| Category | Skills |
|---|---|
| ๐ Analytics | Descriptive โข Predictive โข Prescriptive Analytics |
| ๐ข Statistics | Hypothesis Testing โข Regression Analysis โข P-values โข F-statistics |
| ๐งฎ Mathematics | Linear Algebra โข Matrix Theory โข Kernel Methods โข Vector Analysis |
| ๐ ๏ธ Data Engineering | Data Cleaning โข Feature Engineering โข Data Modeling โข ETL Processes |
| ๐ Visualization | Matplotlib โข Seaborn โข ggplot โข Interactive Dashboards |
| โ๏ธ Automation | Python Scripts โข AWK/SED Scripts โข Linux Shell Scripting |
| ๐ฏ Optimization | Linear Programming (Gekko) โข Statistical Optimization |
| Project | Description | Tech Stack |
|---|---|---|
| ๐ Quadrant-Based Sales Growth Strategy | Comprehensive sales optimization using quadrant analysis for customer/product categorization | Business Intelligence Excel Data Analysis Strategy |
| ๐ฎ Customer Segmentation with Deep Gaussian Mixture | Advanced ML customer segmentation using Deep Gaussian Mixture Models | Python TensorFlow Deep Learning Machine Learning |
| ๐ Question Paper Generator | Intelligent system for automated question paper generation with difficulty balancing | Python Algorithm Design Education Tech Automation |
| ๐ผ๏ธ Tactile Image Generation with OpenCV | Computer vision app generating tactile representations for accessibility | OpenCV Computer Vision Python Accessibility |
| ๐ฏ Resource Allocation Optimization | Intelligent resource distribution system for maximum efficiency | Optimization Algorithms Operations Research Management |
| ๐ Park-Ease Parking Management | Real-time parking management with slot booking and payment integration | Django Bootstrap JavaScript MySQL |
| ๐ Interactive Data Viz | Network Visualization โข Dynamic Charts | D3.js Interactive Dashboards |
๐ Explore My Data Science Journey
gantt
title Data Science Learning Journey
dateFormat YYYY-MM-DD
section Foundation
Python Basics :done, python, 2022-01-01, 2022-03-01
Statistics & Math :done, stats, 2022-02-01, 2022-04-01
section Data Analysis
Pandas & NumPy :done, pandas, 2022-03-01, 2022-05-01
Data Visualization :done, viz, 2022-04-01, 2022-06-01
section Machine Learning
Supervised Learning :done, ml1, 2022-05-01, 2022-08-01
Unsupervised Learning :done, ml2, 2022-07-01, 2022-09-01
section Advanced
Deep Learning :active, dl, 2022-09-01, 2024-12-01
MLOps & Deployment :active, mlops, 2023-01-01, 2024-12-01
| ๐ Project | ๐ Status | ๐บ Progress | ๐ Priority |
|---|---|---|---|
| Advanced NLP Model | ๐ก In Progress | โโโโโโโโโโ 70% | ๐ด High |
| Time Series Forecasting | ๐ข Planning | โโโโโโโโโโ 20% | ๐ก Medium |
| Computer Vision App | ๐ Research | โโโโโโโโโโ 10% | ๐ข Low |
| MLOps Pipeline | ๐ก Development | โโโโโโโโโโ 50% | ๐ด High |
๐ Deep Dive Analytics
|
๐ฅ Commit Patterns
|
๐ Repository Stats
|
๐ Open Source
|
๐ Real-time Activity Feed
|
Current Status |
Today's Focus |
In Progress |
Fuel Level |
Current Sprint:
๐ Project: "Advanced ML Pipeline"
๐บ Progress: 73%
๐ฐ Time Left: "2 days"
๐ฏ Next Milestone: "Model Deployment"
๐ง Learning:
๐ Course: "MLOps Engineering"
๐ Completion: 85%
๐ฅ Current Topic: "Kubernetes for ML"๐ก "Just discovered a fascinating correlation in my dataset - sometimes the best insights come from the most unexpected patterns!"
๐ค "Working on optimizing my neural network architecture. The balance between accuracy and computational efficiency is an art form."
๐ "Excited to implement my new feature engineering pipeline. Data preprocessing is where the magic really happens!"
๐ Skill Proficiency Radar
flowchart TD
A[Data Science] --> B[Python ๐]
A --> C[Statistics ๐]
A --> D[Machine Learning ๐ค]
A --> E[Deep Learning ๐ง ]
B --> B1[Advanced โ
โ
โ
โ
โ
]
C --> C1[Expert โ
โ
โ
โ
โ]
D --> D1[Advanced โ
โ
โ
โ
โ
]
E --> E1[Intermediate โ
โ
โ
โโ]
F[Tools & Frameworks] --> G[Pandas ๐ผ]
F --> H[Scikit-learn ๐ฌ]
F --> I[TensorFlow ๐ฅ]
F --> J[Linux ๐ง]
G --> G1[Expert โ
โ
โ
โ
โ
]
H --> H1[Advanced โ
โ
โ
โ
โ]
I --> I1[Intermediate โ
โ
โ
โโ]
J --> J1[Advanced โ
โ
โ
โ
โ]
| Skill | 2022 | 2023 | 2024 | Trajectory |
|---|---|---|---|---|
| Python | โโโโโ | โโโโโ | โโโโโ | ๐ Mastered |
| ML Algorithms | โโโโโ | โโโโโ | โโโโโ | ๐ Expert |
| Deep Learning | โโโโโ | โโโโโ | โโโโโ | ๐ Growing |
| MLOps | โโโโโ | โโโโโ | โโโโโ | ๐ Learning |
| Statistics | โโโโโ | โโโโโ | โโโโโ | ๐ Advanced |
โ๏ธ Development Setup
โญโโโโโโโโโโโโโโ System Info โโโโโโโโโโโโโโโฎ
โ ๐ง OS: Arch Linux (btw) โ
โ ๐ฅ Shell: Fish 4.0.2 โ
โ ๐จ Terminal: Warp + Alacritty โ
โ ๐ง Editor: VS Code + Neovim โ
โ ๐ IDE: JupyterLab + PyCharm โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ๐ต Now Playing: Lo-fi Hip Hop for Coding
๐ง Mood: Deep Focus Mode
โฑ๏ธ Session Time: 2h 15m
- Morning coffee โ
- Review yesterday's ML model results
- Implement feature engineering pipeline
- Write unit tests for data preprocessing
- Team standup meeting at 3 PM
- Research paper reading session
- Side project: NLP model fine-tuning
๐ข Random Developer Facts
๐ Quick Stats:
- โ Coffee consumed while coding: 2,847 cups
- ๐ Bugs fixed: 1,337+
- ๐ Late night coding sessions: 247
- ๐ Documentation written: Actually quite a lot!
- ๐คฏ Stack Overflow visits: โ (infinite)
๐ญ Favorite Quotes:
"Data is the new oil, but insights are the refined fuel."
"In machine learning, the magic is in the data preparation."
"A model is only as good as the data it learns from."
๐ฎ Coding Superpowers:
- Can debug code at 3 AM with closed eyes ๐๏ธ
- Speaks fluent Python and broken English ๐
- Can turn coffee into code โโก๏ธ๐ป
- Finds patterns in chaos ๐ฎ
- Makes data dance ๐

