This repository contains the implementation code for reproducing results from the paper "Beyond the Average: Distributional Causal Inference under Imperfect Compliance" (NeurIPS 2025) by Undral Byambadalai, Tomu Hirata, Tatsushi Oka, and Shota Yasui.
- Python >= 3.12
- uv >= 0.7.0
# Clone the repository
git clone https://github.com/CyberAgentAILab/ldte.git
cd ldte
# Setup Python environment
# See https://docs.astral.sh/uv/ for other installation
curl -LsSf https://astral.sh/uv/install.sh | sh
uv python install 3.12
uv python pin 3.12
uv venv
source .venv/bin/activate
# For running DTE estimation
uv syncYou can run the simulation using simulation.py. The available arguments for this script are described below.
Arguments:
- n: Specifies the number of samples for each simulation iteration. This is a required argument and must be a positive integer.
- iterations: The number of simulation iterations.
- discrete: Indicates whether the Data Generating Process (DGP) is discrete outcome or continuous outcome. By default, the DGP is continuous. Use this flag to switch to discrete mode.
Example:
- For 1000 samples with a continuous DGP:
--n 1000 - For 5000 samples with a discrete DGP:
--n 5000 --discrete true
python simulation.py --n 5000 --discrete trueDownload Oregon Insurance Experiment Data from https://www.nber.org/research/data/oregon-health-insurance-experiment-data.
python oregon.py --data_dir path/to/OHIE_Data --n_bootstrap 50- Undral Byambadalai (undral21@gmail.com)
- Tomu Hirata (tomu.hirata@databricks.com)