Holistic White-light Polyp Classification via Alignment-free Dense Distillation of Auxiliary Optical Chromoendoscopy
Qiang Hu1, *, Qimei Wang1, *, Jia Chen2, Xuantao Ji2, Qiang Li1, †, Zhiwei Wang1, †
1 WNLO, HUST, 2 UIH
(*: equal contribution, †: corresponding author)
This work implements a novel framework for enhancing holistic WLI polyp classification through cross-domain (NBI->WLI) knowledge distillation, without requiring any additinal labeling cost. The core innovation is Alignment-free Dense Distillation (ADD) module, which establishes dense distillation pathways between misaligned cross-domain features guided by learned affinities. Additionally, we capture the semantic relations to ensure distillation is restricted to semantically consistent regions. Extensive experiments demonstrate that our method achieves the state-of-the-art performance in WLI image classification on both the public CPC-Paired and our in-house datasets.
| Model | CPC-Paired (AUC) | In-house (AUC) | Weights (5-folds) |
|---|---|---|---|
| Ours | 0.936 | 0.826 | ckpts |
| CIC variant | 0.801 | 0.603 | ckpts |
| w/o ADD & SRG | 0.857 | 0.683 | ckpts |
| w/o SRG | 0.925 | 0.775 | ckpts |
| w/o Bi-A | 0.918 | 0.762 | ckpts |
| w/o PSR | 0.928 | 0.786 | ckpts |
- Python 3.8+
- PyTorch 2.1+
- TorchVision corresponding to the PyTorch version
- NVIDIA GPU + CUDA
- Install other dependent packages:
cd ADD
pip install -r requirements.txt
- Downloading the CPC-Paired dataset (public WLI-NBI paired polyp classification dataset). The file paths should be arranged as follows:
ADD
├── dataset
├── ├── White_light
├── ├── ├── adenomas
├── ├── ├── ├── ├── 01-1.png
├── ├── ├── ├── ├── 02-1.png
├── ├── ├── ├── ├── ......
├── ├── ├── hyperplastic_lesions
├── ├── ├── ├── ├── 011-1.png
├── ├── ├── ├── ├── 011-2.png
├── ├── ├── ├── ├── ......
├── ├── NBI
├── ├── ├── adenomas
├── ├── ├── ├── ├── 01-1.png
├── ├── ├── ├── ├── 02-1.png
├── ├── ├── ├── ├── ......
├── ├── ├── hyperplastic_lesions
├── ├── ├── ├── ├── 011-1.png
├── ├── ├── ├── ├── 011-2.png
├── ├── ├── ├── ├── ......
- Note that the details of dataset splitation in the 5-fold experiment can be downloaded in here. You need to download these
.txtfiles and put them into a newly created foldersplitand the file paths should be arranged as follows:
ADD
├── split
├── ├── xxx.txt
├── ├── ......
Stage 1: pre-traning the NBI classifier:
python train_teacher.py
Stage 2: training the WLI classifier:
python train.py
python test.py
You can also directly download the well-trained model from Google Drive, and predict the results by test.py.
If you find our paper and code useful in your research, please consider giving us a star ⭐ and citing ADD by the following BibTeX entry.
@inproceedings{hu2025holistic,
title={Holistic White-Light Polyp Classification via Alignment-Free Dense Distillation of Auxiliary Optical Chromoendoscopy},
author={Hu, Qiang and Wang, Qimei and Chen, Jia and Ji, Xuantao and Liu, Mei and Li, Qiang and Wang, Zhiwei},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={251--261},
year={2025},
organization={Springer}
}



