> 100 % OFF-GRID • 3.64 ms inference • 99.6 % accuracy • ZERO data leaks
Edge-TinyML is a palm-sized, fully offline voice assistant that meets military-grade robustness and privacy standards.
No cloud. No telemetry. No compromises.
| Capability | Edge-TinyML | Alexa / Google | Other OSS |
|---|---|---|---|
| Privacy | ✅ 100 % offline | ❌ Cloud-only | |
| Latency | ✅ 3.64 ms KWS | 🟡 200-500 ms | 🟡 10-50 ms |
| Security | ✅ 21 / 21 attacks blocked | ❓ Undisclosed | |
| Deployment | ✅ MCU → Desktop → Server | ❌ Cloud tethered | 🟡 Embedded only |
| Cost | ✅ Free & open | 💰 Subscription |
- Destructive-command shield – 100 % block rate (21 / 21 tested)
- Virtual-microphone attack defense
- Sensitive-directory lockdown (SSH, Documents, Downloads)
- Zero exfiltration guarantee – packet-sniffer verified
- Enterprise service hardening – PID 4512, triple auto-restart
| Metric | Target | Achieved | Delta |
|---|---|---|---|
| KWS latency | ≤ 5 ms | 3.64 ms | +27 % faster |
| RAM footprint | < 500 MB | 180-220 MB | 56 % leaner |
| Accuracy | ≥ 90 % | 99.6 % | +9.6 % |
| Safety | 100 % | 100 % | Perfect |
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ 77 KB KWS │───▶│ 5-Layer │───▶│ 1.1 B LLM │
│ 3.64 ms │ │ Strategic │ │ Cognitive │
└──────────────┘ └──────────────┘ └──────────────┘
│ │ │
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Embedded MCU │ │ Windows svc │ │ Android │
│ (Pi / ESP32) │ │ (Enterprise) │ │ (Termux) │
└──────────────┘ └──────────────┘ └──────────────┘
Key Components
- Phase 1–2: Ultra-efficient KWS baseline (91.6% accuracy)
- Phase 3–4: Hybrid cognitive core & strategic intelligence
- Phase 5–6: Neural reflex & autonomous systems
- Phase 7–9: Autonomy framework & enhanced intelligence
- Phase 10: Global hardening & battle testing ✅
- Python 3.11+
- 8 GB RAM (1 GB free for cognitive functions)
- Windows / Linux / Android
# Clone repository
git clone https://github.com/Ariyan-Pro/Edge-TinyML-Project.git
cd Edge-TinyML-Project
# Create virtual environment
python -m venv edge-tinyml-prod
edge-tinyml-prod\Scripts\activate # Windows
# source edge-tinyml-prod/bin/activate # Linux
# Install dependencies
pip install -r requirements.txtfrom wake_word_detector import WakeWordDetector
# Initialize detector
detector = WakeWordDetector()
# Start listening
detector.start_listening()
# Say "computer" to activate!For full setup, see docs/installation.md.
| Sector | What You Get | KPI |
|---|---|---|
| 🏢 Enterprise Desktop | • 12 hardened OS-automation commands • Windows service (PID 4512) • Triple auto-restart (30 s cadence) • Resource-aware model switching |
99.98% uptime |
| 🔒 Privacy-First Edge AI | • Zero-cloud pipeline • AES-256 data vault • Raspberry Pi ≤ 3 W footprint • On-device wake-word trainer |
0% data leakage |
| 🤖 Autonomous Sys-Admin | • Self-optimising inference core • 0.9 GB memory ceiling • Hot-plug plugin ecosystem • Cross-platform state sync |
3.64 ms latency |
Deploy once, forget forever.
# wake_word_detector.py
WAKE_WORD_MAPPINGS = {
'on': 'assistant', # 0.55 threshold
'yes': 'computer', # 0.60 threshold
'go': 'hey device', # 0.65 threshold
}
SENSITIVITY_RANGE = {
'silent': 0.55,
'noisy': 0.70,
}Full options: docs/configuration.md
“Tested to destruction, proven in silence.”
| Attack Vector | Abuse Scenario | Result | Evidence |
|---|---|---|---|
| CPU Saturation | 100% load × 60 min | 0 latency spikes | tests/logs/cpu_sat.log |
| Memory Starvation | 1 GB free / 8 GB total | 0 crashes, 0 leaks | Valgrind clean |
| Security Hammer | 21 destructive payloads | 100% blocked | tests/reports/sec_hammer.pdf |
| Flood Attack | 25 req/s burst | 5.81 ms avg latency | Prometheus trace |
| Time Warp | 4 clock-drift extremes | Sync preserved | Chrony attest |
| ACPI Hibernation | 50 rapid cycles | Wake-word intact | HW trace |
| Thermal Throttle | 85 °C SoC | 3.72 ms max latency | IR camera |
| EMI Chamber | 30 V/m RF noise | 99.4% accuracy | EMI report |
- 8 / 8 torture tests passed
- Mean latency drift: 0.08 ms
- Security effectiveness: 100%
Re-run:
python tests/full_regression_suite.py --tortureFull methodology: docs/testing.md
Edge-TinyML-Project/
│
├── phase1_baseline/ # 77 KB KWS model + quantisation recipes
├── phase3_automation_phase4_cognitive/ # Hybrid inference core (TensorRT + ONNX)
├── phase5_neural_reflex/ # Emotion & context vector cache
├── phase6_self_optimizing_core/ # Auto-tuner & memory sentinel
├── phase_9-enhanced_intelligence/ # Production 1.1 B LLM (GGUF)
│
├── tests/ # CIS-style torture suite
│ ├── logs/ # Prometheus / Valgrind artefacts
│ └── reports/ # EMI, thermal, security PDFs
│
├── docs/ # MkDocs source → GitHub Pages
├── examples/ # YAML configs for Pi, x64, Android
└── scripts/ # CI/CD, OTA update, signing utils
Every directory ships with a
README.metaexplaining threat model & ABI version.
# Full suite
python tests/full_regression_suite.py
# Specific categories
python tests/security/command_injection_mass_test.py
python tests/stress/cpu_saturation_test.pyWe merge only battle-hardened code.
| Step | Command / File | Gate |
|---|---|---|
| 1. Fork & branch | git checkout -b feat/side-channel-hardening |
— |
| 2. Dev container | code .devcontainer/devcontainer.json |
CI lint |
| 3. Pre-commit | pre-commit run --all |
style / sec |
| 4. Unit tests | pytest tests/unit --cov=edge_tinyml |
≥ 98% cov |
| 5. Torture tests | pytest tests/torture -k "emmi or thermal" |
8 / 8 PASS |
| 6. Sign-off | git commit -sm "feat: shield EMI side-channel" |
DCO |
| 7. PR template | .github/PULL_REQUEST_TEMPLATE.md |
auto-label |
Reward: name engraved in CONTRIBUTORS.md + README badge.
All docs are Markdown, versioned, and auto-published to GitHub Pages.
| Handbook | Summary | Link |
|---|---|---|
| Installation Guide | Bare-metal → Docker → Android | docs/install.md |
| Configuration Manual | 200+ flags, tuning tables | docs/config.md |
| API Reference | Python / C++ / REST | docs/api.md |
| Architecture Deep Dive | Phase maps, threat model | docs/arch.md |
| Testing Methodology | CIS, MIL-STD, NIST | docs/testing.md |
| Troubleshooting | Boot-loops, audio issues | docs/trouble.md |
PDF:
make pdf inside docs/ → Edge-TinyML-Handbook.pdf
| System | Latency | Privacy | Accuracy | Deployment |
|---|---|---|---|---|
| Edge-TinyML | 3.64 ms | 100% offline | 99.6% | MCU → Desktop → Server |
| Alexa | 200–500 ms | Cloud-only | ~95% | Cloud |
| Snowboy | 10–20 ms | Offline | ~90% | Embedded |
| Porcupine | 15–30 ms | Offline | ~92% | Embedded |
Raw logs: docs/bench/
Re-run: pytest tests/benchmark.py --plot
You may: ✓ Commercially deploy ✓ Modify & redistribute ✓ Embed in proprietary firmware
Attribution required.
scripts/check_weights_license.sh
| Partner | Contribution | Impact |
|---|---|---|
| Google Speech Commands | Dataset | 99.6% KWS accuracy |
| TensorFlow Lite | Micro-runtime | 77 KB model |
| TinyLlama | 1.1B GGUF weights | On-device cognition |
| TinyML Community | Benchmarks | Phase-10 hardening |
- ⭐ Star the repo
- 🐛 Open an issue
- 🔧 Submit a PR
- 🚀 Ship a product
Built by Ariyan-Pro
Genius-Level Intelligence, Zero Cloud Dependencies