Skip to content

ChangeMaker13/YOLOv8_Object-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

YOLOv8 object detection example

Demo

1627216237257

Dataset

https://drive.google.com/file/d/1rlDFnYgzLtDNS_tqJDE0-LfURDUtXwsn/view?usp=sharing

AP

             Class     Images  Instances      Box(P          R      mAP50  mAP50-95)
               all       2091      15400      0.726      0.584      0.643      0.367
               car       2091       9024      0.804      0.777       0.83      0.536
             truck       2091        873      0.805      0.652      0.737      0.493
        pedestrian       2091       1638       0.65      0.516      0.572      0.275
         bicyclist       2091        151      0.665      0.503      0.556      0.303
             light       2091       1747      0.833      0.682      0.739      0.377
           pothole       2091       1967      0.598      0.376      0.424      0.216

Classes

dataset chart

  1. car: with 68,008 labels
  2. truck: with 4,170 labels
  3. pedestrian: with 8,590 labels
  4. bicyclist: with 955 labels
  5. light: with 8,723 labels
  6. pothole: with 10,024 labels
  • total: 100,470 labels
  • Train : valid = 9:1

Training Log

| chart 2

Weights

trained with 300 epochs
https://drive.google.com/file/d/1-mfFLoZrUd6jlrmd9V9ym5_g2J3SIyPV/view?usp=sharing

Environment

  • VM: Google Colaboratory
  • GPU: NVIDIA T4 Tensor GPU
  • NVIDIA-SMI 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0
  • nvcc: NVIDIA (R) Cuda compiler driver
  • Cuda compilation tools, release 11.8, V11.8.89
  • Build cuda_11.8.r11.8/compiler.31833905_0

Tuning Hyperparameters

https://colab.research.google.com/drive/1DlWlXhY4k5pwOVGWSPEt6zYDLj4sLH39#scrollTo=LlPmSN513UYT

Speed

fps chart

network I/O : time of sending image from front page to inferencing server
inferencing time : time of detection of objects

  • above chart represent results of processing 10 images with models trained only for 50 epochs

Google Colab

Link

References

About

LG internship project. Objection detection on the road containing pothole

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published