CrackIt.AI helps job seekers optimize their resumes, LinkedIn profiles, and interview skills through AI-powered tools and personalized feedback.
- 📄 Resume Builder - Create, analyze and optimize your resume with AI-powered feedback
- 👔 LinkedIn Optimizer - Enhance your LinkedIn profile and posts for better engagement
- 🎯 Mock Interviews - Practice with AI-powered interview simulations and get instant feedback
- 📚 Learning Resources - Access curated learning materials for technical and behavioral interviews
- Frontend: React.js, Tailwind CSS, Framer Motion
- Backend: Node.js, Express.js
- Database: MongoDB
- AI: Google Gemini API
- Authentication: JWT
- Node.js (v14+)
- MongoDB
- Google Gemini API key
git clone https://github.com/yourusername/CrackIt.AI.git
cd CrackIt.AIcd server
npm install
# Create .env file
cp .env
# Edit .env file with your MongoDB URI, JWT secret, and Gemini API keycd client
npm install
# Create .env file
cp .env
# Add your environment variablescd server
node server.js
# Development mode with hot reload
npx nodemoncd client
npm run devThe application should be running at http://localhost:5173
CrackIt.AI/
├── client/ # React frontend
│ ├── public/ # Static files
│ └── src/
│ ├── components/ # React components
│ ├── pages/ # Page components
│ ├── services/ # API services
│ └── utils/ # Utility functions
│
└── server/ # Node.js backend
├── config/ # Configuration files
├── controllers/ # Request controllers
├── middlewares/ # Express middlewares
├── models/ # MongoDB models
├── routes/ # API routes
├── services/ # Business logic
└── utils/ # Utility functions
- Upload existing resumes for AI analysis
- Choose from multiple professional templates
- Get ATS compatibility feedback
- Generate optimized content for each section
- Export as PDF
- Analyze and improve your LinkedIn profile
- Get section-by-section recommendations
- Optimize posts for better engagement
- Compare before and after metrics
- Practice with AI-powered interviews
- Choose from technical, behavioral, and HR interview types
- Receive feedback using STAR method analysis
- Track progress and improvement areas
- Access curated topics for interview preparation
- Filter resources by category and difficulty
MONGODB_URI=your_mongodb_connection_string
JWT_SECRET=your_jwt_secret
GEMINI_API_KEY=your_gemini_api_key
PORT=3000
VITE_API_URL=http://localhost:3000/api
VITE_GOOGLE_API_KEY=your_gemini_api_key
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
