Skip to content

A publicly‑timestamped repository that demonstrates how a fully‑open, agent‑driven AI‑net can be built, run, and monetized without pay‑walls.

License

Notifications You must be signed in to change notification settings

Grumpified-OGGVCT/idea_vault

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔬 AI Net Idea Vault

LLM-Enhanced Research Intelligence with Dual-Output Publishing

AI Net Idea Vault is a GitHub-native research aggregator that continuously monitors cutting-edge AI research, analyzes discoveries with scholarly depth using optional LLM enhancement, and publishes comprehensive reports twice daily through dual-output channels (HTML + Jekyll Markdown)—all automated on GitHub's free tier.

🎯 What It Does

  • Ingests Research: Daily scraping of AI research from arXiv, HuggingFace, Papers with Code
  • Ollama Ecosystem Tracking: Monitors Ollama blog, Cloud models, community discussions, tools, and GitHub integrations
  • Deep Analysis: Three-layer scholarly examination (Deep Dive, Cross-Project Analysis, Practical Implications)
  • LLM Enhancement: Optional multi-persona LLM analysis using Ollama Turbo Cloud or OpenAI-compatible endpoints
  • The Scholar Persona: Academic voice with technical rigor and contextual depth
  • NOSTR Publishing: Publishes reports to 48+ NOSTR relays using NIP-23 (long-form content)
  • Dual-Output Publishing:
    • Markdown to docs/_daily/ (Jekyll collection with frontmatter)
    • HTML to docs/reports/ (existing crimson-themed format)
    • NOSTR network (decentralized social protocol)
  • Auto-Publishes: GitHub Pages deployment with searchable archive
  • Twice-Daily Execution: Runs at 08:00 UTC and 20:00 UTC
  • Zero Maintenance: Fully automated on GitHub Actions

🏗️ Architecture

AI_Net_Idea_Vault/
├── .github/workflows/
│   └── daily_report.yml         # Twice-daily report generation (08:00 & 20:00 UTC)
├── scripts/
│   ├── generate_report.py       # Enhanced with Ollama Turbo + OpenAI LLM integration
│   ├── generate_report_index.py # Report index generation
│   ├── ingest_*.py              # Multiple data source ingesters
│   ├── ingest_official.py       # Ollama blog and official sources
│   ├── ingest_cloud.py          # Ollama Cloud models
│   ├── ingest_community.py      # Reddit, HN, YouTube, newsletters
│   ├── ingest_tools.py          # GitHub Ollama integrations
│   ├── ingest_issues.py         # GitHub issues/PRs about Ollama
│   ├── ollama_turbo_client.py   # Ollama Cloud API client
│   ├── publish_nostr.py         # NOSTR publishing (48+ relays)
│   ├── aggregate.py             # Data aggregation
│   └── mine_insights.py         # Pattern detection & insights
├── config/
│   └── llm_personas.json        # Multi-persona LLM configurations
├── data/
│   ├── arxiv/                   # arXiv research papers
│   ├── huggingface/             # HF models & datasets
│   ├── paperswithcode/          # SOTA benchmarks
│   ├── official/                # Ollama blog & official sources
│   ├── cloud/                   # Ollama Cloud models
│   ├── community/               # Community discussions & content
│   ├── tools/                   # Ollama tools & integrations
│   ├── aggregated/              # Aggregated daily data
│   ├── insights/                # Mined insights & patterns
│   └── nostr_publications/      # NOSTR publication records
├── docs/
│   ├── _daily/                  # 🆕 Jekyll collection (timestamped posts)
│   ├── reports/                 # HTML/Markdown reports
│   ├── assets/css/              # Enhanced dark theme with crimson accents
│   ├── _config.yml              # Jekyll configuration
│   └── index.html               # Dual-content navigation
├── requirements.txt             # Python deps (including LLM libraries)
└── package.json                 # Frontend dependencies

🚀 Quick Start

1. Clone & Install

git clone https://github.com/Grumpified-OGGVCT/idea_vault.git
cd idea_vault
pip install -r requirements.txt

2. Enable GitHub Actions

  • Go to Settings → Actions → General
  • Enable "Read and write permissions"

3. Configure Secrets (Optional - For LLM Enhancement)

Add these secrets in Settings → Secrets and variables → Actions:

  • LLM_API_KEY: Your OpenAI-compatible API key
  • LLM_ENDPOINT: (Optional) Custom LLM endpoint URL
  • LLM_MODEL: (Optional) Model name (default: gpt-3.5-turbo)
  • OLLAMA_API_KEY: Your Ollama Cloud API key
  • OLLAMA_ENDPOINT: (Optional) Ollama API endpoint (default: https://api.ollama.ai)
  • NOSTR_PRIVATE_KEY: Your NOSTR private key (hex format) for publishing to relays
  • SOURCE_URL: (Optional) Custom source URL

Note: The system works without LLM secrets using fallback analysis. NOSTR publishing is optional and gracefully skipped if not configured.

4. Enable GitHub Pages

  • Go to Settings → Pages
  • Source: main branch, Folder: /docs

5. Test Locally

python scripts/generate_report.py

📊 Report Structure

Each daily report includes:

🔬 Deep Dive

Technical explanations of how technologies work:

  • Architecture and algorithms
  • Design decisions and trade-offs
  • Implementation details

🔗 Cross-Project Analysis

Identifying synergies between research:

  • Related projects and models
  • Integration opportunities
  • Comparative approaches

💡 Practical Implications

Real-world applications:

  • Use cases and ecosystem fit
  • Who should care and why
  • Future possibilities

🤖 LLM Enhancement (When Enabled)

Multi-persona analysis using configured personas:

  • Technical Analyst: Deep technical dissection (temperature: 0.3)
  • Strategic Synthesizer: Cross-project synthesis (temperature: 0.7)
  • Practical Applicator: Real-world application mapping (temperature: 0.5)

🎨 Design Features

  • Crimson Accents (#DC143C) - Scholarly sophistication
  • Dark Theme - Comfortable reading
  • Dual Output:
    • Jekyll collection in docs/_daily/ with timestamped filenames
    • HTML reports in docs/reports/ (backward compatible)
  • Reports Archive - Searchable with list/calendar views
  • Responsive Layout - Mobile-friendly
  • Calendar Navigation - Visual date-based browsing

🤖 LLM Persona System

The system supports multiple LLM personas with dual backend support:

Ollama Turbo Cloud (Priority)

  • Models: deepseek-v3.1:671b-cloud, qwen3-vl:235b-cloud, qwen3-coder:30b-cloud
  • Features: Deep reasoning, vision capabilities, web search fallback
  • Usage: Set OLLAMA_API_KEY secret
  • Endpoint: https://api.ollama.ai (default)

OpenAI-Compatible Fallback

  • Models: Any OpenAI-compatible model
  • Usage: Set LLM_API_KEY and optionally LLM_ENDPOINT, LLM_MODEL
  • Fallback: Automatically used if Ollama is unavailable

Technical Analyst

  • Focus: Algorithms, architectures, implementation details
  • Temperature: 0.3 (precise, methodical)
  • Use Case: Deep technical paper analysis

Strategic Synthesizer (Default)

  • Focus: Research connections, trend prediction, synthesis
  • Temperature: 0.7 (creative, connective)
  • Use Case: Identifying emerging patterns and opportunities

Practical Applicator

  • Focus: Use cases, implementation roadmaps, ecosystem fit
  • Temperature: 0.5 (balanced, pragmatic)
  • Use Case: Translating research to production systems

Graceful Degradation

If LLM APIs are unavailable or not configured:

  • System falls back to existing Scholar analysis
  • No functionality loss
  • Clear console messaging

NOSTR Publishing

  • Protocol: NIP-23 (long-form content)
  • Relays: 48+ default relays (configurable)
  • Event Kind: 30023 (long-form content with metadata)
  • Tags: AI, research, daily, llm, machinelearning
  • Authentication: NOSTR private key (nsec format)
  • Graceful Failure: Publishing skipped if key not configured

Personas Defined

🔗 Integration with GrumpiBlogged

AI Net Idea Vault is part of the GrumpiBlogged ecosystem:

  • Ollama Pulse (various times) - EchoVein's vein-tapping reports
  • AI Net Idea Vault (08:00 & 20:00 UTC) - The Scholar's LLM-enhanced analysis
  • GitHub Trending (09:00 CT) - Persona-driven project reviews

Access via: http://127.0.0.1:8081/admin/grumpiblogged

📅 Execution Schedule

  • Morning Report: 08:00 UTC daily
  • Evening Report: 20:00 UTC daily
  • Manual Trigger: Available via workflow_dispatch

🔧 Technical Stack

  • Python 3.11+: Core scripting
  • GitHub Actions: Automation
  • Jekyll: Static site generation
  • OpenAI-compatible LLMs: Optional enhancement
  • Libraries:
    • httpx: Async HTTP for LLM calls
    • aiohttp: Async HTTP for Ollama Turbo Client
    • openai: OpenAI-compatible LLM integration
    • nostr: NOSTR protocol implementation
    • pydantic: Configuration validation
    • sentence-transformers: Embeddings
    • scikit-learn: Pattern detection
    • beautifulsoup4: Web scraping
    • feedparser: RSS/Atom parsing

📝 Output Formats

Markdown (Jekyll Collection)

  • Location: docs/_daily/
  • Filename: YYYY-MM-DD-HHMM-research-intelligence-YYYY-MM-DD.md
  • Frontmatter: Full Jekyll metadata (layout, title, date, categories, tags, permalink, excerpt)
  • Use Case: Jekyll site integration, canonical markdown archive

HTML (Reports Directory)

  • Location: docs/reports/
  • Filename: lab-YYYY-MM-DD.md
  • Format: Markdown with minimal Jekyll frontmatter
  • Use Case: Backward compatibility, direct HTML rendering

🔒 Security & Privacy

  • No secrets committed to repository
  • LLM API keys stored as GitHub secrets
  • Graceful failure handling
  • All data processing on GitHub infrastructure
  • No external data transmission except to configured LLM endpoint

🧪 Testing

# Test report generation (with or without LLM)
python scripts/generate_report.py

# Verify dual output
ls docs/reports/lab-*.md
ls docs/_daily/*.md

# Check Jekyll frontmatter
head -15 docs/_daily/*.md

📄 License

MIT License


Live Dashboard: https://grumpified-oggvct.github.io/idea_vault Repository: https://github.com/Grumpified-OGGVCT/idea_vault Design Philosophy: Preserve all existing functionality while adding LLM enhancement and dual-output publishing

About

A publicly‑timestamped repository that demonstrates how a fully‑open, agent‑driven AI‑net can be built, run, and monetized without pay‑walls.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.7%
  • HTML 4.3%