Skip to content

Drop in mAP after Retinanet Distillation #91

@Rrschch-6

Description

@Rrschch-6

I am using fgd_retina_r101_fpn_2x_distill_retina_r50_fpn_2x_coco.py to distill Retinanet-r101 (Using my own CoCo formatted) with mAP 0.75 but my Retinanet-r50 mAP significantly drops to 0.58. I am using SGD with same parameters set in orignal config. Training stops with loss_cls around 2.5 after 20 epoch:

"epoch": 20, "iter": 200, "lr": 0.001, "memory": 5598, "data_time": 0.03356, "loss_cls": 0.25744, "loss_bbox": 0.19824, "loss_fgd_fpn_4": 2.68374, "loss_fgd_fpn_3": 2.18955, "loss_fgd_fpn_2": 0.43481, "loss_fgd_fpn_1": 1.17425, "loss_fgd_fpn_0": 4.25011, "loss": 11.18815, "grad_norm": 53.40476, "time": 0.65314
"bbox_mAP": 0.561

"epoch": 21, "iter": 200, "lr": 0.001, "memory": 5598, "data_time": 0.02153, "loss_cls": 0.26974, "loss_bbox": 0.21168, "loss_fgd_fpn_4": 2.03119, "loss_fgd_fpn_3": 1.96431, "loss_fgd_fpn_2": 0.43961, "loss_fgd_fpn_1": 1.17302, "loss_fgd_fpn_0": 4.24643, "loss": 10.33597, "grad_norm": 43.16615, "time": 0.60769}
"bbox_mAP": 0.571,

"epoch": 22, "iter": 200, "lr": 0.001, "memory": 5598, "data_time": 0.02091, "loss_cls": 0.25263, "loss_bbox": 0.19929, "loss_fgd_fpn_4": 1.99079, "loss_fgd_fpn_3": 1.83311, "loss_fgd_fpn_2": 0.42802, "loss_fgd_fpn_1": 1.14707, "loss_fgd_fpn_0": 4.15834, "loss": 10.00925, "grad_norm": 46.78779, "time": 0.62421
bbox_mAP": 0.578,

"epoch": 23, "iter": 200, "lr": 0.0001, "memory": 5598, "data_time": 0.01811, "loss_cls": 0.25804, "loss_bbox": 0.20361, "loss_fgd_fpn_4": 1.42493, "loss_fgd_fpn_3": 1.68207, "loss_fgd_fpn_2": 0.41495, "loss_fgd_fpn_1": 1.12626, "loss_fgd_fpn_0": 4.09925, "loss": 9.20911, "grad_norm": 20.09985, "time": 0.60161
"bbox_mAP": 0.577,

"epoch": 24, "iter": 200, "lr": 0.0001, "memory": 5598, "data_time": 0.01983, "loss_cls": 0.25139, "loss_bbox": 0.1968, "loss_fgd_fpn_4": 1.32875, "loss_fgd_fpn_3": 1.57256, "loss_fgd_fpn_2": 0.41188, "loss_fgd_fpn_1": 1.11039, "loss_fgd_fpn_0": 4.06505, "loss": 8.93682, "grad_norm": 19.73, "time": 0.62296}
"bbox_mAP": 0.581,

Is this happening because I am distilling only using my fine tuning data? If not what can be the problem?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions