Skip to content

HugoPhi/jaxdls

Repository files navigation

🔥 Classic DeepLearning Models by Jax

MLP on MNIST LeNet on MNIST

On MNIST: (a) acc[96.80%] & loss vs. epochs for mlp; (b) acc[98.24%] & loss vs. epochs for LeNet

# models implemented in this project

  • Linear Regression
    • Self Made Gauss-Noise of a Function.
  • Logistic Regression
    • Iris.
  • KNN
    • CIFAR-10.
  • MLP
    • MNIST.
    • CIFAR-10.
  • LeNet[1]
    • MNIST.
    • CIFAR-10.
  • LSTM
    • UCI HAR.
  • GRU[2]
    • UCI HAR.
  • Transformer[3]
    • WMT15. TODO
  • Nerual ODE[4]
    • MNIST. TODO
  • VAE[5]
    • MNIST.

# Plugins

@ Number of Codes

Last update: 2025.03.14.

     236 text files.
     135 unique files.                              
     138 files ignored.

github.com/AlDanial/cloc v 1.98  T=0.05 s (2810.5 files/s, 307803.1 lines/s)
-------------------------------------------------------------------------------
Language                     files          blank        comment           code
-------------------------------------------------------------------------------
Python                          33           1689           3297           3177
Jupyter Notebook                21              0           3947           1913
Text                             6              1              0            301
CSV                             68              0              0            203
Markdown                         5             40              0            198
TOML                             2              3              0             16
-------------------------------------------------------------------------------
SUM:                           135           1733           7244           5808
-------------------------------------------------------------------------------

Reference

[1] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551.
[2] Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the Difficulty of Training Recurrent Neural Networks. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1310–1318).
[3] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, ., & Polosukhin, I. (2017). Attention is All You Need. In Advances in Neural Information Processing Systems (NeurIPS).
[4] Chen, T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems (NeurIPS).
[5] Kingma, D., & Welling, M. (2014). Auto-Encoding Variational Bayes. In International Conference on Learning Representations (ICLR).

About

Classic DeepModels by Jax from scratch

Resources

License

Stars

Watchers

Forks