Skip to content

Error when test the trained model #21

@gaochuan2017

Description

@gaochuan2017

I'm sure I have installed correct version of dependencies ,including Eigen,Sophus,Pangolin and so on.I'm not meeting Errors when "sh make.sh",I also succeed in installing KinectFusion ,that part is OK.But When I download and test the trained model Error occurs.It said "Framebuffer with requested attributes not available. Using available framebuffer. You may see visual artifacts.created window" . The details are as follows:

:~/DA-RNN-master$ ./experiments/scripts/rgbd_scene_multi_rgbd_test.sh 0

  • set -e
  • export PYTHONUNBUFFERED=True
  • PYTHONUNBUFFERED=True
  • export CUDA_VISIBLE_DEVICES=0
  • CUDA_VISIBLE_DEVICES=0
    ++ date +%Y-%m-%d_%H-%M-%S
  • LOG=experiments/logs/rgbd_scene_multi_rgbd_test.txt.2019-01-11_15-03-36
  • exec
    ++ tee -a experiments/logs/rgbd_scene_multi_rgbd_test.txt.2019-01-11_15-03-36
  • echo Logging output to experiments/logs/rgbd_scene_multi_rgbd_test.txt.2019-01-11_15-03-36
    Logging output to experiments/logs/rgbd_scene_multi_rgbd_test.txt.2019-01-11_15-03-36
  • '[' -f /home/gaochuan/DA-RNN-master/output/rgbd_scene/rgbd_scene_val/vgg16_fcn_rgbd_multi_frame_rgbd_scene_iter_40000/segmentations.pkl ']'
  • ./tools/test_net.py --gpu 0 --network vgg16 --model data/fcn_models/rgbd_scene/vgg16_fcn_rgbd_multi_frame_rgbd_scene_iter_40000.ckpt --imdb rgbd_scene_val --cfg experiments/cfgs/rgbd_scene_multi_rgbd.yml --rig data/RGBDScene/camera.json --kfusion 1
    registered Linear
    registered Linear
    registered Poly3
    registered Poly3
    shapenet_scene_train
    shapenet_scene_val
    shapenet_single_train
    shapenet_single_val
    gmu_scene_train
    gmu_scene_val
    rgbd_scene_train
    rgbd_scene_val
    rgbd_scene_trainval
    lov_train
    lov_val
    Called with args:
    Namespace(cfg_file='experiments/cfgs/rgbd_scene_multi_rgbd.yml', gpu_id=0, imdb_name='rgbd_scene_val', kfusion=True, model='data/fcn_models/rgbd_scene/vgg16_fcn_rgbd_multi_frame_rgbd_scene_iter_40000.ckpt', network_name='vgg16', pretrained_model=None, rig_name='data/RGBDScene/camera.json', wait=True)
    Using config:
    {'EPS': 1e-14,
    'EXP_DIR': 'rgbd_scene',
    'FLIP_X': False,
    'GPU_ID': 0,
    'INPUT': 'RGBD',
    'NETWORK': 'VGG16',
    'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
    'RNG_SEED': 3,
    'ROOT_DIR': '/home/gaochuan/DA-RNN-master',
    'TEST': {'GRID_SIZE': 512,
    'RANSAC': False,
    'SCALES_BASE': [1.0],
    'SINGLE_FRAME': False,
    'VERTEX_REG': False,
    'VISUALIZE': False},
    'TRAIN': {'CHROMATIC': True,
    'DISPLAY': 20,
    'GAMMA': 0.1,
    'GRID_SIZE': 512,
    'IMS_PER_BATCH': 1,
    'LEARNING_RATE': 0.0001,
    'MOMENTUM': 0.9,
    'NUM_CLASSES': 10,
    'NUM_STEPS': 3,
    'NUM_UNITS': 64,
    'SCALES_BASE': [1.0],
    'SINGLE_FRAME': False,
    'SNAPSHOT_INFIX': 'rgbd_scene',
    'SNAPSHOT_ITERS': 10000,
    'SNAPSHOT_PREFIX': 'vgg16_fcn_rgbd_multi_frame',
    'STEPSIZE': 30000,
    'TRAINABLE': True,
    'USE_FLIPPED': False,
    'VERTEX_REG': False,
    'VERTEX_W': 10.0,
    'VISUALIZE': False}}
    /gpu:0
    Tensor("unstack:0", dtype=float32)
    Tensor("unstack_1:0", dtype=float32)
    Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32)
    Tensor("conv5_3_p/conv5_3_p:0", shape=(?, ?, ?, 512), dtype=float32)
    Tensor("conv4_3/conv4_3:0", shape=(?, ?, ?, 512), dtype=float32)
    Tensor("conv4_3_p/conv4_3_p:0", shape=(?, ?, ?, 512), dtype=float32)
    Tensor("score_conv4/score_conv4:0", shape=(?, ?, ?, 64), dtype=float32)
    Tensor("upscore_conv5_1:0", shape=(?, ?, ?, 64), dtype=float32)
    Tensor("fifo_queue_Dequeue:5", dtype=float32)
    Tensor("fifo_queue_Dequeue:6", dtype=float32)
    Tensor("fifo_queue_Dequeue:7", dtype=float32)
    Tensor("unstack_3:0", dtype=float32)
    Tensor("unstack_4:0", dtype=float32)
    Tensor("upscore_1:0", shape=(?, ?, ?, 64), dtype=float32)
    Computeflow(top_data=<tf.Tensor 'flow:0' shape= dtype=float32>, top_weights=<tf.Tensor 'flow:1' shape= dtype=float32>, top_points=<tf.Tensor 'flow:2' shape= dtype=float32>)
    Tensor("score/score:0", shape=(?, ?, ?, 10), dtype=float32)
    Use network vgg16 in training
    2019-01-11 15:03:37.225146: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
    2019-01-11 15:03:37.339921: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:892] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2019-01-11 15:03:37.340290: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties:
    name: GeForce RTX 2080 major: 7 minor: 5 memoryClockRate(GHz): 1.71
    pciBusID: 0000:01:00.0
    totalMemory: 7.76GiB freeMemory: 7.48GiB
    2019-01-11 15:03:37.340301: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce RTX 2080, pci bus id: 0000:01:00.0, compute capability: 7.5)
    Loading model weights from data/fcn_models/rgbd_scene/vgg16_fcn_rgbd_multi_frame_rgbd_scene_iter_40000.ckpt
    rgbd_scene_val
    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
    {"down":[0,1,0],"forward":[0,0,1],"height":480,"param_names":["fu","fv","u0","v0","k1","k2","k3"],"params":[570.29999999999995,570.29999999999995,320,240,0,0,0],"right":[1,0,0],"serialno":"34178534347","type":"Poly3","width":640}
    "Poly3"
    params: 570.29999999999995 570.29999999999995 320 240 0 0 0
    pose: [
    [
    1,
    0,
    0,
    0
    ],
    [
    0,
    1,
    0,
    0
    ],
    [
    0,
    0,
    1,
    0
    ]
    ]

{"down":[0,1,0],"forward":[0,0,1],"height":480,"param_names":["fu","fv","u0","v0","k1","k2","k3"],"params":[570.29999999999995,570.29999999999995,320,240,0,0,0],"right":[1,0,0],"serialno":"34178534347","type":"Poly3","width":640}
"Poly3"
params: 570.29999999999995 570.29999999999995 320 240 0 0 0
pose: [
[
1,
0,
0,
0
],
[
0,
1,
0,
0
],
[
0,
0,
1,
0
]
]

T_dc: 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Framebuffer with requested attributes not available. Using available framebuffer. You may see visual artifacts.created window
./experiments/scripts/rgbd_scene_multi_rgbd_test.sh: 行 25: 15989 段错误 (核心已转储) ./tools/test_net.py --gpu 0 --network vgg16 --model data/fcn_models/rgbd_scene/vgg16_fcn_rgbd_multi_frame_rgbd_scene_iter_40000.ckpt --imdb rgbd_scene_val --cfg experiments/cfgs/rgbd_scene_multi_rgbd.yml --rig data/RGBDScene/camera.json --kfusion 1

"段错误(核心转存储)" means “segmentation fault (core dumped)”. I check the code and I have found in fact Error is at the line 309 of test.py :
if is_kfusion:
KF = kfusion.PyKinectFusion(rig_filename)
But the KinectFusion has been installed correctly so I don't know what causes the Error.
Probable Reason may be:
1.I use RTX 2080 ,with Cuda 8.0 ,Cudnn 6.0.The device is not compatible.
2.I'm using a new computer,I have not installed OpenCV and other libraries in my computer yet.

@yuxng any suggestions? I'm vert interested in this superb project and thanks a lot .

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions