Skip to content

Adopos/Multi-Modal_Object_Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Modal Object Classification

This is the official repository for the Multi-Modal Classification.

This challenge focuses on Object Classification utilizing multi-modal data source including RGB, depth, and infrared images. You can visit the official website for more details.

Dataset

In this track, we provide a dataset named MMC (Multi-Modal Object Classification), which comprises 3,000 multi-modal image pairs (2000 for training and 1000 for testing) across 13 classes.

Example

Depth Thermal-IR RGB
Depth Output IR Output RGB Output
Depth Output IR Output RGB Output

Structure

MMC
├── train_2k
│ ├──color
│ │ ├── train_0001.png
│ │ ├── train_0002.png
│ │ ├── ... ...
│ │ ├── train_4000.png
│ ├──depth
│ │ ├── train_0001.png
│ │ ├── train_0002.png
│ │ ├── ... ...
│ │ ├── train_4000.png
│ ├──infrared
│ │ ├── train_0001.png
│ │ ├── train_0002.png
│ │ ├── ... ...
│ │ ├── train_4000.png
│ │ ├── ... ...
| |——train_labels.txt
├── test
│ ├──color
│ │ ├── test_0001.png
│ │ ├── test_0002.png
│ │ ├── ... ...
│ │ ├── test_1000.png
│ ├──depth
│ │ ├── test_0001.png
│ │ ├── test_0002.png
│ │ ├── ... ...
│ │ ├── test_1000.png
│ ├──infrared
│ │ ├── test_0001.png
│ │ ├── test_0002.png
│ │ ├── ... ...
│ │ ├── test_1000.png

Baseline

This code is based on Resnet18.

  • ❗Note!!! The validation set is not provided, you should divide the train set appropriately by yourself to validate during training.
  • We have modified the model to accommodate this multimodal task, while you can also build your own model to accomplish this task

Training

  • Change the root path of the dataset (your path to train_2k)
  • run tain.py Train your own model:
  python train.py --root path_to_train_2k \
    --train_labels train_labels.txt \
    --val_labels val_labels.txt \
    --epochs 80 \
    --eval_period 1 \
    --batch 64 \
    --num_classes 13 \
    --output_file path_to_save_the_log_file_and_the_model \

Testing

Generate the predictions submission.csv for test set: run Inference.py

 python Inference.py --root path_to_test_2k \
   --checkpoint path_to_the_best_model \
   --save path_to_save_the_submissionfile \
   --num_classes 13
  • ❗Note Results submission.csv will be generated automatically and it's the only file you need to submit to the platform for evaluation.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published