Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,18 @@ def __init__(self, required_columns, keep_required):
self.keep_required = keep_required

def _fit_implementation(self, X, y=None):
self.fit_check_features(X)
if not self.keep_required:
self.removed_columns = self.required_columns
self.added_columns = ["new_col__°C__meteo"]
self.feature_names_out_ = [
col for col in X.columns if col not in self.required_columns
]
self.feature_names_out_.append("new_col__°C__meteo")
return self

def _transform_implementation(self, X):
X[self.added_columns[0]] = X[self.required_columns] * 2
X.drop(self.removed_columns, axis=1, inplace=True)
X["new_col__°C__meteo"] = X[self.required_columns] * 2
if not self.keep_required:
X.drop(self.required_columns, axis=1, inplace=True)
return X


Expand Down
9 changes: 6 additions & 3 deletions tests/test_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,6 +444,7 @@ def test_pd_add_time_lag(self):

lager = AddTimeLag(time_lag=dt.timedelta(hours=1), drop_resulting_nan=True)
lager.fit(df)
lager.get_feature_names_out()
assert list(lager.get_feature_names_out()) == [
"col0",
"col1",
Expand Down Expand Up @@ -501,11 +502,13 @@ def test_pd_combine_columns(self):

pd.testing.assert_frame_equal(trans.fit_transform(x_in), ref)

ref["combined_2"] = [2, 4]
trans = CombineColumns(
function=np.sum,
tide_format_columns="°C",
function_kwargs={"axis": 1},
drop_columns=False,
result_column_name="combined_2",
)

pd.testing.assert_frame_equal(trans.fit_transform(x_in), ref)
Expand Down Expand Up @@ -720,13 +723,13 @@ def test_combiner(self):
)

combiner = ExpressionCombine(
variables_dict={
columns_dict={
"T1": "Tin__°C__building",
"T2": "Text__°C__outdoor",
"m": "mass_flwr__m3/h__hvac",
},
expression="(T1 - T2) * m * 1004 * 1.204",
result_col_name="loss_ventilation__J__hvac",
result_column_name="loss_ventilation__J__hvac",
)

res = combiner.fit_transform(test_df.copy())
Expand All @@ -748,7 +751,7 @@ def test_combiner(self):
decimal=1,
)

combiner.set_params(drop_variables=True)
combiner.set_params(drop_columns=True)

res = combiner.fit_transform(test_df.copy())

Expand Down
35 changes: 5 additions & 30 deletions tide/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
process_stl_odd_args,
get_data_blocks,
get_idx_freq_delta_or_min_time_interval,
ensure_list,
get_tags_max_level,
NAME_LEVEL_MAP,
)
Expand Down Expand Up @@ -56,15 +55,8 @@ class TideBaseMixin:
Returns the names of the features as initially fitted.
"""

def __init__(
self,
required_columns: str | list[str] = None,
removed_columns: str | list[str] = None,
added_columns: str | list[str] = None,
):
def __init__(self, required_columns: str | list[str] = None):
self.required_columns = required_columns
self.removed_columns = removed_columns
self.added_columns = added_columns

def check_required_features(self, X):
if self.required_columns is not None:
Expand All @@ -73,7 +65,7 @@ def check_required_features(self, X):

def fit_check_features(self, X):
self.check_required_features(X)
self.feature_names_in_ = list(X.columns)
self.feature_names_in_ = self.feature_names_out_ = list(X.columns)

def get_set_tags_values_columns(self, X, level: int | str, value: str):
nb_tags = get_tags_max_level(X.columns)
Expand All @@ -96,18 +88,8 @@ def set_tags_values(self, X, tag_level: int, value: str):
X.columns = self.get_set_tags_values_columns(X, tag_level, value)

def get_feature_names_out(self, input_features=None):
if input_features is None:
check_is_fitted(self, attributes=["feature_names_in_"])
input_features = self.feature_names_in_

added_columns = ensure_list(self.added_columns)
removed_columns = ensure_list(self.removed_columns)
if isinstance(input_features, list):
input_features = np.array(input_features)
features_out = np.concatenate([input_features.copy(), np.array(added_columns)])
return np.array(
[feature for feature in features_out if feature not in removed_columns]
)
check_is_fitted(self, attributes=["feature_names_in_", "feature_names_out_"])
return self.feature_names_out_

def get_feature_names_in(self):
check_is_fitted(self, attributes=["feature_names_in_"])
Expand Down Expand Up @@ -160,15 +142,8 @@ class BaseProcessing(ABC, TransformerMixin, BaseEstimator, TideBaseMixin):
def __init__(
self,
required_columns: str | list[str] = None,
removed_columns: str | list[str] = None,
added_columns: str | list[str] = None,
):
TideBaseMixin.__init__(
self,
required_columns=required_columns,
removed_columns=removed_columns,
added_columns=added_columns,
)
TideBaseMixin.__init__(self, required_columns=required_columns)
TransformerMixin.__init__(self)
BaseEstimator.__init__(self)

Expand Down
Loading