- Demo
- Dataset
- AP
- Classes
- Training Log
- Weights
- Environment
- Tuning_Hyperparameters
- Speed
- Google Colab
- References
https://drive.google.com/file/d/1rlDFnYgzLtDNS_tqJDE0-LfURDUtXwsn/view?usp=sharing
Class Images Instances Box(P R mAP50 mAP50-95)
all 2091 15400 0.726 0.584 0.643 0.367
car 2091 9024 0.804 0.777 0.83 0.536
truck 2091 873 0.805 0.652 0.737 0.493
pedestrian 2091 1638 0.65 0.516 0.572 0.275
bicyclist 2091 151 0.665 0.503 0.556 0.303
light 2091 1747 0.833 0.682 0.739 0.377
pothole 2091 1967 0.598 0.376 0.424 0.216
- car: with 68,008 labels
- truck: with 4,170 labels
- pedestrian: with 8,590 labels
- bicyclist: with 955 labels
- light: with 8,723 labels
- pothole: with 10,024 labels
- total: 100,470 labels
- Train : valid = 9:1
trained with 300 epochs
https://drive.google.com/file/d/1-mfFLoZrUd6jlrmd9V9ym5_g2J3SIyPV/view?usp=sharing
- VM: Google Colaboratory
- GPU: NVIDIA T4 Tensor GPU
- NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0
- nvcc: NVIDIA (R) Cuda compiler driver
- Cuda compilation tools, release 11.8, V11.8.89
- Build cuda_11.8.r11.8/compiler.31833905_0
https://colab.research.google.com/drive/1DlWlXhY4k5pwOVGWSPEt6zYDLj4sLH39#scrollTo=LlPmSN513UYT
network I/O : time of sending image from front page to inferencing server
inferencing time : time of detection of objects
- above chart represent results of processing 10 images with models trained only for 50 epochs
- Training data1(self-driving) : https://www.kaggle.com/alincijov/self-driving-cars
- Training data2(pothole) : https://www.dropbox.com/s/qvglw8pqo16769f/pothole_dataset_v8.zip?dl=1
- The dataset used for training was preprocessed with above 2 datasets(reducing size, cross labeling, balancing number of labels of each class)
- test videos
https://drive.google.com/file/d/1uYKr_ogmZp1U8akz3qWKsCov6hu9Voob/view?usp=sharing
https://drive.google.com/file/d/1IEPLROgmtc7MTDinsMRcIyaeaweNiBzU/view?usp=sharing



