Logic function manipulation using truth tables (or lookup tables) that represent the value of the function for the 2n possible inputs.
The crate implements optimized truth table datastructures, either arbitrary-size truth tables
(Lut), or more efficient
fixed-size truth tables (Lut2 to Lut16).
They provide logical operators and utility functions for analysis, canonization and decomposition.
Some support is available for other standard representation, such as Sum-of-Products (SOP) and
Exclusive Sum-of-Products (ESOP).
Volute is used by the logic optimization and analysis library Quaigh. When applicable, API and documentation try to follow the same terminology as the C++ library Kitty.
Create a constant-one Lut with five variables and a constant-zero Lut with 4 variables.
let lut5 = Lut::one(5);
let lut4 = Lut::zero(4);Create a Lut2 representing the first variable. Swap its inputs. Check the result.
let lut = Lut2::nth_var(0);
assert_eq!(lut.swap(0, 1), Lut2::nth_var(1));Perform the logical and between two Lut4. Check its hexadecimal value.
let lut = Lut4::nth_var(0) & Lut4::nth_var(2);
assert_eq!(lut.to_string(), "Lut4(a0a0)");Create a Lut6 (6 variables) from its hexadecimal value. Display it.
let lut = Lut6::from_hex_string("0123456789abcdef").unwrap();
print!("{lut}");Small Luts (3 to 7 variables) can be converted to the integer type of the same size.
let lut5: u32 = Lut5::random().into();
let lut6: u64 = Lut6::random().into();
let lut7: u128 = Lut7::random().into();Create the parity function on three variables, and check that in can be decomposed as a Xor. Check its value in binary.
let lut = Lut::parity(3);
assert_eq!(lut.top_decomposition(0), DecompositionType::Xor);
assert_eq!(format!("{lut:b}"), "Lut3(10010110)");Volute provides Sum-of-Products (SOP) and Exclusive Sum-of-Products (ESOP) representations.
Create Sum of products and perform operations on them.
let var4 = Sop::nth_var(10, 4);
let var2 = Sop::nth_var(10, 2);
let var_and = var4 & var2;Exact decomposition methods can be used with the features optim-mip (using a MILP solver)
or optim-sat (using a SAT solver).
let lut = Lut::threshold(4, 3);
let esop = sop::optim::optimize_esop_mip(&[lut], 1, 2);For boolean optimization, Luts have several canonical forms that allow to only store optimizations for a small subset of Luts. Methods are available to find the smallest Lut that is identical up to variable complementation (N), input permutation (P), or both (NPN).
let lut = Lut4::threshold(3);
let (canonical, flips) = lut.n_canonization();
let (canonical, perm) = lut.p_canonization();
let (canonical, perm, flips) = lut.npn_canonization();
assert_eq!(lut.permute(&perm).flip_n(flips), canonical);