Skip to content

HaiDreamer/ObjectDetect4Blind

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ObjectDetect4Blind

A multi-threaded pipeline that runs three vision models in parallelDepth Estimation (Depth-Anything-V2), Object Detection (YOLO), and Segmentation — on images or video. Outputs are saved to ./output.


Features

  • Orchestrates depth, detection, and segmentation together via MAIN.py
  • Supports image and video inputs
  • Simple, folder-based model checkpoint placement

Project Layout

RECOMMEND: put file respitory the same as me, or u need to fix code for file/model location


C:/Python/
├────ObjectDetect4Blind/
│    ├── .vscode
│    ├── MAIN.py                         # Launches multithreading 3 models
│    ├── assets/                         # Example input images
│    ├── output/                         # Outputs produced by MAIN.py
│    ├── Depth-Anything-V2-main/         # Depth estimation module
│    │   ├── app.py
│    │   ├── run.py
│    │   └──run_video.py                 # Temp not developed
│    ├── Object detection/               # Object detection module
│    │   └── main.py                     # Usage entrypoint for detection
│    └── Segmentation/                   # Segmentation module
│        └── test_model.py               # Usage entrypoint for segmentation
└────ObjectDetectRequireFile/
     ├── put-in-depth-anything
     ├── put-in-obj-detect                   
     ├── put-in-segment                   
     └── output/ 

Setup

Model file

https://drive.google.com/file/d/1DwhseV8bqV_qw7CIuWS7pnMRJ9au9lpE/view

Python versions (important)

This repo currently expects two Python interpreters when running MAIN.py:

  • YOLO / Object detection: Python 3.11
  • Depth estimation: Python 3.13

MAIN.py starts each model using the interpreter paths you configure.
Edit MAIN.py and replace the hard-coded interpreter/virtual-env paths with the ones on your machine (see comments in the file).

✅ Tip: If you manage multiple Python versions, set up two virtual environments (e.g., with Conda or pyenv) and point MAIN.py to their python executables.


Quickstart

A) Run the full pipeline (multithreading)

  1. Open MAIN.py and update the Python paths/env activation commands for:
    • Detection, Segmentation (Python 3.11)
    • Depth (Python 3.13)
  2. From the project root: python MAIN.py

B) Run Depth-Anything-V2 only

  1. Local demo server
    • python app.py
  2. Single img(depth estimation only)
    • python run.py --encoder vits --precision int8 --img-path "C:\Python\ObjectDetect4Blind\assets\demo01.jpg" --outdir depth_vis --pred-only
  3. Single image (side-by-side input + depth)
    • python run.py --encoder vits --precision int8 --img-path "C:\Python\ObjectDetect4Blind\assets\demo01.jpg" --outdir depth_vis
  4. Video
    • python run_video.py --encoder vitl \ --video-path assets/examples_video \ --outdir video_depth_vis

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •