ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross Attention with Image Super-resolving Transformer
This paper has been accepted at the 27th International Conference on Pattern Recognition (ICPR 2024).
The official repository with Pytorch
Python 3.9.12
- create a virtual environment
python3 -m venv ./venv_name- activate virtual environment
source venv_name/bin/activate- install dependencies
pip3 install torch torchvision opencv-python matplotlib pyyaml tqdm tensorboardX tensorboard einops thop- Train the ML-CrAIST (Ours)
python train.py -v "CrAIST_X2_V1" -p train --train_yaml "trainSR_X2_DIV2K.yaml"
python train.py -v "CrAIST_X3_V1" -p train --train_yaml "trainSR_X3_DIV2K.yaml"
python train.py -v "CrAIST_X4_V1" -p train --train_yaml "trainSR_X4_DIV2K.yaml"- Train the lighter version of ML-CrAIST (Ours-Li)
python train.py -v "CrAIST_X2_48" -p train --train_yaml "trainSR_X2_DIV2K_48.yaml"
python train.py -v "CrAIST_X3_48" -p train --train_yaml "trainSR_X3_DIV2K_48.yaml"
python train.py -v "CrAIST_X4_48" -p train --train_yaml "trainSR_X4_DIV2K_48.yaml"python train.py -v "CrAIST_X2_V1" -p finetune --ckpt 79Use version "CrAIST_X2_V1" for ML-CrAIST model (Ours) and "CrAIST_X2_48" for lighter model (Ours-Li).
| -- | Ours | -- | -- | Ours-Li | -- | |
|---|---|---|---|---|---|---|
| Scale | Version | Epoch | Scale | Version | Epoch | |
| 2x | CrAIST_X2_V1 | 414 | 2x | CrAIST_X2_48 | 761 | |
| 3x | CrAIST_X3_V1 | 584 | 3x | CrAIST_X2_48 | 911 | |
| 4x | CrAIST_X4_V1 | 682 | 4x | CrAIST_X2_48 | 766 |
- e.g.,
python test.py -v "CrAIST_X2_V1" --checkpoint_epoch 414 -t tester_Matlab --test_dataset_name "Urban100"- provide dataset path in env/env.json file
- other configurations are done using yaml files
@inproceedings{pramanick2025ml,
title={ML-CrAIST: Multi-scale Low-High Frequency Information-Based Cross Attention with Image Super-Resolving Transformer},
author={Pramanick, Alik and Bheda, Utsav and Sur, Arijit},
booktitle={International Conference on Pattern Recognition},
pages={291--307},
year={2025},
organization={Springer}
}
