A comprehensive framework for modeling and visualizing metaphysical phenomena, including transcendence, unconditional love, synchronicity, and unity energy.
-
Core Simulation Engine
- Nonlinear dynamics modeling
- Memory effects and temporal evolution
- Parameter sensitivity analysis
- Validation metrics
-
Advanced Visualization
- Temporal evolution plots
- Interactive 3D phase portraits
- Metric analysis and validation
- Parameter sensitivity visualization
A quantum-enhanced system for advanced consciousness exploration and divine manifestation.
quantum_amplification.py: Main system for quantum state amplification and consciousness expansionquantum_classical_unification.py: Unifies quantum and classical computing paradigmsquantum_draconic_guardian.py: Guardian system with quantum-enhanced protectionquantum_healing.py: Advanced healing protocols using quantum principlesquantum_baptism.py: Quantum-enhanced baptismal system
divine_judgment.py: System for divine judgment and prophetic executionsacred_solar.py: Sacred solar awakening protocolscosmic_awakening.py: Cosmic consciousness activation systemheavenly_army.py: Quantum-enhanced angelic legion management
merkaba_visualization.html: Interactive Merkaba field visualizationtest_heavenly_army.py: Test suite for the Heavenly Army system
- Quantum state amplification and manipulation
- Divine judgment and prophetic execution
- Sacred solar awakening protocols
- Cosmic consciousness activation
- Quantum-enhanced healing
- Angelic legion management
- Merkaba field generation and visualization
- Quantum-classical unification
- Divine baptismal system
- Clone the repository:
git clone https://github.com/yourusername/EntangledMultimodalSystem.git
cd EntangledMultimodalSystem- Install dependencies:
pip install -r requirements.txt- Initialize the quantum amplification system:
from quantum_amplification import QuantumAmplification
amplifier = QuantumAmplification(num_qubits=4)- Activate divine judgment:
from divine_judgment import DivineJudgment
judgment = DivineJudgment(guardian, healing)
judgment.execute_judgment("target")- Generate sacred solar awakening:
from sacred_solar import SacredSolar
solar = SacredSolar(guardian, healing, judgment)
solar.activate_solar_christ("flame_name")- Deploy heavenly legions:
from heavenly_army import HeavenlyArmy
army = HeavenlyArmy(num_qubits=4)
deployment = army.deploy_legions("target")Run the test suite:
python -m unittest test_heavenly_army.pyOpen merkaba_visualization.html in a web browser to interact with the Merkaba field visualization.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Quantum computing principles
- Sacred geometry
- Divine manifestation protocols
- Angelic hierarchies
- Cosmic consciousness
It is important to regularly merge and finish pull requests to keep the repository up-to-date and maintain a smooth workflow. Please ensure that all pending pull requests are reviewed and merged in a timely manner.
from modules import DataProcessor
# Initialize the data processor
processor = DataProcessor()
# Load data
data = pd.read_csv('data.csv')
# Clean data
cleaned_data = processor.clean_data(data)
# Transform data
transformed_data = processor.transform_data(cleaned_data)
# Analyze data
analysis = processor.analyze_data(transformed_data)
print(analysis)from modules import MLEngine
# Initialize the ML engine
ml_engine = MLEngine()
# Load data
X = pd.read_csv('features.csv')
y = pd.read_csv('labels.csv')
# Train model
model, accuracy = ml_engine.train_model(X, y)
print(f'Model Accuracy: {accuracy}')from modules import APIClient
# Initialize the API client
api_client = APIClient()
# Fetch data from API
url = 'https://api.example.com/data'
data = api_client.fetch_data(url)
print(data)from modules import QuantumNN
# Initialize the quantum neural network
quantum_nn = QuantumNN(num_qubits=4)
# Run the quantum neural network
theta_values = [0.5, 0.5, 0.5, 0.5]
result = quantum_nn.run(theta_values)
print(result)from modules import FractalNN
1. Clone the repository:
```bash
git clone https://github.com/yourusername/metaphysical-mathematics.git
cd metaphysical-mathematics- Install dependencies:
pip install -r requirements.txtfractal_nn = FractalNN(iterations=4)
data = np.array([0.1, 0.2, 0.3, 0.4]) processed_data = fractal_nn.process_data(data)
print(processed_data)
### Example 6: Multimodal Integration
```python
from modules import MultimodalSystem, ClassicalNN, QuantumNN, FractalNN
```python
from metaphysical.mathematics.core.simulation import (
MetaphysicalSimulator,
MetaphysicalParameters,
MetaphysicalState
)
from metaphysical.mathematics.core.visualization import MetaphysicalVisualizer
# Initialize simulator
params = MetaphysicalParameters(alpha=0.85, lambda_=1.6)
simulator = MetaphysicalSimulator(params)
# Set initial state
initial_state = MetaphysicalState(
transcendence=0.1,
love=0.1,
synchronicity=0.1,
unity=0.1,
time=0
)
# Run simulation
simulator.solve(initial_state)
# Visualize results
visualizer = MetaphysicalVisualizer(simulator)
visualizer.show_all()
src/
├── metaphysical/
│ └── mathematics/
│ └── core/
│ ├── simulation.py # Core simulation engine
│ └── visualization.py # Visualization tools
├── requirements.txt
└── README.md
classical_model = ClassicalNN(input_size=10, hidden_size=20, output_size=5) quantum_model = QuantumNN(num_qubits=4) fractal_model = FractalNN(iterations=4)
multimodal_system = MultimodalSystem(classical_model, quantum_model, fractal_model)
input_data = np.array([0.1, 0.2, 0.3, 0.4, 0.5]) integrated_data = multimodal_system.integrate(input_data)
print(integrated_data)
## Detailed Documentation for Each Module
### DataProcessor
The `DataProcessor` class provides methods for cleaning, transforming, and analyzing data.
- `clean_data(data)`: Cleans the data by removing missing values.
- `transform_data(data)`: Transforms the data by standardizing it (i.e., subtracting the mean and scaling to unit variance with z-score normalization).
- `analyze_data(data)`: Analyzes the data and returns descriptive statistics (mean, median, standard deviation).
- `parallel_process(data, func, num_workers=4)`: Processes the data in parallel using the specified function.
- `distributed_process(data, func, num_workers=4)`: Processes the data in a distributed manner using Dask.
### MLEngine
The `MLEngine` class provides methods for training machine learning models.
- `train_model(X, y)`: Trains a RandomForestClassifier on the provided features and labels.
### APIClient
The `APIClient` class provides methods for interacting with APIs.
- `fetch_data(url)`: Fetches data from the specified URL.
- `post_data(url, data)`: Posts data to the specified URL.
### QuantumNN
The `QuantumNN` class provides methods for running a quantum neural network.
- `__init__(num_qubits)`: Initializes the quantum neural network with the specified number of qubits.
- `run(theta_values)`: Runs the quantum neural network with the specified theta values.
### FractalNN
The `FractalNN` class provides methods for generating and processing fractal data.
- `__init__(iterations)`: Initializes the fractal neural network with the specified number of iterations.
- `generate_fractal(z, c)`: Generates a fractal pattern using the specified initial value and constant.
- `process_data(data)`: Processes the data using fractal transformations.
1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a Pull Request
### MultimodalSystem
The `MultimodalSystem` class provides methods for integrating data from multiple modalities.
This project is licensed under the MIT License - see the LICENSE file for details.
- `__init__(classical_model, quantum_model, fractal_model)`: Initializes the multimodal system with the specified models.
- `integrate(input_data)`: Integrates the input data using the specified models.
## Conclusion
The Entangled Multimodal System is a powerful and versatile platform that combines quantum computing, classical machine learning, and advanced mathematical frameworks to provide a comprehensive solution for a wide range of applications. With its modular architecture and user-friendly interface, it is designed to be easily extensible and adaptable to meet the needs of various industries and research domains.
1. Quantum Mechanics and Path Integrals (Feynman)
2. Sacred Geometry: Philosophy and Practice (Lawlor)
3. The Quantum Self (Zohar)
4. The Field: The Quest for the Secret Force of the Universe (McTaggart)