This project demonstrates building a neural network from scratch using TensorFlow and a custom Dense layer (SimpleDense). The model classifies handwritten digits from the MNIST dataset and achieves ~98% accuracy.
- Dataset: MNIST handwritten digits
- Goal: Classify digits (0–9) from 28x28 grayscale images.
- Key Feature: Custom implementation of a Dense (fully connected) layer.
- Training accuracy: ~98% after 5 epochs
- Python 3.8+
- TensorFlow 2.x
Install dependencies:
pip install tensorflow
- Clone the repo
git clone https://github.com/Aatman09/MINIST-Custom-Layer.git
cd mnist-custom-dense
- Run the Script
python custom_layer_correct.py