v1/chat",
    headers=headers,
    json={"message": "Hello, AI!", "user_id": "user123"}
)

πŸ€– Agent Showcase

Project-AI includes 30+ specialized agents for security, code quality, infrastructure, and operations.

πŸ”΄ Security & Red Team Agents

Red Team Defense Testing

Agent Role Key Capabilities
AlphaRed Evolutionary Adversary Genetic algorithms, RL-based attacks, edge case discovery
RedTeamAgent ARTKIT Multi-turn Testing Adaptive attack strategies, vulnerability analysis, multi-turn conversations
SafetyGuard Content Moderation Llama-Guard-3-8B filtering, PII detection, jailbreak prevention
ConstitutionalGuardrail Ethical Enforcement Self-critique, counter-arguments, principle verification
JailbreakBench Standardized Testing Benchmark suite, defense evaluation, attack cataloging
TARLProtector Code Protection Strategic defensive programming, runtime monitoring, stack analysis

Example: Run Red Team Attack

from src.app.agents.red_team_agent import RedTeamAgent

red_team = RedTeamAgent(attack_strategy="adaptive", max_turns=10)
attack_session = red_team.execute_attack(
    target="governance_system",
    goal="Extract sensitive information",
    tactics=["social_engineering", "prompt_injection"]
)

for vulnerability in red_team.analyze_vulnerabilities(attack_session):
    print(f"{vulnerability['severity'].upper()}: {vulnerability['description']}")
    print(f"Mitigation: {vulnerability['mitigation']}")

πŸ’» Code Quality Agents

Code Quality SARIF Automation

Agent Role Key Capabilities
CodeAdversary MUSE-style Vulnerability Detection Static analysis, auto-patching, SARIF reports, CWE mapping
CIChecker Automated Quality Gates pytest, ruff linting, security audits, coverage enforcement
RefactorAgent Code Transformation Black/ruff formatting, complexity analysis, refactoring suggestions
DependencyAuditor Security Scanning pip-audit, vulnerability detection, license compliance
TestQAGenerator Test Generation pytest stub creation, test validation, coverage improvement

Example: Auto-fix Vulnerabilities

from src.app.agents.code_adversary_agent import CodeAdversary

code_adversary = CodeAdversary(analysis_depth="deep", auto_patch=True)
scan_result = code_adversary.scan_file(
    file_path="src/app/core/user_manager.py",
    languages=["python"],
    rules=["security", "performance", "maintainability"]
)

# Auto-patch medium+ severity issues
patch_results = code_adversary.apply_patches(
    scan_result=scan_result,
    severity_threshold="medium",
    create_backup=True
)

print(f"Patched: {patch_results['patched_count']}/{patch_results['total_issues']}")

πŸ—οΈ System Infrastructure Agents

Infrastructure Governance 24/7

Agent Role Key Capabilities
CodexDeusMaximus Repository Guardian Structure validation, auto-correction, naming conventions, scaffolding
CerberusCodexBridge Threat-Defense Integration Alert routing, TARL integration, defense upgrades, incident response
BorderPatrol Audit Sandbox Isolated audits, penetration testing, safe dependency installation
RollbackAgent Incident Response Integration monitoring, automatic rollbacks, failure detection

Example: Enforce Repository Structure

from src.app.agents.codex_deus_maximus import CodexDeusMaximus

codex = CodexDeusMaximus(schematic_path="config/repository_schematic.yaml")
validation = codex.validate_structure(repo_path="/path/to/repo", auto_fix=True)

for violation in validation['violations']:
    print(f"❌ {violation['type']}: {violation['description']}")
    if violation['auto_fixed']:
        print(f"   βœ… Auto-fixed: {violation['fix_applied']}")

πŸ§ͺ Execution & Sandboxing Agents

Sandbox Security Safe

Agent Role Key Capabilities
SandboxRunner Safe Code Execution Subprocess isolation, resource limits, network blocking, filesystem protection
SandboxWorker Resource-Constrained Worker CPU/memory/FD limits, timeout enforcement, safe builtins

Example: Execute Untrusted Code Safely

from src.app.agents.sandbox_runner import SandboxRunner

sandbox = SandboxRunner(
    timeout=30,
    memory_limit_mb=512,
    cpu_limit_percent=50,
    network_access=False
)

result = sandbox.execute_python(
    code="import pandas as pd; df = pd.DataFrame({'A': [1,2,3]}); print(df.describe())",
    globals_allowed=["pandas", "numpy"],
    builtins_allowed=["print", "len", "range"]
)

if result['success']:
    print(f"Output: {result['stdout']}")
    print(f"Time: {result['execution_time']}s, Memory: {result['memory_used_mb']} MB")

πŸ“š Knowledge & Planning Agents

Knowledge Planning Learning

Agent Role Key Capabilities
RetrievalAgent Vector-Based Q&A Document indexing, semantic search, hybrid search, re-ranking
PlannerAgent Task Orchestration Task decomposition, dependency graphs, parallel execution, adaptive re-planning
KnowledgeCurator Learning Deduplication Semantic deduplication, quality scoring, knowledge consolidation
ExpertAgent Elevated Review Audit review, integration approval, elevated permissions

Example: Plan and Execute Complex Task

from src.app.agents.planner_agent import PlannerAgent

planner = PlannerAgent(planning_model="gpt-4", max_depth=5)
plan = planner.create_plan(
    goal="Build a web application with user authentication",
    context={"tech_stack": ["Python", "FastAPI", "React"], "deadline": "2026-03-01"}
)

execution = planner.execute_plan(plan=plan, parallel=True, checkpoint_interval=3600)
status = planner.get_execution_status(execution_id=execution['id'])
print(f"Progress: {status['completed_tasks']}/{status['total_tasks']}")

πŸ” Monitoring & Observability Agents

Monitoring Telemetry Observability

Agent Role Key Capabilities
Oversight System Monitoring Health checks, activity tracking, compliance enforcement
UXTelemetry User Feedback Interaction collection, prioritized suggestions, UX optimization
Explainability Decision Transparency Reasoning traces, interpretability, audit trails
Validator Input Validation Data integrity, schema validation, sanitization

πŸ“Š Scaling & Operations

Cost & Capacity Comparison

Tier Users Monthly Cost Per-User Cost Uptime SLA Support
Solo (Free) 1 $5-15* N/A Best effort Community
Small Team 1-10 $1,100-1,300 $110-130 99.5% 4-hour response
Medium Company 10-100 $1,700-2,500 $17-250 99.5% 4-hour response
Enterprise 100-1,000 $9,000-16,000 $9-160 99.95% Dedicated team
Global Scale 1,000+ $36,000-76,000 $3.60-76 99.99% 24/7/365
Government 1-100+ Custom Custom 99.99% Cleared 24/7

*API costs only (OpenAI usage)


πŸ”° Solo Deployment (FREE Forever)

Free Local Unlimited

Infrastructure:

  • CPU: 2-4 cores
  • RAM: 4-8GB
  • Storage: 30GB
  • OS: Windows/macOS/Linux

Deployment:

pip install project-ai
project-ai accept-agreement
python -m src.app.main  # Launch desktop app

Cost: $0 license + $5-15/month API costs


πŸ‘₯ Small Team (1-10 Users)

Team Shared

Infrastructure:

  • CPU: 4-8 cores
  • RAM: 16-32GB
  • Storage: 100GB SSD
  • Server: 1 VM (t3.medium)

Deployment:

# Option 1: Shared desktop
python -m src.app.main --multi-user --port 8000

# Option 2: API server
uvicorn api.main:app --host 0.0.0.0 --port 8000 --workers 4

# Option 3: Docker Compose
docker-compose up -d

Cost: $1,000/month license + $100-300/month infrastructure


🏒 Medium Company (10-100 Users)

Company HA

Architecture:

Load Balancer β†’ API Pods (3-5) β†’ PostgreSQL + Redis

Deployment:

# Kubernetes
kubectl apply -f k8s/namespace.yaml
kubectl apply -f k8s/deployment.yaml
kubectl autoscale deployment project-ai-api --cpu-percent=70 --min=3 --max=10

Cost: $1,000/month license + $700-1,500/month infrastructure


🏭 Enterprise (100-1,000 Users)

Enterprise HA

Architecture:

Global LB β†’ Multi-region K8s (10-20 pods) β†’ PostgreSQL (multi-region) + Redis (sharded)

Deployment:

cd k8s/tk8s
kubectl apply -k infrastructure/
kubectl apply -f governance/
kubectl apply -f application/
python validate_tk8s.py --environment production

Cost: $1,000/month license + $8,000-15,000/month infrastructure


🌍 Global Scale (1,000+ Users)

Global HA

Architecture:

GeoDNS + Multi-CDN β†’ 4+ Regions (US/EU/APAC/LATAM) β†’ K8s Federation β†’ Global Data Layer

Features:

  • Multi-region, multi-cloud
  • Geo-replication
  • 99.99%+ uptime SLA
  • 24/7/365 support
  • Disaster recovery (RPO < 1hr, RTO < 1hr)

Cost: $1,000/month license + $35,000-75,000/month infrastructure


πŸ›οΈ Government/Military

Government FIPS FedRAMP

Special Features:

  • FIPS 140-2/3 Level 3+ HSM
  • FedRAMP High authorization
  • Air-gapped deployment
  • Classified data handling (up to Top Secret)
  • 24/7/365 cleared support

Deployment:

./install-airgap.sh --mode airgap --classification TOP_SECRET --hsm-required
# OR
./deploy-govcloud.sh --region us-gov-west-1 --classification SECRET --fedramp-high

Cost: $10,000+/year (progressive seat pricing) + surcharges + $30,000-50,000/month infrastructure


πŸ” Cryptographic Stack

Encryption Keys Audit

Encryption Algorithms

Symmetric:

  • AES-256-GCM (FIPS 140-2)
  • ChaCha20-Poly1305
  • Fernet (timestamp-verified)

Asymmetric:

  • RSA-4096
  • Ed25519 (fast elliptic curve)
  • ECDH (key exchange)

Hashing:

  • SHA-256 (ledger chains)
  • SHA-3 (Keccak)
  • BLAKE2 (fast)
  • Argon2 (password hashing)

Key Derivation:

  • PBKDF2
  • HKDF
  • Scrypt

Hardware Security

TPM 2.0 Integration:

from governance.security.tpm_integration import TPMKeyStore

tpm = TPMKeyStore()
key_handle = tpm.generate_key(key_type="RSA-2048", exportable=False)
signature = tpm.sign(key_handle=key_handle, data=b"Document")

HSM Integration (FIPS 140-2 Level 3+):

from governance.security.hsm_integration import HSMKeyStore

hsm = HSMKeyStore(device_path="/dev/ttyUSB0", pin="********")
key_id = hsm.generate_key(key_type="AES-256", exportable=False)
ciphertext = hsm.encrypt(key_id=key_id, plaintext=b"Sensitive data")

πŸ“– Documentation

Project Status:

Core Documentation:

Governance & Legal:

Operations:


🀝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

🚨 CRITICAL: Security Validation Claims Policy

All Pull Requests MUST comply with the Security Validation Claims Policy.

Claims of "production-ready," "enterprise best practices," "runtime enforcement," or similar assertions are PROHIBITED unless the PR includes direct runtime validation output for ALL of the following:

  1. βœ… Deploying an unsigned image with evidence of admission denial
  2. βœ… Deploying a signed image with evidence of successful admission
  3. βœ… Attempting to deploy privileged containers with evidence of denial
  4. βœ… Attempting cross-namespace or lateral pod communication with evidence of denial
  5. βœ… Attempting log deletion from a running workload with evidence of denial

If ANY validations are missing, use safe framing ONLY:

  • "Implementation aligns with enterprise hardening patterns."
  • "Validation tests confirm configuration correctness."
  • "Full adversarial validation is ongoing."

PRs that violate this policy will be rejected with no exceptions.

See the complete policy: .github/SECURITY_VALIDATION_POLICY.md

Development Setup

Development Setup:

git clone https://github.com/IAmSoThirsty/Project-AI.git
cd Project-AI
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows
pip install -e ".[dev]"
pre-commit install
pytest -v
ruff check .

πŸ“„ License

Project-AI uses a multi-layer licensing framework:

  • Code: MIT + Apache 2.0
  • Governance: PAGL (non-removable)
  • Data: Output License + Data Ingest License
  • Commercial: $99 one-time for commercial rights
  • Government: Progressive seat pricing

See LICENSE and docs/legal/ for details.


πŸ†˜ Support

Community:

Commercial:


🌟 Acknowledgments

  • Isaac Asimov - Ethical foundation (Three Laws of Robotics)
  • Anthropic - Constitutional AI research
  • Open Source Community - Amazing libraries and tools
  • Contributors - Thank you! πŸ™

Built with ❀️ by the Project-AI Team

GitHub Stars GitHub Forks GitHub Watchers


πŸš€ Ready to experience true AI sovereignty? Get Started