RBFleX-NAS : Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection
Training-Free Neural Architecture Search (NAS) Using Radial Basis Function (RBF) Kernel
Singapore University of Technology and Design (Sep 2021 intake)
RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection
Tomomasa Yamasaki; Zhehui Wang; Tao Luo; Niangjun Chen; Bo Wang
IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
Jump to https://github.com/tomomasayamasaki/RBFleX-NAS.git
If you use RBFleX, please cite the following paper:
@ARTICLE{10959729,
author={Yamasaki, Tomomasa and Wang, Zhehui and Luo, Tao and Chen, Niangjun and Wang, Bo},
journal={IEEE Transactions on Neural Networks and Learning Systems},
title={RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection},
year={2025},
volume={36},
number={6},
pages={10057-10071},
keywords={Accuracy;Training;Vectors;Kernel;Feature extraction;Correlation;Computer architecture;Benchmark testing;Predictive models;Neural architecture search;Activation;neural architecture search (NAS);radial basis function (RBF);training-free},
doi={10.1109/TNNLS.2025.3552693}}