Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 151 additions & 0 deletions whobpyt/depr/griffiths2022/bifurcation_analysis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# -*- coding: utf-8 -*-
"""bifurcation_analysis.ipynb

Automatically generated by Colab.

Original file is located at
https://colab.research.google.com/drive/1-N-GjmkkJdycabTr4S95Z5unyT-EyvtD
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve

def h_tf(a, b, d, x):
return (a*x-b)/(1.0000 -np.exp(-d*(a*x-b)))

def dh_tf(a, b, d, x):
tmp_e = np.exp(-d*(a*x-b))
tmp_d = 1. - np.exp(-d*(a*x-b))
slope_E = (a*tmp_d - (a*x-b)*d*a*tmp_e) / tmp_d**2
return slope_E

def smooth_normalize(x):
return max(x, 0.000001)

def derivative_orig(x, param):
E = x.reshape((2, 50))[0]
I = x.reshape((2, 50))[1]

IE = param["W_E"]*param["I_0"] + param["g_EE"]*E - param["g_IE"]*I
II = param["W_I"]*param["I_0"] + param["g_EI"]*E - I

rE = h_tf(param["aE"], param["bE"], param["dE"], IE)
rI = h_tf(param["aI"], param["bI"], param["dI"], II)

ddE = -E / param["tau_E"] + param["gamma_E"] * (1. - E) * rE
ddI = -I / param["tau_I"] + param["gamma_I"] * rI

return np.array([ddE, ddI]).ravel()

def derivative(x, param):
E = x[0]
I = x[1]

IE = param["W_E"]*param["I_0"] + param["g_EE"]*E - param["g_IE"]*I
II = param["W_I"]*param["I_0"] + param["g_EI"]*E - I

rE = h_tf(param["aE"], param["bE"], param["dE"], IE)
rI = h_tf(param["aI"], param["bI"], param["dI"], II)

ddE = -E / param["tau_E"] + param["gamma_E"] * (1. - E) * rE
ddI = -I / param["tau_I"] + param["gamma_I"] * rI

return 10000.0 * np.array([ddE, ddI])

def get_eig_sys(E, I, param):
IE = param["W_E"]*param["I_0"] + param["g_EE"]*E - param["g_IE"]*I
II = param["W_I"]*param["I_0"] + param["g_EI"]*E - I

rE = h_tf(param["aE"], param["bE"], param["dE"], IE)
rI = h_tf(param["aI"], param["bI"], param["dI"], II)
drEdIE = dh_tf(param["aE"], param["bE"], param["dE"], IE)
drIIdII = dh_tf(param["aI"], param["bI"], param["dI"], II)

A = np.zeros((2, 2))
A[0, 0] = -1 / param["tau_E"] - param["gamma_E"] * rE + (1 - E) * param["gamma_E"] * drEdIE * param["g_EE"]
A[0, 1] = -(1 - E) * param["gamma_E"] * drEdIE * param["g_IE"]
A[1, 0] = param["gamma_I"] * drIIdII * param["g_EI"]
A[1, 1] = -param["gamma_I"] * drIIdII

A = np.nan_to_num(A)
d, _ = np.linalg.eig(A)
return d

def regime_search_I0(I0_rng, gEE_rng, gIE_rng, gEI_rng, param):
num_param = 3
num_trials = len(gEE_rng)

c_I0 = []
for I0 in I0_rng:
param["I_0"] = I0
c = []
for i in range(num_trials ** num_param):
ind_0 = i // (num_trials ** (num_param - 1))
ind_1 = (i % (num_trials ** (num_param - 1))) // num_trials
ind_2 = i % num_trials

param["g_EE"] = gEE_rng[ind_0]
param["g_IE"] = gIE_rng[ind_1]
param["g_EI"] = gEI_rng[ind_2]

initial = np.random.uniform(0., 2, [2, 50])
solns = []
for j in range(initial.shape[1]):
x0 = initial[:, j]
x0 = np.round(fsolve(lambda x: derivative(x, param), x0), decimals=4)
if (np.abs(derivative(x0, param)) > 1.0).sum() == 0:
solns.append(tuple(x0))

good_sols = []
for sol in set(solns):
sol_good = True
for g_sol in good_sols:
if np.sqrt(((np.array(g_sol)-np.array(sol))**2).mean()) < 1e-3:
sol_good = False
break
if sol_good:
good_sols.append(sol)
c.append(len(good_sols))
c_I0.append(max(c))
return c_I0

def regime_search_gEE(I0_rng, gEE_rng, gIE_rng, gEI_rng, param):
n_I0 = len(I0_rng)
n_gEE = len(gEE_rng)
n_gIE = len(gIE_rng)
n_gEI = len(gEI_rng)

c_gEE = []
for gEE in gEE_rng:
param["g_EE"] = gEE
c = []
for i in range(n_I0 * n_gIE * n_gEI):
ind_0 = i // (n_gIE * n_gEI)
ind_1 = (i % (n_gIE * n_gEI)) // n_gEI
ind_2 = i % n_gEI

param["I_0"] = I0_rng[ind_0]
param["g_IE"] = gIE_rng[ind_1]
param["g_EI"] = gEI_rng[ind_2]

initial = np.random.uniform(0., 2, [2, 50])
solns = []
for j in range(initial.shape[1]):
x0 = initial[:, j]
x0 = np.round(fsolve(lambda x: derivative(x, param), x0), decimals=4)
if (np.abs(derivative(x0, param)) > 1.0).sum() == 0:
solns.append(tuple(x0))

good_sols = []
for sol in set(solns):
sol_good = True
for g_sol in good_sols:
if np.sqrt(((np.array(g_sol)-np.array(sol))**2).mean()) < 1e-3:
sol_good = False
break
if sol_good:
good_sols.append(sol)
c.append(len(good_sols))
c_gEE.append(max(c))
return c_gEE
Loading
Loading