This is the offical implementation for the paper titled "One Model for ALL: Low-Level Task Interaction Is a Key to Task-Agnostic Image Fusion".
"A comparison of the versatility and efficiency of advanced multi-task fusion methods and the proposed pixel-focused low-level interaction paradigm."
You can setup the required Anaconda environment by running the following prompts:
conda create -n GIFNet python=3.8.17
conda activate GIFNet
pip install -r requirements.txtThe single required checkpoint is avaiable in the folder "model"
"--test_ir_root": Root path for the infrared input.
"--test_vis_root": Root path for the visible input.
"--VIS_IS_RGB": Visible input is stored in the RGB format.
"--IR_IS_RGB": Infrared input is stored in the RGB format.
"--save_path": Root path for the fused image.
Infrared and Visible Image Fusion (IVIF):
python test.py --test_ir_root "images/IVIF/ir" --test_vis_root "images/IVIF/vis" --save_path "outputsIVIF" --VIS_IS_RGB
Multi-Focus Image Fusion (MFIF):
python test.py --test_ir_root "images/MFIF/nf" --test_vis_root "images/MFIF/ff" --save_path "outputsMFIF" --IR_IS_RGB --VIS_IS_RGB
Multi-Exposure Image Fusion (MEIF):
python test.py --test_ir_root "images/MEIF/oe" --test_vis_root "images/MEIF/ue" --save_path "outputsMEIF" --IR_IS_RGB --VIS_IS_RGB python test.py --test_ir_root "images/Medical/pet" --test_vis_root "images/Medical/mri" --save_path "outputsMedical" --IR_IS_RGB
Near-Infrared and Visible Image Fusion (NIR-VIS)
python test.py --test_ir_root "images/NIR-VIS/nir" --test_vis_root "images/NIR-VIS/vis" --save_path "outputsNIR-VIS" --VIS_IS_RGB
Remote Sensing Image Fusion (Remote)
Step1 : Seprately fuse different bands of the multispectral image with the panchromatic image
(Python)
python test.py --test_ir_root "images/Remote/MS_band1" --test_vis_root "images/Remote/PAN" --save_path "outputsRemoteBand1"
python test.py --test_ir_root "images/Remote/MS_band2" --test_vis_root "images/Remote/PAN" --save_path "outputsRemoteBand2"
python test.py --test_ir_root "images/Remote/MS_band3" --test_vis_root "images/Remote/PAN" --save_path "outputsRemoteBand3"
python test.py --test_ir_root "images/Remote/MS_band4" --test_vis_root "images/Remote/PAN" --save_path "outputsRemoteBand4"Step2: Aggregate the separate fused channels together
(Matlab Environment)
Matlab_SeparateChannelsIntoFused
-
Extract training data from the zip and put them in the "train_data" folder.
-
Run the following prompt to start the training (important parameters can be modified in the "args.py" file):
python train.py --trainDataRoot "./train_data"The trained models will be saved in the "model" folder (automatically created).
- 2025-04-15 The training code is now available.
- 2025-03-11 The test code for all image fusion tasks is now available.
- 2025-02-27 This paper has been accepted by CVPR 2025.
If you have any questions, please contact me at chunyang_cheng@163.com.
(Please clearly note your identity, institution, purpose)
- Collaborative Training: Uniquely demonstrates that collaborative training between low-level fusion tasks yields significant performance improvements by leveraging cross-task synergies.
- Bridging the Domain Gap: Introduces a reconstruction task and an augmented RGB-focused joint dataset to improve feature alignment and facilitate effective cross-task collaboration, enhancing model robustness.
- Versatility: Advances versatility over multi-task fusion methods by reducing computational costs and eliminating the need for task-specific adaptation.
- Single-Modality Enhancement: Pioneers the integration of image fusion with single-modality enhancement, broadening the flexibility and adaptability of fusion models.
If this work is helpful to you, please cite it as:
@InProceedings{Cheng_2025_CVPR,
author = {Cheng, Chunyang and Xu, Tianyang and Feng, Zhenhua and Wu, Xiaojun and Tang, Zhangyong and Li, Hui and Zhang, Zeyang and Atito, Sara and Awais, Muhammad and Kittler, Josef},
title = {One Model for ALL: Low-Level Task Interaction Is a Key to Task-Agnostic Image Fusion},
booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)},
month = {June},
year = {2025},
pages = {28102-28112}
}