Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
96 commits
Select commit Hold shift + click to select a range
3e6b6fc
CI/CD — the pipeline should pass the previously failing steps
JustineDevs Dec 7, 2025
acc29eb
update: modify page.tsx in architecture
JustineDevs Dec 7, 2025
ab736f0
update: modify page.tsx in studio
JustineDevs Dec 7, 2025
2385af5
update: modify page.tsx in create
JustineDevs Dec 7, 2025
c9557c7
update: modify SpendingTrends.tsx in analytics
JustineDevs Dec 7, 2025
ae01387
update: modify SpendingControls.tsx in spending
JustineDevs Dec 7, 2025
d8f6e09
update: modify WorkflowForm.tsx in workflows
JustineDevs Dec 7, 2025
ac50737
update: modify usePolling.ts in hooks
JustineDevs Dec 7, 2025
8e3b20d
update: modify jest.config.js in frontend
JustineDevs Dec 7, 2025
365e936
update: modify pyproject.toml
JustineDevs Dec 7, 2025
7cdf1ad
update: modify README.DOCKER.md
JustineDevs Dec 7, 2025
b79784c
update: modify README.md
JustineDevs Dec 7, 2025
db5ee0c
remove: delete README.DOCKER.md
JustineDevs Dec 9, 2025
a9e19f5
refactor: remove unused Grafana and OpenTelemetry components
JustineDevs Dec 9, 2025
3948d79
update: modify 07_deployment_architecture.md in Framework
JustineDevs Dec 9, 2025
569aa11
Initial sync after enabling
JustineDevs Dec 29, 2025
f44110a
Auto-sync after agent response
JustineDevs Dec 29, 2025
1e7f79b
Auto-sync after agent response
JustineDevs Dec 29, 2025
9d0e3de
Auto-sync on project load
JustineDevs Dec 29, 2025
89c73fc
Auto-sync after agent response
JustineDevs Dec 29, 2025
23c4e91
Auto-sync after agent response
JustineDevs Dec 29, 2025
b8d2f32
Auto-sync after agent response
JustineDevs Dec 29, 2025
b7e123c
Auto-sync after agent response
JustineDevs Dec 29, 2025
f8b6129
Auto-sync after agent response
JustineDevs Dec 29, 2025
b447b28
Auto-sync after agent response
JustineDevs Dec 29, 2025
a82e4dc
Auto-sync after agent response
JustineDevs Dec 29, 2025
a73e347
Auto-sync after agent response
JustineDevs Dec 29, 2025
d463640
Reorganize repo: docs/, scripts/, and add project_docs workflow
JustineDevs Jan 22, 2026
14bcadd
chore(config): update 34 file(s) and 29 more
JustineDevs Jan 27, 2026
a830d96
feat(frontend): update 4 file(s)
JustineDevs Jan 27, 2026
862c7a3
unreleased
JustineDevs Feb 6, 2026
40d992e
chore: add GitOps structure and branch rename script
JustineDevs Feb 6, 2026
81847ee
update: modify AGENT.mdc in rules
JustineDevs Feb 6, 2026
6199c00
update: modify .gitignore
JustineDevs Feb 6, 2026
a1d0a12
chore: update llm
JustineDevs Feb 6, 2026
5276d68
chore: update .github
JustineDevs Feb 6, 2026
59ea4c4
chore: update .gitlint
JustineDevs Feb 6, 2026
952a5a3
chore: update CODEOWNERS
JustineDevs Feb 6, 2026
504298d
chore: update docs
JustineDevs Feb 6, 2026
05b3a0e
chore: update k8s
JustineDevs Feb 6, 2026
5e69b10
chore: update package.json
JustineDevs Feb 6, 2026
8b54f40
chore: update README.md in scripts
JustineDevs Feb 6, 2026
013585a
chore: update data in scripts
JustineDevs Feb 6, 2026
280d863
chore: update docs in scripts
JustineDevs Feb 6, 2026
28f2ea4
chore: update git in scripts
JustineDevs Feb 6, 2026
aa71d90
chore: remove AI agent directories from Git tracking
JustineDevs Feb 6, 2026
ea5a45a
update: modify .gitignore
JustineDevs Feb 6, 2026
63f5584
remove: delete SECURITY_ENV_FIX.md in docs
JustineDevs Feb 6, 2026
a154940
feat: include .cursor/skills directory in repository
JustineDevs Feb 6, 2026
e8b1c3a
feat: add .cursor and k8s directories to develop branch
JustineDevs Feb 6, 2026
7fbb784
docs: update 3 file(s)
JustineDevs Feb 6, 2026
5fefee4
feat(automation): update Phase 1-3 issue creation with correct assign…
JustineDevs Feb 6, 2026
aef7bd4
feat(config): add project-wide AI interaction structure and constitution
JustineDevs Feb 6, 2026
9fa3e0b
docs(automation): document branch separation implementation
JustineDevs Feb 6, 2026
cd079bb
update: modify .gitignore
JustineDevs Feb 6, 2026
689d448
update: modify .gitignore
JustineDevs Feb 6, 2026
eb8dc03
remove: delete .dockerignore
JustineDevs Feb 6, 2026
ff7e032
update: modify CODEOWNERS
JustineDevs Feb 6, 2026
2529cce
remove: delete hyperagent-production.yaml in applications
JustineDevs Feb 6, 2026
4b7a521
remove: delete hyperagent-staging.yaml in applications
JustineDevs Feb 6, 2026
4a2efb3
remove: delete project.yaml in argocd
JustineDevs Feb 6, 2026
a211c61
remove: delete configmap.yaml in base
JustineDevs Feb 6, 2026
d242d05
remove: delete deployment.yaml in base
JustineDevs Feb 6, 2026
3997cc3
remove: delete ingress.yaml in base
JustineDevs Feb 6, 2026
4f083ba
remove: delete kustomization.yaml in base
JustineDevs Feb 6, 2026
7e90118
remove: delete service.yaml in base
JustineDevs Feb 6, 2026
68e0e13
remove: delete kustomization.yaml in dev
JustineDevs Feb 6, 2026
f49f58f
remove: delete replicas-patch.yaml in dev
JustineDevs Feb 6, 2026
85ba271
remove: delete hpa.yaml in production
JustineDevs Feb 6, 2026
f592bdf
remove: delete kustomization.yaml in production
JustineDevs Feb 6, 2026
e49bff0
remove: delete replicas-patch.yaml in production
JustineDevs Feb 6, 2026
e604bda
remove: delete kustomization.yaml in staging
JustineDevs Feb 6, 2026
6ad16c4
remove: delete replicas-patch.yaml in staging
JustineDevs Feb 6, 2026
2ee11d6
update: modify llm.txt in llm
JustineDevs Feb 6, 2026
2ec5c8f
chore: update erc1066-x402-llm.txt in llm
JustineDevs Feb 6, 2026
833e9be
feat: restructure monorepo with pnpm workspace and Turbo
JustineDevs Feb 6, 2026
ab36b37
merge: integrate projects branch into monorepo structure
JustineDevs Feb 6, 2026
7890624
fix: resolve merge conflicts in package.json
JustineDevs Feb 6, 2026
45d1b87
fix: resolve pnpm workspace and turbo setup issues
JustineDevs Feb 6, 2026
00acc4a
fix: add packageManager field for Turbo workspace resolution
JustineDevs Feb 6, 2026
66b9cf7
fix: update turbo.json to use tasks instead of pipeline for Turbo 2.x
JustineDevs Feb 6, 2026
e984e9b
fix: add tsconfig.json for @hyperagent/config package build
JustineDevs Feb 6, 2026
0344ad1
docs: update README.md with monorepo structure and current status
JustineDevs Feb 6, 2026
a6692fc
docs: update 1 file(s)
JustineDevs Feb 6, 2026
a7a2422
fix: improve parallel-commit script to detect all uncommitted changes
JustineDevs Feb 6, 2026
657f96f
docs: update SIMPLIFIED_GUIDE.md for monorepo structure
JustineDevs Feb 6, 2026
ebc1091
docs: add comprehensive team collaboration guide
JustineDevs Feb 6, 2026
5c7e2e6
fix: improve dry-run to show all changes before commit
JustineDevs Feb 6, 2026
f94986e
fix: correct filename parsing for staged deletions in dry-run
JustineDevs Feb 6, 2026
cf946f1
docs: add PR description for monorepo restructure
JustineDevs Feb 6, 2026
059f6dd
fix: resolve merge conflicts with development branch
JustineDevs Feb 6, 2026
bb6f3d2
chore: remove temporary PR description file
JustineDevs Feb 6, 2026
d3994bc
Merge pull request #310 from Hyperkit-Labs/feature/issue-automation-f…
Hyperkit-dev Feb 6, 2026
70c70cc
chore: remove .windsurf directory from Git tracking
JustineDevs Feb 6, 2026
49d356a
chore: add backup directories to .gitignore
JustineDevs Feb 6, 2026
4cce3cb
Merge pull request #311 from Hyperkit-Labs/feature/issue-automation-f…
Hyperkit-dev Feb 6, 2026
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
108 changes: 108 additions & 0 deletions .cursor/llm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# LLM Documentation Resources

This directory contains curated `llm.txt` files for each major dependency, library, and service used in HyperAgent. These files follow the [llms.txt standard](https://llmstxt.org/) to help AI systems understand and work with external documentation.

## Purpose

Each `llm.txt` file provides:
- Overview of the technology and its role in HyperAgent
- Key use cases and implementation details
- Links to official documentation
- Code examples relevant to HyperAgent
- Best practices for integration

## Available Resources

### Core Frameworks
- **thirdweb-llm.txt** - Thirdweb SDK for wallets, ERC-4337, and deployments
- **langgraph-llm.txt** - LangGraph for agent orchestration
- **fastapi-llm.txt** - FastAPI for backend API
- **nextjs-react-llm.txt** - Next.js and React for frontend

### Infrastructure
- **supabase-llm.txt** - Supabase for database and multi-tenant workspaces
- **redis-llm.txt** - Redis for caching and message queuing
- **pinecone-llm.txt** - Pinecone for vector database and RAG
- **acontext-llm.txt** - Acontext for agent long-term memory

### Blockchain & Smart Contracts
- **hardhat-foundry-llm.txt** - Hardhat and Foundry for Solidity development
- **openzeppelin-llm.txt** - OpenZeppelin Contracts library
- **slither-mythril-llm.txt** - Security auditing tools
- **erc-4337-llm.txt** - Account Abstraction standard
- **erc-8004-llm.txt** - Trustless Agents standard

### Storage & Data
- **ipfs-pinata-llm.txt** - IPFS and Pinata for decentralized storage
- **eigenda-llm.txt** - EigenDA for verifiable data availability

### Observability
- **opentelemetry-llm.txt** - OpenTelemetry for distributed tracing
- **mlflow-llm.txt** - MLflow for ML experiment tracking
- **tenderly-llm.txt** - Tenderly for contract simulation and monitoring
- **dune-analytics-llm.txt** - Dune Analytics for on-chain analytics

### LLM Providers
- **anthropic-openai-llm.txt** - Anthropic (Claude) and OpenAI (GPT) for code generation
- **gemini-llm.txt** - Google Gemini for fast, cost-effective generation

### Payments
- **x402-llm.txt** - x402 payment protocol for SKALE

### DevOps & Deployment
- **docker-llm.txt** - Docker and Docker Compose for containerization

## Usage

When working on HyperAgent features that involve external dependencies:

1. **Check the relevant `llm.txt` file first** - It contains HyperAgent-specific context
2. **Reference official docs** - Links provided for detailed information
3. **Follow best practices** - Each file includes integration best practices
4. **Use code examples** - Examples are tailored to HyperAgent's use cases

## File Structure

Each `llm.txt` file follows this structure:

```markdown
# [Technology] Documentation for HyperAgent

## Overview
Brief description and role in HyperAgent

## Key Use Cases in HyperAgent
Specific use cases in the project

## Documentation Links
Links to official documentation

## Implementation in HyperAgent
Where and how it's used in the codebase

## Code Examples
Relevant code examples

## Best Practices
Integration best practices

## Related Resources
Additional resources
```

## Maintenance

- Update files when dependencies change
- Add new dependencies as they're integrated
- Keep documentation links current
- Update code examples when implementation changes

## Contributing

When adding a new dependency:
1. Create a new `{dependency}-llm.txt` file
2. Follow the standard structure
3. Include HyperAgent-specific context
4. Add links to official documentation
5. Update this README

76 changes: 76 additions & 0 deletions .cursor/llm/acontext-llm.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Acontext Documentation for HyperAgent

## Overview

Acontext is a long-term memory system for AI agents, providing persistent context management across agent sessions. HyperAgent uses Acontext for maintaining agent memory, storing conversation history, and enabling agents to learn from past interactions.

## Key Use Cases in HyperAgent

- **Agent Memory**: Long-term memory for agents
- **Context Management**: Maintain context across sessions
- **Learning**: Agents learn from past interactions
- **Conversation History**: Store user-agent interactions
- **Knowledge Retention**: Persistent knowledge storage

## Documentation Links

### Official Documentation
- **Main Docs**: https://docs.acontext.io/
- **API Reference**: https://docs.acontext.io/api-reference/introduction
- **Integration Guide**: https://docs.acontext.io/integrations/intro

### Key Concepts
- **Contexts**: Organized memory units
- **Memories**: Individual memory entries
- **Retrieval**: Semantic search over memories
- **Persistence**: Long-term storage
- **Privacy**: Workspace-scoped memories

## Implementation in HyperAgent

### Memory Service
- Location: `hyperagent/llm/acontext_client.py`
- Stores agent interactions
- Retrieves relevant context for agents

### Use Cases
- SpecAgent memory of user requirements
- CodeGenAgent memory of patterns
- AuditAgent memory of vulnerabilities

## Code Examples

### Storing Memory
```python
from acontext import AcontextClient

client = AcontextClient(api_key="your-api-key")

memory_id = client.create_memory(
content="User prefers gas-optimized contracts",
metadata={"workspace_id": "ws-123", "agent": "CodeGenAgent"}
)
```

### Retrieving Context
```python
contexts = client.search_memories(
query="gas optimization preferences",
workspace_id="ws-123",
limit=5
)
```

## Best Practices

1. **Context Organization**: Organize by workspace and agent
2. **Metadata**: Add rich metadata for better retrieval
3. **Privacy**: Ensure workspace isolation
4. **Retention**: Define memory retention policies
5. **Retrieval**: Use semantic search for relevant context

## Related Resources

- Acontext GitHub: https://github.com/memodb-io/acontext
- Acontext Documentation: https://docs.acontext.io/

91 changes: 91 additions & 0 deletions .cursor/llm/anthropic-openai-llm.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Anthropic & OpenAI LLM Documentation for HyperAgent

## Overview

Anthropic (Claude) and OpenAI (GPT) are LLM providers used by HyperAgent for code generation, reasoning, and agent operations. HyperAgent uses a multi-model routing strategy, using different models for different tasks based on complexity, cost, and quality requirements.

## Key Use Cases in HyperAgent

- **Code Generation**: Generate Solidity contracts from natural language
- **Complex Reasoning**: Architecture design and planning
- **Quick Edits**: Fast iterations and code modifications
- **Model Routing**: Route tasks to appropriate models
- **Cost Optimization**: Balance quality and cost

## Documentation Links

### Anthropic (Claude)
- **Main Docs**: https://docs.anthropic.com/
- **API Reference**: https://docs.anthropic.com/claude/reference
- **Python SDK**: https://github.com/anthropics/anthropic-sdk-python
- **Best Practices**: https://docs.anthropic.com/claude/docs

### OpenAI (GPT)
- **Main Docs**: https://platform.openai.com/docs
- **API Reference**: https://platform.openai.com/docs/api-reference
- **Python SDK**: https://github.com/openai/openai-python
- **Best Practices**: https://platform.openai.com/docs/guides

### Key Concepts
- **Prompt Engineering**: Effective prompt design
- **Token Management**: Token limits and costs
- **Streaming**: Real-time response streaming
- **Function Calling**: Tool use and function calling
- **Rate Limiting**: API rate limits and handling

## Implementation in HyperAgent

### Multi-Model Router
- Location: `hyperagent/core/routing/multi_model_router.py`
- Routes tasks to appropriate models
- Fallback logic for failures
- Cost and latency optimization

### Model Configuration
- Location: `config/llm.yaml`
- Model selection per task type
- Timeout and retry configuration
- Cost tracking

## Code Examples

### Anthropic Client
```python
from anthropic import Anthropic

client = Anthropic(api_key="your-api-key")

response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
```

### OpenAI Client
```python
from openai import OpenAI

client = OpenAI(api_key="your-api-key")

response = client.chat.completions.create(
model="gpt-4-turbo-preview",
messages=[{"role": "user", "content": prompt}],
temperature=0.7
)
```

## Best Practices

1. **Model Selection**: Use appropriate model for task complexity
2. **Prompt Design**: Write clear, specific prompts
3. **Error Handling**: Implement retry logic for API failures
4. **Cost Management**: Monitor token usage and costs
5. **Rate Limiting**: Respect API rate limits

## Related Resources

- Anthropic GitHub: https://github.com/anthropics
- OpenAI GitHub: https://github.com/openai
- Prompt Engineering Guide: https://www.promptingguide.ai/

82 changes: 82 additions & 0 deletions .cursor/llm/docker-llm.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Docker Documentation for HyperAgent

## Overview

Docker is a containerization platform used by HyperAgent for packaging services, ensuring consistent environments, and simplifying deployment. HyperAgent uses Docker and Docker Compose for local development and production deployments.

## Key Use Cases in HyperAgent

- **Service Containerization**: Package each microservice
- **Development Environment**: Consistent local setup
- **CI/CD**: Containerized builds and tests
- **Production Deployment**: Deploy containers to cloud
- **Dependency Isolation**: Isolate service dependencies

## Documentation Links

### Official Documentation
- **Main Docs**: https://docs.docker.com/
- **Docker Compose**: https://docs.docker.com/compose/
- **Best Practices**: https://docs.docker.com/develop/dev-best-practices/
- **Multi-stage Builds**: https://docs.docker.com/build/building/multi-stage/

### Key Concepts
- **Images**: Immutable templates for containers
- **Containers**: Running instances of images
- **Dockerfile**: Instructions for building images
- **Docker Compose**: Multi-container orchestration
- **Volumes**: Persistent data storage

## Implementation in HyperAgent

### Dockerfiles
- `Dockerfile` - Main backend service
- `Dockerfile.mlflow` - MLflow service
- `frontend/Dockerfile.dev` - Frontend development

### Docker Compose
- `docker-compose.yml` - Local development setup
- Services: API, frontend, database, Redis, MLflow

## Code Examples

### Dockerfile
```dockerfile
FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .
CMD ["uvicorn", "hyperagent.api.main:app", "--host", "0.0.0.0"]
```

### Docker Compose
```yaml
services:
api:
build: .
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://...
depends_on:
- db
- redis
```

## Best Practices

1. **Multi-stage Builds**: Reduce image size
2. **Layer Caching**: Optimize build times
3. **Security**: Use non-root users
4. **Health Checks**: Add health check endpoints
5. **Resource Limits**: Set memory and CPU limits

## Related Resources

- Docker GitHub: https://github.com/docker
- Docker Hub: https://hub.docker.com/
- Best Practices: https://docs.docker.com/develop/dev-best-practices/

Loading
Loading