Pairing-free Group-level Knowledge Distillation for Robust Gastrointestinal Lesion Classification in White-Light Endoscopy
Qiang Hu1, *, Qimei Wang1, *, Yingjie Guo1, Qiang Li1, Zhiwei Wang1, †
1 WNLO, HUST
(*: equal contribution, †: corresponding author)
Our framework PaGKD consists of a trainable WLI classifier and a frozen, pretrained NBI classifier. Both classifiers share the same architecture, following ADD (Hu et al. 2025). To facilitate knowledge transfer between unpaired WLI and NBI images, we introduce a group-level feature distillation strategy, instead of regular image-level approaches.
We then apply two complementary modules for multigranularity distillation: Group-level Prototype Knowledge Distillation (GKD-Pro) performs alignment of global classlevel distributions, while Group-level Dense Knowledge Distillation (GKD-Den) aligns local feature.
| Model | PICCOLO (AUC) | IH-GC (AUC) | Weights (5-folds) |
|---|---|---|---|
| Ours | 0.901 | 0.840 | ckpts |
| w/o GKD-Pro & GKD-Den | 0.712 | 0.669 | ckpts |
| w/o GKD-Den | 0.835 | 0.755 | ckpts |
| w/o GKD-Pro | 0.850 | 0.773 | ckpts |
Comparisons between our proposed group-levelm distillation components and their image-level variants.
- Python 3.8+
- PyTorch 2.1+
- TorchVision corresponding to the PyTorch version
- NVIDIA GPU + CUDA
- Install other dependent packages:
cd ADD
pip install -r requirements.txt
- Downloading the CPC-Paired dataset (public WLI-NBI paired polyp classification dataset). The file paths should be arranged as follows:
ADD
├── dataset
├── ├── White_light
├── ├── ├── adenomas
├── ├── ├── ├── ├── 01-1.png
├── ├── ├── ├── ├── 02-1.png
├── ├── ├── ├── ├── ......
├── ├── ├── hyperplastic_lesions
├── ├── ├── ├── ├── 011-1.png
├── ├── ├── ├── ├── 011-2.png
├── ├── ├── ├── ├── ......
├── ├── NBI
├── ├── ├── adenomas
├── ├── ├── ├── ├── 01-1.png
├── ├── ├── ├── ├── 02-1.png
├── ├── ├── ├── ├── ......
├── ├── ├── hyperplastic_lesions
├── ├── ├── ├── ├── 011-1.png
├── ├── ├── ├── ├── 011-2.png
├── ├── ├── ├── ├── ......
- Note that the details of dataset splitation in the 5-fold experiment can be downloaded in here. You need to download these
.txtfiles and put them into a newly created foldersplitand the file paths should be arranged as follows:
ADD
├── split
├── ├── xxx.txt
├── ├── ......
Stage 1: pre-traning the NBI classifier:
python train_teacher.py
Stage 2: training the WLI classifier:
python train.py
python test.py
You can also directly download the well-trained model from Google Drive, and predict the results by test.py.
If you find our paper and code useful in your research, please consider giving us a star ⭐ and citing PaGKD by the following BibTeX entry.
@article{hu2026pairing,
title={Pairing-free Group-level Knowledge Distillation for Robust Gastrointestinal Lesion Classification in White-Light Endoscopy},
author={Hu, Qiang and Wang, Qimei and Guo, Yingjie and Li, Qiang and Wang, Zhiwei},
journal={arXiv preprint arXiv:2601.09209},
year={2026}
}


