Skip to content

Alik033/Efficient-USR

Repository files navigation

Efficient-USR: Prompt guided Dual-Domain feature information for efficient underwater image super-resolutionViews

Paper Link: https://ieeexplore.ieee.org/document/10889519

This paper has been accepted at the 50th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025).

The official repository with Pytorch

Block

In the above diagram the red dotted arrow for up-sampling and blue dotted arrow for down-sampling.

Installation

Python 3.9.12

  • create a virtual environment
python3 -m venv ./venv_name
  • activate virtual environment
source venv_name/bin/activate
  • install dependencies
pip3 install torch torchvision opencv-python matplotlib pyyaml tqdm tensorboardX tensorboard einops thop

Train

  • Train the Efficient-USR on UFO-120 dataset.
python train.py -v "UFO_2X_32" -p train --train_yaml "train_UFO120_x2_32.yaml"
python train.py -v "UFO_3X_32" -p train --train_yaml "train_UFO120_x3_32.yaml"
python train.py -v "UFO_4X_32" -p train --train_yaml "train_UFO120_x4_32.yaml"
  • Train the Efficient-USR on USR-248 dataset.
python train.py -v "USR_2X_32" -p train --train_yaml "train_USR248_x2_32.yaml"
python train.py -v "USR_4X_32" -p train --train_yaml "train_USR248_x4_32.yaml"
python train.py -v "USR_8X_32" -p train --train_yaml "train_USR248_x8_32.yaml"

Fine-tune

python train.py -v "UFO_2X_32" -p finetune --ckpt 277

Test

Test the Efficient-USR model using UFO-120 and USR-248 datasets.

-- UFO -- -- USR --
Scale Version Epoch Scale Version Epoch
2x UFO_2X_32 277 2x USR_2X_32 238
3x UFO_3X_32 300 3x USR_4X_32 274
4x UFO_4X_32 300 4x USR_8X_32 292
  • e.g.,
python test.py -v "UFO_2X_32" --checkpoint_epoch 277 -t tester_Matlab --test_dataset_name "UFO-120"
  • provide dataset path in env/env.json file
  • other configurations are done using yaml files

Citation

@inproceedings{pramanick2025efficient,
  title={Efficient-USR: Prompt Guided Dual-Domain Feature Information for Efficient Underwater Image Super-Resolution},
  author={Pramanick, Alik and Bheda, Utsav and Sur, Arijit},
  booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={1--5},
  year={2025},
  organization={IEEE}
}

Acknowledgement

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages