Enterprise-grade documentation governance for AI-powered development — by Corta Labs
Drop-in ready • 13+ specialized templates • Zero-config SQLite • Production-tested
Scribe MCP v2.2 delivers major architectural improvements:
Performance:
- Connection Pooling: New
storage/pool.pywith SQLiteConnectionPool delivers 50-80% latency reduction - Optimized Indexes: New composite indexes for agent/emoji filtering
Code Quality:
- ResponseFormatter Decomposition: Monolithic 2,934-line class split into 7 specialized modules in
utils/formatters/ - Database-First State: Session state migrated from state.json to database
Data Management:
- Retention Policy: New
scribe_entries_archivetable with configurable cleanup (default 90 days) - Agent Isolation: All tools require
agentparameter for session isolation
Scribe MCP 2.1.1 introduces foundational document lifecycle upgrades, including a fully automated YAML frontmatter engine with round-trip safety, canonical metadata defaults, and extensible schema support. Frontmatter is created on first edit if missing, auto-updates last_updated, and supports explicit overrides without breaking existing fields. These changes establish a metadata plane separate from document body content, enabling safe diff operations, deterministic header/TOC tooling, and template-driven document creation.
New: Enhanced Readable Output (Phase 1.5/1.6)
- ANSI Color Support: Tool output now renders with colors in Claude Code/Codex - cyan boxes, green line numbers, bold titles
- Green Line Numbers: Clean
1. contentformat with dot separator, matching Claude's native Read tool style - CallToolResult Fix: Workaround for Issue #9962 - returns TextContent-only for proper newline rendering
- Config-Driven Colors: Enable/disable via
use_ansi_colors: truein.scribe/config/scribe.yaml - 5-Char Line Padding: Consistent line number width for improved readability
Structured edits are now the default path: agents express intent, the server compiles and applies deterministic mutations, and diagnostics remain explicit. Structural actions no longer auto-heal doc targets; if doc_name is not registered, the action fails with DOC_NOT_FOUND rather than redirecting the write.
manage_docsnow supports apply_patch and replace_range for precise edits.apply_patchauto-detects mode: unified whenpatchprovided, structured wheneditprovided.patch_source_hashenforces stale-source protection for patches.- Reminder system teaches scaffold-only
replace_section, preferring structured/line edits. - New doc lifecycle actions:
normalize_headers,generate_toc,create,validate_crosslinks. createis the unified document creation action. Usemetadata.doc_typeto specify type:custom,research,bug,review, oragent_card. Content goes inmetadata.body. Usemetadata.register_doc=trueto add the doc to the project registry.validate_crosslinksis read-only diagnostics (no write, no doc_updates log).normalize_headerssupports ATX headers with or without space and Setext (====/----), skipping fenced code blocks. Output is canonical ATX.generate_tocuses GitHub-style anchors (NFKD normalization, ASCII folding, emoji removal, punctuation collapse, de-duped suffixes).- Structural actions validate
doc_nameagainst the registry and fail hard on unknown docs (no silent redirects).
New: read_file - Complete Code Intelligence System (Phase 5)
The read_file tool is now a comprehensive code intelligence platform for Python and Markdown files, providing SWE agents with instant codebase understanding without reading full files:
Python Intelligence:
- Full Signature Extraction: Captures complete function/method signatures with type hints, default values, and return types
- Example:
async def fetch_project(self, name: str) -> Optional[ProjectRecord]
- Example:
- Line Range Analysis: Shows start-end lines for every class, function, and method with line counts for complexity assessment
- Example:
async def _initialise(self) -> None (lines 645-1121 (477))- instantly identifies a 477-line method needing refactoring
- Example:
- Class Structure Display: Shows class hierarchy with first 10 methods by default, including async markers
- Structure Filtering: Regex-based search to find specific classes or functions
- Example:
structure_filter="validate"finds all validation functions with full signatures
- Example:
- Structure Pagination: Browse large classes page-by-page (default: 10 items/page)
- Navigate through a 62-method class: page 1 shows methods 1-10, page 2 shows 11-20, etc.
- Dependency Analysis: Static import analysis with resolved paths for local modules
Markdown Intelligence:
- Heading Extraction: Complete document outline with all heading levels and line numbers
- Quick Navigation: Jump directly to specific sections using extracted line numbers
Complete Workflow Example:
# Step 1: Find the class (scan_only mode - zero content, pure metadata)
read_file(path="storage/sqlite.py", mode="scan_only", structure_filter="SQLiteStorage")
# → Shows: class SQLiteStorage at lines 32-2334 (2303 lines)
# Methods (page 1 of 7, showing 1-10 of 62)
# Step 2: Browse methods with pagination
read_file(path="storage/sqlite.py", mode="scan_only",
structure_filter="SQLiteStorage", structure_page=2)
# → Methods 11-20 with full signatures and line ranges
# Found: async def fetch_recent_entries(self) -> List[Dict[str, Any]] (lines 338-427 (90))
# Step 3: Read exact method implementation
read_file(path="storage/sqlite.py", mode="line_range", start_line=338, end_line=427)
# → Full method code for analysis
# Step 4: Edit with confidence
Edit(file_path="storage/sqlite.py", old_string="...", new_string="...")Key Benefits:
- Token Efficiency: Get complete structural overview without reading full file content
- Instant Complexity Assessment: Line counts reveal 477-line monsters needing refactoring
- Type-Aware Navigation: Full signatures show exactly how to call each function
- Regex Precision: Find all functions matching
^_validate.*|^_sanitizein seconds - Pagination for Scale: Browse classes with 50+ methods without overwhelming output
Parameters: path, mode (scan_only/chunk/page/line_range/search), structure_filter, structure_page, structure_page_size, include_dependencies, format
New: search - Multi-File Codebase Search (v2.2)
The search tool provides grep/ripgrep-equivalent codebase search directly through MCP, with repo-boundary enforcement and audit logging:
- Regex and Literal Patterns: Full regex by default, with
regex=Falsefor literal string matching - File Filtering: Filter by glob pattern (
glob="*.py") or file type (type="py") - Three Output Modes:
content(matching lines with context),files_with_matches(file paths only),count(match counts per file) - Context Control: Configurable before/after context lines around matches
- Multiline Matching: Patterns can span multiple lines with
multiline=True - Safety Limits: Configurable max matches per file (50), total matches (200), max files (100), and file size cap (10MB)
# Find all async methods in Python files
search(agent="CoderAgent", pattern="async def ", type="py", output_mode="content", context_lines=2)
# Count occurrences of a function across the codebase
search(agent="CoderAgent", pattern="append_entry", output_mode="count")
# Search with glob filter
search(agent="CoderAgent", pattern="class.*Storage", glob="storage/*.py", output_mode="files_with_matches")Parameters: agent, pattern, path, glob, type, output_mode, format, context_lines, before_context, after_context, case_insensitive, regex, multiline, max_matches_per_file, max_total_matches, max_files, line_numbers, skip_binary, max_file_size_mb
New: edit_file - Safe File Editing with Audit Trail (v2.2)
The edit_file tool provides exact string replacement with built-in safety mechanisms:
- Read-Before-Edit Enforcement: The file MUST have been read with
read_filein the current session before editing (tool-enforced) - Dry-Run by Default:
dry_run=Trueis the default -- you must explicitly setdry_run=Falseto commit changes - Exact String Matching: Finds and replaces exact strings (no regex), failing clearly if the target string is not found or is ambiguous
- Replace All Mode: Optional
replace_all=Truefor renaming variables or updating repeated patterns - Diff Preview: Dry-run mode returns a unified diff preview before committing
- Repo-Boundary Enforcement: Cannot edit files outside the repository root
# Preview a change (dry_run=True is default)
edit_file(agent="CoderAgent", path="config/settings.py", old_string="DEBUG = True", new_string="DEBUG = False")
# Commit a change
edit_file(agent="CoderAgent", path="config/settings.py", old_string="DEBUG = True", new_string="DEBUG = False", dry_run=False)
# Rename across file
edit_file(agent="CoderAgent", path="utils/helpers.py", old_string="old_name", new_string="new_name", replace_all=True, dry_run=False)Parameters: agent, path, old_string, new_string, replace_all (default: False), dry_run (default: True), format
scribe_doctorreports repo root, config, plugin status, and vector readiness for faster diagnostics.manage_docsnow supports semantic search viaaction="search"withsearch_mode="semantic", including doc/log separation anddoc_k/log_koverrides.- Vector indexing now prefers registry-managed docs only; log/rotated-log files are excluded from doc indexing.
- Reindex supports
--rebuild(clear index),--safe(low-thread fallback), and--wait-for-drainto block until embeddings are written.
Example (structured mode with edit):
{
"action": "apply_patch",
"doc_name": "architecture",
"edit": {
"type": "replace_range",
"start_line": 12,
"end_line": 12,
"content": "Updated line\n"
}
}Example (unified diff mode - auto-detected when patch provided):
{
"action": "apply_patch",
"doc_name": "architecture",
"patch": "<compiler output>"
}Scribe transforms how AI agents and developers maintain project documentation. Instead of scattered notes and outdated docs, Scribe provides bulletproof audit trails, automated template generation, and cross-project intelligence that keeps your entire development ecosystem in sync.
Perfect for:
- 🤖 AI Agent Teams - Structured workflows and quality grading
- 🏢 Enterprise Teams - Audit trails and compliance documentation
- 👨💻 Solo Developers - Automatic documentation that actually works
- 📚 Research Projects - Structured logs and reproducible reports
Immediate Value:
- ✅ 30-second setup - Drop into any repository and start logging
- 🎯 18+ specialized templates - From architecture guides to bug reports
- 🔍 Cross-project search - Find patterns across your entire codebase
- 📊 Agent report cards - Performance grading for AI workflows
- 🛡️ Bulletproof storage - Atomic operations with crash recovery
Get Scribe running in under 60 seconds (MCP-first, CLI optional):
# Clone and navigate to Scribe
git clone <your-repo-url>
cd scribe_mcp
# Set up Python environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install 16 production-ready dependencies
pip install -r requirements.txt- Codex CLI registration example:
codex mcp add scribe \ --env SCRIBE_STORAGE_BACKEND=sqlite \ -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server' - Claude Code registration example:
For Global MCP
claude mcp add scribe \ --env SCRIBE_STORAGE_BACKEND=sqlite \ -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server'claude mcp add scribe --scope user --env SCRIBE_STORAGE_BACKEND=sqlite -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server'
Once connected from Claude / Codex MCP:
- Use
set_projectto register/select a project and bootstrap dev_plan docs (passroot=/abs/path/to/repoto work in any repo). - Use
append_entryfor all logging (single/bulk). - Use
manage_docsfor architecture/phase/checklist updates. 2.1.1 introduces diff edits. - Use
read_filefor safe, auditable file reads (scan/chunk/page/search). - Use
scribe_doctorfor readiness checks (repo root, config, vector index status). - Use
read_recent/list_projectsto resume context after compaction.
Automatic log routing (BUG / SECURITY)
status=bug(or a bug emoji) will also write toBUG_LOG.mdwhen required meta is present (severity,component,status).- Security events can also tee to
SECURITY_LOG.md(example: use a security emoji, or--meta security_event=true,impact=...,status=...). - If required meta is missing, Scribe returns a teaching reminder instead of inventing data.
For shell workflows or quick one-off logs, you can call the MCP-aligned CLI:
# From the scribe_mcp directory or MCP_SPINE root
python -m scribe_mcp.scripts.scribe "🚀 My project is ready!" --status success --emoji 🎉Under the hood this uses set_project + append_entry, so manual usage stays in sync with the registry, SQLite mirror, and reminder system.
Project Management:
# Log project milestones
python -m scribe_mcp.scripts.scribe "Completed authentication module" --status success --meta component=auth,tests=47
# Track bugs and issues
python -m scribe_mcp.scripts.scribe "Fixed JWT token expiry bug" --status bug --meta severity=high,component=securityResearch Workflows:
# Document research findings
python -m scribe_mcp.scripts.scribe "Discovered performance bottleneck in database queries" --status info --meta research=true,impact=highTeam Collaboration:
# List all projects
python -m scribe_mcp.scripts.scribe --list-projects
# Switch between projects
python -m scribe_mcp.scripts.scribe "Starting new feature work" --project frontend --status plan- Python 3.11+ - Modern Python with async support
- pip - Standard Python package manager
- Optional: PostgreSQL for team deployments (SQLite works out of the box)
🗄️ SQLite (Default - Zero Config)
- Perfect for solo developers and small teams
- No setup required - just run and go
- Automatic database creation and management
🐘 PostgreSQL (Enterprise)
- Ideal for large teams and production deployments
- Set environment variables before starting:
export SCRIBE_STORAGE_BACKEND=postgres export SCRIBE_DB_URL=postgresql://user:pass@host:port/database
In all examples below, REPO_ROOT means the directory that contains the
scribe_mcp package (i.e., where scribe_mcp/server.py lives). In your
personal setup this might be .../MCP_SPINE, but in the public repo it will
typically just be the cloned scribe_mcp directory.
For Claude Desktop (JSON config):
For Codex / Claude Code CLI:
# From anywhere; codex will remember this configuration
codex mcp add scribe \
--env SCRIBE_STORAGE_BACKEND=sqlite \
-- bash -lc 'cd /absolute/path/to/REPO_ROOT && exec python -m scribe_mcp.server'Notes:
- We intentionally do not bake a per-repo root into the MCP config. Scribe is multi-repo: switch repos by calling
set_project(name=..., root=/abs/path/to/repo)(no MCP re-register needed). - The same
bash -lc "cd REPO_ROOT && python -m scribe_mcp.server"pattern works for any MCP client that expects a stdio server command.
You can run Scribe from any codebase (not just MCP_SPINE) by pointing it at that project’s root:
- Start the MCP server from the Scribe codebase (once), then use
set_project(..., root=/abs/path/to/your/repo)to target any repository. - Optional env vars:
SCRIBE_STATE_PATH=/abs/path/to/state.json(DEPRECATED in v2.2 - sessions now stored in database)SCRIBE_STORAGE_BACKEND=postgresandSCRIBE_DB_URL=postgresql://...if you want Postgres.
- Ensure
PYTHONPATHincludes the parent ofscribe_mcpso imports work when launched from elsewhere.
Scribe includes a SQLite-backed Project Registry that tracks every project’s lifecycle and documentation state:
- Lifecycle states:
planning,in_progress,blocked,complete,archived,abandoned. - Core hooks:
set_project– bootstraps docs (ARCHITECTURE_GUIDE,PHASE_PLAN,CHECKLIST,PROGRESS_LOG) and ensures a registry row exists.append_entry– writes progress logs, updates activity metrics, and can auto‑promoteplanning→in_progressonce docs + first entry exist.manage_docs– applies atomic doc updates and records baseline/current hashes and doc‑hygiene flags in the registry.list_projects– surfaces registry data (status, timestamps, counts, tags,meta.activity,meta.docs.flags) with filters likestatus,tags, andorder_by.
At a glance, you can:
- See which projects are fresh, stale, or long inactive.
- Detect when architecture/phase/checklist docs are still at template state.
- Spot drift between implementation logs and documentation.
For full technical details, see docs/whitepapers/scribe_mcp_whitepaper.md.
Scribe MCP is source-available and free to use for:
- Individual developers
- Open-source contributors
- Researchers and educational use
- Small teams and small businesses that:
- Have fewer than 25 employees, and
- Generate less than $1,000,000 USD in annual revenue, and
- Are not selling, hosting, or packaging Scribe MCP (or derivatives) as part of a paid product or service.
You may not use Scribe MCP under the community license if:
- Your organization exceeds the employee or revenue limits above, or
- You embed Scribe MCP into a paid SaaS, internal platform, or commercial agent/orchestration product.
For enterprise or large-scale commercial use, contact licensing@cortalabs.com to obtain a commercial license.
Details:
- Current code is licensed under the Scribe MCP License (Community + Small Business License) in
LICENSE. - Earlier snapshots were MIT-licensed; see
LICENSE_HISTORY.mdfor historical licensing context.
Notes:
.envis auto-loaded on startup when present (via python-dotenv); shell exports/direnv still work the same.- Overlap checks only block true path collisions (same progress_log/docs_dir). Sharing one repo root with many dev_plan folders is supported.
Scribe includes 13+ specialized templates that auto-generate professional documentation:
- 📐 Architecture Guides - System design and technical blueprints
- 📅 Phase Plans - Development roadmaps with milestones
- ✅ Checklists - Verification ledgers with acceptance criteria
- 🔬 Research Reports - Structured investigation documentation
- 🐛 Bug Reports - Automated issue tracking with indexing
- 📊 Agent Report Cards - Performance grading and quality metrics
- 📝 Progress Logs - Append-only audit trails with UTC timestamps
- 🔒 Security Logs - Compliance and security event tracking
- 🔒 Security Sandboxing - Jinja2 templates run in restricted environments
- 📝 Template Inheritance - Create custom template families
- 🎯 Smart Discovery - Project → Repository → Built-in template hierarchy (precedence:
.scribe/templates→ repo custom → project templates → packs → built-ins) - ⚡ Atomic Generation - Bulletproof template creation with integrity verification
For a deeper dive into available variables and expected metadata per template, see docs/TEMPLATE_VARIABLES.md.
# Auto-generate a complete architecture document
python -m scribe_mcp.scripts.scribe "Generated architecture guide for new project" --status success --meta template=architecture,auto_generated=trueScribe's command-line interface (386 lines of pure functionality) gives you complete control:
# List all available projects
python -m scribe_mcp.scripts.scribe --list-projects
# Log with rich metadata
python -m scribe_mcp.scripts.scribe "Fixed critical bug" \
--status success \
--emoji 🔧 \
--meta component=auth,tests=12,severity=high
# Dry run to preview entries
python -m scribe_mcp.scripts.scribe "Test message" --dry-run
# Switch between projects
python -m scribe_mcp.scripts.scribe "Starting frontend work" \
--project mobile_app \
--status plan- 🎭 Emoji Support - Built-in emoji mapping for all status types
- 📊 Metadata Tracking - Rich key=value metadata for organization
- 🔍 Multiple Log Types - Progress, bugs, security, and custom logs
- 📅 Timestamp Control - Override timestamps for bulk imports
- 🎯 Project Discovery - Automatic project configuration detection
infoℹ️ - General information and updatessuccess✅ - Completed tasks and achievementswarn⚠️ - Warning messages and cautionserror❌ - Errors and failuresbug🐞 - Bug reports and issuesplan📋 - Planning and roadmap entries
Performance grading infrastructure for AI workflows:
- Quality metrics tracking and trend analysis
- Performance levels with UPSERT operations
- Automated agent evaluation and reporting
- 🛡️ Security Sandboxing - Restricted Jinja2 environments with 22+ built-in controls
- 📋 Audit Trails - Complete change tracking with metadata
- 🔐 Access Control - Path validation and input sanitization
- 📊 Compliance Reporting - Structured logs for regulatory requirements
Phase 4 Enhanced Search capabilities:
- 🔍 Cross-Project Validation - Find patterns across your entire codebase
- 📊 Relevance Scoring - 0.0-1.0 quality filtering
- 🎯 Code Reference Verification - Validate referenced code exists
- 📅 Temporal Filtering - Search by time ranges ("last_30d", "last_7d")
Structured doc editing with full schema exposure:
- 🔧 Complete MCP Schema - All
manage_docsparameters properly exposed via JSON Schema - 🎯 Type-Safe Operations - Proper parameter typing for reliable tool discovery and validation
- 📋 Action-Driven Interface - Atomic updates for architecture, phase plans, checklists, and research docs
7 Primary Actions:
| Action | Purpose | Required Params |
|---|---|---|
create |
Create new doc (research/bug/custom) | doc_name, metadata.doc_type |
replace_section |
Replace content by section anchor | doc_name, section, content |
apply_patch |
Apply unified diff patch | doc_name, patch |
replace_range |
Replace explicit line range | doc_name, start_line, end_line, content |
replace_text |
Find/replace text pattern | doc_name, metadata.find, metadata.replace |
append |
Append content to doc/section | doc_name, content |
status_update |
Update checklist item status | doc_name, section, metadata |
Global Optional Params: project, dry_run, target_dir
doc_type Values (INSIDE metadata): custom (default), research, bug, review, agent_card
Create Examples:
# Research doc
manage_docs(
action="create",
doc_name="RESEARCH_AUTH_20260119",
metadata={"doc_type": "research", "research_goal": "Analyze auth flow"}
)
# Bug report (doc_name auto-generated)
manage_docs(
action="create",
metadata={
"doc_type": "bug",
"category": "logic",
"slug": "auth_leak",
"severity": "high",
"title": "Auth token not invalidated"
}
)
# Custom doc
manage_docs(
action="create",
doc_name="COORDINATION_PROTOCOL",
metadata={"doc_type": "custom", "body": "# Protocol\n\nContent..."}
)Edit Examples:
# Replace section
manage_docs(
action="replace_section",
doc_name="architecture",
section="problem_statement",
content="## Problem Statement\nNew content here..."
)
# Apply unified diff patch (context-aware matching)
manage_docs(
action="apply_patch",
doc_name="architecture",
patch="--- a/file.md\n+++ b/file.md\n@@ -10,3 +10,3 @@\n-old line\n+new line\n context"
)
# Update checklist status
manage_docs(
action="status_update",
doc_name="checklist",
section="phase_1_task_1",
metadata={"status": "done", "proof": "PR #123 merged"}
)For complete documentation, see docs/Scribe_Usage.md or the /scribe-mcp-usage skill.
- 🗄️ Multi-Backend Support - SQLite (zero-config) + PostgreSQL (enterprise)
- ⚡ Atomic Operations - Temp-file-then-rename with fsync guarantees
- 🔄 Write-Ahead Logging - Bulletproof crash recovery with journaling
- ✅ Integrity Verification - Automatic corruption detection and recovery
Scribe keeps your documentation in sync with intelligent context awareness:
Every MCP tool response includes contextual reminders about:
- 📅 Stale Documentation - When architecture docs need updates
- ⏰ Overdue Logs - Gentle nudges to maintain progress tracking
- 🎯 Project Context - Active project status and recent activity
- 🔄 Drift Detection - When implementation deviates from plans
Reminders are throttled with a short cooldown per (repo_root, agent_id) so you see what matters without constant repetition. If an agent gets confused, you can clear cooldowns with set_project(reset_reminders=true).
If you call a project-bound tool without selecting a project, Scribe returns a “last known project” hint (including last access time) to help you recover quickly.
{
"name": "my_project",
"defaults": {
"reminder": {
"tone": "friendly",
"log_warning_minutes": 15,
"log_urgent_minutes": 30,
"severity_weights": {"warning": 7, "urgent": 10}
}
}
}SCRIBE_REMINDER_IDLE_MINUTES- Work session reset timeout (default: 45)SCRIBE_REMINDER_WARMUP_MINUTES- Grace period after resuming (default: 5)SCRIBE_REMINDER_DEFAULTS- JSON configuration for all projectsSCRIBE_REMINDER_CACHE_PATH- Optional path for reminder cooldown cache (default:data/reminder_cooldowns.json)
scribe_mcp/ # 🏛️ Main Scribe MCP server
├── 📁 config/
│ ├── 📁 projects/ # Per-project configurations
│ └── 📄 mcp_config.json # Sample MCP configuration
├── 📁 docs/ # 📖 Server docs (whitepapers, guides)
├── 📁 templates/ # 🎨 Jinja2 template system
│ ├── 📁 documents/ # 13+ specialized templates
│ ├── 📁 fragments/ # Reusable template pieces
│ └── 📁 custom/ # Your custom templates
├── 📁 tools/ # 🔧 MCP tool implementations
├── 📁 storage/ # 💾 Multi-backend storage layer
├── 📁 scripts/ # 💻 CLI utilities
├── 📁 tests/ # 🧪 Comprehensive test suite
└── 📄 server.py # 🚀 MCP server entrypoint
Per-repo output location (dev plans + logs)
- Default:
<repo>/.scribe/docs/dev_plans/<project_slug>/... - Back-compat: if
<repo>/docs/dev_plans/<project_slug>exists, Scribe keeps using it. - Override: set
SCRIBE_DEV_PLANS_BASE(example:docs/dev_plans) to force a different base.
Comprehensive testing infrastructure with 79+ test files:
# Run all functional tests (69 tests)
pytest
# Run performance tests with file size benchmarks
pytest -m performance
# Run specific test categories
pytest tests/test_tools.py
pytest tests/test_storage.py- 🔬 Functional Testing - 69 comprehensive tests covering all core functionality
- ⚡ Performance Testing - Optimized benchmarks for file operations
- 🛡️ Security Testing - Template sandboxing and access control validation
- 🔄 Integration Testing - MCP server protocol compliance verification
# Quick MCP server validation
python scripts/test_mcp_server.pyStructured workflows for AI development:
# Research phase
python -m scribe_mcp.scripts.scribe "Research completed: authentication patterns" --status info --meta phase=research,confidence=0.9
# Architecture phase
python -m scribe_mcp.scripts.scribe "Architecture guide updated with auth design" --status success --meta phase=architecture,sections=5
# Implementation phase
python -m scribe_mcp.scripts.scribe "JWT authentication implemented" --status success --meta phase=implementation,tests=47,coverage=95%Compliance and audit trails:
# Security events
python -m scribe_mcp.scripts.scribe "Security audit completed - all controls verified" --log security --status success --meta auditor=external,findings=0
# Change management
python -m scribe_mcp.scripts.scribe "Production deployment completed" --status success --meta version=v2.1.0,rollback_available=trueStructured research documentation:
# Research findings
python -m scribe_mcp.scripts.scribe "Performance bottleneck identified in database queries" --status info --meta research=true,impact=high,evidence=query_analysis
# Experiment results
python -m scribe_mcp.scripts.scribe "A/B test results: new algorithm 23% faster" --status success --meta experiment=performance_optimization,improvement=23%🚨 MCP SDK Missing
# Install the MCP Python SDK
pip install mcp🔧 No Tools Returned
# Ensure all modules are properly imported
# Check that your virtual environment is active
source .venv/bin/activate
# Verify tool imports
python -c "from scribe_mcp.tools import *; print('All tools loaded')"🗄️ SQLite Permission Issues
# Check your state/db paths are writable
echo $SCRIBE_STATE_PATH
ls -la $(dirname "$SCRIBE_STATE_PATH")
# Check the target repo is writable (Scribe writes under <repo>/.scribe/ by default)
ls -la /abs/path/to/your/repo
ls -la /abs/path/to/your/repo/.scribe || true🐍 Python Path Issues
# Ensure you're running from the correct directory
# Run from MCP_SPINE parent directory, not inside scribe_mcp/
pwd # Should show .../MCP_SPINE/
# Test import path
python -c "import sys; sys.path.insert(0, '.'); from scribe_mcp.config.settings import settings; print('✅ Imports working')"⚡ Server Not Starting
# Check required dependencies
pip install -r requirements.txt
# Verify server startup with timeout
timeout 5 python -m scribe_mcp.server || echo "✅ Server starts correctly"- 📖 Documentation: Check
docs/whitepapers/scribe_mcp_whitepaper.mdfor comprehensive technical details - 🧪 Test Suite: Run
pytestto verify system functionality - 📋 Project Templates: Use
--list-projectsto see available configurations - 🔍 Smoke Test: Run
python scripts/test_mcp_server.pyfor MCP validation
We welcome contributions! Here's how to get started:
# 1. Run the test suite
pytest
# 2. Verify MCP server functionality
python scripts/test_mcp_server.py
# 3. Test your changes
python -m scribe_mcp.scripts.scribe "Testing new feature" --dry-run
# 4. Log your contribution
python -m scribe_mcp.scripts.scribe "Added new feature: description" --status success --meta contribution=true,feature_type=enhancement- ✅ Test Coverage: All new features must include tests
- 📝 Documentation: Update relevant documentation sections
- 🔧 Integration: Ensure MCP server compatibility
- 🛡️ Security: Follow security best practices for templates and inputs
- 🧪 69+ functional tests must pass
- ⚡ Performance benchmarks for file operations
- 🔒 Security validation for template sandboxing
- 📋 MCP protocol compliance verification
- 📄 Whitepaper v2.1 - Comprehensive technical architecture
- 🔧 API Reference - Complete MCP tool documentation
- 🎨 Template Guide - Custom template development
- 🏗️ Architecture Patterns - System design and integration
- Hooks Setup Guide - Protect managed docs from direct Write/Edit with Claude Code hooks
- Scribe Onboarding Prompt - Full instructional prompt for onboarding any project to Scribe MCP (protocol, tools, manage_docs, hooks)
- 🤖 Claude Code Integration - Structured workflows and subagent coordination
- 📊 Agent Report Cards - Performance grading and quality metrics
- 🔍 Vector Search - FAISS integration for semantic search
- 🔐 Security Framework - Comprehensive access control and audit trails
- 🐘 PostgreSQL Setup - Enterprise-scale deployment guide
- 📈 Monitoring - Performance tracking and alerting
- 🔄 Backup & Recovery - Data protection strategies
- 🌐 Multi-tenant - Organizational deployment patterns
MCP Transport Limitation: Session identity is {repo_root}:{transport}:{agent_name}. When multiple agents with the same name work on different Scribe projects within the same repository concurrently, their sessions collide.
Best Practice: Use scoped agent names for concurrent work:
# ❌ Same name = collision
agent="CoderAgent" # on project_x
agent="CoderAgent" # on project_y → logs may go to wrong project!
# ✅ Scoped names = safe
agent="CoderAgent-ProjectX"
agent="CoderAgent-ProjectY"Not affected: Sequential dispatches, different repositories, or single agent switching projects.
See Scribe_Usage.md for details.
Built with passion for better documentation and AI-human collaboration. Special thanks to:
- The MCP protocol team for the standardized AI tool interface
- Jinja2 for the powerful and secure templating system
- Our early adopters for invaluable feedback and feature suggestions
🚀 Ready to transform your documentation?
Start Logging • Explore Templates • Read Whitepaper
Join thousands of developers and AI teams using Scribe for bulletproof documentation governance
{ "mcpServers": { "scribe": { // Run from REPO_ROOT so `scribe_mcp` imports resolve "command": "bash", "args": [ "-lc", "cd /absolute/path/to/REPO_ROOT && exec python -m scribe_mcp.server" ], "env": { // Optional: override storage backend; SQLite is default "SCRIBE_STORAGE_BACKEND": "sqlite" } } } }