Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions tests/test_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -656,6 +656,8 @@ def test_pd_fill_gap(self):
toy_df_15min_hole = toy_df_15min.copy()
toy_df_15min_hole.loc[hole_backast, "Temp_1"] = np.nan
toy_df_15min_hole.loc[hole_forecast, "Temp_1"] = np.nan
toy_df_15min_hole.iloc[:12, 0] = np.nan
toy_df_15min_hole.iloc[-12:, 0] = np.nan

filler = FillGapsAR(resample_at_td="1h")
res = filler.fit_transform(toy_df_15min_hole.copy())
Expand Down
27 changes: 21 additions & 6 deletions tide/processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1155,11 +1155,18 @@ def _fit_and_fill_x(self, X, biggest_group, col, idx, backcast):
if self.resample_at_td is not None:
x_fit = X.loc[biggest_group, col].resample(self.resample_at_td).mean()
idx_origin = idx
idx = pd.date_range(idx[0], idx[-1], freq=self.resample_at_td)
if not backcast and x_fit.index[-1] == idx[0]:
x_fit = x_fit[:-1]
elif x_fit.index[0] == idx[-1]:
x_fit = x_fit[1:]
if backcast:
idx = pd.date_range(
idx[0],
x_fit.index[0] - pd.Timedelta(self.resample_at_td),
freq=self.resample_at_td,
)
else:
idx = pd.date_range(
x_fit.index[-1] + pd.Timedelta(self.resample_at_td),
idx[-1],
freq=self.resample_at_td,
)
else:
x_fit = X.loc[biggest_group, col]
idx_origin = None
Expand All @@ -1169,7 +1176,15 @@ def _fit_and_fill_x(self, X, biggest_group, col, idx, backcast):
to_predict.name = col
X.loc[idx, col] = bc_model.predict(to_predict).to_numpy().flatten()
if self.resample_at_td is not None:
X.loc[idx_origin, col] = X.loc[idx_origin, col].interpolate()
beg = idx_origin[0] - idx_origin.freq
end = idx_origin[-1] + idx_origin.freq
# Interpolate linearly between inferred values and using neighbor data
X.loc[idx_origin, col] = X.loc[beg:end, col].interpolate()
# If gap is at boundaries
if beg < X.index[0]:
X.loc[idx_origin, col] = X.loc[idx_origin, col].bfill()
if end > X.index[-1]:
X.loc[idx_origin, col] = X.loc[idx_origin, col].ffill()

def _fit_implementation(self, X: pd.Series | pd.DataFrame, y=None):
self.model_ = MODEL_MAP[self.model_name]
Expand Down
Loading