Skip to content

Official implementation for CVIU2023 paper "Addressing Multiple Salient Object Detection via Dual-Space Long-Range Dependencies".

Notifications You must be signed in to change notification settings

EricDengbowen/DSLRDNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSLRDNet

This is the official implementation for the paper "Addressing Multiple Salient Object Detection via Dual-Space Long-Range Dependencies", accepted by the Journal of Computer Vision and Image Understanding (CVIU 2023).

Prerequisites:

  1. Pytorch 1.2.0
  2. Opencv 2.4.5
  3. TensorboardX

For training:

  1. Download the DUTS-TR (Google Drive) training dataset.
  2. Download the initial pratrained VGG/ResNet (Google Drive) model.
  3. Change the training data path in dataset.py.
  4. Change the training settings in solver.py and run.py
  5. Start to train with python3 run.py --mode train

For testing:

  1. Download the pretrained models (Google Drive).
  2. Change the data path in dataset.py
  3. Change the test settings in run.py.
  4. Generate saliency maps with python3 run.py --mode test --sal_mode m, where 'm' demonstrates the MSOD dataset.
  5. We use the public open source evaluation code. (https://github.com/weijun88/F3Net)

Datasets and results:

MSOD dataset || Generated Saliency Maps (Google Drive)

Citing DSLRDNet:

@article{deng2023addressing,
  title={Addressing multiple salient object detection via dual-space long-range dependencies},
  author={Deng, Bowen and French, Andrew P and Pound, Michael P},
  journal={Computer Vision and Image Understanding},
  volume={235},
  pages={103776},
  year={2023},
  publisher={Elsevier}
}

About

Official implementation for CVIU2023 paper "Addressing Multiple Salient Object Detection via Dual-Space Long-Range Dependencies".

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages