Unveiling Uniform Shifted Power Law in Stochastic Human and Autonomous Driving Behavior
1. Create python environment
conda create -n SPL python=3.10
conda activate SPL
pip install -r requirements.txt
2. Download the training and simulation code
# Download the simulator
mkdir shifted_power_law
cd shifted_power_law
git clone https://github.com/CATS-Lab/Shifted_Power_Law.git
3. Download data
You may download the highD, CitySim, and AV datasets for training or simulation.
Train the model to predict mean and standard deviation
cd prediction
python train.py --loc_id 4
Run simulations and visualize the results
cd simulation
python main.py --loc_id 4 --data_path ../data/07_tracks.csv --res_root results --vis True --num_sim 1 --dist power_law --init_frame_id 0 --max_frame_id 250
Note: If you do not assign --init_frame_id and --max_frame_id, the simulator will sample the initial frame id randomly and set the last frame id as the maximum frame id.

