-
Notifications
You must be signed in to change notification settings - Fork 3
fNumP
FLFgit edited this page Oct 14, 2021
·
4 revisions
Function for [Num]erical [P]redictions
https://github.com/FLFgit/ScaleP/blob/master/functions/fNumP.R
- RU.DIR -> directory containing reference unit (RU) file
- RU.SHP -> name of reference unit shape file
- SAMPLE.DIR -> directory containing sample data set
- SAMPLE.SHP -> name of sample data set
- PART -> proportion of training and test data set [0...1]
- OUT.DIR -> directory containing resulting files
- EPSG -> EPSG code of all data
- T.PM -> column name of target parameter in SAMPLE.SHP
- PM -> prefix of explaning attributes, which should be considered
- EXPORT=FALSE -> option: export of shape file with explaining parameters and prediction result
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_part[PART*100]_train.shp -> shape file of training data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_part[PART*100]_test.shp -> shape file of test data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_part[PART*100]_test.shp -> shape file of test data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_DP.pdf -> density plot of target parameters based on training and test data sets
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_VarImp.csv -> variable-specific variable importance
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_CV.csv -> accuracy metrics based on cross validation representing internal model performance
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_ACCtrain.csv -> accuracy metrics based on linear regression between predicted and observed parameters related to training data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_ACCtest.csv -> accuracy metrics based on linear regression between predicted and observed parameters related to test data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_SPtrain.pdf -> scatterplot of predicted and observed parameters related to training data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_SPtrain.pdf -> scatterplot of predicted and observed parameters related to test data set
- [RU.SHP]-[SAMPLE.SHP]_[T.PM]_MODEL-[M.TRAIN]_part[PART*100].shp -> optional: shape file with explaining parameters and prediction result (column [T.PM]_SIM)