Skip to content

Conversation

@nfultz
Copy link
Contributor

@nfultz nfultz commented Oct 18, 2018

Some benchmarking



# here we want at least one of each ideo st there aren't random failures in assn 9
draw_ideo <- function(N) {
  x <- c("Liberal", "Moderate", "Conservative")
  x <- c(x, sample(x, size=N-3, prob=c(.2,.3,.5), replace=TRUE))
  sample(x)
}

population <- function(N) fabricate(
  villages = add_level(
    N = N, elevation = rnorm(N),
    high_elevation = as.numeric(elevation > 0)
  ),
  individuals = add_level(N = 10, noise = rnorm(N)),
  individuals = modify_level(ideo_3 = draw_ideo(N), by = "villages")
)

population2 <- function(N) fabricate(
  villages = add_level(
    N = N, elevation = rnorm(N),
    high_elevation = as.numeric(elevation > 0)
  ),
  individuals = add_level(N = 10, noise = rnorm(N)),
  individuals = modify_level2(ideo_3 = draw_ideo(N), by = "villages")
)

require(profvis)
profvis(population())


microbenchmark::microbenchmark(population(100), population2(100),
                               population(200), population2(200),
                               population(300), population2(400),
                               population(800), population2(800),
                               population(1600), population2(1600))

image

> summary(lm(log(t)~log(N):which + which, df))

Call:
lm(formula = log(t) ~ log(N):which + which, data = df)

Residuals:
        Min          1Q      Median          3Q         Max 
-0.52720065 -0.15539903  0.00375551  0.17617271  1.23373942 

Coefficients:
                           Estimate  Std. Error    t value   Pr(>|t|)    
(Intercept)             -7.45114549  0.06281345 -118.62340 < 2.22e-16 ***
whichpopulation2         1.15412551  0.08955341   12.88757 < 2.22e-16 ***
log(N):whichpopulation   1.25744811  0.01044202  120.42193 < 2.22e-16 ***
log(N):whichpopulation2  1.02387495  0.01051372   97.38464 < 2.22e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2304528 on 996 degrees of freedom
Multiple R-squared:  0.9603536,	Adjusted R-squared:  0.9602341 
F-statistic: 8042.017 on 3 and 996 DF,  p-value: < 2.2204e-16

@coveralls
Copy link

Coverage Status

Coverage decreased (-3.3%) to 95.605% when pulling 8331507 on nfultz/modify_by_performance into fa31dab on master.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants