From c0b5e732575c836564c50bef00ab25c031cefa44 Mon Sep 17 00:00:00 2001 From: xiaolongsun <95378566+xiaolong0728@users.noreply.github.com> Date: Thu, 6 Mar 2025 10:37:14 +0100 Subject: [PATCH 1/2] delete notebooks --- .../blank_space/notebooks/notebook001.ipynb | 59 - .../notebooks/ESCWA_model.ipynb | 1712 ----------------- .../notebooks/ESCWA_script_outputs.ipynb | 831 -------- .../orange_pasta/notebooks/notebook001.ipynb | 242 --- models/orange_pasta/notebooks/test.ipynb | 1263 ------------ 5 files changed, 4107 deletions(-) delete mode 100644 models/blank_space/notebooks/notebook001.ipynb delete mode 100644 models/electric_relaxation/notebooks/ESCWA_model.ipynb delete mode 100644 models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb delete mode 100644 models/orange_pasta/notebooks/notebook001.ipynb delete mode 100644 models/orange_pasta/notebooks/test.ipynb diff --git a/models/blank_space/notebooks/notebook001.ipynb b/models/blank_space/notebooks/notebook001.ipynb deleted file mode 100644 index 7353f17..0000000 --- a/models/blank_space/notebooks/notebook001.ipynb +++ /dev/null @@ -1,59 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-19T15:22:14.778930Z", - "start_time": "2024-06-19T15:22:14.386096Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": " step_pred_1 step_pred_2 step_pred_3 step_pred_4 \\\nmonth_id priogrid_gid \n530 62356 0.256551 0.227557 0.488913 0.209929 \n 79599 0.099671 0.146406 0.054649 0.092609 \n 79600 0.099671 0.170610 0.050000 0.178800 \n 79601 0.107438 0.146406 0.047399 0.089084 \n 80317 0.130778 0.185889 0.124451 0.135041 \n... ... ... ... ... \n 190496 0.058204 0.176467 0.041248 0.106065 \n 190507 0.069155 0.182948 0.038348 0.134397 \n 190508 0.063567 0.227789 0.097442 0.265889 \n 190510 0.071951 0.122570 0.012769 0.070929 \n 190511 0.069119 0.179973 0.032913 0.134397 \n\n step_pred_5 step_pred_6 step_pred_7 step_pred_8 \\\nmonth_id priogrid_gid \n530 62356 0.171139 0.152381 0.137336 0.382111 \n 79599 0.129852 0.136078 0.152552 0.173713 \n 79600 0.132606 0.136078 0.152559 0.170128 \n 79601 0.129982 0.145943 0.155419 0.179366 \n 80317 0.337237 0.437653 0.276352 0.213474 \n... ... ... ... ... \n 190496 0.118471 0.109181 0.114734 0.132791 \n 190507 0.067830 0.090494 0.094558 0.088219 \n 190508 0.436198 0.123455 0.169900 0.190923 \n 190510 0.068710 0.094915 0.070891 0.084737 \n 190511 0.072538 0.092565 0.093797 0.085655 \n\n step_pred_9 step_pred_10 ... step_pred_27 \\\nmonth_id priogrid_gid ... \n530 62356 0.074186 0.521652 ... 0.144984 \n 79599 0.088084 0.124625 ... 0.054416 \n 79600 0.083449 0.128840 ... 0.060085 \n 79601 0.091251 0.152769 ... 0.055616 \n 80317 0.117918 0.288680 ... 2.309169 \n... ... ... ... ... \n 190496 0.070404 0.124292 ... 0.297846 \n 190507 0.173334 0.185612 ... 0.050816 \n 190508 0.239198 0.369074 ... 0.078425 \n 190510 0.064074 0.162256 ... 0.059743 \n 190511 0.173334 0.184369 ... 0.060692 \n\n step_pred_28 step_pred_29 step_pred_30 step_pred_31 \\\nmonth_id priogrid_gid \n530 62356 0.124197 0.134879 0.082405 0.138085 \n 79599 0.083813 0.107177 0.046228 0.081775 \n 79600 0.108221 0.095936 0.067836 0.105831 \n 79601 0.080253 0.106711 0.043890 0.079113 \n 80317 2.457354 2.063124 1.998081 1.867917 \n... ... ... ... ... \n 190496 0.263001 0.236426 0.124861 0.193002 \n 190507 0.048083 0.054207 0.043791 0.036109 \n 190508 0.091809 0.116149 0.054405 0.048250 \n 190510 0.057398 0.065735 0.047897 0.040076 \n 190511 0.055820 0.061413 0.046755 0.039636 \n\n step_pred_32 step_pred_33 step_pred_34 step_pred_35 \\\nmonth_id priogrid_gid \n530 62356 0.157001 0.109495 0.085181 0.134681 \n 79599 0.092314 0.095099 0.082592 0.082338 \n 79600 0.094867 0.094448 0.085848 0.082485 \n 79601 0.087037 0.093762 0.081972 0.078679 \n 80317 2.782171 3.282382 4.118517 0.753506 \n... ... ... ... ... \n 190496 0.302993 0.258323 0.212761 0.181067 \n 190507 0.059182 0.059286 0.060531 0.054909 \n 190508 0.109811 0.101721 0.121025 0.122890 \n 190510 0.064052 0.066666 0.064360 0.058652 \n 190511 0.064052 0.066666 0.064360 0.055670 \n\n step_pred_36 \nmonth_id priogrid_gid \n530 62356 0.157107 \n 79599 0.061527 \n 79600 0.061588 \n 79601 0.061795 \n 80317 0.715522 \n... ... \n 190496 0.365574 \n 190507 0.055392 \n 190508 0.146741 \n 190510 0.057022 \n 190511 0.058225 \n\n[13110 rows x 36 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
step_pred_1step_pred_2step_pred_3step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9step_pred_10...step_pred_27step_pred_28step_pred_29step_pred_30step_pred_31step_pred_32step_pred_33step_pred_34step_pred_35step_pred_36
month_idpriogrid_gid
530623560.2565510.2275570.4889130.2099290.1711390.1523810.1373360.3821110.0741860.521652...0.1449840.1241970.1348790.0824050.1380850.1570010.1094950.0851810.1346810.157107
795990.0996710.1464060.0546490.0926090.1298520.1360780.1525520.1737130.0880840.124625...0.0544160.0838130.1071770.0462280.0817750.0923140.0950990.0825920.0823380.061527
796000.0996710.1706100.0500000.1788000.1326060.1360780.1525590.1701280.0834490.128840...0.0600850.1082210.0959360.0678360.1058310.0948670.0944480.0858480.0824850.061588
796010.1074380.1464060.0473990.0890840.1299820.1459430.1554190.1793660.0912510.152769...0.0556160.0802530.1067110.0438900.0791130.0870370.0937620.0819720.0786790.061795
803170.1307780.1858890.1244510.1350410.3372370.4376530.2763520.2134740.1179180.288680...2.3091692.4573542.0631241.9980811.8679172.7821713.2823824.1185170.7535060.715522
..................................................................
1904960.0582040.1764670.0412480.1060650.1184710.1091810.1147340.1327910.0704040.124292...0.2978460.2630010.2364260.1248610.1930020.3029930.2583230.2127610.1810670.365574
1905070.0691550.1829480.0383480.1343970.0678300.0904940.0945580.0882190.1733340.185612...0.0508160.0480830.0542070.0437910.0361090.0591820.0592860.0605310.0549090.055392
1905080.0635670.2277890.0974420.2658890.4361980.1234550.1699000.1909230.2391980.369074...0.0784250.0918090.1161490.0544050.0482500.1098110.1017210.1210250.1228900.146741
1905100.0719510.1225700.0127690.0709290.0687100.0949150.0708910.0847370.0640740.162256...0.0597430.0573980.0657350.0478970.0400760.0640520.0666660.0643600.0586520.057022
1905110.0691190.1799730.0329130.1343970.0725380.0925650.0937970.0856550.1733340.184369...0.0606920.0558200.0614130.0467550.0396360.0640520.0666660.0643600.0556700.058225
\n

13110 rows × 36 columns

\n
" - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "pd.read_parquet(\"../data/generated/generated.parquet\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "viewser", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/models/electric_relaxation/notebooks/ESCWA_model.ipynb b/models/electric_relaxation/notebooks/ESCWA_model.ipynb deleted file mode 100644 index 88709fd..0000000 --- a/models/electric_relaxation/notebooks/ESCWA_model.ipynb +++ /dev/null @@ -1,1712 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ViEWS-ESCWA model respecified in VIEWS 3 form\n", - "-- without the Retrain and Retrieve wrapper" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Basics\n", - "import numpy as np\n", - "import pandas as pd\n", - "# Views 3\n", - "import views_runs\n", - "from viewser.operations import fetch\n", - "#from views_forecasts.extensions import *\n", - "from viewser import Queryset, Column\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/notebooks\n" - ] - } - ], - "source": [ - "! pwd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# turn into: src/dataloaders/get_forecasting_data.py" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " . " - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ged_sb_depged_sb_dummy_t0ged_os_dummy_t0ged_ns_dummy_t0ged_sb_dummy_t1ged_sb_dummy_t2ged_sb_dummy_t3_ged_sb_dummy_t3ged_sb_dummy_t4ged_sb_dummy_t5...decay_ged_ns_1decay_ged_ns_5decay_ged_ns_25decay_ged_ns_100splag_1_decay_ged_sb_25splag_1_decay_ged_sb_500splag_1_decay_ged_os_25splag_1_decay_ged_os_500splag_1_decay_ged_ns_25splag_1_decay_ged_ns_500
month_idcountry_id
110.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
20.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

5 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t5 ... decay_ged_ns_1 decay_ged_ns_5 \\\n", - "month_id country_id ... \n", - "1 1 0.0 ... 0.0 0.0 \n", - " 2 0.0 ... 0.0 0.0 \n", - " 3 0.0 ... 0.0 0.0 \n", - " 4 0.0 ... 0.0 0.0 \n", - " 5 0.0 ... 0.0 0.0 \n", - "\n", - " decay_ged_ns_25 decay_ged_ns_100 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 \n", - " 2 0.0 0.0 \n", - " 3 0.0 0.0 \n", - " 4 0.0 0.0 \n", - " 5 0.0 0.0 \n", - "\n", - " splag_1_decay_ged_sb_25 splag_1_decay_ged_sb_500 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 \n", - " 2 0.0 0.0 \n", - " 3 0.0 0.0 \n", - " 4 0.0 0.0 \n", - " 5 0.0 0.0 \n", - "\n", - " splag_1_decay_ged_os_25 splag_1_decay_ged_os_500 \\\n", - "month_id country_id \n", - "1 1 0.0 0.0 \n", - " 2 0.0 0.0 \n", - " 3 0.0 0.0 \n", - " 4 0.0 0.0 \n", - " 5 0.0 0.0 \n", - "\n", - " splag_1_decay_ged_ns_25 splag_1_decay_ged_ns_500 \n", - "month_id country_id \n", - "1 1 0.0 0.0 \n", - " 2 0.0 0.0 \n", - " 3 0.0 0.0 \n", - " 4 0.0 0.0 \n", - " 5 0.0 0.0 \n", - "\n", - "[5 rows x 44 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qs_cm_cflong = (Queryset(\"escwa001_cflong\", \"country_month\")\n", - " # target variable\n", - " .with_column(Column(\"ged_sb_dep\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " )\n", - " # timelag 0 of target variable\n", - " .with_column(Column(\"ged_sb_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " )\n", - " # further timelags of target variable\n", - " # sb\n", - " .with_column(Column(\"ged_sb_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_sb_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(2)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_sb_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " ) \n", - " .with_column(Column(\"ged_sb_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " ) \n", - " .with_column(Column(\"ged_sb_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(4)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_sb_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(5)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_sb_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(6)\n", - " .transform.missing.fill()\n", - " )\n", - " \n", - " # os\n", - " .with_column(Column(\"ged_os_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(2)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " ) \n", - " .with_column(Column(\"ged_os_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(4)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(5)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_os_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(6)\n", - " .transform.missing.fill()\n", - " )\n", - " # ns\n", - " .with_column(Column(\"ged_ns_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(2)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(1)\n", - " .transform.missing.fill()\n", - " ) \n", - " .with_column(Column(\"ged_ns_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(4)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(5)\n", - " .transform.missing.fill()\n", - " )\n", - " .with_column(Column(\"ged_ns_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.bool.gte(25)\n", - " .transform.missing.fill()\n", - " .transform.temporal.tlag(6)\n", - " .transform.missing.fill()\n", - " )\n", - " # Decay functions\n", - " # sb\n", - " .with_column(Column(\"decay_ged_sb_1\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(1)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_sb_5\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(5)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_sb_25\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_sb_100\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(100)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_sb_500\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(500)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " # os\n", - " \n", - " .with_column(Column(\"decay_ged_os_1\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(1)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_os_5\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(5)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_os_25\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_os_100\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(100)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " ) \n", - " \n", - " # ns\n", - " .with_column(Column(\"decay_ged_ns_1\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(1)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_ns_5\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(5)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_ns_25\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"decay_ged_ns_100\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(100)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.missing.replace_na()\n", - " )\n", - " \n", - " # Spatial lag decay functions\n", - " # sb\n", - " .with_column(Column(\"splag_1_decay_ged_sb_25\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - "\n", - " .with_column(Column(\"splag_1_decay_ged_sb_500\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_sb_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(500)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - " # os\n", - " .with_column(Column(\"splag_1_decay_ged_os_25\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"splag_1_decay_ged_os_500\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_os_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(500)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - " # ns\n", - " .with_column(Column(\"splag_1_decay_ged_ns_25\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(25)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - " .with_column(Column(\"splag_1_decay_ged_ns_500\", from_table=\"ged2_cm\",\n", - " from_column=\"ged_ns_best_sum_nokgi\")\n", - " .transform.missing.replace_na()\n", - " .transform.bool.gte(500)\n", - " .transform.temporal.time_since()\n", - " .transform.temporal.decay(24)\n", - " .transform.spatial.countrylag(1, 1, 0, 0)\n", - " .transform.missing.replace_na()\n", - " )\n", - " \n", - " .with_theme(\"views-escwa\")\n", - " .describe(\"\"\"Views-escwa conflict history, cm level\n", - "\n", - "\n", - " \"\"\")\n", - " )\n", - "\n", - "#data = qs_cm_cflong.publish().fetch()\n", - "data = qs_cm_cflong.fetch()\n", - "# Recast all columns to float because of an excessive assert in the stepshift library\n", - "data = data.astype(float)\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# configs/config_common or configs/config_partitioner" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor\n", - "from stepshift.views import StepshiftedModels\n", - "# Parameters for the model \n", - "steps = [*range(1, 36+1, 1)] # Which steps to train and predict for\n", - "#steps = [1,3,6] # Shortened set of steps for the impatient\n", - "target = 'ged_sb_dep'\n", - "\n", - "calib_partitioner_dict = {\"train\":(121,396),\"predict\":(409,456)}\n", - "test_partitioner_dict = {\"train\":(121,456),\"predict\":(457,504)}\n", - "future_partitioner_dict = {\"train\":(121,504),\"predict\":(529,529)}\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# src/training/train_forecasting_model.py" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "calib_partition = views_runs.DataPartitioner({'calib':calib_partitioner_dict}) #stepshifter implementation (views_runs is a class)\n", - "future_partition = views_runs.DataPartitioner({'future':future_partitioner_dict}) #stepshifter implementation \n", - "\n", - "# Fitting model\n", - "base_model = RandomForestClassifier(n_estimators=100, n_jobs=-2)\n", - "stepshifter_def = StepshiftedModels(base_model,steps,target)\n", - "\n", - "# Fitting for calibration run, calibration partition\n", - "stepshifter_model_calib = views_runs.ViewsRun(calib_partition,stepshifter_def)\n", - "stepshifter_model_calib.fit('calib','train',data)\n", - "\n", - "# Fitting for future run, future partition\n", - "stepshifter_model_future = views_runs.ViewsRun(future_partition,stepshifter_def)\n", - "stepshifter_model_future.fit('future','train',data)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# src/forecasting/generate_forecast.py" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Predictions for test partition:\n", - "calib_predictions = stepshifter_model_calib.predict('calib','predict',data, proba=True)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ged_sb_depged_sb_dummy_t0ged_os_dummy_t0ged_ns_dummy_t0ged_sb_dummy_t1ged_sb_dummy_t2ged_sb_dummy_t3_ged_sb_dummy_t3ged_sb_dummy_t4ged_sb_dummy_t5...step_pred_33step_pred_34step_pred_35step_pred_36step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9
month_idcountry_id
40910.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
20.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

5 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n", - "month_id country_id ... \n", - "409 1 0.0 ... 0.0 0.0 \n", - " 2 0.0 ... 0.0 0.0 \n", - " 3 0.0 ... 0.0 0.0 \n", - " 4 0.0 ... 0.0 0.0 \n", - " 5 0.0 ... 0.0 0.0 \n", - "\n", - " step_pred_35 step_pred_36 step_pred_4 step_pred_5 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 0.0 \n", - "\n", - " step_pred_6 step_pred_7 step_pred_8 step_pred_9 \n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 0.0 \n", - "\n", - "[5 rows x 80 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "calib_predictions.head()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ged_sb_depged_sb_dummy_t0ged_os_dummy_t0ged_ns_dummy_t0ged_sb_dummy_t1ged_sb_dummy_t2ged_sb_dummy_t3_ged_sb_dummy_t3ged_sb_dummy_t4ged_sb_dummy_t5...step_pred_33step_pred_34step_pred_35step_pred_36step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9
count9168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.000000...9168.09168.09168.09168.09168.0000009168.0000009168.0000009168.0000009168.0000009168.000000
mean0.0751530.0751530.0330500.0363220.0750440.0746070.0750440.0750440.0739530.073844...infinfinfinf0.0747700.0749380.0750110.0746040.0747360.074528
std0.2636520.2636520.1787760.1871000.2634760.2627710.2634760.2634760.2617080.261531...NaNNaNNaNNaN0.2390020.2393310.2396430.2392660.2389900.238090
min0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
25%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
50%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
75%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
max1.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000...infinfinfinf1.0000001.0000001.0000001.0000001.0000001.000000
\n", - "

8 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 ged_ns_dummy_t0 \\\n", - "count 9168.000000 9168.000000 9168.000000 9168.000000 \n", - "mean 0.075153 0.075153 0.033050 0.036322 \n", - "std 0.263652 0.263652 0.178776 0.187100 \n", - "min 0.000000 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 1.000000 \n", - "\n", - " ged_sb_dummy_t1 ged_sb_dummy_t2 ged_sb_dummy_t3 _ged_sb_dummy_t3 \\\n", - "count 9168.000000 9168.000000 9168.000000 9168.000000 \n", - "mean 0.075044 0.074607 0.075044 0.075044 \n", - "std 0.263476 0.262771 0.263476 0.263476 \n", - "min 0.000000 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 1.000000 \n", - "\n", - " ged_sb_dummy_t4 ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n", - "count 9168.000000 9168.000000 ... 9168.0 9168.0 \n", - "mean 0.073953 0.073844 ... inf inf \n", - "std 0.261708 0.261531 ... NaN NaN \n", - "min 0.000000 0.000000 ... 0.0 0.0 \n", - "25% 0.000000 0.000000 ... 0.0 0.0 \n", - "50% 0.000000 0.000000 ... 0.0 0.0 \n", - "75% 0.000000 0.000000 ... 0.0 0.0 \n", - "max 1.000000 1.000000 ... inf inf \n", - "\n", - " step_pred_35 step_pred_36 step_pred_4 step_pred_5 step_pred_6 \\\n", - "count 9168.0 9168.0 9168.000000 9168.000000 9168.000000 \n", - "mean inf inf 0.074770 0.074938 0.075011 \n", - "std NaN NaN 0.239002 0.239331 0.239643 \n", - "min 0.0 0.0 0.000000 0.000000 0.000000 \n", - "25% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "50% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "75% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "max inf inf 1.000000 1.000000 1.000000 \n", - "\n", - " step_pred_7 step_pred_8 step_pred_9 \n", - "count 9168.000000 9168.000000 9168.000000 \n", - "mean 0.074604 0.074736 0.074528 \n", - "std 0.239266 0.238990 0.238090 \n", - "min 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 \n", - "\n", - "[8 rows x 80 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "calib_predictions.describe()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
featurestep_combined
month_idcountry_id
5652050.032541
2060.062064
2090.170000
2130.230000
2140.220000
2180.430000
2200.850000
2220.340000
2230.420000
2310.000000
2320.030000
2330.000000
2340.065739
2350.120000
2370.200000
2420.140000
2430.125042
2440.070720
2450.690000
2460.180000
\n", - "
" - ], - "text/plain": [ - "feature step_combined\n", - "month_id country_id \n", - "565 205 0.032541\n", - " 206 0.062064\n", - " 209 0.170000\n", - " 213 0.230000\n", - " 214 0.220000\n", - " 218 0.430000\n", - " 220 0.850000\n", - " 222 0.340000\n", - " 223 0.420000\n", - " 231 0.000000\n", - " 232 0.030000\n", - " 233 0.000000\n", - " 234 0.065739\n", - " 235 0.120000\n", - " 237 0.200000\n", - " 242 0.140000\n", - " 243 0.125042\n", - " 244 0.070720\n", - " 245 0.690000\n", - " 246 0.180000" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Predictions for the future:\n", - "future_partition = views_runs.DataPartitioner({'future':future_partitioner_dict})\n", - "future_predictions = stepshifter_model_future.future_predict('future','predict',data)\n", - "# Predictions for the future, alternative method:\n", - "future_point_predictions = stepshifter_model_future.future_point_predict(time=529, data=data, proba=True)\n", - "future_point_predictions.tail(20)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
featurestep_combined
count6876.000000
mean0.137513
std0.191055
min0.000000
25%0.023425
50%0.062464
75%0.160492
max0.970000
\n", - "
" - ], - "text/plain": [ - "feature step_combined\n", - "count 6876.000000\n", - "mean 0.137513\n", - "std 0.191055\n", - "min 0.000000\n", - "25% 0.023425\n", - "50% 0.062464\n", - "75% 0.160492\n", - "max 0.970000" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "future_point_predictions.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mType:\u001b[0m module\n", - "\u001b[0;31mString form:\u001b[0m \n", - "\u001b[0;31mFile:\u001b[0m /Applications/anaconda3/envs/viewser/lib/python3.9/site-packages/views_runs/__init__.py\n", - "\u001b[0;31mDocstring:\u001b[0m \n", - "views_runs\n", - "==========\n", - "\n", - "This package collects views related tools and utilities used when planning,\n", - "training and storing views \"runs\" of predictions.\n", - "\n", - "classes:\n", - " ViewsRun:\n", - " Class that encapsulates StepshiftedModels and DataPartitioner objects\n", - " to provide a nice API for training and producing predictions.\n", - " Storage:\n", - " A class that exposes the viewser model_storage storage driver, used to\n", - " save and load trained model objects.\n", - " StepshiftedModels:\n", - " Model class from the stepshift package that lets you train stepshifted\n", - " models.\n", - " DataPartitioner:\n", - " Utility class for subsetting data in time, that lets you define\n", - " tranining and testing periods, as well as do operations to ensure no\n", - " overlap exists between these periods.\n", - " ModelMetadata:\n", - " Class used to specify metadata for trained model objects.\n", - "\n", - "modules:\n", - " utilities: Various utility functions ported from views 2\n", - " stats: Resampling functions\n", - " run: Defines the ViewsRun class\n", - " storage: Defines the Storage class\n", - " validation: Functions used internally to validate data\n", - "\n", - "Each class and module mentioned here has more documentation. Use the help()\n", - "function." - ] - } - ], - "source": [ - "# Docstrings: \n", - "views_runs?" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on package views_runs:\n", - "\n", - "NAME\n", - " views_runs\n", - "\n", - "DESCRIPTION\n", - " views_runs\n", - " ==========\n", - " \n", - " This package collects views related tools and utilities used when planning,\n", - " training and storing views \"runs\" of predictions.\n", - " \n", - " classes:\n", - " ViewsRun:\n", - " Class that encapsulates StepshiftedModels and DataPartitioner objects\n", - " to provide a nice API for training and producing predictions.\n", - " Storage:\n", - " A class that exposes the viewser model_storage storage driver, used to\n", - " save and load trained model objects.\n", - " StepshiftedModels:\n", - " Model class from the stepshift package that lets you train stepshifted\n", - " models.\n", - " DataPartitioner:\n", - " Utility class for subsetting data in time, that lets you define\n", - " tranining and testing periods, as well as do operations to ensure no\n", - " overlap exists between these periods.\n", - " ModelMetadata:\n", - " Class used to specify metadata for trained model objects.\n", - " \n", - " modules:\n", - " utilities: Various utility functions ported from views 2\n", - " stats: Resampling functions\n", - " run: Defines the ViewsRun class\n", - " storage: Defines the Storage class\n", - " validation: Functions used internally to validate data\n", - " \n", - " Each class and module mentioned here has more documentation. Use the help()\n", - " function.\n", - "\n", - "PACKAGE CONTENTS\n", - " operations\n", - " run\n", - " run_result\n", - " stats\n", - " storage\n", - " utilities\n", - " validation\n", - " vendoring\n", - "\n", - "FILE\n", - " /Applications/anaconda3/envs/viewser/lib/python3.9/site-packages/views_runs/__init__.py\n", - "\n", - "\n" - ] - } - ], - "source": [ - "# Documentation:\n", - "help(views_runs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Add:\n", - "- Drift detection\n", - "- wandb\n", - "- Hyperparameter testing" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb b/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb deleted file mode 100644 index 8d89eaa..0000000 --- a/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb +++ /dev/null @@ -1,831 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Inspect script output" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/notebooks\n" - ] - } - ], - "source": [ - "! pwd" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "data_directory = \"/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/data/generated\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Calibration predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ged_sb_depged_sb_dummy_t0ged_os_dummy_t0ged_ns_dummy_t0ged_sb_dummy_t1ged_sb_dummy_t2ged_sb_dummy_t3_ged_sb_dummy_t3ged_sb_dummy_t4ged_sb_dummy_t5...step_pred_33step_pred_34step_pred_35step_pred_36step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9
month_idcountry_id
40910.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
20.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
50.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

5 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 \n", - "\n", - " ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n", - "month_id country_id ... \n", - "409 1 0.0 ... 0.0 0.0 \n", - " 2 0.0 ... 0.0 0.0 \n", - " 3 0.0 ... 0.0 0.0 \n", - " 4 0.0 ... 0.0 0.0 \n", - " 5 0.0 ... 0.0 0.0 \n", - "\n", - " step_pred_35 step_pred_36 step_pred_4 step_pred_5 \\\n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 0.0 \n", - "\n", - " step_pred_6 step_pred_7 step_pred_8 step_pred_9 \n", - "month_id country_id \n", - "409 1 0.0 0.0 0.0 0.0 \n", - " 2 0.0 0.0 0.0 0.0 \n", - " 3 0.0 0.0 0.0 0.0 \n", - " 4 0.0 0.0 0.0 0.0 \n", - " 5 0.0 0.0 0.0 0.0 \n", - "\n", - "[5 rows x 80 columns]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "calib_predictions = pd.read_parquet(f\"{data_directory}/calib_predictions.parquet\")\n", - "calib_predictions.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ged_sb_depged_sb_dummy_t0ged_os_dummy_t0ged_ns_dummy_t0ged_sb_dummy_t1ged_sb_dummy_t2ged_sb_dummy_t3_ged_sb_dummy_t3ged_sb_dummy_t4ged_sb_dummy_t5...step_pred_33step_pred_34step_pred_35step_pred_36step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9
count9168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.0000009168.000000...9168.09168.09168.09168.09168.0000009168.0000009168.0000009168.0000009168.0000009168.000000
mean0.0751530.0751530.0330500.0363220.0750440.0746070.0750440.0750440.0739530.073844...infinfinfinf0.0751430.0750190.0749550.0746340.0747120.074912
std0.2636520.2636520.1787760.1871000.2634760.2627710.2634760.2634760.2617080.261531...NaNNaNNaNNaN0.2400090.2395840.2395020.2389430.2390640.238478
min0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
25%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
50%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
75%0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000...0.00.00.00.00.0000000.0000000.0000000.0000000.0000000.000000
max1.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000...infinfinfinf1.0000001.0000001.0000001.0000001.0000001.000000
\n", - "

8 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 ged_ns_dummy_t0 \\\n", - "count 9168.000000 9168.000000 9168.000000 9168.000000 \n", - "mean 0.075153 0.075153 0.033050 0.036322 \n", - "std 0.263652 0.263652 0.178776 0.187100 \n", - "min 0.000000 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 1.000000 \n", - "\n", - " ged_sb_dummy_t1 ged_sb_dummy_t2 ged_sb_dummy_t3 _ged_sb_dummy_t3 \\\n", - "count 9168.000000 9168.000000 9168.000000 9168.000000 \n", - "mean 0.075044 0.074607 0.075044 0.075044 \n", - "std 0.263476 0.262771 0.263476 0.263476 \n", - "min 0.000000 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 1.000000 \n", - "\n", - " ged_sb_dummy_t4 ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n", - "count 9168.000000 9168.000000 ... 9168.0 9168.0 \n", - "mean 0.073953 0.073844 ... inf inf \n", - "std 0.261708 0.261531 ... NaN NaN \n", - "min 0.000000 0.000000 ... 0.0 0.0 \n", - "25% 0.000000 0.000000 ... 0.0 0.0 \n", - "50% 0.000000 0.000000 ... 0.0 0.0 \n", - "75% 0.000000 0.000000 ... 0.0 0.0 \n", - "max 1.000000 1.000000 ... inf inf \n", - "\n", - " step_pred_35 step_pred_36 step_pred_4 step_pred_5 step_pred_6 \\\n", - "count 9168.0 9168.0 9168.000000 9168.000000 9168.000000 \n", - "mean inf inf 0.075143 0.075019 0.074955 \n", - "std NaN NaN 0.240009 0.239584 0.239502 \n", - "min 0.0 0.0 0.000000 0.000000 0.000000 \n", - "25% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "50% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "75% 0.0 0.0 0.000000 0.000000 0.000000 \n", - "max inf inf 1.000000 1.000000 1.000000 \n", - "\n", - " step_pred_7 step_pred_8 step_pred_9 \n", - "count 9168.000000 9168.000000 9168.000000 \n", - "mean 0.074634 0.074712 0.074912 \n", - "std 0.238943 0.239064 0.238478 \n", - "min 0.000000 0.000000 0.000000 \n", - "25% 0.000000 0.000000 0.000000 \n", - "50% 0.000000 0.000000 0.000000 \n", - "75% 0.000000 0.000000 0.000000 \n", - "max 1.000000 1.000000 1.000000 \n", - "\n", - "[8 rows x 80 columns]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "calib_predictions.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Future predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "future_predictions = pd.read_parquet(f\"{data_directory}/future_predictions.parquet\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
featurestep_combined
month_idcountry_id
53010.0
20.0
30.0
40.0
50.0
\n", - "
" - ], - "text/plain": [ - "feature step_combined\n", - "month_id country_id \n", - "530 1 0.0\n", - " 2 0.0\n", - " 3 0.0\n", - " 4 0.0\n", - " 5 0.0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "future_predictions.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
featurestep_combined
count6876.000000
mean0.077080
std0.266737
min0.000000
25%0.000000
50%0.000000
75%0.000000
max1.000000
\n", - "
" - ], - "text/plain": [ - "feature step_combined\n", - "count 6876.000000\n", - "mean 0.077080\n", - "std 0.266737\n", - "min 0.000000\n", - "25% 0.000000\n", - "50% 0.000000\n", - "75% 0.000000\n", - "max 1.000000" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "future_predictions.describe()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "viewser", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/models/orange_pasta/notebooks/notebook001.ipynb b/models/orange_pasta/notebooks/notebook001.ipynb deleted file mode 100644 index b428e1f..0000000 --- a/models/orange_pasta/notebooks/notebook001.ipynb +++ /dev/null @@ -1,242 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2024-06-19T14:45:24.635363Z", - "start_time": "2024-06-19T14:45:22.079967Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "from views_stepshift import *\n", - "import properscoring as ps\n", - "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_squared_log_error, brier_score_loss, average_precision_score, roc_auc_score\n", - "from views_forecasts.extensions import *\n", - "from common_utils.utils_evaluation_metrics import EvaluationMetrics\n", - "from common_utils.utils_model_outputs import ModelOutputs" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "outputs": [ - { - "data": { - "text/plain": " y_score y_score_prob y_var y_var_prob y_true y_true_binary pg_id \\\n0 0.062623 NaN NaN NaN 0.0 NaN 62356 \n1 0.062623 NaN NaN NaN 0.0 NaN 79599 \n2 0.062623 NaN NaN NaN 0.0 NaN 79600 \n3 0.062623 NaN NaN NaN 0.0 NaN 79601 \n4 0.062623 NaN NaN NaN 0.0 NaN 80317 \n... ... ... ... ... ... ... ... \n22654075 0.064958 NaN NaN NaN 0.0 NaN 190496 \n22654076 0.064958 NaN NaN NaN 0.0 NaN 190507 \n22654077 0.064958 NaN NaN NaN 0.0 NaN 190508 \n22654078 0.064958 NaN NaN NaN 0.0 NaN 190510 \n22654079 0.064958 NaN NaN NaN 0.0 NaN 190511 \n\n c_id month_id out_sample_month \n0 NaN 445 1 \n1 NaN 445 1 \n2 NaN 445 1 \n3 NaN 445 1 \n4 NaN 445 1 \n... ... ... ... \n22654075 NaN 492 36 \n22654076 NaN 492 36 \n22654077 NaN 492 36 \n22654078 NaN 492 36 \n22654079 NaN 492 36 \n\n[22654080 rows x 10 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
y_scorey_score_proby_vary_var_proby_truey_true_binarypg_idc_idmonth_idout_sample_month
00.062623NaNNaNNaN0.0NaN62356NaN4451
10.062623NaNNaNNaN0.0NaN79599NaN4451
20.062623NaNNaNNaN0.0NaN79600NaN4451
30.062623NaNNaNNaN0.0NaN79601NaN4451
40.062623NaNNaNNaN0.0NaN80317NaN4451
.................................
226540750.064958NaNNaNNaN0.0NaN190496NaN49236
226540760.064958NaNNaNNaN0.0NaN190507NaN49236
226540770.064958NaNNaNNaN0.0NaN190508NaN49236
226540780.064958NaNNaNNaN0.0NaN190510NaN49236
226540790.064958NaNNaNNaN0.0NaN190511NaN49236
\n

22654080 rows × 10 columns

\n
" - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_output = pd.read_pickle('../data/generated/df_output_36_testing_20240618_155834.pkl')\n", - "df_output" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T14:13:59.953480Z", - "start_time": "2024-06-19T14:13:59.948609Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 54, - "outputs": [ - { - "data": { - "text/plain": " MSE MAE MSLE KLD Jeffreys CRPS Brier AP AUC \\\nstep01 33.787333 0.260264 None None None 0.260264 None None None \nstep02 41.030356 0.281456 None None None 0.281456 None None None \nstep03 48.388455 0.293722 None None None 0.293722 None None None \nstep04 48.176262 0.282599 None None None 0.282599 None None None \nstep05 56.285934 0.302974 None None None 0.302974 None None None \nstep06 47.178029 0.288970 None None None 0.288970 None None None \nstep07 47.613544 0.290899 None None None 0.290899 None None None \nstep08 54.069031 0.305460 None None None 0.305460 None None None \nstep09 55.087259 0.314131 None None None 0.314131 None None None \nstep10 55.194927 0.314236 None None None 0.314236 None None None \nstep11 65.340730 0.335363 None None None 0.335363 None None None \nstep12 59.454320 0.318001 None None None 0.318001 None None None \nstep13 53.123586 0.313850 None None None 0.313850 None None None \nstep14 49.622333 0.302461 None None None 0.302461 None None None \nstep15 52.879568 0.310318 None None None 0.310318 None None None \nstep16 62.389715 0.325833 None None None 0.325833 None None None \nstep17 61.386507 0.344998 None None None 0.344998 None None None \nstep18 59.977352 0.340566 None None None 0.340566 None None None \nstep19 53.626635 0.341182 None None None 0.341182 None None None \nstep20 59.695450 0.333834 None None None 0.333834 None None None \nstep21 51.908472 0.355539 None None None 0.355539 None None None \nstep22 58.230838 0.371551 None None None 0.371551 None None None \nstep23 60.724871 0.371524 None None None 0.371524 None None None \nstep24 55.447345 0.386148 None None None 0.386148 None None None \nstep25 55.070633 0.369498 None None None 0.369498 None None None \nstep26 52.562588 0.372124 None None None 0.372124 None None None \nstep27 69.148095 0.385292 None None None 0.385292 None None None \nstep28 63.234910 0.373196 None None None 0.373196 None None None \nstep29 59.858053 0.363831 None None None 0.363831 None None None \nstep30 53.775858 0.352540 None None None 0.352540 None None None \nstep31 64.640432 0.389636 None None None 0.389636 None None None \nstep32 61.634035 0.405523 None None None 0.405523 None None None \nstep33 59.013487 0.391181 None None None 0.391181 None None None \nstep34 58.546634 0.379228 None None None 0.379228 None None None \nstep35 58.752317 0.371496 None None None 0.371496 None None None \nstep36 55.413118 0.372958 None None None 0.372958 None None None \nmean 55.618584 0.339233 None None None 0.339233 None None None \nstd 6.927444 0.038170 None None None 0.038170 None None None \nmedian 55.430232 0.340874 None None None 0.340874 None None None \n\n ensemble_weight_reg ensemble_weight_class \nstep01 None None \nstep02 None None \nstep03 None None \nstep04 None None \nstep05 None None \nstep06 None None \nstep07 None None \nstep08 None None \nstep09 None None \nstep10 None None \nstep11 None None \nstep12 None None \nstep13 None None \nstep14 None None \nstep15 None None \nstep16 None None \nstep17 None None \nstep18 None None \nstep19 None None \nstep20 None None \nstep21 None None \nstep22 None None \nstep23 None None \nstep24 None None \nstep25 None None \nstep26 None None \nstep27 None None \nstep28 None None \nstep29 None None \nstep30 None None \nstep31 None None \nstep32 None None \nstep33 None None \nstep34 None None \nstep35 None None \nstep36 None None \nmean None None \nstd None None \nmedian None None ", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MSEMAEMSLEKLDJeffreysCRPSBrierAPAUCensemble_weight_regensemble_weight_class
step0133.7873330.260264NoneNoneNone0.260264NoneNoneNoneNoneNone
step0241.0303560.281456NoneNoneNone0.281456NoneNoneNoneNoneNone
step0348.3884550.293722NoneNoneNone0.293722NoneNoneNoneNoneNone
step0448.1762620.282599NoneNoneNone0.282599NoneNoneNoneNoneNone
step0556.2859340.302974NoneNoneNone0.302974NoneNoneNoneNoneNone
step0647.1780290.288970NoneNoneNone0.288970NoneNoneNoneNoneNone
step0747.6135440.290899NoneNoneNone0.290899NoneNoneNoneNoneNone
step0854.0690310.305460NoneNoneNone0.305460NoneNoneNoneNoneNone
step0955.0872590.314131NoneNoneNone0.314131NoneNoneNoneNoneNone
step1055.1949270.314236NoneNoneNone0.314236NoneNoneNoneNoneNone
step1165.3407300.335363NoneNoneNone0.335363NoneNoneNoneNoneNone
step1259.4543200.318001NoneNoneNone0.318001NoneNoneNoneNoneNone
step1353.1235860.313850NoneNoneNone0.313850NoneNoneNoneNoneNone
step1449.6223330.302461NoneNoneNone0.302461NoneNoneNoneNoneNone
step1552.8795680.310318NoneNoneNone0.310318NoneNoneNoneNoneNone
step1662.3897150.325833NoneNoneNone0.325833NoneNoneNoneNoneNone
step1761.3865070.344998NoneNoneNone0.344998NoneNoneNoneNoneNone
step1859.9773520.340566NoneNoneNone0.340566NoneNoneNoneNoneNone
step1953.6266350.341182NoneNoneNone0.341182NoneNoneNoneNoneNone
step2059.6954500.333834NoneNoneNone0.333834NoneNoneNoneNoneNone
step2151.9084720.355539NoneNoneNone0.355539NoneNoneNoneNoneNone
step2258.2308380.371551NoneNoneNone0.371551NoneNoneNoneNoneNone
step2360.7248710.371524NoneNoneNone0.371524NoneNoneNoneNoneNone
step2455.4473450.386148NoneNoneNone0.386148NoneNoneNoneNoneNone
step2555.0706330.369498NoneNoneNone0.369498NoneNoneNoneNoneNone
step2652.5625880.372124NoneNoneNone0.372124NoneNoneNoneNoneNone
step2769.1480950.385292NoneNoneNone0.385292NoneNoneNoneNoneNone
step2863.2349100.373196NoneNoneNone0.373196NoneNoneNoneNoneNone
step2959.8580530.363831NoneNoneNone0.363831NoneNoneNoneNoneNone
step3053.7758580.352540NoneNoneNone0.352540NoneNoneNoneNoneNone
step3164.6404320.389636NoneNoneNone0.389636NoneNoneNoneNoneNone
step3261.6340350.405523NoneNoneNone0.405523NoneNoneNoneNoneNone
step3359.0134870.391181NoneNoneNone0.391181NoneNoneNoneNoneNone
step3458.5466340.379228NoneNoneNone0.379228NoneNoneNoneNoneNone
step3558.7523170.371496NoneNoneNone0.371496NoneNoneNoneNoneNone
step3655.4131180.372958NoneNoneNone0.372958NoneNoneNoneNoneNone
mean55.6185840.339233NoneNoneNone0.339233NoneNoneNoneNoneNone
std6.9274440.038170NoneNoneNone0.038170NoneNoneNoneNoneNone
median55.4302320.340874NoneNoneNone0.340874NoneNoneNoneNoneNone
\n
" - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_eval = pd.read_pickle('../data/generated/df_evaluation_36_testing_20240618_155834.pkl')\n", - "df_eval" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T14:14:48.935539Z", - "start_time": "2024-06-19T14:14:48.916520Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 18, - "outputs": [], - "source": [ - "df_forecast = pd.read_pickle(\"../data/generated/predictions_36_forecasting_20240619_172828.pkl\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T15:29:17.921430Z", - "start_time": "2024-06-19T15:29:17.914007Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 19, - "outputs": [ - { - "data": { - "text/plain": "Empty DataFrame\nColumns: [step_pred_1, step_pred_2, step_pred_3, step_pred_4, step_pred_5, step_pred_6, step_pred_7, step_pred_8, step_pred_9, step_pred_10, step_pred_11, step_pred_12, step_pred_13, step_pred_14, step_pred_15, step_pred_16, step_pred_17, step_pred_18, step_pred_19, step_pred_20, step_pred_21, step_pred_22, step_pred_23, step_pred_24, step_pred_25, step_pred_26, step_pred_27, step_pred_28, step_pred_29, step_pred_30, step_pred_31, step_pred_32, step_pred_33, step_pred_34, step_pred_35, step_pred_36]\nIndex: []\n\n[0 rows x 36 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
step_pred_1step_pred_2step_pred_3step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9step_pred_10...step_pred_27step_pred_28step_pred_29step_pred_30step_pred_31step_pred_32step_pred_33step_pred_34step_pred_35step_pred_36
month_idpriogrid_gid
\n

0 rows × 36 columns

\n
" - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_forecast" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-19T15:29:18.626134Z", - "start_time": "2024-06-19T15:29:18.622691Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 28, - "outputs": [], - "source": [ - "stepshift_model = pd.read_pickle(\"../artifacts/forecasting_model_20240618_173119.pkl\")\n", - "dataset = pd.read_parquet(\"../data/raw/raw_forecasting.parquet\")\n", - "run_type = 'forecasting'" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T07:20:03.452716Z", - "start_time": "2024-06-20T07:20:03.118062Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 33, - "outputs": [], - "source": [ - "from ingester3.ViewsMonth import ViewsMonth\n", - "\n", - "def get_partitioner_dict(partition, step=36):\n", - "\n", - " \"\"\"Returns the partitioner_dict for the given partition.\"\"\"\n", - "\n", - " if partition == 'calibration':\n", - "\n", - " partitioner_dict = {\"train\":(121,396),\"predict\":(397,444)} # calib_partitioner_dict - (01/01/1990 - 12/31/2012) : (01/01/2013 - 31/12/2015)\n", - "\n", - " if partition == 'testing':\n", - "\n", - " partitioner_dict = {\"train\":(121,444),\"predict\":(445,492)} \n", - "\n", - " if partition == 'forecasting':\n", - "\n", - " month_last = ViewsMonth.now().id - 2 # minus 2 because the current month is not yet available. Verified but can be tested by chinging this and running the check_data notebook.\n", - "\n", - " partitioner_dict = {\"train\":(121, month_last),\"predict\":(month_last +1, month_last + 1 + step)} # is it even meaningful to have a predict partition for forecasting? if not you can remove steps\n", - "\n", - " # print('partitioner_dict', partitioner_dict) \n", - "\n", - " return partitioner_dict\n", - " \n", - "def get_partition_data(df, run_type):\n", - " partitioner_dict = get_partitioner_dict(run_type)\n", - "\n", - " month_first = partitioner_dict['train'][0]\n", - "\n", - " if run_type in ['calibration', 'testing', 'forecasting']:\n", - " month_last = partitioner_dict['predict'][1] + 1 # forecasting also needs to get predict months even if they are empty\n", - " else:\n", - " raise ValueError('partition should be either \"calibration\", \"testing\" or \"forecasting\"')\n", - " \n", - " month_range = np.arange(month_first, month_last,1) # predict[1] is the last month to predict, so we need to add 1 to include it.\n", - "\n", - " df = df[df.index.get_level_values(\"month_id\").isin(month_range)].copy() # temporal subset\n", - "\n", - " return df" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T07:38:47.793724Z", - "start_time": "2024-06-20T07:38:47.787208Z" - } - } - }, - { - "cell_type": "code", - "execution_count": 34, - "outputs": [ - { - "data": { - "text/plain": " ged_sb_dep ln_ged_sb ln_pop_gpw_sum decay_ged_sb_1 \\\nmonth_id priogrid_gid \n533 62356 0.0 0.0 0.000000 2.124068e-07 \n 79599 0.0 0.0 9.145198 2.124068e-07 \n 79600 0.0 0.0 8.394584 2.124068e-07 \n 79601 0.0 0.0 9.903443 2.124068e-07 \n 80317 0.0 0.0 12.290978 2.124068e-07 \n... ... ... ... ... \n569 190496 0.0 0.0 10.408626 7.509715e-08 \n 190507 0.0 0.0 6.647283 7.509715e-08 \n 190508 0.0 0.0 4.562102 7.509715e-08 \n 190510 0.0 0.0 7.619576 7.509715e-08 \n 190511 0.0 0.0 7.596084 7.509715e-08 \n\n decay_ged_sb_25 decay_ged_os_1 splag_1_1_sb_1 \\\nmonth_id priogrid_gid \n533 62356 2.124068e-07 2.124068e-07 0.000000e+00 \n 79599 2.124068e-07 2.124068e-07 8.496272e-07 \n 79600 2.124068e-07 2.124068e-07 1.062034e-06 \n 79601 2.124068e-07 2.124068e-07 8.496272e-07 \n 80317 2.124068e-07 2.124068e-07 6.372204e-07 \n... ... ... ... \n569 190496 7.509715e-08 7.509715e-08 3.003886e-07 \n 190507 7.509715e-08 7.509715e-08 3.003886e-07 \n 190508 7.509715e-08 7.509715e-08 3.003886e-07 \n 190510 7.509715e-08 7.509715e-08 3.003886e-07 \n 190511 7.509715e-08 7.509715e-08 3.003886e-07 \n\n splag_1_decay_ged_sb_1 step_pred_1 step_pred_10 ... \\\nmonth_id priogrid_gid ... \n533 62356 0.000000e+00 0.075624 0.086838 ... \n 79599 8.496272e-07 0.075624 0.086838 ... \n 79600 1.062034e-06 0.075624 0.086838 ... \n 79601 8.496272e-07 0.075624 0.086838 ... \n 80317 6.372204e-07 0.075624 0.086838 ... \n... ... ... ... ... \n569 190496 3.003886e-07 0.075624 0.086838 ... \n 190507 3.003886e-07 0.075624 0.086838 ... \n 190508 3.003886e-07 0.075624 0.086838 ... \n 190510 3.003886e-07 0.075624 0.086838 ... \n 190511 3.003886e-07 0.075624 0.086838 ... \n\n step_pred_33 step_pred_34 step_pred_35 step_pred_36 \\\nmonth_id priogrid_gid \n533 62356 0.087995 0.085165 0.086579 0.087058 \n 79599 0.087995 0.085165 0.086579 0.087058 \n 79600 0.087995 0.085165 0.086579 0.087058 \n 79601 0.087995 0.085165 0.086579 0.087058 \n 80317 0.087995 0.085165 0.086579 0.087058 \n... ... ... ... ... \n569 190496 0.087995 0.085165 0.086579 0.087058 \n 190507 0.087995 0.085165 0.086579 0.087058 \n 190508 0.087995 0.085165 0.086579 0.087058 \n 190510 0.087995 0.085165 0.086579 0.087058 \n 190511 0.087995 0.085165 0.086579 0.087058 \n\n step_pred_4 step_pred_5 step_pred_6 step_pred_7 \\\nmonth_id priogrid_gid \n533 62356 0.078232 0.077486 0.077665 0.078307 \n 79599 0.078232 0.077486 0.077665 0.078307 \n 79600 0.078232 0.077486 0.077665 0.078307 \n 79601 0.078232 0.077486 0.077665 0.078307 \n 80317 0.078232 0.077486 0.077665 0.078307 \n... ... ... ... ... \n569 190496 0.078232 0.077486 0.077665 0.078307 \n 190507 0.078232 0.077486 0.077665 0.078307 \n 190508 0.078232 0.077486 0.077665 0.078307 \n 190510 0.078232 0.077486 0.077665 0.078307 \n 190511 0.078232 0.077486 0.077665 0.078307 \n\n step_pred_8 step_pred_9 \nmonth_id priogrid_gid \n533 62356 0.079862 0.081073 \n 79599 0.079862 0.081073 \n 79600 0.079862 0.081073 \n 79601 0.079862 0.081073 \n 80317 0.079862 0.081073 \n... ... ... \n569 190496 0.079862 0.081073 \n 190507 0.079862 0.081073 \n 190508 0.079862 0.081073 \n 190510 0.079862 0.081073 \n 190511 0.079862 0.081073 \n\n[485070 rows x 44 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
ged_sb_depln_ged_sbln_pop_gpw_sumdecay_ged_sb_1decay_ged_sb_25decay_ged_os_1splag_1_1_sb_1splag_1_decay_ged_sb_1step_pred_1step_pred_10...step_pred_33step_pred_34step_pred_35step_pred_36step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9
month_idpriogrid_gid
533623560.00.00.0000002.124068e-072.124068e-072.124068e-070.000000e+000.000000e+000.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
795990.00.09.1451982.124068e-072.124068e-072.124068e-078.496272e-078.496272e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
796000.00.08.3945842.124068e-072.124068e-072.124068e-071.062034e-061.062034e-060.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
796010.00.09.9034432.124068e-072.124068e-072.124068e-078.496272e-078.496272e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
803170.00.012.2909782.124068e-072.124068e-072.124068e-076.372204e-076.372204e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
.....................................................................
5691904960.00.010.4086267.509715e-087.509715e-087.509715e-083.003886e-073.003886e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
1905070.00.06.6472837.509715e-087.509715e-087.509715e-083.003886e-073.003886e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
1905080.00.04.5621027.509715e-087.509715e-087.509715e-083.003886e-073.003886e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
1905100.00.07.6195767.509715e-087.509715e-087.509715e-083.003886e-073.003886e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
1905110.00.07.5960847.509715e-087.509715e-087.509715e-083.003886e-073.003886e-070.0756240.086838...0.0879950.0851650.0865790.0870580.0782320.0774860.0776650.0783070.0798620.081073
\n

485070 rows × 44 columns

\n
" - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "stepshift_model.predict(run_type, \"predict\", get_partition_data(dataset, run_type))" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T07:39:18.354405Z", - "start_time": "2024-06-20T07:38:48.115441Z" - } - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "viewser", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/models/orange_pasta/notebooks/test.ipynb b/models/orange_pasta/notebooks/test.ipynb deleted file mode 100644 index 9fdf2a2..0000000 --- a/models/orange_pasta/notebooks/test.ipynb +++ /dev/null @@ -1,1263 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from common_utils.views_stepshifter_darts.stepshifter import *" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_combinedln_ged_sb_dep
month_idpriogrid_gid
53762356.00.000120NaN
79599.00.000119NaN
79600.00.000124NaN
79601.00.000135NaN
80317.00.000417NaN
............
572190496.00.000000NaN
190507.00.000000NaN
190508.00.000000NaN
190510.00.000000NaN
190511.00.000000NaN
\n", - "

471960 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_combined ln_ged_sb_dep\n", - "month_id priogrid_gid \n", - "537 62356.0 0.000120 NaN\n", - " 79599.0 0.000119 NaN\n", - " 79600.0 0.000124 NaN\n", - " 79601.0 0.000135 NaN\n", - " 80317.0 0.000417 NaN\n", - "... ... ...\n", - "572 190496.0 0.000000 NaN\n", - " 190507.0 0.000000 NaN\n", - " 190508.0 0.000000 NaN\n", - " 190510.0 0.000000 NaN\n", - " 190511.0 0.000000 NaN\n", - "\n", - "[471960 rows x 2 columns]" - ] - }, - "execution_count": 103, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.read_pickle('models/old_money/data/generated/predictions_36_forecasting_20241009_153720.pkl')" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_1step_pred_2step_pred_3step_pred_4step_pred_5step_pred_6step_pred_7step_pred_8step_pred_9step_pred_10...step_pred_27step_pred_28step_pred_29step_pred_30step_pred_31step_pred_32step_pred_33step_pred_34step_pred_35step_pred_36
month_idpriogrid_gid
53862356.00.0000830.0000870.0000500.0001160.0001060.0001120.0000870.0000680.0000940.000026...0.0000000.0000000.000000.0000000.0000230.0000450.0001710.0000650.0000140.000000
79599.00.0000830.0000870.0000500.0001160.0001060.0001120.0000870.0000680.0000940.000026...0.0000000.0000000.000000.0000000.0000230.0000450.0001710.0000650.0000140.000000
79600.00.0000830.0000870.0000500.0001160.0001060.0001120.0000870.0000680.0000940.000026...0.0000000.0000000.000000.0000000.0000230.0000450.0001710.0000650.0000140.000000
79601.00.0000830.0000870.0000500.0001160.0001060.0001120.0000870.0000680.0000940.000026...0.0000000.0000000.000000.0000000.0000230.0000450.0001710.0000650.0000140.000000
80317.00.0003720.0005400.0006130.0007220.0008150.0010950.0010920.0011700.0015450.001709...0.0018850.0020850.002160.0036420.0021330.0029130.0023230.0032030.0032370.003281
.....................................................................
573190496.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.000000
190507.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.000000
190508.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.000000
190510.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.000000
190511.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.000000
\n", - "

471960 rows × 36 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_1 step_pred_2 step_pred_3 step_pred_4 \\\n", - "month_id priogrid_gid \n", - "538 62356.0 0.000083 0.000087 0.000050 0.000116 \n", - " 79599.0 0.000083 0.000087 0.000050 0.000116 \n", - " 79600.0 0.000083 0.000087 0.000050 0.000116 \n", - " 79601.0 0.000083 0.000087 0.000050 0.000116 \n", - " 80317.0 0.000372 0.000540 0.000613 0.000722 \n", - "... ... ... ... ... \n", - "573 190496.0 NaN NaN NaN NaN \n", - " 190507.0 NaN NaN NaN NaN \n", - " 190508.0 NaN NaN NaN NaN \n", - " 190510.0 NaN NaN NaN NaN \n", - " 190511.0 NaN NaN NaN NaN \n", - "\n", - " step_pred_5 step_pred_6 step_pred_7 step_pred_8 \\\n", - "month_id priogrid_gid \n", - "538 62356.0 0.000106 0.000112 0.000087 0.000068 \n", - " 79599.0 0.000106 0.000112 0.000087 0.000068 \n", - " 79600.0 0.000106 0.000112 0.000087 0.000068 \n", - " 79601.0 0.000106 0.000112 0.000087 0.000068 \n", - " 80317.0 0.000815 0.001095 0.001092 0.001170 \n", - "... ... ... ... ... \n", - "573 190496.0 NaN NaN NaN NaN \n", - " 190507.0 NaN NaN NaN NaN \n", - " 190508.0 NaN NaN NaN NaN \n", - " 190510.0 NaN NaN NaN NaN \n", - " 190511.0 NaN NaN NaN NaN \n", - "\n", - " step_pred_9 step_pred_10 ... step_pred_27 \\\n", - "month_id priogrid_gid ... \n", - "538 62356.0 0.000094 0.000026 ... 0.000000 \n", - " 79599.0 0.000094 0.000026 ... 0.000000 \n", - " 79600.0 0.000094 0.000026 ... 0.000000 \n", - " 79601.0 0.000094 0.000026 ... 0.000000 \n", - " 80317.0 0.001545 0.001709 ... 0.001885 \n", - "... ... ... ... ... \n", - "573 190496.0 NaN NaN ... NaN \n", - " 190507.0 NaN NaN ... NaN \n", - " 190508.0 NaN NaN ... NaN \n", - " 190510.0 NaN NaN ... NaN \n", - " 190511.0 NaN NaN ... NaN \n", - "\n", - " step_pred_28 step_pred_29 step_pred_30 step_pred_31 \\\n", - "month_id priogrid_gid \n", - "538 62356.0 0.000000 0.00000 0.000000 0.000023 \n", - " 79599.0 0.000000 0.00000 0.000000 0.000023 \n", - " 79600.0 0.000000 0.00000 0.000000 0.000023 \n", - " 79601.0 0.000000 0.00000 0.000000 0.000023 \n", - " 80317.0 0.002085 0.00216 0.003642 0.002133 \n", - "... ... ... ... ... \n", - "573 190496.0 NaN NaN NaN NaN \n", - " 190507.0 NaN NaN NaN NaN \n", - " 190508.0 NaN NaN NaN NaN \n", - " 190510.0 NaN NaN NaN NaN \n", - " 190511.0 NaN NaN NaN NaN \n", - "\n", - " step_pred_32 step_pred_33 step_pred_34 step_pred_35 \\\n", - "month_id priogrid_gid \n", - "538 62356.0 0.000045 0.000171 0.000065 0.000014 \n", - " 79599.0 0.000045 0.000171 0.000065 0.000014 \n", - " 79600.0 0.000045 0.000171 0.000065 0.000014 \n", - " 79601.0 0.000045 0.000171 0.000065 0.000014 \n", - " 80317.0 0.002913 0.002323 0.003203 0.003237 \n", - "... ... ... ... ... \n", - "573 190496.0 NaN NaN NaN NaN \n", - " 190507.0 NaN NaN NaN NaN \n", - " 190508.0 NaN NaN NaN NaN \n", - " 190510.0 NaN NaN NaN NaN \n", - " 190511.0 NaN NaN NaN NaN \n", - "\n", - " step_pred_36 \n", - "month_id priogrid_gid \n", - "538 62356.0 0.000000 \n", - " 79599.0 0.000000 \n", - " 79600.0 0.000000 \n", - " 79601.0 0.000000 \n", - " 80317.0 0.003281 \n", - "... ... \n", - "573 190496.0 0.000000 \n", - " 190507.0 0.000000 \n", - " 190508.0 0.000000 \n", - " 190510.0 0.000000 \n", - " 190511.0 0.000000 \n", - "\n", - "[471960 rows x 36 columns]" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_forecast_old = pd.read_pickle('models/orange_pasta/data/generated/predictions_36_forecasting_20241108_162549_old.pkl')\n", - "df_forecast_old" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_combinedln_ged_sb_dep
month_idpriogrid_gid
53862356.00.000083NaN
79599.00.000083NaN
79600.00.000083NaN
79601.00.000083NaN
80317.00.000372NaN
............
573190496.00.000000NaN
190507.00.000000NaN
190508.00.000000NaN
190510.00.000000NaN
190511.00.000000NaN
\n", - "

471960 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_combined ln_ged_sb_dep\n", - "month_id priogrid_gid \n", - "538 62356.0 0.000083 NaN\n", - " 79599.0 0.000083 NaN\n", - " 79600.0 0.000083 NaN\n", - " 79601.0 0.000083 NaN\n", - " 80317.0 0.000372 NaN\n", - "... ... ...\n", - "573 190496.0 0.000000 NaN\n", - " 190507.0 0.000000 NaN\n", - " 190508.0 0.000000 NaN\n", - " 190510.0 0.000000 NaN\n", - " 190511.0 0.000000 NaN\n", - "\n", - "[471960 rows x 2 columns]" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_forecast_new = pd.read_pickle('models/orange_pasta/data/generated/predictions_36_forecasting_20241108_162549.pkl')\n", - "df_forecast_new" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'ln_ged_sb_dep'" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_forecast_new.forecasts.target" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "month_id priogrid_gid\n", - "539 62356.0 0.000087\n", - " 79599.0 0.000087\n", - " 79600.0 0.000087\n", - " 79601.0 0.000087\n", - " 80317.0 0.000540\n", - " ... \n", - " 190496.0 0.000062\n", - " 190507.0 0.000000\n", - " 190508.0 0.000000\n", - " 190510.0 0.000000\n", - " 190511.0 0.000000\n", - "Name: step_pred_2, Length: 13110, dtype: float64" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_forecast_old.loc[df_forecast_old.index.get_level_values(0) == 539].iloc[:, 1]" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [], - "source": [ - "for i in df_forecast_new.index.get_level_values(0).unique().tolist():\n", - " if (df_forecast_new.loc[df_forecast_new.index.get_level_values(0) == i].iloc[:, 0] != \n", - " df_forecast_old.loc[df_forecast_old.index.get_level_values(0) == i].iloc[:, i-538]).any():\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "model = pd.read_pickle('models/orange_pasta/artifacts/forecasting_model_20241108_162549.pkl')" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "from ingester3.ViewsMonth import ViewsMonth\n", - "month_last = ViewsMonth.now().id - 2\n", - "partitioner_dict = {\"train\":(121, month_last),\"predict\":(month_last +1, month_last + 1 + 36)}\n", - "train_start, train_end = partitioner_dict[\"train\"]\n", - "test_start, test_end = partitioner_dict[\"predict\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "UserWarning: `time_col` was not set and `df` has a monotonically increasing (time) index. This results in time series groups with non-overlapping (time) index. You can ignore this warning if the index represents the actual index of each individual time series group.\n" - ] - } - ], - "source": [ - "df = pd.read_pickle('models/orange_pasta/data/raw/forecasting_viewser_df.pkl')\n", - "level = df.index.names[1]\n", - "time = df.index.names[0]\n", - "independent_variables = [c for c in df.columns if c != 'ln_ged_sb_dep']\n", - "\n", - "df_reset = df.reset_index(level=[1])\n", - "series = TimeSeries.from_group_dataframe(df_reset, group_cols=level,\n", - " value_cols=independent_variables + ['ln_ged_sb_dep'])\n", - "target_train = [s.slice(train_start, train_end + 1)['ln_ged_sb_dep']\n", - " for s in series] # ts.slice is different from df.slice\n", - "past_cov_train = [series.slice(train_start, train_end + 1)[independent_variables]\n", - " for series in series]\n", - "past_cov = [s[independent_variables] for s in series]" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "model_1 = model.models[1]\n", - "pred = model_1.predict(n=2,\n", - " series=target_train,\n", - " # darts automatically locates the time period of past_covariates\n", - " past_covariates=past_cov,\n", - " show_warnings=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "index_tuples, df_list = [], []\n", - "for p in pred:\n", - " # For forecasting only need to keep predictions with last-month-with-data, i.e., diagonal prediction\n", - " df_pred = p.pd_dataframe().loc[[test_start + 1]]\n", - " l = p.static_covariates.iat[0, 0]\n", - " index_tuples.extend([(month, l) for month in df_pred.index])\n", - " df_list.append(df_pred.values)\n", - "\n", - "df_preds = pd.DataFrame(\n", - " data=np.concatenate(df_list),\n", - " index=pd.MultiIndex.from_tuples(index_tuples, names=[time, level]),\n", - " columns=[f\"step_pred_combined\"]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_combined
month_idpriogrid_gid
53962356.00.000087
79599.00.000087
79600.00.000087
79601.00.000087
80317.00.000540
......
190496.00.000062
190507.0-0.000260
190508.0-0.000260
190510.0-0.000260
190511.0-0.000260
\n", - "

13110 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_combined\n", - "month_id priogrid_gid \n", - "539 62356.0 0.000087\n", - " 79599.0 0.000087\n", - " 79600.0 0.000087\n", - " 79601.0 0.000087\n", - " 80317.0 0.000540\n", - "... ...\n", - " 190496.0 0.000062\n", - " 190507.0 -0.000260\n", - " 190508.0 -0.000260\n", - " 190510.0 -0.000260\n", - " 190511.0 -0.000260\n", - "\n", - "[13110 rows x 1 columns]" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_preds" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "model_2 = model.models[2]\n", - "pred_2 = model_2.predict(n=3,\n", - " series=target_train,\n", - " # darts automatically locates the time period of past_covariates\n", - " past_covariates=past_cov,\n", - " show_warnings=False)\n", - "\n", - "index_tuples, df_list = [], []\n", - "for p in pred_2:\n", - " # For forecasting only need to keep predictions with last-month-with-data, i.e., diagonal prediction\n", - " df_pred = p.pd_dataframe().loc[[test_start + 2]]\n", - " l = p.static_covariates.iat[0, 0]\n", - " index_tuples.extend([(month, l) for month in df_pred.index])\n", - " df_list.append(df_pred.values)\n", - "\n", - "df_preds_2 = pd.DataFrame(\n", - " data=np.concatenate(df_list),\n", - " index=pd.MultiIndex.from_tuples(index_tuples, names=[time, level]),\n", - " columns=[f\"step_pred_combined\"]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_combined
month_idpriogrid_gid
54062356.00.000050
79599.00.000050
79600.00.000050
79601.00.000050
80317.00.000613
......
190496.0-0.000126
190507.0-0.000385
190508.0-0.000385
190510.0-0.000385
190511.0-0.000385
\n", - "

13110 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_combined\n", - "month_id priogrid_gid \n", - "540 62356.0 0.000050\n", - " 79599.0 0.000050\n", - " 79600.0 0.000050\n", - " 79601.0 0.000050\n", - " 80317.0 0.000613\n", - "... ...\n", - " 190496.0 -0.000126\n", - " 190507.0 -0.000385\n", - " 190508.0 -0.000385\n", - " 190510.0 -0.000385\n", - " 190511.0 -0.000385\n", - "\n", - "[13110 rows x 1 columns]" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_preds_2" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
step_pred_combined
month_idpriogrid_gid
53962356.00.000087
79599.00.000087
79600.00.000087
79601.00.000087
80317.00.000540
.........
540190496.0-0.000126
190507.0-0.000385
190508.0-0.000385
190510.0-0.000385
190511.0-0.000385
\n", - "

26220 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " step_pred_combined\n", - "month_id priogrid_gid \n", - "539 62356.0 0.000087\n", - " 79599.0 0.000087\n", - " 79600.0 0.000087\n", - " 79601.0 0.000087\n", - " 80317.0 0.000540\n", - "... ...\n", - "540 190496.0 -0.000126\n", - " 190507.0 -0.000385\n", - " 190508.0 -0.000385\n", - " 190510.0 -0.000385\n", - " 190511.0 -0.000385\n", - "\n", - "[26220 rows x 1 columns]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.concat([df_preds, df_preds_2])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "viewser", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 1869f614037fe7344ce2a40470986c7f438875ab Mon Sep 17 00:00:00 2001 From: xiaolongsun <95378566+xiaolong0728@users.noreply.github.com> Date: Thu, 6 Mar 2025 13:45:37 +0100 Subject: [PATCH 2/2] rename target variables --- models/bad_blood/configs/config_queryset.py | 34 +- .../configs/config_queryset.py | 352 +++++++++--------- models/blank_space/configs/config_queryset.py | 34 +- .../brown_cheese/configs/config_queryset.py | 8 +- models/car_radio/configs/config_queryset.py | 136 +++---- models/caring_fish/configs/config_queryset.py | 12 +- models/chunky_cat/configs/config_queryset.py | 34 +- .../counting_stars/configs/config_queryset.py | 80 ++-- .../dark_paradise/configs/config_queryset.py | 34 +- models/demon_days/configs/config_queryset.py | 78 ++-- .../configs/config_queryset.py | 82 ++-- models/fast_car/configs/config_queryset.py | 124 +++--- .../configs/config_queryset.py | 54 +-- .../good_riddance/configs/config_queryset.py | 54 +-- .../green_squirrel/configs/config_queryset.py | 132 +++---- .../heavy_rotation/configs/config_queryset.py | 132 +++---- models/high_hopes/configs/config_queryset.py | 30 +- .../configs/config_queryset.py | 36 +- .../lavender_haze/configs/config_queryset.py | 36 +- models/little_lies/configs/config_queryset.py | 54 +-- .../midnight_rain/configs/config_queryset.py | 50 +-- .../configs/config_queryset.py | 64 ++-- models/old_money/configs/config_queryset.py | 50 +-- models/ominous_ox/configs/config_queryset.py | 30 +- .../orange_pasta/configs/config_queryset.py | 10 +- .../plastic_beach/configs/config_queryset.py | 30 +- .../configs/config_queryset.py | 136 +++---- models/teen_spirit/configs/config_queryset.py | 30 +- models/twin_flame/configs/config_queryset.py | 136 +++---- .../wildest_dream/configs/config_queryset.py | 20 +- .../yellow_pikachu/configs/config_queryset.py | 14 +- .../configs/config_queryset.py | 18 +- 32 files changed, 1062 insertions(+), 1062 deletions(-) diff --git a/models/bad_blood/configs/config_queryset.py b/models/bad_blood/configs/config_queryset.py index 2d363b8..e80dc5d 100644 --- a/models/bad_blood/configs/config_queryset.py +++ b/models/bad_blood/configs/config_queryset.py @@ -14,57 +14,57 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('mountains_mean', from_loa='priogrid_year', from_column='mountains_mean') + .with_column(Column('lr_mountains_mean', from_loa='priogrid_year', from_column='mountains_mean') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') + .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs') + .with_column(Column('lr_dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('agri_ih', from_loa='priogrid_year', from_column='agri_ih') + .with_column(Column('lr_agri_ih', from_loa='priogrid_year', from_column='agri_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('barren_ih', from_loa='priogrid_year', from_column='barren_ih') + .with_column(Column('lr_barren_ih', from_loa='priogrid_year', from_column='barren_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('forest_ih', from_loa='priogrid_year', from_column='forest_ih') + .with_column(Column('lr_forest_ih', from_loa='priogrid_year', from_column='forest_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('pasture_ih', from_loa='priogrid_year', from_column='pasture_ih') + .with_column(Column('lr_pasture_ih', from_loa='priogrid_year', from_column='pasture_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('savanna_ih', from_loa='priogrid_year', from_column='savanna_ih') + .with_column(Column('lr_savanna_ih', from_loa='priogrid_year', from_column='savanna_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('shrub_ih', from_loa='priogrid_year', from_column='shrub_ih') + .with_column(Column('lr_shrub_ih', from_loa='priogrid_year', from_column='shrub_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('urban_ih', from_loa='priogrid_year', from_column='urban_ih') + .with_column(Column('lr_urban_ih', from_loa='priogrid_year', from_column='urban_ih') .transform.missing.fill() .transform.missing.replace_na() ) @@ -99,13 +99,13 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded') + .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded') .transform.bool.gte(1) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -113,7 +113,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -121,7 +121,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -129,7 +129,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -138,7 +138,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/bittersweet_symphony/configs/config_queryset.py b/models/bittersweet_symphony/configs/config_queryset.py index 22678a7..5b5e7ba 100644 --- a/models/bittersweet_symphony/configs/config_queryset.py +++ b/models/bittersweet_symphony/configs/config_queryset.py @@ -18,9 +18,6 @@ def generate(): .transform.ops.ln() .transform.missing.fill() ) - - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') - ) .with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() @@ -36,6 +33,9 @@ def generate(): .transform.ops.ln() .transform.missing.fill() ) + + .with_column(Column('lr_lr_gleditsch_ward', from_loa='country', from_column='gwcode') + ) .with_column(Column('ln_acled_sb', from_loa='country_month', from_column='acled_sb_fat') .transform.ops.ln() @@ -52,457 +52,457 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') + .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') + .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd') + .with_column(Column('lr_wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in') + .with_column(Column('lr_wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') + .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs') + .with_column(Column('lr_wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr') + .with_column(Column('lr_wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') + .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs') + .with_column(Column('lr_wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe') + .with_column(Column('lr_wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') + .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs') + .with_column(Column('lr_wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs') + .with_column(Column('lr_wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') + .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem') + .with_column(Column('lr_vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem') + .with_column(Column('lr_vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(60) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip') + .with_column(Column('lr_vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem') + .with_column(Column('lr_vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib') + .with_column(Column('lr_vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') + .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart') + .with_column(Column('lr_vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') + .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick') + .with_column(Column('lr_vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal') + .with_column(Column('lr_vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr') + .with_column(Column('lr_vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick') + .with_column(Column('lr_vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs') + .with_column(Column('lr_vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender') + .with_column(Column('lr_vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') + .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') + .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat') + .with_column(Column('lr_vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr') + .with_column(Column('lr_vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule') + .with_column(Column('lr_vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') + .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') + .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') + .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp') + .with_column(Column('lr_vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst') + .with_column(Column('lr_vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') + .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave') + .with_column(Column('lr_vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd') + .with_column(Column('lr_vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib') + .with_column(Column('lr_vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') + .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair') + .with_column(Column('lr_vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec') + .with_column(Column('lr_vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf') + .with_column(Column('lr_vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') + .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') + .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon') + .with_column(Column('lr_vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') + .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') + .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party') + .with_column(Column('lr_vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi') + .with_column(Column('lr_vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres') + .with_column(Column('lr_vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess') + .with_column(Column('lr_vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') + .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev') + .with_column(Column('lr_vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -565,21 +565,21 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -601,231 +601,231 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -833,231 +833,231 @@ def generate(): ) - .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct') + .with_column(Column('lr_agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap') + .with_column(Column('lr_dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('groundwater_export_t48', from_loa='country_year', from_column='groundwater_export') + .with_column(Column('lr_groundwater_export_t48', from_loa='country_year', from_column='groundwater_export') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct') + .with_column(Column('lr_fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency') + .with_column(Column('lr_ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency') + .with_column(Column('lr_irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('services_efficiency_t48', from_loa='country_year', from_column='services_efficiency') + .with_column(Column('lr_services_efficiency_t48', from_loa='country_year', from_column='services_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('general_efficiency_t48', from_loa='country_year', from_column='general_efficiency') + .with_column(Column('lr_general_efficiency_t48', from_loa='country_year', from_column='general_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('water_stress_t48', from_loa='country_year', from_column='water_stress') + .with_column(Column('lr_water_stress_t48', from_loa='country_year', from_column='water_stress') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap') + .with_column(Column('lr_renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap') + .with_column(Column('lr_renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1065,7 +1065,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1073,7 +1073,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -1081,7 +1081,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -1089,7 +1089,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -1097,7 +1097,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1105,7 +1105,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -1113,7 +1113,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1121,7 +1121,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1129,7 +1129,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1137,7 +1137,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1146,7 +1146,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1155,7 +1155,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -1164,7 +1164,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1173,7 +1173,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1182,7 +1182,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1191,7 +1191,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1200,7 +1200,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1209,7 +1209,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1218,7 +1218,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1227,7 +1227,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1236,7 +1236,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1245,7 +1245,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1254,7 +1254,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1263,7 +1263,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1272,7 +1272,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1281,7 +1281,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1290,7 +1290,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -1299,7 +1299,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/blank_space/configs/config_queryset.py b/models/blank_space/configs/config_queryset.py index 2d363b8..e80dc5d 100644 --- a/models/blank_space/configs/config_queryset.py +++ b/models/blank_space/configs/config_queryset.py @@ -14,57 +14,57 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('mountains_mean', from_loa='priogrid_year', from_column='mountains_mean') + .with_column(Column('lr_mountains_mean', from_loa='priogrid_year', from_column='mountains_mean') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') + .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs') + .with_column(Column('lr_dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('agri_ih', from_loa='priogrid_year', from_column='agri_ih') + .with_column(Column('lr_agri_ih', from_loa='priogrid_year', from_column='agri_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('barren_ih', from_loa='priogrid_year', from_column='barren_ih') + .with_column(Column('lr_barren_ih', from_loa='priogrid_year', from_column='barren_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('forest_ih', from_loa='priogrid_year', from_column='forest_ih') + .with_column(Column('lr_forest_ih', from_loa='priogrid_year', from_column='forest_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('pasture_ih', from_loa='priogrid_year', from_column='pasture_ih') + .with_column(Column('lr_pasture_ih', from_loa='priogrid_year', from_column='pasture_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('savanna_ih', from_loa='priogrid_year', from_column='savanna_ih') + .with_column(Column('lr_savanna_ih', from_loa='priogrid_year', from_column='savanna_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('shrub_ih', from_loa='priogrid_year', from_column='shrub_ih') + .with_column(Column('lr_shrub_ih', from_loa='priogrid_year', from_column='shrub_ih') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('urban_ih', from_loa='priogrid_year', from_column='urban_ih') + .with_column(Column('lr_urban_ih', from_loa='priogrid_year', from_column='urban_ih') .transform.missing.fill() .transform.missing.replace_na() ) @@ -99,13 +99,13 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded') + .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded') .transform.bool.gte(1) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -113,7 +113,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -121,7 +121,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -129,7 +129,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -138,7 +138,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/brown_cheese/configs/config_queryset.py b/models/brown_cheese/configs/config_queryset.py index 853185d..d5797e3 100644 --- a/models/brown_cheese/configs/config_queryset.py +++ b/models/brown_cheese/configs/config_queryset.py @@ -21,14 +21,14 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -36,7 +36,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -44,7 +44,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/car_radio/configs/config_queryset.py b/models/car_radio/configs/config_queryset.py index ae9ed83..9e0f5f3 100644 --- a/models/car_radio/configs/config_queryset.py +++ b/models/car_radio/configs/config_queryset.py @@ -23,350 +23,350 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -374,7 +374,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -382,7 +382,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -391,7 +391,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -400,7 +400,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -409,7 +409,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -418,7 +418,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -427,7 +427,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -436,7 +436,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -445,7 +445,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -454,7 +454,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -463,7 +463,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -472,7 +472,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -481,7 +481,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -490,7 +490,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -499,7 +499,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -508,7 +508,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -517,7 +517,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -526,7 +526,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/caring_fish/configs/config_queryset.py b/models/caring_fish/configs/config_queryset.py index cafe495..c329f8e 100644 --- a/models/caring_fish/configs/config_queryset.py +++ b/models/caring_fish/configs/config_queryset.py @@ -45,37 +45,37 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('mov_avg_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_avg_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_average(6) ) - .with_column(Column('mov_avg_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_avg_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_average(12) ) - .with_column(Column('mov_avg_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_avg_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_average(36) ) - .with_column(Column('mov_sum_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_sum_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_sum(6) ) - .with_column(Column('mov_sum_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_sum_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_sum(12) ) - .with_column(Column('mov_sum_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('ln_mov_sum_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.ops.ln() .transform.missing.fill() .transform.temporal.moving_sum(36) diff --git a/models/chunky_cat/configs/config_queryset.py b/models/chunky_cat/configs/config_queryset.py index 1a42751..87bc80f 100644 --- a/models/chunky_cat/configs/config_queryset.py +++ b/models/chunky_cat/configs/config_queryset.py @@ -8,17 +8,17 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) @@ -29,7 +29,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -37,7 +37,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -45,7 +45,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -53,7 +53,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -61,7 +61,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -69,7 +69,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -77,7 +77,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -85,7 +85,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -93,7 +93,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -101,7 +101,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -109,7 +109,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -117,7 +117,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -125,7 +125,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -134,7 +134,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/counting_stars/configs/config_queryset.py b/models/counting_stars/configs/config_queryset.py index 1162af6..7b6b869 100644 --- a/models/counting_stars/configs/config_queryset.py +++ b/models/counting_stars/configs/config_queryset.py @@ -13,7 +13,17 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_conflict_history_long','country_month') - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .transform.ops.ln() + .transform.missing.fill() + ) + + .with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .transform.ops.ln() + .transform.missing.fill() + ) + + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') ) .with_column(Column('ln_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') @@ -41,22 +51,22 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('splag_1_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.countrylag(1,1,0,0) ) - .with_column(Column('splag_2_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_2_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.countrylag(1,2,0,0) ) - .with_column(Column('splag_1_ged_os', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_ged_os', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.countrylag(1,1,0,0) ) - .with_column(Column('splag_1_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.countrylag(1,1,0,0) ) @@ -91,17 +101,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') - .transform.ops.ln() - .transform.missing.fill() - ) - - .with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') - .transform.ops.ln() - .transform.missing.fill() - ) - - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -241,7 +241,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -249,7 +249,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -257,7 +257,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -265,7 +265,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -273,7 +273,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -281,7 +281,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -289,7 +289,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -297,7 +297,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -305,7 +305,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -313,7 +313,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -321,7 +321,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_1', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -329,7 +329,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -337,7 +337,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -345,7 +345,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_25', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_25', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -353,7 +353,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_500', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_500', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -361,7 +361,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_1', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_1', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -369,7 +369,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_25', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_25', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -377,7 +377,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_500', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_500', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -385,7 +385,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -394,7 +394,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -403,7 +403,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -412,7 +412,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -421,7 +421,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -430,7 +430,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() diff --git a/models/dark_paradise/configs/config_queryset.py b/models/dark_paradise/configs/config_queryset.py index 7dedbf0..51fa8ec 100644 --- a/models/dark_paradise/configs/config_queryset.py +++ b/models/dark_paradise/configs/config_queryset.py @@ -9,17 +9,17 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) @@ -30,7 +30,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -38,7 +38,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -46,7 +46,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -54,7 +54,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -62,7 +62,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -70,7 +70,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -78,7 +78,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -86,7 +86,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -94,7 +94,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -102,7 +102,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -110,7 +110,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -118,7 +118,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -126,7 +126,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -135,7 +135,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/demon_days/configs/config_queryset.py b/models/demon_days/configs/config_queryset.py index 27be9ee..ef3a4c0 100644 --- a/models/demon_days/configs/config_queryset.py +++ b/models/demon_days/configs/config_queryset.py @@ -23,223 +23,223 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('consumer_prices_food_indices', from_loa='country_month', from_column='consumer_prices_food_indices') + .with_column(Column('lr_consumer_prices_food_indices', from_loa='country_month', from_column='consumer_prices_food_indices') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('consumer_prices_general_indices', from_loa='country_month', from_column='consumer_prices_general_indices') + .with_column(Column('lr_consumer_prices_general_indices', from_loa='country_month', from_column='consumer_prices_general_indices') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('food_price_inflation', from_loa='country_month', from_column='food_price_inflation') + .with_column(Column('lr_food_price_inflation', from_loa='country_month', from_column='food_price_inflation') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('avg_adequate_diet', from_loa='country_year', from_column='avg_adequate_diet') + .with_column(Column('lr_avg_adequate_diet', from_loa='country_year', from_column='avg_adequate_diet') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('avg_animalprotein_pcap_day', from_loa='country_year', from_column='avg_animalprotein_pcap_day') + .with_column(Column('lr_avg_animalprotein_pcap_day', from_loa='country_year', from_column='avg_animalprotein_pcap_day') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('avg_fprod_value', from_loa='country_year', from_column='avg_fprod_value') + .with_column(Column('lr_avg_fprod_value', from_loa='country_year', from_column='avg_fprod_value') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('avg_protein_pcap_day', from_loa='country_year', from_column='avg_protein_pcap_day') + .with_column(Column('lr_avg_protein_pcap_day', from_loa='country_year', from_column='avg_protein_pcap_day') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('gdp_pc_ppp', from_loa='country_year', from_column='gdp_pc_ppp') + .with_column(Column('lr_gdp_pc_ppp', from_loa='country_year', from_column='gdp_pc_ppp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('kcal_pcap_day', from_loa='country_year', from_column='kcal_pcap_day') + .with_column(Column('lr_kcal_pcap_day', from_loa='country_year', from_column='kcal_pcap_day') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('kcal_pcap_day_cerotu', from_loa='country_year', from_column='kcal_pcap_day_cerotu') + .with_column(Column('lr_kcal_pcap_day_cerotu', from_loa='country_year', from_column='kcal_pcap_day_cerotu') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pcap_fprod_var', from_loa='country_year', from_column='pcap_fprod_var') + .with_column(Column('lr_pcap_fprod_var', from_loa='country_year', from_column='pcap_fprod_var') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pcap_fsupply_var', from_loa='country_year', from_column='pcap_fsupply_var') + .with_column(Column('lr_pcap_fsupply_var', from_loa='country_year', from_column='pcap_fsupply_var') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_arable_land', from_loa='country_year', from_column='pct_arable_land') + .with_column(Column('lr_pct_arable_land', from_loa='country_year', from_column='pct_arable_land') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_cereal_import', from_loa='country_year', from_column='pct_cereal_import') + .with_column(Column('lr_pct_cereal_import', from_loa='country_year', from_column='pct_cereal_import') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_fimport_merch', from_loa='country_year', from_column='pct_fimport_merch') + .with_column(Column('lr_pct_fimport_merch', from_loa='country_year', from_column='pct_fimport_merch') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_modsevere_finsecurity', from_loa='country_year', from_column='pct_modsevere_finsecurity') + .with_column(Column('lr_pct_modsevere_finsecurity', from_loa='country_year', from_column='pct_modsevere_finsecurity') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_pop_basicdrink', from_loa='country_year', from_column='pct_pop_basicdrink') + .with_column(Column('lr_pct_pop_basicdrink', from_loa='country_year', from_column='pct_pop_basicdrink') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_pop_basicsani', from_loa='country_year', from_column='pct_pop_basicsani') + .with_column(Column('lr_pct_pop_basicsani', from_loa='country_year', from_column='pct_pop_basicsani') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_pop_safedrink', from_loa='country_year', from_column='pct_pop_safedrink') + .with_column(Column('lr_pct_pop_safedrink', from_loa='country_year', from_column='pct_pop_safedrink') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_pop_safesani', from_loa='country_year', from_column='pct_pop_safesani') + .with_column(Column('lr_pct_pop_safesani', from_loa='country_year', from_column='pct_pop_safesani') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_severe_finsecurity', from_loa='country_year', from_column='pct_severe_finsecurity') + .with_column(Column('lr_pct_severe_finsecurity', from_loa='country_year', from_column='pct_severe_finsecurity') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_und5_overweight', from_loa='country_year', from_column='pct_und5_overweight') + .with_column(Column('lr_pct_und5_overweight', from_loa='country_year', from_column='pct_und5_overweight') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_und5_stunted', from_loa='country_year', from_column='pct_und5_stunted') + .with_column(Column('lr_pct_und5_stunted', from_loa='country_year', from_column='pct_und5_stunted') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_und5_wasting', from_loa='country_year', from_column='pct_und5_wasting') + .with_column(Column('lr_pct_und5_wasting', from_loa='country_year', from_column='pct_und5_wasting') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pct_undernourished', from_loa='country_year', from_column='pct_undernourished') + .with_column(Column('lr_pct_undernourished', from_loa='country_year', from_column='pct_undernourished') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pol_stability', from_loa='country_year', from_column='pol_stability') + .with_column(Column('lr_pol_stability', from_loa='country_year', from_column='pol_stability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pop_modsevere_finsecurity', from_loa='country_year', from_column='pop_modsevere_finsecurity') + .with_column(Column('lr_pop_modsevere_finsecurity', from_loa='country_year', from_column='pop_modsevere_finsecurity') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pop_severe_finsecurity', from_loa='country_year', from_column='pop_severe_finsecurity') + .with_column(Column('lr_pop_severe_finsecurity', from_loa='country_year', from_column='pop_severe_finsecurity') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('pop_undernourished', from_loa='country_year', from_column='pop_undernourished') + .with_column(Column('lr_pop_undernourished', from_loa='country_year', from_column='pop_undernourished') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('prev_adult_obesity', from_loa='country_year', from_column='prev_adult_obesity') + .with_column(Column('lr_prev_adult_obesity', from_loa='country_year', from_column='prev_adult_obesity') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('prev_infant_bfeed', from_loa='country_year', from_column='prev_infant_bfeed') + .with_column(Column('lr_prev_infant_bfeed', from_loa='country_year', from_column='prev_infant_bfeed') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('prev_lowbweight', from_loa='country_year', from_column='prev_lowbweight') + .with_column(Column('lr_prev_lowbweight', from_loa='country_year', from_column='prev_lowbweight') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('prev_repr_anemia', from_loa='country_year', from_column='prev_repr_anemia') + .with_column(Column('lr_prev_repr_anemia', from_loa='country_year', from_column='prev_repr_anemia') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('rail_density', from_loa='country_year', from_column='rail_density') + .with_column(Column('lr_rail_density', from_loa='country_year', from_column='rail_density') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -247,7 +247,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -255,7 +255,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/electric_relaxation/configs/config_queryset.py b/models/electric_relaxation/configs/config_queryset.py index af8ca51..d1c470c 100644 --- a/models/electric_relaxation/configs/config_queryset.py +++ b/models/electric_relaxation/configs/config_queryset.py @@ -11,48 +11,48 @@ def generate(): qs_cm_cflong = (Queryset("escwa001_cflong", "country_month") # target variable - .with_column(Column("ged_sb_dep", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dep", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() ) # timelag 0 of target variable - .with_column(Column("ged_sb_dummy_t0", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t0", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() ) # further timelags of target variable # sb - .with_column(Column("ged_sb_dummy_t1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column("ged_sb_dummy_t2", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t2", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column("ged_sb_dummy_t3", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t3", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(3) .transform.missing.fill() ) - .with_column(Column("ged_sb_dummy_t4", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t4", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(4) .transform.missing.fill() ) - .with_column(Column("ged_sb_dummy_t5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(5) .transform.missing.fill() ) - .with_column(Column("ged_sb_dummy_t6", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_ged_sb_dummy_t6", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(6) @@ -60,82 +60,82 @@ def generate(): ) # os - .with_column(Column("ged_os_dummy_t0", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t0", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t1", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t1", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t2", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t2", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t3", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t3", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(3) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t4", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t4", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(4) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t5", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t5", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(5) .transform.missing.fill() ) - .with_column(Column("ged_os_dummy_t6", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_ged_os_dummy_t6", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(6) .transform.missing.fill() ) # ns - .with_column(Column("ged_ns_dummy_t0", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t0", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t2", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t2", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t3", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t3", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(3) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t4", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t4", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(4) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(5) .transform.missing.fill() ) - .with_column(Column("ged_ns_dummy_t6", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_ged_ns_dummy_t6", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.bool.gte(25) .transform.missing.fill() .transform.temporal.tlag(6) @@ -143,35 +143,35 @@ def generate(): ) # Decay functions # sb - .with_column(Column("decay_ged_sb_1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_decay_ged_sb_1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_sb_5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_decay_ged_sb_5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_sb_25", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_decay_ged_sb_25", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_sb_100", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_decay_ged_sb_100", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_sb_500", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") + .with_column(Column("lr_decay_ged_sb_500", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -180,28 +180,28 @@ def generate(): ) # os - .with_column(Column("decay_ged_os_1", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_decay_ged_os_1", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_os_5", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_decay_ged_os_5", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_os_25", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_decay_ged_os_25", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_os_100", from_loa="country_month", from_column="ged_os_best_sum_nokgi") + .with_column(Column("lr_decay_ged_os_100", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -210,28 +210,28 @@ def generate(): ) # ns - .with_column(Column("decay_ged_ns_1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_decay_ged_ns_1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_ns_5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_decay_ged_ns_5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_ns_25", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_decay_ged_ns_25", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() .transform.temporal.decay(24) .transform.missing.replace_na() ) - .with_column(Column("decay_ged_ns_100", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") + .with_column(Column("lr_decay_ged_ns_100", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -241,7 +241,7 @@ def generate(): # Spatial lag decay functions # sb - .with_column(Column("splag_1_decay_ged_sb_25", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_sb_25", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) @@ -251,7 +251,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column("splag_1_decay_ged_sb_500", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_sb_500", from_loa="country_month", from_column="ged_sb_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(500) @@ -261,7 +261,7 @@ def generate(): .transform.missing.replace_na() ) # os - .with_column(Column("splag_1_decay_ged_os_25", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_os_25", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) @@ -270,7 +270,7 @@ def generate(): .transform.spatial.countrylag(1, 1, 0, 0) .transform.missing.replace_na() ) - .with_column(Column("splag_1_decay_ged_os_500", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_os_500", from_loa="country_month", from_column="ged_os_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(500) @@ -280,7 +280,7 @@ def generate(): .transform.missing.replace_na() ) # ns - .with_column(Column("splag_1_decay_ged_ns_25", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_ns_25", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(25) @@ -289,7 +289,7 @@ def generate(): .transform.spatial.countrylag(1, 1, 0, 0) .transform.missing.replace_na() ) - .with_column(Column("splag_1_decay_ged_ns_500", from_loa="country_month", + .with_column(Column("lr_splag_1_decay_ged_ns_500", from_loa="country_month", from_column="ged_ns_best_sum_nokgi") .transform.missing.replace_na() .transform.bool.gte(500) diff --git a/models/fast_car/configs/config_queryset.py b/models/fast_car/configs/config_queryset.py index fd651bb..3fad9d1 100644 --- a/models/fast_car/configs/config_queryset.py +++ b/models/fast_car/configs/config_queryset.py @@ -23,367 +23,367 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem') + .with_column(Column('lr_vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem') + .with_column(Column('lr_vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(60) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip') + .with_column(Column('lr_vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem') + .with_column(Column('lr_vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib') + .with_column(Column('lr_vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') + .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart') + .with_column(Column('lr_vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') + .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick') + .with_column(Column('lr_vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal') + .with_column(Column('lr_vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr') + .with_column(Column('lr_vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick') + .with_column(Column('lr_vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs') + .with_column(Column('lr_vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender') + .with_column(Column('lr_vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') + .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') + .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat') + .with_column(Column('lr_vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr') + .with_column(Column('lr_vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule') + .with_column(Column('lr_vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') + .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') + .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') + .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp') + .with_column(Column('lr_vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst') + .with_column(Column('lr_vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') + .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave') + .with_column(Column('lr_vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd') + .with_column(Column('lr_vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib') + .with_column(Column('lr_vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') + .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair') + .with_column(Column('lr_vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec') + .with_column(Column('lr_vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf') + .with_column(Column('lr_vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') + .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') + .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon') + .with_column(Column('lr_vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') + .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') + .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party') + .with_column(Column('lr_vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi') + .with_column(Column('lr_vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres') + .with_column(Column('lr_vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess') + .with_column(Column('lr_vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') + .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev') + .with_column(Column('lr_vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -391,7 +391,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -399,7 +399,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/fluorescent_adolescent/configs/config_queryset.py b/models/fluorescent_adolescent/configs/config_queryset.py index 46edf09..4e7f380 100644 --- a/models/fluorescent_adolescent/configs/config_queryset.py +++ b/models/fluorescent_adolescent/configs/config_queryset.py @@ -18,7 +18,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) @@ -28,90 +28,90 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months') + .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') + .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -131,42 +131,42 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -174,7 +174,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -182,7 +182,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -190,7 +190,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -198,7 +198,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -206,7 +206,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/good_riddance/configs/config_queryset.py b/models/good_riddance/configs/config_queryset.py index 46edf09..4e7f380 100644 --- a/models/good_riddance/configs/config_queryset.py +++ b/models/good_riddance/configs/config_queryset.py @@ -18,7 +18,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) @@ -28,90 +28,90 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months') + .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') + .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -131,42 +131,42 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -174,7 +174,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -182,7 +182,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -190,7 +190,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -198,7 +198,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -206,7 +206,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/green_squirrel/configs/config_queryset.py b/models/green_squirrel/configs/config_queryset.py index bb2497a..3c3b8fe 100644 --- a/models/green_squirrel/configs/config_queryset.py +++ b/models/green_squirrel/configs/config_queryset.py @@ -13,7 +13,7 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_joint_broad','country_month') - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') ) .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') @@ -58,231 +58,231 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') + .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') + .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') + .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd') + .with_column(Column('lr_wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') + .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') + .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') + .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') + .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') + .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') + .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') + .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') + .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') + .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') + .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') + .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') + .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') + .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') + .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort') + .with_column(Column('lr_vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') + .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -345,7 +345,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -353,7 +353,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -361,7 +361,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -369,7 +369,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -377,7 +377,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -385,7 +385,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -393,7 +393,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -401,7 +401,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -409,70 +409,70 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -480,7 +480,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -488,7 +488,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -496,7 +496,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -504,7 +504,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -512,7 +512,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -520,7 +520,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -528,7 +528,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -536,7 +536,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -544,7 +544,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -552,7 +552,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -561,7 +561,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -570,7 +570,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -579,7 +579,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -588,7 +588,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/heavy_rotation/configs/config_queryset.py b/models/heavy_rotation/configs/config_queryset.py index bb2497a..3c3b8fe 100644 --- a/models/heavy_rotation/configs/config_queryset.py +++ b/models/heavy_rotation/configs/config_queryset.py @@ -13,7 +13,7 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_joint_broad','country_month') - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') ) .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') @@ -58,231 +58,231 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') + .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') + .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') + .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd') + .with_column(Column('lr_wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') + .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') + .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') + .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') + .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') + .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') + .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') + .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') + .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') + .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') + .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') + .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') + .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') + .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') + .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort') + .with_column(Column('lr_vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') + .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -345,7 +345,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -353,7 +353,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -361,7 +361,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -369,7 +369,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -377,7 +377,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -385,7 +385,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) @@ -393,7 +393,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) @@ -401,7 +401,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -409,70 +409,70 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') + .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') + .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -480,7 +480,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -488,7 +488,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -496,7 +496,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -504,7 +504,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -512,7 +512,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -520,7 +520,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -528,7 +528,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -536,7 +536,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -544,7 +544,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -552,7 +552,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -561,7 +561,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -570,7 +570,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -579,7 +579,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -588,7 +588,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/high_hopes/configs/config_queryset.py b/models/high_hopes/configs/config_queryset.py index 295f8fd..e200fde 100644 --- a/models/high_hopes/configs/config_queryset.py +++ b/models/high_hopes/configs/config_queryset.py @@ -13,7 +13,7 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_conflict_history','country_month') - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') ) .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') @@ -51,7 +51,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -114,7 +114,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -122,7 +122,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -130,7 +130,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -138,7 +138,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -146,7 +146,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -154,7 +154,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -162,7 +162,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -170,7 +170,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -178,7 +178,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -186,7 +186,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -194,7 +194,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -203,7 +203,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -212,7 +212,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/invisible_string/configs/config_queryset.py b/models/invisible_string/configs/config_queryset.py index d2166a3..b76f604 100644 --- a/models/invisible_string/configs/config_queryset.py +++ b/models/invisible_string/configs/config_queryset.py @@ -4,19 +4,19 @@ def generate(): qs_broad = (Queryset('fatalities003_pgm_broad','priogrid_month') - .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') + .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') + .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') + .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') .transform.missing.replace_na(0) ) - .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') + .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') .transform.missing.replace_na(0) ) @@ -25,52 +25,52 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,1) ) - .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,2) ) - .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,1.0,0.0) ) - .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,10.0,0.0) ) - .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,0.01,0.0) ) - .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') + .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.fill() .transform.missing.replace_na() ) @@ -99,7 +99,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -107,7 +107,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -115,7 +115,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -123,7 +123,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/lavender_haze/configs/config_queryset.py b/models/lavender_haze/configs/config_queryset.py index d2166a3..b76f604 100644 --- a/models/lavender_haze/configs/config_queryset.py +++ b/models/lavender_haze/configs/config_queryset.py @@ -4,19 +4,19 @@ def generate(): qs_broad = (Queryset('fatalities003_pgm_broad','priogrid_month') - .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') + .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') + .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') + .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') .transform.missing.replace_na(0) ) - .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') + .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') .transform.missing.replace_na(0) ) @@ -25,52 +25,52 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,1) ) - .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,2) ) - .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,1.0,0.0) ) - .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,10.0,0.0) ) - .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist('distances',1,0.01,0.0) ) - .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') + .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.fill() .transform.missing.replace_na() ) @@ -99,7 +99,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -107,7 +107,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -115,7 +115,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -123,7 +123,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/little_lies/configs/config_queryset.py b/models/little_lies/configs/config_queryset.py index 46edf09..4e7f380 100644 --- a/models/little_lies/configs/config_queryset.py +++ b/models/little_lies/configs/config_queryset.py @@ -18,7 +18,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) @@ -28,90 +28,90 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months') + .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') + .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') + .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') + .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') + .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() ) - .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -131,42 +131,42 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') + .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') + .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -174,7 +174,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -182,7 +182,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -190,7 +190,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -198,7 +198,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -206,7 +206,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/midnight_rain/configs/config_queryset.py b/models/midnight_rain/configs/config_queryset.py index 7f9498e..e777ae8 100644 --- a/models/midnight_rain/configs/config_queryset.py +++ b/models/midnight_rain/configs/config_queryset.py @@ -12,83 +12,83 @@ def generate(): qs_escwa_drought = (Queryset('fatalities003_pgm_escwa_drought','priogrid_month') - .with_column(Column('pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean') + .with_column(Column('lr_pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean') .transform.missing.replace_na(0) ) - .with_column(Column('pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.replace_na(0) ) - .with_column(Column('pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih') + .with_column(Column('lr_pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih') .transform.missing.replace_na(0) ) - .with_column(Column('count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10') + .with_column(Column('lr_count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10') .transform.missing.replace_na(0) ) - .with_column(Column('cropprop', from_loa='priogrid_month', from_column='cropprop') + .with_column(Column('lr_cropprop', from_loa='priogrid_month', from_column='cropprop') .transform.missing.replace_na(0) ) - .with_column(Column('growseasdummy', from_loa='priogrid_month', from_column='growseasdummy') + .with_column(Column('lr_growseasdummy', from_loa='priogrid_month', from_column='growseasdummy') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10') + .with_column(Column('lr_spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') + .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom') + .with_column(Column('lr_spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend') + .with_column(Column('lr_spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend') .transform.missing.replace_na(0) ) - .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') + .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') .transform.missing.replace_na(0) ) - .with_column(Column('spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend') + .with_column(Column('lr_spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') + .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs') + .with_column(Column('lr_tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs') + .with_column(Column('lr_tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm') + .with_column(Column('lr_tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') + .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops') + .with_column(Column('lr_tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops') + .with_column(Column('lr_tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops') + .with_column(Column('lr_tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops') .transform.missing.replace_na(0) ) @@ -102,7 +102,7 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded') + .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded') .transform.bool.gte(1) .transform.missing.fill() ) @@ -117,13 +117,13 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') + .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') .transform.missing.replace_na(0) .transform.temporal.tlag(12) .transform.missing.replace_na(0) ) - .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -131,7 +131,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -139,7 +139,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/national_anthem/configs/config_queryset.py b/models/national_anthem/configs/config_queryset.py index 012b6cc..e6f6c47 100644 --- a/models/national_anthem/configs/config_queryset.py +++ b/models/national_anthem/configs/config_queryset.py @@ -25,210 +25,210 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') + .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs') + .with_column(Column('lr_wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') + .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') + .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd') + .with_column(Column('lr_wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in') + .with_column(Column('lr_wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') + .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs') + .with_column(Column('lr_wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr') + .with_column(Column('lr_wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') + .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') + .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs') + .with_column(Column('lr_wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') + .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe') + .with_column(Column('lr_wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') + .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs') + .with_column(Column('lr_wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs') + .with_column(Column('lr_wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') + .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') + .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') + .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') + .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') + .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') + .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2') .transform.missing.fill() .transform.temporal.tlag(12) .transform.spatial.countrylag(1,1,0,0) .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -236,7 +236,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -244,7 +244,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/old_money/configs/config_queryset.py b/models/old_money/configs/config_queryset.py index 11cd459..31055a5 100644 --- a/models/old_money/configs/config_queryset.py +++ b/models/old_money/configs/config_queryset.py @@ -4,83 +4,83 @@ def generate(): qs_escwa_drought = (Queryset('fatalities003_pgm_escwa_drought','priogrid_month') - .with_column(Column('pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean') + .with_column(Column('lr_pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean') .transform.missing.replace_na(0) ) - .with_column(Column('pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean') + .with_column(Column('lr_pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean') .transform.missing.replace_na(0) ) - .with_column(Column('pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih') + .with_column(Column('lr_pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih') .transform.missing.replace_na(0) ) - .with_column(Column('count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10') + .with_column(Column('lr_count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10') .transform.missing.replace_na(0) ) - .with_column(Column('cropprop', from_loa='priogrid_month', from_column='cropprop') + .with_column(Column('lr_cropprop', from_loa='priogrid_month', from_column='cropprop') .transform.missing.replace_na(0) ) - .with_column(Column('growseasdummy', from_loa='priogrid_month', from_column='growseasdummy') + .with_column(Column('lr_growseasdummy', from_loa='priogrid_month', from_column='growseasdummy') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10') + .with_column(Column('lr_spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') + .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom') + .with_column(Column('lr_spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom') .transform.missing.replace_na(0) ) - .with_column(Column('spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend') + .with_column(Column('lr_spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend') .transform.missing.replace_na(0) ) - .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') + .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count') .transform.missing.replace_na(0) ) - .with_column(Column('spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend') + .with_column(Column('lr_spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') + .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs') + .with_column(Column('lr_tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs') + .with_column(Column('lr_tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs') .transform.missing.replace_na(0) ) - .with_column(Column('tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm') + .with_column(Column('lr_tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') + .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops') + .with_column(Column('lr_tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops') + .with_column(Column('lr_tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops') .transform.missing.replace_na(0) ) - .with_column(Column('tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops') + .with_column(Column('lr_tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops') .transform.missing.replace_na(0) ) @@ -94,7 +94,7 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded') + .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded') .transform.bool.gte(1) .transform.missing.fill() ) @@ -109,13 +109,13 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') + .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd') .transform.missing.replace_na(0) .transform.temporal.tlag(12) .transform.missing.replace_na(0) ) - .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -123,7 +123,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -131,7 +131,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/ominous_ox/configs/config_queryset.py b/models/ominous_ox/configs/config_queryset.py index 6fd9718..4040d16 100644 --- a/models/ominous_ox/configs/config_queryset.py +++ b/models/ominous_ox/configs/config_queryset.py @@ -13,7 +13,7 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_conflict_history','country_month') - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') ) .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') @@ -51,7 +51,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() @@ -114,7 +114,7 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -122,7 +122,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -130,7 +130,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -138,7 +138,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(500) .transform.temporal.time_since() @@ -146,7 +146,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -154,7 +154,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -162,7 +162,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(100) .transform.temporal.time_since() @@ -170,7 +170,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') + .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -178,7 +178,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') + .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -186,7 +186,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') + .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -194,7 +194,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -203,7 +203,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -212,7 +212,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/orange_pasta/configs/config_queryset.py b/models/orange_pasta/configs/config_queryset.py index 1f9beb7..1d431f9 100644 --- a/models/orange_pasta/configs/config_queryset.py +++ b/models/orange_pasta/configs/config_queryset.py @@ -20,7 +20,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -28,7 +28,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(25) .transform.temporal.time_since() @@ -36,7 +36,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -44,7 +44,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() @@ -53,7 +53,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(1) .transform.temporal.time_since() diff --git a/models/plastic_beach/configs/config_queryset.py b/models/plastic_beach/configs/config_queryset.py index cb85613..0830586 100644 --- a/models/plastic_beach/configs/config_queryset.py +++ b/models/plastic_beach/configs/config_queryset.py @@ -23,91 +23,91 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct') + .with_column(Column('lr_agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap') + .with_column(Column('lr_dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('groundwater_export_t48', from_loa='country_year', from_column='groundwater_export') + .with_column(Column('lr_groundwater_export_t48', from_loa='country_year', from_column='groundwater_export') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct') + .with_column(Column('lr_fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency') + .with_column(Column('lr_ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency') + .with_column(Column('lr_irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('services_efficiency_t48', from_loa='country_year', from_column='services_efficiency') + .with_column(Column('lr_services_efficiency_t48', from_loa='country_year', from_column='services_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('general_efficiency_t48', from_loa='country_year', from_column='general_efficiency') + .with_column(Column('lr_general_efficiency_t48', from_loa='country_year', from_column='general_efficiency') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('water_stress_t48', from_loa='country_year', from_column='water_stress') + .with_column(Column('lr_water_stress_t48', from_loa='country_year', from_column='water_stress') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap') + .with_column(Column('lr_renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap') + .with_column(Column('lr_renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(48) .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -115,7 +115,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -123,7 +123,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/popular_monster/configs/config_queryset.py b/models/popular_monster/configs/config_queryset.py index ae9ed83..9e0f5f3 100644 --- a/models/popular_monster/configs/config_queryset.py +++ b/models/popular_monster/configs/config_queryset.py @@ -23,350 +23,350 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -374,7 +374,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -382,7 +382,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -391,7 +391,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -400,7 +400,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -409,7 +409,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -418,7 +418,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -427,7 +427,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -436,7 +436,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -445,7 +445,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -454,7 +454,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -463,7 +463,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -472,7 +472,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -481,7 +481,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -490,7 +490,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -499,7 +499,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -508,7 +508,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -517,7 +517,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -526,7 +526,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/teen_spirit/configs/config_queryset.py b/models/teen_spirit/configs/config_queryset.py index 3910ff7..32f8b1a 100644 --- a/models/teen_spirit/configs/config_queryset.py +++ b/models/teen_spirit/configs/config_queryset.py @@ -13,23 +13,23 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_faoprices','country_month') - .with_column(Column('fao_wheat_price', from_loa='country_month', from_column='wheat_price') + .with_column(Column('lr_fao_wheat_price', from_loa='country_month', from_column='wheat_price') .transform.missing.replace_na(0) ) - .with_column(Column('fao_mp_price', from_loa='country_month', from_column='mp_price') + .with_column(Column('lr_fao_mp_price', from_loa='country_month', from_column='mp_price') .transform.missing.replace_na(0) ) - .with_column(Column('fao_sugar_price', from_loa='country_month', from_column='sugar_price') + .with_column(Column('lr_fao_sugar_price', from_loa='country_month', from_column='sugar_price') .transform.missing.replace_na(0) ) - .with_column(Column('fao_meat_price', from_loa='country_month', from_column='meat_price') + .with_column(Column('lr_fao_meat_price', from_loa='country_month', from_column='meat_price') .transform.missing.replace_na(0) ) - .with_column(Column('fao_milk_price', from_loa='country_month', from_column='milk_price') + .with_column(Column('lr_fao_milk_price', from_loa='country_month', from_column='milk_price') .transform.missing.replace_na(0) ) @@ -43,44 +43,44 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('delta_fao_wheat_price', from_loa='country_month', from_column='wheat_price') + .with_column(Column('lr_delta_fao_wheat_price', from_loa='country_month', from_column='wheat_price') .transform.temporal.delta(12) .transform.missing.replace_na(0) ) - .with_column(Column('delta_fao_mp_price', from_loa='country_month', from_column='mp_price') + .with_column(Column('lr_delta_fao_mp_price', from_loa='country_month', from_column='mp_price') .transform.temporal.delta(12) .transform.missing.replace_na(0) ) - .with_column(Column('delta_fao_sugar_price', from_loa='country_month', from_column='sugar_price') + .with_column(Column('lr_delta_fao_sugar_price', from_loa='country_month', from_column='sugar_price') .transform.temporal.delta(12) .transform.missing.replace_na(0) ) - .with_column(Column('delta_fao_meat_price', from_loa='country_month', from_column='meat_price') + .with_column(Column('lr_delta_fao_meat_price', from_loa='country_month', from_column='meat_price') .transform.temporal.delta(12) .transform.missing.replace_na(0) ) - .with_column(Column('delta_fao_milk_price', from_loa='country_month', from_column='milk_price') + .with_column(Column('lr_delta_fao_milk_price', from_loa='country_month', from_column='milk_price') .transform.temporal.delta(12) .transform.missing.replace_na(0) ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -88,7 +88,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -96,7 +96,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() diff --git a/models/twin_flame/configs/config_queryset.py b/models/twin_flame/configs/config_queryset.py index ae9ed83..9e0f5f3 100644 --- a/models/twin_flame/configs/config_queryset.py +++ b/models/twin_flame/configs/config_queryset.py @@ -23,350 +23,350 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(1) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(2) .transform.missing.fill() ) - .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) .transform.missing.fill() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -374,7 +374,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -382,7 +382,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -391,7 +391,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') + .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -400,7 +400,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') + .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -409,7 +409,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') + .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -418,7 +418,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') + .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -427,7 +427,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') + .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -436,7 +436,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') + .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -445,7 +445,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') + .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -454,7 +454,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') + .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -463,7 +463,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') + .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -472,7 +472,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') + .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -481,7 +481,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') + .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -490,7 +490,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') + .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -499,7 +499,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') + .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -508,7 +508,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') + .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -517,7 +517,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') + .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) @@ -526,7 +526,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') + .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock') .transform.missing.fill() .transform.missing.replace_na() .transform.temporal.tlag(13) diff --git a/models/wildest_dream/configs/config_queryset.py b/models/wildest_dream/configs/config_queryset.py index 90884a3..395baaf 100644 --- a/models/wildest_dream/configs/config_queryset.py +++ b/models/wildest_dream/configs/config_queryset.py @@ -5,7 +5,7 @@ def generate(): qs_sptime_dist = (Queryset('fatalities003_pgm_conflict_sptime_dist','priogrid_month') - .with_column(Column('ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.bool.gte(1) ) @@ -14,47 +14,47 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,1.0,0.0) ) - .with_column(Column('sptime_dist_k1_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k1_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,1.0,0.0) ) - .with_column(Column('sptime_dist_k1_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k1_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,1.0,0.0) ) - .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,10.0,0.0) ) - .with_column(Column('sptime_dist_k10_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k10_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,10.0,0.0) ) - .with_column(Column('sptime_dist_k10_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k10_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,10.0,0.0) ) - .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,0.01,0.0) ) - .with_column(Column('sptime_dist_k001_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k001_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,0.01,0.0) ) - .with_column(Column('sptime_dist_k001_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_sptime_dist_k001_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.sptime_dist("distances",1,0.01,0.0) ) diff --git a/models/yellow_pikachu/configs/config_queryset.py b/models/yellow_pikachu/configs/config_queryset.py index 29caf78..ad382c3 100644 --- a/models/yellow_pikachu/configs/config_queryset.py +++ b/models/yellow_pikachu/configs/config_queryset.py @@ -4,7 +4,7 @@ def generate(): qs_treelag = (Queryset('fatalities003_pgm_conflict_treelag','priogrid_month') - .with_column(Column('ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.bool.gte(1) ) @@ -13,32 +13,32 @@ def generate(): .transform.ops.ln() ) - .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,1) ) - .with_column(Column('treelag_1_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_treelag_1_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,1) ) - .with_column(Column('treelag_1_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_treelag_1_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,1) ) - .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,2) ) - .with_column(Column('treelag_2_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') + .with_column(Column('lr_treelag_2_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,2) ) - .with_column(Column('treelag_2_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_treelag_2_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.spatial.treelag(0.7,2) ) diff --git a/models/yellow_submarine/configs/config_queryset.py b/models/yellow_submarine/configs/config_queryset.py index 9d2a4a8..90eb87a 100644 --- a/models/yellow_submarine/configs/config_queryset.py +++ b/models/yellow_submarine/configs/config_queryset.py @@ -13,19 +13,19 @@ def generate(): # VIEWSER 6, Example configuration. Modify as needed. queryset = (Queryset('fatalities003_imfweo','country_month') - .with_column(Column('imfweo_ngdp_rpch_tcurrent', from_loa='country_month', from_column='ngdp_rpch_tcurrent') + .with_column(Column('lr_imfweo_ngdp_rpch_tcurrent', from_loa='country_month', from_column='ngdp_rpch_tcurrent') .transform.missing.replace_na(0) ) - .with_column(Column('imfweo_ngdp_rpch_tmin1', from_loa='country_month', from_column='ngdp_rpch_tmin1') + .with_column(Column('lr_imfweo_ngdp_rpch_tmin1', from_loa='country_month', from_column='ngdp_rpch_tmin1') .transform.missing.replace_na(0) ) - .with_column(Column('imfweo_ngdp_rpch_tplus1', from_loa='country_month', from_column='ngdp_rpch_tplus1') + .with_column(Column('lr_imfweo_ngdp_rpch_tplus1', from_loa='country_month', from_column='ngdp_rpch_tplus1') .transform.missing.replace_na(0) ) - .with_column(Column('imfweo_ngdp_rpch_tplus2', from_loa='country_month', from_column='ngdp_rpch_tplus2') + .with_column(Column('lr_imfweo_ngdp_rpch_tplus2', from_loa='country_month', from_column='ngdp_rpch_tplus2') .transform.missing.replace_na(0) ) @@ -39,19 +39,19 @@ def generate(): .transform.missing.fill() ) - .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode') + .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode') .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') + .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl') .transform.missing.fill() .transform.temporal.tlag(12) .transform.missing.fill() .transform.missing.replace_na() ) - .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -59,7 +59,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') + .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since() @@ -67,7 +67,7 @@ def generate(): .transform.missing.replace_na() ) - .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') + .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi') .transform.missing.replace_na() .transform.bool.gte(5) .transform.temporal.time_since()