Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 17 additions & 17 deletions docs/src/Trigonometry/01 Angles & Measurements.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,14 @@ A [degree](https://mathworld.wolfram.com/Degree.html) is a unit of angular measu

#### Degree Definition

One degree () is defined as 1/360 of a complete rotation around a circle.
One degree ($1^\circ$) is defined as 1/360 of a complete rotation around a circle.

#### Key Values

- **Full rotation:** 360°
- **Right angle:** 90°
- **Straight angle:** 180°
- **Common angles:** 30°, 45°, 60°, 90°
- **Full rotation:** $360^\circ$
- **Right angle:** $90^\circ$
- **Straight angle:** $180^\circ$
- **Common angles:** $30^\circ$, $45^\circ$, $60^\circ$, $90^\circ$

### Radians

Expand All @@ -38,17 +38,17 @@ One radian is the angle subtended by an [arc](https://mathworld.wolfram.com/Arc.
$$\begin{array}{c|c}
\text{Radians} & \text{Degrees} \\
\hline
2\pi & 360° \\
2\pi & 360^\circ \\
\hline
\pi & 180° \\
\pi & 180^\circ \\
\hline
\frac{\pi}{2} & 90° \\
\frac{\pi}{2} & 90^\circ \\
\hline
\frac{\pi}{3} & 60° \\
\frac{\pi}{3} & 60^\circ \\
\hline
\frac{\pi}{4} & 45° \\
\frac{\pi}{4} & 45^\circ \\
\hline
\frac{\pi}{6} & 30° \\
\frac{\pi}{6} & 30^\circ \\
\hline
\end{array}$$

Expand Down Expand Up @@ -79,16 +79,16 @@ One gradian (1ᵍ) is defined as 1/400 of a complete rotation around a circle.

### By Measure

- **Acute:** $0° < \theta < 90°$ (or $0 < \theta < \frac{\pi}{2}$)
- **Right:** $\theta = 90°$ (or $\theta = \frac{\pi}{2}$)
- **Obtuse:** $90° < \theta < 180°$ (or $\frac{\pi}{2} < \theta < \pi$)
- **Straight:** $\theta = 180°$ (or $\theta = \pi$)
- **Reflex:** $180° < \theta < 360°$ (or $\pi < \theta < 2\pi$)
- **Acute:** $0^\circ < \theta < 90^\circ$ (or $0 < \theta < \frac{\pi}{2}$)
- **Right:** $\theta = 90^\circ$ (or $\theta = \frac{\pi}{2}$)
- **Obtuse:** $90^\circ < \theta < 180^\circ$ (or $\frac{\pi}{2} < \theta < \pi$)
- **Straight:** $\theta = 180^\circ$ (or $\theta = \pi$)
- **Reflex:** $180^\circ < \theta < 360^\circ$ (or $\pi < \theta < 2\pi$)

### By Position

- **[Standard position](https://mathworld.wolfram.com/AngleStandardPosition.html):** Vertex at origin, initial side on positive x-axis
- **[Coterminal angles](https://mathworld.wolfram.com/CoterminalAngle.html):** Angles that differ by multiples of $360°$ (or $2\pi$ radians)
- **[Coterminal angles](https://mathworld.wolfram.com/CoterminalAngle.html):** Angles that differ by multiples of $360^\circ$ (or $2\pi$ radians)
- **Reference angle:** Acute angle between terminal side and x-axis
- **Negative angles:** Angles measured clockwise from the positive x-axis

Expand Down
54 changes: 27 additions & 27 deletions docs/src/Trigonometry/02 Trigonometric Functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@ For any angle $\theta$ measured counterclockwise from the positive x-axis:

This connection between triangles and the unit circle becomes clear when we consider:

1. **For acute angles** ( < θ < 90°): The unit circle point creates a right triangle with the x-axis
2. **For obtuse angles** (90° < θ < 180°): The definitions extend naturally using signed coordinates
3. **For angles beyond 180°**: The pattern continues, creating the periodic nature of trigonometric functions
1. **For acute angles** ($0^\circ < θ < 90^\circ$): The unit circle point creates a right triangle with the x-axis
2. **For obtuse angles** ($90^\circ < θ < 180^\circ$): The definitions extend naturally using signed coordinates
3. **For angles beyond $180^\circ$**: The pattern continues, creating the periodic nature of trigonometric functions

### Domain and Range

Expand All @@ -85,7 +85,7 @@ The [sine function](https://mathworld.wolfram.com/Sine.html), denoted as $\sin(x
- **Definition**: $\sin(x) = \frac{\text{opposite}}{\text{hypotenuse}}$ (in right triangles) or y-coordinate on unit circle
- **Domain**: All real numbers $(-\infty, \infty)$
- **Range**: $[-1, 1]$
- **Period**: $2\pi$ radians (360°)
- **Period**: $2\pi$ radians ($360^\circ$)
- **Symmetry**: Odd function, meaning $\sin(-x) = -\sin(x)$

### Sine Key Characteristics
Expand All @@ -103,7 +103,7 @@ The [cosine function](https://mathworld.wolfram.com/Cosine.html), denoted as $\c
- **Definition**: $\cos(x) = \frac{\text{adjacent}}{\text{hypotenuse}}$ (in right triangles) or x-coordinate on unit circle
- **Domain**: All real numbers $(-\infty, \infty)$
- **Range**: $[-1, 1]$
- **Period**: $2\pi$ radians (360°)
- **Period**: $2\pi$ radians ($360^\circ$)
- **Symmetry**: Even function, meaning $\cos(-x) = \cos(x)$

### Cosine Key Characteristics
Expand All @@ -123,7 +123,7 @@ $$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
- **Definition**: $\tan(x) = \frac{\text{opposite}}{\text{adjacent}}$ (in right triangles) or $\frac{\sin(x)}{\cos(x)}$
- **Domain**: All real numbers except $x = \frac{\pi}{2} + n\pi$ where $n$ is any integer
- **Range**: All real numbers $(-\infty, \infty)$
- **Period**: $\pi$ radians (180°)
- **Period**: $\pi$ radians ($180^\circ$)
- **Symmetry**: Odd function, meaning $\tan(-x) = -\tan(x)$

### Tangent Key Characteristics
Expand All @@ -138,7 +138,7 @@ The following table shows exact values of trigonometric functions at commonly us

$$\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{Angle } (\theta) & 0° & 30° & 45° & 60° & 90° & 180° & 270° \\
\text{Angle } (\theta) & 0^\circ & 30^\circ & 45^\circ & 60^\circ & 90^\circ & 180^\circ & 270^\circ \\
\hline
\text{Radians} & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} & \pi & \frac{3\pi}{2} \\
\hline
Expand All @@ -154,21 +154,21 @@ $$\begin{array}{|c|c|c|c|c|c|c|c|}

**30-60-90 Triangle**: Sides in ratio $1 : \sqrt{3} : 2$

- $\sin 30° = \frac{1}{2}$
- $\cos 30° = \frac{\sqrt{3}}{2}$
- $\sin 60° = \frac{\sqrt{3}}{2}$
- $\cos 60° = \frac{1}{2}$
- $\sin 30^\circ = \frac{1}{2}$
- $\cos 30^\circ = \frac{\sqrt{3}}{2}$
- $\sin 60^\circ = \frac{\sqrt{3}}{2}$
- $\cos 60^\circ = \frac{1}{2}$

**45-45-90 Triangle**: Sides in ratio $1 : 1 : \sqrt{2}$

- $\sin 45° = \cos 45° = \frac{\sqrt{2}}{2}$
- $\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$

**Quadrant Signs**:

- **Quadrant I** ( to 90°): All positive
- **Quadrant II** (90° to 180°): Only sine positive
- **Quadrant III** (180° to 270°): Only tangent positive
- **Quadrant IV** (270° to 360°): Only cosine positive
- **Quadrant I** ($0^\circ$ to $90^\circ$): All positive
- **Quadrant II** ($90^\circ$ to $180^\circ$): Only sine positive
- **Quadrant III** ($180^\circ$ to $270^\circ$): Only tangent positive
- **Quadrant IV** ($270^\circ$ to $360^\circ$): Only cosine positive

**Mnemonic**: "All Students Take Calculus" (A-S-T-C)

Expand All @@ -188,27 +188,27 @@ This law is particularly useful when you know:

#### Example: Finding a Missing Side (AAS)

**Given:** In triangle ABC, $A = 30°$, $B = 45°$, and side $a = 10$ units.
**Given:** In triangle ABC, $A = 30^\circ$, $B = 45^\circ$, and side $a = 10$ units.
**Find:** Side $b$.

**Solution:**
1. First find angle $C$: $C = 180° - A - B = 180° - 30° - 45° = 105°$
1. First find angle $C$: $C = 180^\circ - A - B = 180^\circ - 30^\circ - 45^\circ = 105^\circ$
2. Apply the Sine Law: $\frac{a}{\sin A} = \frac{b}{\sin B}$
3. Substitute: $\frac{10}{\sin 30°} = \frac{b}{\sin 45°}$
4. Solve: $b = \frac{10 \times \sin 45°}{\sin 30°} = \frac{10 \times \frac{\sqrt{2}}{2}}{\frac{1}{2}} = 10\sqrt{2} \approx 14.14$ units
3. Substitute: $\frac{10}{\sin 30^\circ} = \frac{b}{\sin 45^\circ}$
4. Solve: $b = \frac{10 \times \sin 45^\circ}{\sin 30^\circ} = \frac{10 \times \frac{\sqrt{2}}{2}}{\frac{1}{2}} = 10\sqrt{2} \approx 14.14$ units

#### Example: Finding a Missing Angle (SSA)

**Given:** In triangle ABC, side $a = 8$ units, side $b = 10$ units, and angle $A = 30°$.
**Given:** In triangle ABC, side $a = 8$ units, side $b = 10$ units, and angle $A = 30^\circ$.
**Find:** Angle $B$.

**Solution:**
1. Apply the Sine Law: $\frac{a}{\sin A} = \frac{b}{\sin B}$
2. Rearrange: $\sin B = \frac{b \sin A}{a}$
3. Substitute: $\sin B = \frac{10 \times \sin 30°}{8} = \frac{10 \times \frac{1}{2}}{8} = \frac{5}{8} = 0.625$
4. Solve: $B = \arcsin(0.625) \approx 38.68°$
3. Substitute: $\sin B = \frac{10 \times \sin 30^\circ}{8} = \frac{10 \times \frac{1}{2}}{8} = \frac{5}{8} = 0.625$
4. Solve: $B = \arcsin(0.625) \approx 38.68^\circ$

**Note:** In SSA cases, check if a second solution exists: $B' = 180° - 38.68° = 141.32°$. Verify which solution(s) create valid triangles by checking that all angles sum to 180°.
**Note:** In SSA cases, check if a second solution exists: $B' = 180^\circ - 38.68^\circ = 141.32^\circ$. Verify which solution(s) create valid triangles by checking that all angles sum to 180^\circ.

### Cosine Law

Expand All @@ -222,12 +222,12 @@ This generalizes the Pythagorean theorem and is useful when you know:

#### Example: Finding a Missing Side (SAS)

**Given:** In triangle ABC, $a = 8$ units, $b = 6$ units, and $C = 60°$.
**Given:** In triangle ABC, $a = 8$ units, $b = 6$ units, and $C = 60^\circ$.
**Find:** Side $c$.

**Solution:**
1. Apply the Cosine Law: $c^2 = a^2 + b^2 - 2ab\cos C$
2. Substitute: $c^2 = 8^2 + 6^2 - 2(8)(6)\cos 60°$
2. Substitute: $c^2 = 8^2 + 6^2 - 2(8)(6)\cos 60^\circ$
3. Calculate: $c^2 = 64 + 36 - 96 \times \frac{1}{2} = 100 - 48 = 52$
4. Solve: $c = \sqrt{52} = 2\sqrt{13} \approx 7.21$ units

Expand All @@ -239,7 +239,7 @@ This generalizes the Pythagorean theorem and is useful when you know:
**Solution:**
1. Rearrange the Cosine Law: $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$
2. Substitute: $\cos C = \frac{5^2 + 7^2 - 9^2}{2(5)(7)} = \frac{25 + 49 - 81}{70} = \frac{-7}{70} = -0.1$
3. Solve: $C = \arccos(-0.1) \approx 95.74°$
3. Solve: $C = \arccos(-0.1) \approx 95.74^\circ$

## Hyperbolic Functions

Expand Down
Loading
Loading