Skip to content

Unofficial Python client for the Kalshi prediction markets API

License

Notifications You must be signed in to change notification settings

ArshKA/pykalshi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pykalshi

PyPI version Python versions License

The Python client for Kalshi prediction markets. WebSocket streaming, automatic retries, pandas integration, and clean interfaces for building trading systems.

from pykalshi import KalshiClient, Action, Side

client = KalshiClient()

# Place a trade
order = client.portfolio.place_order("KXBTC-25MAR15-B100000", Action.BUY, Side.YES, count=10, yes_price=45)
order.wait_until_terminal()  # Block until filled/canceled

Features

  • WebSocket streaming - Real-time orderbook, ticker, and trade data with typed messages
  • Automatic retries - Exponential backoff on rate limits and transient errors
  • Domain objects - Market, Order, Event with methods like order.cancel(), market.get_orderbook()
  • pandas integration - .to_dataframe() on any list of results
  • Jupyter support - Rich HTML display for markets, orders, and positions
  • Local orderbook - OrderbookManager maintains state from WebSocket deltas
  • Type safety - Pydantic models and typed exceptions throughout

Installation

pip install pykalshi

# With pandas support
pip install pykalshi[dataframe]

Get your API credentials from kalshi.com and create a .env file:

KALSHI_API_KEY_ID=your-key-id
KALSHI_PRIVATE_KEY_PATH=/path/to/private-key.key

Quick Start

Browse Markets

from pykalshi import MarketStatus, CandlestickPeriod

client = KalshiClient()

# Search markets
markets = client.get_markets(status=MarketStatus.OPEN, limit=100)
btc_markets = client.get_markets(series_ticker="KXBTC")

# Get a specific market
market = client.get_market("KXBTC-25MAR15-B100000")
print(f"{market.title}: {market.yes_bid}¢ / {market.yes_ask}¢")

# Market data
orderbook = market.get_orderbook()
trades = market.get_trades(limit=50)
candles = market.get_candlesticks(start_ts, end_ts, period=CandlestickPeriod.ONE_HOUR)

Trading

from pykalshi import Action, Side, OrderType, OrderStatus

# Check balance
balance = client.portfolio.get_balance()
print(f"${balance.balance / 100:.2f} available")

# Limit order
order = client.portfolio.place_order(market, Action.BUY, Side.YES, count=10, yes_price=50)

# Market order
order = client.portfolio.place_order(market, Action.BUY, Side.YES, count=10, order_type=OrderType.MARKET)

# Manage orders
order.wait_until_terminal()  # Block until filled/canceled
order.modify(yes_price=45)   # Amend price
order.cancel()               # Cancel

# View portfolio
positions = client.portfolio.get_positions()
fills = client.portfolio.get_fills(limit=100)
orders = client.portfolio.get_orders(status=OrderStatus.RESTING)

Real-time Streaming

from pykalshi import Feed, TickerMessage, OrderbookSnapshotMessage

async with Feed(client) as feed:
    await feed.subscribe_ticker("KXBTC-25MAR15-B100000")
    await feed.subscribe_orderbook("KXBTC-25MAR15-B100000")
    await feed.subscribe_trades("KXBTC-25MAR15-B100000")

    async for msg in feed:
        match msg:
            case TickerMessage():
                print(f"Price: {msg.price}¢")
            case OrderbookSnapshotMessage():
                print(f"Book: {len(msg.yes)} yes levels, {len(msg.no)} no levels")

Local Orderbook

from pykalshi import Feed, OrderbookManager

manager = OrderbookManager()

async with Feed(client) as feed:
    await feed.subscribe_orderbook(ticker)

    async for msg in feed:
        manager.apply(msg)
        book = manager.get(ticker)
        best_bid = book["yes"][0] if book["yes"] else None

pandas Integration

# Any list result has .to_dataframe()
positions_df = client.portfolio.get_positions().to_dataframe()
markets_df = client.get_markets(limit=500).to_dataframe()
fills_df = client.portfolio.get_fills().to_dataframe()

# Candlesticks and orderbooks too
candles_df = market.get_candlesticks(start, end).to_dataframe()
orderbook_df = market.get_orderbook().to_dataframe()

Error Handling

from pykalshi import InsufficientFundsError, RateLimitError, KalshiAPIError

try:
    order = client.portfolio.place_order(...)
except InsufficientFundsError:
    print("Not enough balance")
except RateLimitError:
    pass  # Client auto-retries with backoff
except KalshiAPIError as e:
    print(f"{e.status_code}: {e.error_code}")

Examples

See the examples/ directory:

Why pykalshi?

pykalshi kalshi-python (official)
WebSocket streaming
Automatic retry/backoff
Rate limit handling
Domain objects
pandas integration
Jupyter display
Local orderbook
Typed exceptions
Pydantic models
Full API coverage

The official SDK is auto-generated from the OpenAPI spec. pykalshi adds the infrastructure needed for production trading: real-time data, error recovery, and ergonomic interfaces.

Links


This is an unofficial library and is not affiliated with Kalshi.

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •