From c0b5e732575c836564c50bef00ab25c031cefa44 Mon Sep 17 00:00:00 2001
From: xiaolongsun <95378566+xiaolong0728@users.noreply.github.com>
Date: Thu, 6 Mar 2025 10:37:14 +0100
Subject: [PATCH 1/2] delete notebooks
---
.../blank_space/notebooks/notebook001.ipynb | 59 -
.../notebooks/ESCWA_model.ipynb | 1712 -----------------
.../notebooks/ESCWA_script_outputs.ipynb | 831 --------
.../orange_pasta/notebooks/notebook001.ipynb | 242 ---
models/orange_pasta/notebooks/test.ipynb | 1263 ------------
5 files changed, 4107 deletions(-)
delete mode 100644 models/blank_space/notebooks/notebook001.ipynb
delete mode 100644 models/electric_relaxation/notebooks/ESCWA_model.ipynb
delete mode 100644 models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb
delete mode 100644 models/orange_pasta/notebooks/notebook001.ipynb
delete mode 100644 models/orange_pasta/notebooks/test.ipynb
diff --git a/models/blank_space/notebooks/notebook001.ipynb b/models/blank_space/notebooks/notebook001.ipynb
deleted file mode 100644
index 7353f17..0000000
--- a/models/blank_space/notebooks/notebook001.ipynb
+++ /dev/null
@@ -1,59 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2024-06-19T15:22:14.778930Z",
- "start_time": "2024-06-19T15:22:14.386096Z"
- }
- },
- "outputs": [
- {
- "data": {
- "text/plain": " step_pred_1 step_pred_2 step_pred_3 step_pred_4 \\\nmonth_id priogrid_gid \n530 62356 0.256551 0.227557 0.488913 0.209929 \n 79599 0.099671 0.146406 0.054649 0.092609 \n 79600 0.099671 0.170610 0.050000 0.178800 \n 79601 0.107438 0.146406 0.047399 0.089084 \n 80317 0.130778 0.185889 0.124451 0.135041 \n... ... ... ... ... \n 190496 0.058204 0.176467 0.041248 0.106065 \n 190507 0.069155 0.182948 0.038348 0.134397 \n 190508 0.063567 0.227789 0.097442 0.265889 \n 190510 0.071951 0.122570 0.012769 0.070929 \n 190511 0.069119 0.179973 0.032913 0.134397 \n\n step_pred_5 step_pred_6 step_pred_7 step_pred_8 \\\nmonth_id priogrid_gid \n530 62356 0.171139 0.152381 0.137336 0.382111 \n 79599 0.129852 0.136078 0.152552 0.173713 \n 79600 0.132606 0.136078 0.152559 0.170128 \n 79601 0.129982 0.145943 0.155419 0.179366 \n 80317 0.337237 0.437653 0.276352 0.213474 \n... ... ... ... ... \n 190496 0.118471 0.109181 0.114734 0.132791 \n 190507 0.067830 0.090494 0.094558 0.088219 \n 190508 0.436198 0.123455 0.169900 0.190923 \n 190510 0.068710 0.094915 0.070891 0.084737 \n 190511 0.072538 0.092565 0.093797 0.085655 \n\n step_pred_9 step_pred_10 ... step_pred_27 \\\nmonth_id priogrid_gid ... \n530 62356 0.074186 0.521652 ... 0.144984 \n 79599 0.088084 0.124625 ... 0.054416 \n 79600 0.083449 0.128840 ... 0.060085 \n 79601 0.091251 0.152769 ... 0.055616 \n 80317 0.117918 0.288680 ... 2.309169 \n... ... ... ... ... \n 190496 0.070404 0.124292 ... 0.297846 \n 190507 0.173334 0.185612 ... 0.050816 \n 190508 0.239198 0.369074 ... 0.078425 \n 190510 0.064074 0.162256 ... 0.059743 \n 190511 0.173334 0.184369 ... 0.060692 \n\n step_pred_28 step_pred_29 step_pred_30 step_pred_31 \\\nmonth_id priogrid_gid \n530 62356 0.124197 0.134879 0.082405 0.138085 \n 79599 0.083813 0.107177 0.046228 0.081775 \n 79600 0.108221 0.095936 0.067836 0.105831 \n 79601 0.080253 0.106711 0.043890 0.079113 \n 80317 2.457354 2.063124 1.998081 1.867917 \n... ... ... ... ... \n 190496 0.263001 0.236426 0.124861 0.193002 \n 190507 0.048083 0.054207 0.043791 0.036109 \n 190508 0.091809 0.116149 0.054405 0.048250 \n 190510 0.057398 0.065735 0.047897 0.040076 \n 190511 0.055820 0.061413 0.046755 0.039636 \n\n step_pred_32 step_pred_33 step_pred_34 step_pred_35 \\\nmonth_id priogrid_gid \n530 62356 0.157001 0.109495 0.085181 0.134681 \n 79599 0.092314 0.095099 0.082592 0.082338 \n 79600 0.094867 0.094448 0.085848 0.082485 \n 79601 0.087037 0.093762 0.081972 0.078679 \n 80317 2.782171 3.282382 4.118517 0.753506 \n... ... ... ... ... \n 190496 0.302993 0.258323 0.212761 0.181067 \n 190507 0.059182 0.059286 0.060531 0.054909 \n 190508 0.109811 0.101721 0.121025 0.122890 \n 190510 0.064052 0.066666 0.064360 0.058652 \n 190511 0.064052 0.066666 0.064360 0.055670 \n\n step_pred_36 \nmonth_id priogrid_gid \n530 62356 0.157107 \n 79599 0.061527 \n 79600 0.061588 \n 79601 0.061795 \n 80317 0.715522 \n... ... \n 190496 0.365574 \n 190507 0.055392 \n 190508 0.146741 \n 190510 0.057022 \n 190511 0.058225 \n\n[13110 rows x 36 columns]",
- "text/html": "
\n\n
\n \n \n | \n | \n step_pred_1 | \n step_pred_2 | \n step_pred_3 | \n step_pred_4 | \n step_pred_5 | \n step_pred_6 | \n step_pred_7 | \n step_pred_8 | \n step_pred_9 | \n step_pred_10 | \n ... | \n step_pred_27 | \n step_pred_28 | \n step_pred_29 | \n step_pred_30 | \n step_pred_31 | \n step_pred_32 | \n step_pred_33 | \n step_pred_34 | \n step_pred_35 | \n step_pred_36 | \n
\n \n | month_id | \n priogrid_gid | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n
\n \n \n \n | 530 | \n 62356 | \n 0.256551 | \n 0.227557 | \n 0.488913 | \n 0.209929 | \n 0.171139 | \n 0.152381 | \n 0.137336 | \n 0.382111 | \n 0.074186 | \n 0.521652 | \n ... | \n 0.144984 | \n 0.124197 | \n 0.134879 | \n 0.082405 | \n 0.138085 | \n 0.157001 | \n 0.109495 | \n 0.085181 | \n 0.134681 | \n 0.157107 | \n
\n \n | 79599 | \n 0.099671 | \n 0.146406 | \n 0.054649 | \n 0.092609 | \n 0.129852 | \n 0.136078 | \n 0.152552 | \n 0.173713 | \n 0.088084 | \n 0.124625 | \n ... | \n 0.054416 | \n 0.083813 | \n 0.107177 | \n 0.046228 | \n 0.081775 | \n 0.092314 | \n 0.095099 | \n 0.082592 | \n 0.082338 | \n 0.061527 | \n
\n \n | 79600 | \n 0.099671 | \n 0.170610 | \n 0.050000 | \n 0.178800 | \n 0.132606 | \n 0.136078 | \n 0.152559 | \n 0.170128 | \n 0.083449 | \n 0.128840 | \n ... | \n 0.060085 | \n 0.108221 | \n 0.095936 | \n 0.067836 | \n 0.105831 | \n 0.094867 | \n 0.094448 | \n 0.085848 | \n 0.082485 | \n 0.061588 | \n
\n \n | 79601 | \n 0.107438 | \n 0.146406 | \n 0.047399 | \n 0.089084 | \n 0.129982 | \n 0.145943 | \n 0.155419 | \n 0.179366 | \n 0.091251 | \n 0.152769 | \n ... | \n 0.055616 | \n 0.080253 | \n 0.106711 | \n 0.043890 | \n 0.079113 | \n 0.087037 | \n 0.093762 | \n 0.081972 | \n 0.078679 | \n 0.061795 | \n
\n \n | 80317 | \n 0.130778 | \n 0.185889 | \n 0.124451 | \n 0.135041 | \n 0.337237 | \n 0.437653 | \n 0.276352 | \n 0.213474 | \n 0.117918 | \n 0.288680 | \n ... | \n 2.309169 | \n 2.457354 | \n 2.063124 | \n 1.998081 | \n 1.867917 | \n 2.782171 | \n 3.282382 | \n 4.118517 | \n 0.753506 | \n 0.715522 | \n
\n \n | ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n | 190496 | \n 0.058204 | \n 0.176467 | \n 0.041248 | \n 0.106065 | \n 0.118471 | \n 0.109181 | \n 0.114734 | \n 0.132791 | \n 0.070404 | \n 0.124292 | \n ... | \n 0.297846 | \n 0.263001 | \n 0.236426 | \n 0.124861 | \n 0.193002 | \n 0.302993 | \n 0.258323 | \n 0.212761 | \n 0.181067 | \n 0.365574 | \n
\n \n | 190507 | \n 0.069155 | \n 0.182948 | \n 0.038348 | \n 0.134397 | \n 0.067830 | \n 0.090494 | \n 0.094558 | \n 0.088219 | \n 0.173334 | \n 0.185612 | \n ... | \n 0.050816 | \n 0.048083 | \n 0.054207 | \n 0.043791 | \n 0.036109 | \n 0.059182 | \n 0.059286 | \n 0.060531 | \n 0.054909 | \n 0.055392 | \n
\n \n | 190508 | \n 0.063567 | \n 0.227789 | \n 0.097442 | \n 0.265889 | \n 0.436198 | \n 0.123455 | \n 0.169900 | \n 0.190923 | \n 0.239198 | \n 0.369074 | \n ... | \n 0.078425 | \n 0.091809 | \n 0.116149 | \n 0.054405 | \n 0.048250 | \n 0.109811 | \n 0.101721 | \n 0.121025 | \n 0.122890 | \n 0.146741 | \n
\n \n | 190510 | \n 0.071951 | \n 0.122570 | \n 0.012769 | \n 0.070929 | \n 0.068710 | \n 0.094915 | \n 0.070891 | \n 0.084737 | \n 0.064074 | \n 0.162256 | \n ... | \n 0.059743 | \n 0.057398 | \n 0.065735 | \n 0.047897 | \n 0.040076 | \n 0.064052 | \n 0.066666 | \n 0.064360 | \n 0.058652 | \n 0.057022 | \n
\n \n | 190511 | \n 0.069119 | \n 0.179973 | \n 0.032913 | \n 0.134397 | \n 0.072538 | \n 0.092565 | \n 0.093797 | \n 0.085655 | \n 0.173334 | \n 0.184369 | \n ... | \n 0.060692 | \n 0.055820 | \n 0.061413 | \n 0.046755 | \n 0.039636 | \n 0.064052 | \n 0.066666 | \n 0.064360 | \n 0.055670 | \n 0.058225 | \n
\n \n
\n
13110 rows × 36 columns
\n
"
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "pd.read_parquet(\"../data/generated/generated.parquet\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "viewser",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.5"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/models/electric_relaxation/notebooks/ESCWA_model.ipynb b/models/electric_relaxation/notebooks/ESCWA_model.ipynb
deleted file mode 100644
index 88709fd..0000000
--- a/models/electric_relaxation/notebooks/ESCWA_model.ipynb
+++ /dev/null
@@ -1,1712 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# ViEWS-ESCWA model respecified in VIEWS 3 form\n",
- "-- without the Retrain and Retrieve wrapper"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Basics\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "# Views 3\n",
- "import views_runs\n",
- "from viewser.operations import fetch\n",
- "#from views_forecasts.extensions import *\n",
- "from viewser import Queryset, Column\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/notebooks\n"
- ]
- }
- ],
- "source": [
- "! pwd"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# turn into: src/dataloaders/get_forecasting_data.py"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " . "
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " ged_sb_dep | \n",
- " ged_sb_dummy_t0 | \n",
- " ged_os_dummy_t0 | \n",
- " ged_ns_dummy_t0 | \n",
- " ged_sb_dummy_t1 | \n",
- " ged_sb_dummy_t2 | \n",
- " ged_sb_dummy_t3 | \n",
- " _ged_sb_dummy_t3 | \n",
- " ged_sb_dummy_t4 | \n",
- " ged_sb_dummy_t5 | \n",
- " ... | \n",
- " decay_ged_ns_1 | \n",
- " decay_ged_ns_5 | \n",
- " decay_ged_ns_25 | \n",
- " decay_ged_ns_100 | \n",
- " splag_1_decay_ged_sb_25 | \n",
- " splag_1_decay_ged_sb_500 | \n",
- " splag_1_decay_ged_os_25 | \n",
- " splag_1_decay_ged_os_500 | \n",
- " splag_1_decay_ged_ns_25 | \n",
- " splag_1_decay_ged_ns_500 | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " country_id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 1 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 44 columns
\n",
- "
"
- ],
- "text/plain": [
- " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t5 ... decay_ged_ns_1 decay_ged_ns_5 \\\n",
- "month_id country_id ... \n",
- "1 1 0.0 ... 0.0 0.0 \n",
- " 2 0.0 ... 0.0 0.0 \n",
- " 3 0.0 ... 0.0 0.0 \n",
- " 4 0.0 ... 0.0 0.0 \n",
- " 5 0.0 ... 0.0 0.0 \n",
- "\n",
- " decay_ged_ns_25 decay_ged_ns_100 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 \n",
- " 2 0.0 0.0 \n",
- " 3 0.0 0.0 \n",
- " 4 0.0 0.0 \n",
- " 5 0.0 0.0 \n",
- "\n",
- " splag_1_decay_ged_sb_25 splag_1_decay_ged_sb_500 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 \n",
- " 2 0.0 0.0 \n",
- " 3 0.0 0.0 \n",
- " 4 0.0 0.0 \n",
- " 5 0.0 0.0 \n",
- "\n",
- " splag_1_decay_ged_os_25 splag_1_decay_ged_os_500 \\\n",
- "month_id country_id \n",
- "1 1 0.0 0.0 \n",
- " 2 0.0 0.0 \n",
- " 3 0.0 0.0 \n",
- " 4 0.0 0.0 \n",
- " 5 0.0 0.0 \n",
- "\n",
- " splag_1_decay_ged_ns_25 splag_1_decay_ged_ns_500 \n",
- "month_id country_id \n",
- "1 1 0.0 0.0 \n",
- " 2 0.0 0.0 \n",
- " 3 0.0 0.0 \n",
- " 4 0.0 0.0 \n",
- " 5 0.0 0.0 \n",
- "\n",
- "[5 rows x 44 columns]"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "qs_cm_cflong = (Queryset(\"escwa001_cflong\", \"country_month\")\n",
- " # target variable\n",
- " .with_column(Column(\"ged_sb_dep\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " # timelag 0 of target variable\n",
- " .with_column(Column(\"ged_sb_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " # further timelags of target variable\n",
- " # sb\n",
- " .with_column(Column(\"ged_sb_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_sb_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(2)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_sb_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " ) \n",
- " .with_column(Column(\"ged_sb_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " ) \n",
- " .with_column(Column(\"ged_sb_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(4)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_sb_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(5)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_sb_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(6)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " \n",
- " # os\n",
- " .with_column(Column(\"ged_os_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(2)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " ) \n",
- " .with_column(Column(\"ged_os_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(4)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(5)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_os_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(6)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " # ns\n",
- " .with_column(Column(\"ged_ns_dummy_t0\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t1\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t2\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(2)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t3\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(1)\n",
- " .transform.missing.fill()\n",
- " ) \n",
- " .with_column(Column(\"ged_ns_dummy_t4\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(4)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t5\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(5)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " .with_column(Column(\"ged_ns_dummy_t6\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.bool.gte(25)\n",
- " .transform.missing.fill()\n",
- " .transform.temporal.tlag(6)\n",
- " .transform.missing.fill()\n",
- " )\n",
- " # Decay functions\n",
- " # sb\n",
- " .with_column(Column(\"decay_ged_sb_1\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(1)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_sb_5\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(5)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_sb_25\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_sb_100\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(100)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_sb_500\", from_table=\"ged2_cm\", from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(500)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " # os\n",
- " \n",
- " .with_column(Column(\"decay_ged_os_1\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(1)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_os_5\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(5)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_os_25\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_os_100\", from_table=\"ged2_cm\", from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(100)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " ) \n",
- " \n",
- " # ns\n",
- " .with_column(Column(\"decay_ged_ns_1\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(1)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_ns_5\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(5)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_ns_25\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"decay_ged_ns_100\", from_table=\"ged2_cm\", from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(100)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " \n",
- " # Spatial lag decay functions\n",
- " # sb\n",
- " .with_column(Column(\"splag_1_decay_ged_sb_25\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- "\n",
- " .with_column(Column(\"splag_1_decay_ged_sb_500\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_sb_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(500)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " # os\n",
- " .with_column(Column(\"splag_1_decay_ged_os_25\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"splag_1_decay_ged_os_500\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_os_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(500)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " # ns\n",
- " .with_column(Column(\"splag_1_decay_ged_ns_25\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(25)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " .with_column(Column(\"splag_1_decay_ged_ns_500\", from_table=\"ged2_cm\",\n",
- " from_column=\"ged_ns_best_sum_nokgi\")\n",
- " .transform.missing.replace_na()\n",
- " .transform.bool.gte(500)\n",
- " .transform.temporal.time_since()\n",
- " .transform.temporal.decay(24)\n",
- " .transform.spatial.countrylag(1, 1, 0, 0)\n",
- " .transform.missing.replace_na()\n",
- " )\n",
- " \n",
- " .with_theme(\"views-escwa\")\n",
- " .describe(\"\"\"Views-escwa conflict history, cm level\n",
- "\n",
- "\n",
- " \"\"\")\n",
- " )\n",
- "\n",
- "#data = qs_cm_cflong.publish().fetch()\n",
- "data = qs_cm_cflong.fetch()\n",
- "# Recast all columns to float because of an excessive assert in the stepshift library\n",
- "data = data.astype(float)\n",
- "data.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# configs/config_common or configs/config_partitioner"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "\n",
- "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor\n",
- "from stepshift.views import StepshiftedModels\n",
- "# Parameters for the model \n",
- "steps = [*range(1, 36+1, 1)] # Which steps to train and predict for\n",
- "#steps = [1,3,6] # Shortened set of steps for the impatient\n",
- "target = 'ged_sb_dep'\n",
- "\n",
- "calib_partitioner_dict = {\"train\":(121,396),\"predict\":(409,456)}\n",
- "test_partitioner_dict = {\"train\":(121,456),\"predict\":(457,504)}\n",
- "future_partitioner_dict = {\"train\":(121,504),\"predict\":(529,529)}\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# src/training/train_forecasting_model.py"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "calib_partition = views_runs.DataPartitioner({'calib':calib_partitioner_dict}) #stepshifter implementation (views_runs is a class)\n",
- "future_partition = views_runs.DataPartitioner({'future':future_partitioner_dict}) #stepshifter implementation \n",
- "\n",
- "# Fitting model\n",
- "base_model = RandomForestClassifier(n_estimators=100, n_jobs=-2)\n",
- "stepshifter_def = StepshiftedModels(base_model,steps,target)\n",
- "\n",
- "# Fitting for calibration run, calibration partition\n",
- "stepshifter_model_calib = views_runs.ViewsRun(calib_partition,stepshifter_def)\n",
- "stepshifter_model_calib.fit('calib','train',data)\n",
- "\n",
- "# Fitting for future run, future partition\n",
- "stepshifter_model_future = views_runs.ViewsRun(future_partition,stepshifter_def)\n",
- "stepshifter_model_future.fit('future','train',data)\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# src/forecasting/generate_forecast.py"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Predictions for test partition:\n",
- "calib_predictions = stepshifter_model_calib.predict('calib','predict',data, proba=True)\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " ged_sb_dep | \n",
- " ged_sb_dummy_t0 | \n",
- " ged_os_dummy_t0 | \n",
- " ged_ns_dummy_t0 | \n",
- " ged_sb_dummy_t1 | \n",
- " ged_sb_dummy_t2 | \n",
- " ged_sb_dummy_t3 | \n",
- " _ged_sb_dummy_t3 | \n",
- " ged_sb_dummy_t4 | \n",
- " ged_sb_dummy_t5 | \n",
- " ... | \n",
- " step_pred_33 | \n",
- " step_pred_34 | \n",
- " step_pred_35 | \n",
- " step_pred_36 | \n",
- " step_pred_4 | \n",
- " step_pred_5 | \n",
- " step_pred_6 | \n",
- " step_pred_7 | \n",
- " step_pred_8 | \n",
- " step_pred_9 | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " country_id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 409 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 80 columns
\n",
- "
"
- ],
- "text/plain": [
- " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n",
- "month_id country_id ... \n",
- "409 1 0.0 ... 0.0 0.0 \n",
- " 2 0.0 ... 0.0 0.0 \n",
- " 3 0.0 ... 0.0 0.0 \n",
- " 4 0.0 ... 0.0 0.0 \n",
- " 5 0.0 ... 0.0 0.0 \n",
- "\n",
- " step_pred_35 step_pred_36 step_pred_4 step_pred_5 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 0.0 \n",
- "\n",
- " step_pred_6 step_pred_7 step_pred_8 step_pred_9 \n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 0.0 \n",
- "\n",
- "[5 rows x 80 columns]"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "calib_predictions.head()\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " ged_sb_dep | \n",
- " ged_sb_dummy_t0 | \n",
- " ged_os_dummy_t0 | \n",
- " ged_ns_dummy_t0 | \n",
- " ged_sb_dummy_t1 | \n",
- " ged_sb_dummy_t2 | \n",
- " ged_sb_dummy_t3 | \n",
- " _ged_sb_dummy_t3 | \n",
- " ged_sb_dummy_t4 | \n",
- " ged_sb_dummy_t5 | \n",
- " ... | \n",
- " step_pred_33 | \n",
- " step_pred_34 | \n",
- " step_pred_35 | \n",
- " step_pred_36 | \n",
- " step_pred_4 | \n",
- " step_pred_5 | \n",
- " step_pred_6 | \n",
- " step_pred_7 | \n",
- " step_pred_8 | \n",
- " step_pred_9 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " ... | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.075153 | \n",
- " 0.075153 | \n",
- " 0.033050 | \n",
- " 0.036322 | \n",
- " 0.075044 | \n",
- " 0.074607 | \n",
- " 0.075044 | \n",
- " 0.075044 | \n",
- " 0.073953 | \n",
- " 0.073844 | \n",
- " ... | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " 0.074770 | \n",
- " 0.074938 | \n",
- " 0.075011 | \n",
- " 0.074604 | \n",
- " 0.074736 | \n",
- " 0.074528 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.263652 | \n",
- " 0.263652 | \n",
- " 0.178776 | \n",
- " 0.187100 | \n",
- " 0.263476 | \n",
- " 0.262771 | \n",
- " 0.263476 | \n",
- " 0.263476 | \n",
- " 0.261708 | \n",
- " 0.261531 | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.239002 | \n",
- " 0.239331 | \n",
- " 0.239643 | \n",
- " 0.239266 | \n",
- " 0.238990 | \n",
- " 0.238090 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " ... | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
8 rows × 80 columns
\n",
- "
"
- ],
- "text/plain": [
- " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 ged_ns_dummy_t0 \\\n",
- "count 9168.000000 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.075153 0.075153 0.033050 0.036322 \n",
- "std 0.263652 0.263652 0.178776 0.187100 \n",
- "min 0.000000 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 1.000000 \n",
- "\n",
- " ged_sb_dummy_t1 ged_sb_dummy_t2 ged_sb_dummy_t3 _ged_sb_dummy_t3 \\\n",
- "count 9168.000000 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.075044 0.074607 0.075044 0.075044 \n",
- "std 0.263476 0.262771 0.263476 0.263476 \n",
- "min 0.000000 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 1.000000 \n",
- "\n",
- " ged_sb_dummy_t4 ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n",
- "count 9168.000000 9168.000000 ... 9168.0 9168.0 \n",
- "mean 0.073953 0.073844 ... inf inf \n",
- "std 0.261708 0.261531 ... NaN NaN \n",
- "min 0.000000 0.000000 ... 0.0 0.0 \n",
- "25% 0.000000 0.000000 ... 0.0 0.0 \n",
- "50% 0.000000 0.000000 ... 0.0 0.0 \n",
- "75% 0.000000 0.000000 ... 0.0 0.0 \n",
- "max 1.000000 1.000000 ... inf inf \n",
- "\n",
- " step_pred_35 step_pred_36 step_pred_4 step_pred_5 step_pred_6 \\\n",
- "count 9168.0 9168.0 9168.000000 9168.000000 9168.000000 \n",
- "mean inf inf 0.074770 0.074938 0.075011 \n",
- "std NaN NaN 0.239002 0.239331 0.239643 \n",
- "min 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "25% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "50% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "75% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "max inf inf 1.000000 1.000000 1.000000 \n",
- "\n",
- " step_pred_7 step_pred_8 step_pred_9 \n",
- "count 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.074604 0.074736 0.074528 \n",
- "std 0.239266 0.238990 0.238090 \n",
- "min 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 \n",
- "\n",
- "[8 rows x 80 columns]"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "calib_predictions.describe()\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " feature | \n",
- " step_combined | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " country_id | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 565 | \n",
- " 205 | \n",
- " 0.032541 | \n",
- "
\n",
- " \n",
- " | 206 | \n",
- " 0.062064 | \n",
- "
\n",
- " \n",
- " | 209 | \n",
- " 0.170000 | \n",
- "
\n",
- " \n",
- " | 213 | \n",
- " 0.230000 | \n",
- "
\n",
- " \n",
- " | 214 | \n",
- " 0.220000 | \n",
- "
\n",
- " \n",
- " | 218 | \n",
- " 0.430000 | \n",
- "
\n",
- " \n",
- " | 220 | \n",
- " 0.850000 | \n",
- "
\n",
- " \n",
- " | 222 | \n",
- " 0.340000 | \n",
- "
\n",
- " \n",
- " | 223 | \n",
- " 0.420000 | \n",
- "
\n",
- " \n",
- " | 231 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 232 | \n",
- " 0.030000 | \n",
- "
\n",
- " \n",
- " | 233 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 234 | \n",
- " 0.065739 | \n",
- "
\n",
- " \n",
- " | 235 | \n",
- " 0.120000 | \n",
- "
\n",
- " \n",
- " | 237 | \n",
- " 0.200000 | \n",
- "
\n",
- " \n",
- " | 242 | \n",
- " 0.140000 | \n",
- "
\n",
- " \n",
- " | 243 | \n",
- " 0.125042 | \n",
- "
\n",
- " \n",
- " | 244 | \n",
- " 0.070720 | \n",
- "
\n",
- " \n",
- " | 245 | \n",
- " 0.690000 | \n",
- "
\n",
- " \n",
- " | 246 | \n",
- " 0.180000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "feature step_combined\n",
- "month_id country_id \n",
- "565 205 0.032541\n",
- " 206 0.062064\n",
- " 209 0.170000\n",
- " 213 0.230000\n",
- " 214 0.220000\n",
- " 218 0.430000\n",
- " 220 0.850000\n",
- " 222 0.340000\n",
- " 223 0.420000\n",
- " 231 0.000000\n",
- " 232 0.030000\n",
- " 233 0.000000\n",
- " 234 0.065739\n",
- " 235 0.120000\n",
- " 237 0.200000\n",
- " 242 0.140000\n",
- " 243 0.125042\n",
- " 244 0.070720\n",
- " 245 0.690000\n",
- " 246 0.180000"
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Predictions for the future:\n",
- "future_partition = views_runs.DataPartitioner({'future':future_partitioner_dict})\n",
- "future_predictions = stepshifter_model_future.future_predict('future','predict',data)\n",
- "# Predictions for the future, alternative method:\n",
- "future_point_predictions = stepshifter_model_future.future_point_predict(time=529, data=data, proba=True)\n",
- "future_point_predictions.tail(20)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | feature | \n",
- " step_combined | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 6876.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.137513 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.191055 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 0.023425 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 0.062464 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 0.160492 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 0.970000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "feature step_combined\n",
- "count 6876.000000\n",
- "mean 0.137513\n",
- "std 0.191055\n",
- "min 0.000000\n",
- "25% 0.023425\n",
- "50% 0.062464\n",
- "75% 0.160492\n",
- "max 0.970000"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "future_point_predictions.describe()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[0;31mType:\u001b[0m module\n",
- "\u001b[0;31mString form:\u001b[0m \n",
- "\u001b[0;31mFile:\u001b[0m /Applications/anaconda3/envs/viewser/lib/python3.9/site-packages/views_runs/__init__.py\n",
- "\u001b[0;31mDocstring:\u001b[0m \n",
- "views_runs\n",
- "==========\n",
- "\n",
- "This package collects views related tools and utilities used when planning,\n",
- "training and storing views \"runs\" of predictions.\n",
- "\n",
- "classes:\n",
- " ViewsRun:\n",
- " Class that encapsulates StepshiftedModels and DataPartitioner objects\n",
- " to provide a nice API for training and producing predictions.\n",
- " Storage:\n",
- " A class that exposes the viewser model_storage storage driver, used to\n",
- " save and load trained model objects.\n",
- " StepshiftedModels:\n",
- " Model class from the stepshift package that lets you train stepshifted\n",
- " models.\n",
- " DataPartitioner:\n",
- " Utility class for subsetting data in time, that lets you define\n",
- " tranining and testing periods, as well as do operations to ensure no\n",
- " overlap exists between these periods.\n",
- " ModelMetadata:\n",
- " Class used to specify metadata for trained model objects.\n",
- "\n",
- "modules:\n",
- " utilities: Various utility functions ported from views 2\n",
- " stats: Resampling functions\n",
- " run: Defines the ViewsRun class\n",
- " storage: Defines the Storage class\n",
- " validation: Functions used internally to validate data\n",
- "\n",
- "Each class and module mentioned here has more documentation. Use the help()\n",
- "function."
- ]
- }
- ],
- "source": [
- "# Docstrings: \n",
- "views_runs?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Help on package views_runs:\n",
- "\n",
- "NAME\n",
- " views_runs\n",
- "\n",
- "DESCRIPTION\n",
- " views_runs\n",
- " ==========\n",
- " \n",
- " This package collects views related tools and utilities used when planning,\n",
- " training and storing views \"runs\" of predictions.\n",
- " \n",
- " classes:\n",
- " ViewsRun:\n",
- " Class that encapsulates StepshiftedModels and DataPartitioner objects\n",
- " to provide a nice API for training and producing predictions.\n",
- " Storage:\n",
- " A class that exposes the viewser model_storage storage driver, used to\n",
- " save and load trained model objects.\n",
- " StepshiftedModels:\n",
- " Model class from the stepshift package that lets you train stepshifted\n",
- " models.\n",
- " DataPartitioner:\n",
- " Utility class for subsetting data in time, that lets you define\n",
- " tranining and testing periods, as well as do operations to ensure no\n",
- " overlap exists between these periods.\n",
- " ModelMetadata:\n",
- " Class used to specify metadata for trained model objects.\n",
- " \n",
- " modules:\n",
- " utilities: Various utility functions ported from views 2\n",
- " stats: Resampling functions\n",
- " run: Defines the ViewsRun class\n",
- " storage: Defines the Storage class\n",
- " validation: Functions used internally to validate data\n",
- " \n",
- " Each class and module mentioned here has more documentation. Use the help()\n",
- " function.\n",
- "\n",
- "PACKAGE CONTENTS\n",
- " operations\n",
- " run\n",
- " run_result\n",
- " stats\n",
- " storage\n",
- " utilities\n",
- " validation\n",
- " vendoring\n",
- "\n",
- "FILE\n",
- " /Applications/anaconda3/envs/viewser/lib/python3.9/site-packages/views_runs/__init__.py\n",
- "\n",
- "\n"
- ]
- }
- ],
- "source": [
- "# Documentation:\n",
- "help(views_runs)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Add:\n",
- "- Drift detection\n",
- "- wandb\n",
- "- Hyperparameter testing"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.18"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb b/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb
deleted file mode 100644
index 8d89eaa..0000000
--- a/models/electric_relaxation/notebooks/ESCWA_script_outputs.ipynb
+++ /dev/null
@@ -1,831 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Inspect script output"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/notebooks\n"
- ]
- }
- ],
- "source": [
- "! pwd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_directory = \"/Users/sarakallis/Documents/PRIO Local/views_pipeline/models/electric_relaxation/data/generated\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Calibration predictions"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " ged_sb_dep | \n",
- " ged_sb_dummy_t0 | \n",
- " ged_os_dummy_t0 | \n",
- " ged_ns_dummy_t0 | \n",
- " ged_sb_dummy_t1 | \n",
- " ged_sb_dummy_t2 | \n",
- " ged_sb_dummy_t3 | \n",
- " _ged_sb_dummy_t3 | \n",
- " ged_sb_dummy_t4 | \n",
- " ged_sb_dummy_t5 | \n",
- " ... | \n",
- " step_pred_33 | \n",
- " step_pred_34 | \n",
- " step_pred_35 | \n",
- " step_pred_36 | \n",
- " step_pred_4 | \n",
- " step_pred_5 | \n",
- " step_pred_6 | \n",
- " step_pred_7 | \n",
- " step_pred_8 | \n",
- " step_pred_9 | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " country_id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 409 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 80 columns
\n",
- "
"
- ],
- "text/plain": [
- " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_ns_dummy_t0 ged_sb_dummy_t1 ged_sb_dummy_t2 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t3 _ged_sb_dummy_t3 ged_sb_dummy_t4 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 \n",
- "\n",
- " ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n",
- "month_id country_id ... \n",
- "409 1 0.0 ... 0.0 0.0 \n",
- " 2 0.0 ... 0.0 0.0 \n",
- " 3 0.0 ... 0.0 0.0 \n",
- " 4 0.0 ... 0.0 0.0 \n",
- " 5 0.0 ... 0.0 0.0 \n",
- "\n",
- " step_pred_35 step_pred_36 step_pred_4 step_pred_5 \\\n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 0.0 \n",
- "\n",
- " step_pred_6 step_pred_7 step_pred_8 step_pred_9 \n",
- "month_id country_id \n",
- "409 1 0.0 0.0 0.0 0.0 \n",
- " 2 0.0 0.0 0.0 0.0 \n",
- " 3 0.0 0.0 0.0 0.0 \n",
- " 4 0.0 0.0 0.0 0.0 \n",
- " 5 0.0 0.0 0.0 0.0 \n",
- "\n",
- "[5 rows x 80 columns]"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "calib_predictions = pd.read_parquet(f\"{data_directory}/calib_predictions.parquet\")\n",
- "calib_predictions.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " ged_sb_dep | \n",
- " ged_sb_dummy_t0 | \n",
- " ged_os_dummy_t0 | \n",
- " ged_ns_dummy_t0 | \n",
- " ged_sb_dummy_t1 | \n",
- " ged_sb_dummy_t2 | \n",
- " ged_sb_dummy_t3 | \n",
- " _ged_sb_dummy_t3 | \n",
- " ged_sb_dummy_t4 | \n",
- " ged_sb_dummy_t5 | \n",
- " ... | \n",
- " step_pred_33 | \n",
- " step_pred_34 | \n",
- " step_pred_35 | \n",
- " step_pred_36 | \n",
- " step_pred_4 | \n",
- " step_pred_5 | \n",
- " step_pred_6 | \n",
- " step_pred_7 | \n",
- " step_pred_8 | \n",
- " step_pred_9 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " ... | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.0 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- " 9168.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.075153 | \n",
- " 0.075153 | \n",
- " 0.033050 | \n",
- " 0.036322 | \n",
- " 0.075044 | \n",
- " 0.074607 | \n",
- " 0.075044 | \n",
- " 0.075044 | \n",
- " 0.073953 | \n",
- " 0.073844 | \n",
- " ... | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " 0.075143 | \n",
- " 0.075019 | \n",
- " 0.074955 | \n",
- " 0.074634 | \n",
- " 0.074712 | \n",
- " 0.074912 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.263652 | \n",
- " 0.263652 | \n",
- " 0.178776 | \n",
- " 0.187100 | \n",
- " 0.263476 | \n",
- " 0.262771 | \n",
- " 0.263476 | \n",
- " 0.263476 | \n",
- " 0.261708 | \n",
- " 0.261531 | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.240009 | \n",
- " 0.239584 | \n",
- " 0.239502 | \n",
- " 0.238943 | \n",
- " 0.239064 | \n",
- " 0.238478 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " ... | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " ... | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " inf | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
8 rows × 80 columns
\n",
- "
"
- ],
- "text/plain": [
- " ged_sb_dep ged_sb_dummy_t0 ged_os_dummy_t0 ged_ns_dummy_t0 \\\n",
- "count 9168.000000 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.075153 0.075153 0.033050 0.036322 \n",
- "std 0.263652 0.263652 0.178776 0.187100 \n",
- "min 0.000000 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 1.000000 \n",
- "\n",
- " ged_sb_dummy_t1 ged_sb_dummy_t2 ged_sb_dummy_t3 _ged_sb_dummy_t3 \\\n",
- "count 9168.000000 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.075044 0.074607 0.075044 0.075044 \n",
- "std 0.263476 0.262771 0.263476 0.263476 \n",
- "min 0.000000 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 1.000000 \n",
- "\n",
- " ged_sb_dummy_t4 ged_sb_dummy_t5 ... step_pred_33 step_pred_34 \\\n",
- "count 9168.000000 9168.000000 ... 9168.0 9168.0 \n",
- "mean 0.073953 0.073844 ... inf inf \n",
- "std 0.261708 0.261531 ... NaN NaN \n",
- "min 0.000000 0.000000 ... 0.0 0.0 \n",
- "25% 0.000000 0.000000 ... 0.0 0.0 \n",
- "50% 0.000000 0.000000 ... 0.0 0.0 \n",
- "75% 0.000000 0.000000 ... 0.0 0.0 \n",
- "max 1.000000 1.000000 ... inf inf \n",
- "\n",
- " step_pred_35 step_pred_36 step_pred_4 step_pred_5 step_pred_6 \\\n",
- "count 9168.0 9168.0 9168.000000 9168.000000 9168.000000 \n",
- "mean inf inf 0.075143 0.075019 0.074955 \n",
- "std NaN NaN 0.240009 0.239584 0.239502 \n",
- "min 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "25% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "50% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "75% 0.0 0.0 0.000000 0.000000 0.000000 \n",
- "max inf inf 1.000000 1.000000 1.000000 \n",
- "\n",
- " step_pred_7 step_pred_8 step_pred_9 \n",
- "count 9168.000000 9168.000000 9168.000000 \n",
- "mean 0.074634 0.074712 0.074912 \n",
- "std 0.238943 0.239064 0.238478 \n",
- "min 0.000000 0.000000 0.000000 \n",
- "25% 0.000000 0.000000 0.000000 \n",
- "50% 0.000000 0.000000 0.000000 \n",
- "75% 0.000000 0.000000 0.000000 \n",
- "max 1.000000 1.000000 1.000000 \n",
- "\n",
- "[8 rows x 80 columns]"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "calib_predictions.describe()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Future predictions"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "future_predictions = pd.read_parquet(f\"{data_directory}/future_predictions.parquet\")\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " feature | \n",
- " step_combined | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " country_id | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 530 | \n",
- " 1 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 0.0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "feature step_combined\n",
- "month_id country_id \n",
- "530 1 0.0\n",
- " 2 0.0\n",
- " 3 0.0\n",
- " 4 0.0\n",
- " 5 0.0"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "future_predictions.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | feature | \n",
- " step_combined | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 6876.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.077080 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.266737 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "feature step_combined\n",
- "count 6876.000000\n",
- "mean 0.077080\n",
- "std 0.266737\n",
- "min 0.000000\n",
- "25% 0.000000\n",
- "50% 0.000000\n",
- "75% 0.000000\n",
- "max 1.000000"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "future_predictions.describe()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "viewser",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.18"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/models/orange_pasta/notebooks/notebook001.ipynb b/models/orange_pasta/notebooks/notebook001.ipynb
deleted file mode 100644
index b428e1f..0000000
--- a/models/orange_pasta/notebooks/notebook001.ipynb
+++ /dev/null
@@ -1,242 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2024-06-19T14:45:24.635363Z",
- "start_time": "2024-06-19T14:45:22.079967Z"
- }
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "import numpy as np\n",
- "from views_stepshift import *\n",
- "import properscoring as ps\n",
- "from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_squared_log_error, brier_score_loss, average_precision_score, roc_auc_score\n",
- "from views_forecasts.extensions import *\n",
- "from common_utils.utils_evaluation_metrics import EvaluationMetrics\n",
- "from common_utils.utils_model_outputs import ModelOutputs"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "outputs": [
- {
- "data": {
- "text/plain": " y_score y_score_prob y_var y_var_prob y_true y_true_binary pg_id \\\n0 0.062623 NaN NaN NaN 0.0 NaN 62356 \n1 0.062623 NaN NaN NaN 0.0 NaN 79599 \n2 0.062623 NaN NaN NaN 0.0 NaN 79600 \n3 0.062623 NaN NaN NaN 0.0 NaN 79601 \n4 0.062623 NaN NaN NaN 0.0 NaN 80317 \n... ... ... ... ... ... ... ... \n22654075 0.064958 NaN NaN NaN 0.0 NaN 190496 \n22654076 0.064958 NaN NaN NaN 0.0 NaN 190507 \n22654077 0.064958 NaN NaN NaN 0.0 NaN 190508 \n22654078 0.064958 NaN NaN NaN 0.0 NaN 190510 \n22654079 0.064958 NaN NaN NaN 0.0 NaN 190511 \n\n c_id month_id out_sample_month \n0 NaN 445 1 \n1 NaN 445 1 \n2 NaN 445 1 \n3 NaN 445 1 \n4 NaN 445 1 \n... ... ... ... \n22654075 NaN 492 36 \n22654076 NaN 492 36 \n22654077 NaN 492 36 \n22654078 NaN 492 36 \n22654079 NaN 492 36 \n\n[22654080 rows x 10 columns]",
- "text/html": "\n\n
\n \n \n | \n y_score | \n y_score_prob | \n y_var | \n y_var_prob | \n y_true | \n y_true_binary | \n pg_id | \n c_id | \n month_id | \n out_sample_month | \n
\n \n \n \n | 0 | \n 0.062623 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 62356 | \n NaN | \n 445 | \n 1 | \n
\n \n | 1 | \n 0.062623 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 79599 | \n NaN | \n 445 | \n 1 | \n
\n \n | 2 | \n 0.062623 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 79600 | \n NaN | \n 445 | \n 1 | \n
\n \n | 3 | \n 0.062623 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 79601 | \n NaN | \n 445 | \n 1 | \n
\n \n | 4 | \n 0.062623 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 80317 | \n NaN | \n 445 | \n 1 | \n
\n \n | ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n | 22654075 | \n 0.064958 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 190496 | \n NaN | \n 492 | \n 36 | \n
\n \n | 22654076 | \n 0.064958 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 190507 | \n NaN | \n 492 | \n 36 | \n
\n \n | 22654077 | \n 0.064958 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 190508 | \n NaN | \n 492 | \n 36 | \n
\n \n | 22654078 | \n 0.064958 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 190510 | \n NaN | \n 492 | \n 36 | \n
\n \n | 22654079 | \n 0.064958 | \n NaN | \n NaN | \n NaN | \n 0.0 | \n NaN | \n 190511 | \n NaN | \n 492 | \n 36 | \n
\n \n
\n
22654080 rows × 10 columns
\n
"
- },
- "execution_count": 52,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_output = pd.read_pickle('../data/generated/df_output_36_testing_20240618_155834.pkl')\n",
- "df_output"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-19T14:13:59.953480Z",
- "start_time": "2024-06-19T14:13:59.948609Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 54,
- "outputs": [
- {
- "data": {
- "text/plain": " MSE MAE MSLE KLD Jeffreys CRPS Brier AP AUC \\\nstep01 33.787333 0.260264 None None None 0.260264 None None None \nstep02 41.030356 0.281456 None None None 0.281456 None None None \nstep03 48.388455 0.293722 None None None 0.293722 None None None \nstep04 48.176262 0.282599 None None None 0.282599 None None None \nstep05 56.285934 0.302974 None None None 0.302974 None None None \nstep06 47.178029 0.288970 None None None 0.288970 None None None \nstep07 47.613544 0.290899 None None None 0.290899 None None None \nstep08 54.069031 0.305460 None None None 0.305460 None None None \nstep09 55.087259 0.314131 None None None 0.314131 None None None \nstep10 55.194927 0.314236 None None None 0.314236 None None None \nstep11 65.340730 0.335363 None None None 0.335363 None None None \nstep12 59.454320 0.318001 None None None 0.318001 None None None \nstep13 53.123586 0.313850 None None None 0.313850 None None None \nstep14 49.622333 0.302461 None None None 0.302461 None None None \nstep15 52.879568 0.310318 None None None 0.310318 None None None \nstep16 62.389715 0.325833 None None None 0.325833 None None None \nstep17 61.386507 0.344998 None None None 0.344998 None None None \nstep18 59.977352 0.340566 None None None 0.340566 None None None \nstep19 53.626635 0.341182 None None None 0.341182 None None None \nstep20 59.695450 0.333834 None None None 0.333834 None None None \nstep21 51.908472 0.355539 None None None 0.355539 None None None \nstep22 58.230838 0.371551 None None None 0.371551 None None None \nstep23 60.724871 0.371524 None None None 0.371524 None None None \nstep24 55.447345 0.386148 None None None 0.386148 None None None \nstep25 55.070633 0.369498 None None None 0.369498 None None None \nstep26 52.562588 0.372124 None None None 0.372124 None None None \nstep27 69.148095 0.385292 None None None 0.385292 None None None \nstep28 63.234910 0.373196 None None None 0.373196 None None None \nstep29 59.858053 0.363831 None None None 0.363831 None None None \nstep30 53.775858 0.352540 None None None 0.352540 None None None \nstep31 64.640432 0.389636 None None None 0.389636 None None None \nstep32 61.634035 0.405523 None None None 0.405523 None None None \nstep33 59.013487 0.391181 None None None 0.391181 None None None \nstep34 58.546634 0.379228 None None None 0.379228 None None None \nstep35 58.752317 0.371496 None None None 0.371496 None None None \nstep36 55.413118 0.372958 None None None 0.372958 None None None \nmean 55.618584 0.339233 None None None 0.339233 None None None \nstd 6.927444 0.038170 None None None 0.038170 None None None \nmedian 55.430232 0.340874 None None None 0.340874 None None None \n\n ensemble_weight_reg ensemble_weight_class \nstep01 None None \nstep02 None None \nstep03 None None \nstep04 None None \nstep05 None None \nstep06 None None \nstep07 None None \nstep08 None None \nstep09 None None \nstep10 None None \nstep11 None None \nstep12 None None \nstep13 None None \nstep14 None None \nstep15 None None \nstep16 None None \nstep17 None None \nstep18 None None \nstep19 None None \nstep20 None None \nstep21 None None \nstep22 None None \nstep23 None None \nstep24 None None \nstep25 None None \nstep26 None None \nstep27 None None \nstep28 None None \nstep29 None None \nstep30 None None \nstep31 None None \nstep32 None None \nstep33 None None \nstep34 None None \nstep35 None None \nstep36 None None \nmean None None \nstd None None \nmedian None None ",
- "text/html": "\n\n
\n \n \n | \n MSE | \n MAE | \n MSLE | \n KLD | \n Jeffreys | \n CRPS | \n Brier | \n AP | \n AUC | \n ensemble_weight_reg | \n ensemble_weight_class | \n
\n \n \n \n | step01 | \n 33.787333 | \n 0.260264 | \n None | \n None | \n None | \n 0.260264 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step02 | \n 41.030356 | \n 0.281456 | \n None | \n None | \n None | \n 0.281456 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step03 | \n 48.388455 | \n 0.293722 | \n None | \n None | \n None | \n 0.293722 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step04 | \n 48.176262 | \n 0.282599 | \n None | \n None | \n None | \n 0.282599 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step05 | \n 56.285934 | \n 0.302974 | \n None | \n None | \n None | \n 0.302974 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step06 | \n 47.178029 | \n 0.288970 | \n None | \n None | \n None | \n 0.288970 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step07 | \n 47.613544 | \n 0.290899 | \n None | \n None | \n None | \n 0.290899 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step08 | \n 54.069031 | \n 0.305460 | \n None | \n None | \n None | \n 0.305460 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step09 | \n 55.087259 | \n 0.314131 | \n None | \n None | \n None | \n 0.314131 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step10 | \n 55.194927 | \n 0.314236 | \n None | \n None | \n None | \n 0.314236 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step11 | \n 65.340730 | \n 0.335363 | \n None | \n None | \n None | \n 0.335363 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step12 | \n 59.454320 | \n 0.318001 | \n None | \n None | \n None | \n 0.318001 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step13 | \n 53.123586 | \n 0.313850 | \n None | \n None | \n None | \n 0.313850 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step14 | \n 49.622333 | \n 0.302461 | \n None | \n None | \n None | \n 0.302461 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step15 | \n 52.879568 | \n 0.310318 | \n None | \n None | \n None | \n 0.310318 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step16 | \n 62.389715 | \n 0.325833 | \n None | \n None | \n None | \n 0.325833 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step17 | \n 61.386507 | \n 0.344998 | \n None | \n None | \n None | \n 0.344998 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step18 | \n 59.977352 | \n 0.340566 | \n None | \n None | \n None | \n 0.340566 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step19 | \n 53.626635 | \n 0.341182 | \n None | \n None | \n None | \n 0.341182 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step20 | \n 59.695450 | \n 0.333834 | \n None | \n None | \n None | \n 0.333834 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step21 | \n 51.908472 | \n 0.355539 | \n None | \n None | \n None | \n 0.355539 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step22 | \n 58.230838 | \n 0.371551 | \n None | \n None | \n None | \n 0.371551 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step23 | \n 60.724871 | \n 0.371524 | \n None | \n None | \n None | \n 0.371524 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step24 | \n 55.447345 | \n 0.386148 | \n None | \n None | \n None | \n 0.386148 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step25 | \n 55.070633 | \n 0.369498 | \n None | \n None | \n None | \n 0.369498 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step26 | \n 52.562588 | \n 0.372124 | \n None | \n None | \n None | \n 0.372124 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step27 | \n 69.148095 | \n 0.385292 | \n None | \n None | \n None | \n 0.385292 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step28 | \n 63.234910 | \n 0.373196 | \n None | \n None | \n None | \n 0.373196 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step29 | \n 59.858053 | \n 0.363831 | \n None | \n None | \n None | \n 0.363831 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step30 | \n 53.775858 | \n 0.352540 | \n None | \n None | \n None | \n 0.352540 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step31 | \n 64.640432 | \n 0.389636 | \n None | \n None | \n None | \n 0.389636 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step32 | \n 61.634035 | \n 0.405523 | \n None | \n None | \n None | \n 0.405523 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step33 | \n 59.013487 | \n 0.391181 | \n None | \n None | \n None | \n 0.391181 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step34 | \n 58.546634 | \n 0.379228 | \n None | \n None | \n None | \n 0.379228 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step35 | \n 58.752317 | \n 0.371496 | \n None | \n None | \n None | \n 0.371496 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | step36 | \n 55.413118 | \n 0.372958 | \n None | \n None | \n None | \n 0.372958 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | mean | \n 55.618584 | \n 0.339233 | \n None | \n None | \n None | \n 0.339233 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | std | \n 6.927444 | \n 0.038170 | \n None | \n None | \n None | \n 0.038170 | \n None | \n None | \n None | \n None | \n None | \n
\n \n | median | \n 55.430232 | \n 0.340874 | \n None | \n None | \n None | \n 0.340874 | \n None | \n None | \n None | \n None | \n None | \n
\n \n
\n
"
- },
- "execution_count": 54,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_eval = pd.read_pickle('../data/generated/df_evaluation_36_testing_20240618_155834.pkl')\n",
- "df_eval"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-19T14:14:48.935539Z",
- "start_time": "2024-06-19T14:14:48.916520Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "outputs": [],
- "source": [
- "df_forecast = pd.read_pickle(\"../data/generated/predictions_36_forecasting_20240619_172828.pkl\")"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-19T15:29:17.921430Z",
- "start_time": "2024-06-19T15:29:17.914007Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "outputs": [
- {
- "data": {
- "text/plain": "Empty DataFrame\nColumns: [step_pred_1, step_pred_2, step_pred_3, step_pred_4, step_pred_5, step_pred_6, step_pred_7, step_pred_8, step_pred_9, step_pred_10, step_pred_11, step_pred_12, step_pred_13, step_pred_14, step_pred_15, step_pred_16, step_pred_17, step_pred_18, step_pred_19, step_pred_20, step_pred_21, step_pred_22, step_pred_23, step_pred_24, step_pred_25, step_pred_26, step_pred_27, step_pred_28, step_pred_29, step_pred_30, step_pred_31, step_pred_32, step_pred_33, step_pred_34, step_pred_35, step_pred_36]\nIndex: []\n\n[0 rows x 36 columns]",
- "text/html": "\n\n
\n \n \n | \n | \n step_pred_1 | \n step_pred_2 | \n step_pred_3 | \n step_pred_4 | \n step_pred_5 | \n step_pred_6 | \n step_pred_7 | \n step_pred_8 | \n step_pred_9 | \n step_pred_10 | \n ... | \n step_pred_27 | \n step_pred_28 | \n step_pred_29 | \n step_pred_30 | \n step_pred_31 | \n step_pred_32 | \n step_pred_33 | \n step_pred_34 | \n step_pred_35 | \n step_pred_36 | \n
\n \n | month_id | \n priogrid_gid | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n
\n \n \n \n
\n
0 rows × 36 columns
\n
"
- },
- "execution_count": 19,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_forecast"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-19T15:29:18.626134Z",
- "start_time": "2024-06-19T15:29:18.622691Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "outputs": [],
- "source": [
- "stepshift_model = pd.read_pickle(\"../artifacts/forecasting_model_20240618_173119.pkl\")\n",
- "dataset = pd.read_parquet(\"../data/raw/raw_forecasting.parquet\")\n",
- "run_type = 'forecasting'"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-20T07:20:03.452716Z",
- "start_time": "2024-06-20T07:20:03.118062Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "outputs": [],
- "source": [
- "from ingester3.ViewsMonth import ViewsMonth\n",
- "\n",
- "def get_partitioner_dict(partition, step=36):\n",
- "\n",
- " \"\"\"Returns the partitioner_dict for the given partition.\"\"\"\n",
- "\n",
- " if partition == 'calibration':\n",
- "\n",
- " partitioner_dict = {\"train\":(121,396),\"predict\":(397,444)} # calib_partitioner_dict - (01/01/1990 - 12/31/2012) : (01/01/2013 - 31/12/2015)\n",
- "\n",
- " if partition == 'testing':\n",
- "\n",
- " partitioner_dict = {\"train\":(121,444),\"predict\":(445,492)} \n",
- "\n",
- " if partition == 'forecasting':\n",
- "\n",
- " month_last = ViewsMonth.now().id - 2 # minus 2 because the current month is not yet available. Verified but can be tested by chinging this and running the check_data notebook.\n",
- "\n",
- " partitioner_dict = {\"train\":(121, month_last),\"predict\":(month_last +1, month_last + 1 + step)} # is it even meaningful to have a predict partition for forecasting? if not you can remove steps\n",
- "\n",
- " # print('partitioner_dict', partitioner_dict) \n",
- "\n",
- " return partitioner_dict\n",
- " \n",
- "def get_partition_data(df, run_type):\n",
- " partitioner_dict = get_partitioner_dict(run_type)\n",
- "\n",
- " month_first = partitioner_dict['train'][0]\n",
- "\n",
- " if run_type in ['calibration', 'testing', 'forecasting']:\n",
- " month_last = partitioner_dict['predict'][1] + 1 # forecasting also needs to get predict months even if they are empty\n",
- " else:\n",
- " raise ValueError('partition should be either \"calibration\", \"testing\" or \"forecasting\"')\n",
- " \n",
- " month_range = np.arange(month_first, month_last,1) # predict[1] is the last month to predict, so we need to add 1 to include it.\n",
- "\n",
- " df = df[df.index.get_level_values(\"month_id\").isin(month_range)].copy() # temporal subset\n",
- "\n",
- " return df"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-20T07:38:47.793724Z",
- "start_time": "2024-06-20T07:38:47.787208Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "outputs": [
- {
- "data": {
- "text/plain": " ged_sb_dep ln_ged_sb ln_pop_gpw_sum decay_ged_sb_1 \\\nmonth_id priogrid_gid \n533 62356 0.0 0.0 0.000000 2.124068e-07 \n 79599 0.0 0.0 9.145198 2.124068e-07 \n 79600 0.0 0.0 8.394584 2.124068e-07 \n 79601 0.0 0.0 9.903443 2.124068e-07 \n 80317 0.0 0.0 12.290978 2.124068e-07 \n... ... ... ... ... \n569 190496 0.0 0.0 10.408626 7.509715e-08 \n 190507 0.0 0.0 6.647283 7.509715e-08 \n 190508 0.0 0.0 4.562102 7.509715e-08 \n 190510 0.0 0.0 7.619576 7.509715e-08 \n 190511 0.0 0.0 7.596084 7.509715e-08 \n\n decay_ged_sb_25 decay_ged_os_1 splag_1_1_sb_1 \\\nmonth_id priogrid_gid \n533 62356 2.124068e-07 2.124068e-07 0.000000e+00 \n 79599 2.124068e-07 2.124068e-07 8.496272e-07 \n 79600 2.124068e-07 2.124068e-07 1.062034e-06 \n 79601 2.124068e-07 2.124068e-07 8.496272e-07 \n 80317 2.124068e-07 2.124068e-07 6.372204e-07 \n... ... ... ... \n569 190496 7.509715e-08 7.509715e-08 3.003886e-07 \n 190507 7.509715e-08 7.509715e-08 3.003886e-07 \n 190508 7.509715e-08 7.509715e-08 3.003886e-07 \n 190510 7.509715e-08 7.509715e-08 3.003886e-07 \n 190511 7.509715e-08 7.509715e-08 3.003886e-07 \n\n splag_1_decay_ged_sb_1 step_pred_1 step_pred_10 ... \\\nmonth_id priogrid_gid ... \n533 62356 0.000000e+00 0.075624 0.086838 ... \n 79599 8.496272e-07 0.075624 0.086838 ... \n 79600 1.062034e-06 0.075624 0.086838 ... \n 79601 8.496272e-07 0.075624 0.086838 ... \n 80317 6.372204e-07 0.075624 0.086838 ... \n... ... ... ... ... \n569 190496 3.003886e-07 0.075624 0.086838 ... \n 190507 3.003886e-07 0.075624 0.086838 ... \n 190508 3.003886e-07 0.075624 0.086838 ... \n 190510 3.003886e-07 0.075624 0.086838 ... \n 190511 3.003886e-07 0.075624 0.086838 ... \n\n step_pred_33 step_pred_34 step_pred_35 step_pred_36 \\\nmonth_id priogrid_gid \n533 62356 0.087995 0.085165 0.086579 0.087058 \n 79599 0.087995 0.085165 0.086579 0.087058 \n 79600 0.087995 0.085165 0.086579 0.087058 \n 79601 0.087995 0.085165 0.086579 0.087058 \n 80317 0.087995 0.085165 0.086579 0.087058 \n... ... ... ... ... \n569 190496 0.087995 0.085165 0.086579 0.087058 \n 190507 0.087995 0.085165 0.086579 0.087058 \n 190508 0.087995 0.085165 0.086579 0.087058 \n 190510 0.087995 0.085165 0.086579 0.087058 \n 190511 0.087995 0.085165 0.086579 0.087058 \n\n step_pred_4 step_pred_5 step_pred_6 step_pred_7 \\\nmonth_id priogrid_gid \n533 62356 0.078232 0.077486 0.077665 0.078307 \n 79599 0.078232 0.077486 0.077665 0.078307 \n 79600 0.078232 0.077486 0.077665 0.078307 \n 79601 0.078232 0.077486 0.077665 0.078307 \n 80317 0.078232 0.077486 0.077665 0.078307 \n... ... ... ... ... \n569 190496 0.078232 0.077486 0.077665 0.078307 \n 190507 0.078232 0.077486 0.077665 0.078307 \n 190508 0.078232 0.077486 0.077665 0.078307 \n 190510 0.078232 0.077486 0.077665 0.078307 \n 190511 0.078232 0.077486 0.077665 0.078307 \n\n step_pred_8 step_pred_9 \nmonth_id priogrid_gid \n533 62356 0.079862 0.081073 \n 79599 0.079862 0.081073 \n 79600 0.079862 0.081073 \n 79601 0.079862 0.081073 \n 80317 0.079862 0.081073 \n... ... ... \n569 190496 0.079862 0.081073 \n 190507 0.079862 0.081073 \n 190508 0.079862 0.081073 \n 190510 0.079862 0.081073 \n 190511 0.079862 0.081073 \n\n[485070 rows x 44 columns]",
- "text/html": "\n\n
\n \n \n | \n | \n ged_sb_dep | \n ln_ged_sb | \n ln_pop_gpw_sum | \n decay_ged_sb_1 | \n decay_ged_sb_25 | \n decay_ged_os_1 | \n splag_1_1_sb_1 | \n splag_1_decay_ged_sb_1 | \n step_pred_1 | \n step_pred_10 | \n ... | \n step_pred_33 | \n step_pred_34 | \n step_pred_35 | \n step_pred_36 | \n step_pred_4 | \n step_pred_5 | \n step_pred_6 | \n step_pred_7 | \n step_pred_8 | \n step_pred_9 | \n
\n \n | month_id | \n priogrid_gid | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n
\n \n \n \n | 533 | \n 62356 | \n 0.0 | \n 0.0 | \n 0.000000 | \n 2.124068e-07 | \n 2.124068e-07 | \n 2.124068e-07 | \n 0.000000e+00 | \n 0.000000e+00 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 79599 | \n 0.0 | \n 0.0 | \n 9.145198 | \n 2.124068e-07 | \n 2.124068e-07 | \n 2.124068e-07 | \n 8.496272e-07 | \n 8.496272e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 79600 | \n 0.0 | \n 0.0 | \n 8.394584 | \n 2.124068e-07 | \n 2.124068e-07 | \n 2.124068e-07 | \n 1.062034e-06 | \n 1.062034e-06 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 79601 | \n 0.0 | \n 0.0 | \n 9.903443 | \n 2.124068e-07 | \n 2.124068e-07 | \n 2.124068e-07 | \n 8.496272e-07 | \n 8.496272e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 80317 | \n 0.0 | \n 0.0 | \n 12.290978 | \n 2.124068e-07 | \n 2.124068e-07 | \n 2.124068e-07 | \n 6.372204e-07 | \n 6.372204e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n | 569 | \n 190496 | \n 0.0 | \n 0.0 | \n 10.408626 | \n 7.509715e-08 | \n 7.509715e-08 | \n 7.509715e-08 | \n 3.003886e-07 | \n 3.003886e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 190507 | \n 0.0 | \n 0.0 | \n 6.647283 | \n 7.509715e-08 | \n 7.509715e-08 | \n 7.509715e-08 | \n 3.003886e-07 | \n 3.003886e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 190508 | \n 0.0 | \n 0.0 | \n 4.562102 | \n 7.509715e-08 | \n 7.509715e-08 | \n 7.509715e-08 | \n 3.003886e-07 | \n 3.003886e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 190510 | \n 0.0 | \n 0.0 | \n 7.619576 | \n 7.509715e-08 | \n 7.509715e-08 | \n 7.509715e-08 | \n 3.003886e-07 | \n 3.003886e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n | 190511 | \n 0.0 | \n 0.0 | \n 7.596084 | \n 7.509715e-08 | \n 7.509715e-08 | \n 7.509715e-08 | \n 3.003886e-07 | \n 3.003886e-07 | \n 0.075624 | \n 0.086838 | \n ... | \n 0.087995 | \n 0.085165 | \n 0.086579 | \n 0.087058 | \n 0.078232 | \n 0.077486 | \n 0.077665 | \n 0.078307 | \n 0.079862 | \n 0.081073 | \n
\n \n
\n
485070 rows × 44 columns
\n
"
- },
- "execution_count": 34,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "stepshift_model.predict(run_type, \"predict\", get_partition_data(dataset, run_type))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2024-06-20T07:39:18.354405Z",
- "start_time": "2024-06-20T07:38:48.115441Z"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false
- }
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "viewser",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.5"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/models/orange_pasta/notebooks/test.ipynb b/models/orange_pasta/notebooks/test.ipynb
deleted file mode 100644
index 9fdf2a2..0000000
--- a/models/orange_pasta/notebooks/test.ipynb
+++ /dev/null
@@ -1,1263 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "from common_utils.views_stepshifter_darts.stepshifter import *"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 103,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_combined | \n",
- " ln_ged_sb_dep | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 537 | \n",
- " 62356.0 | \n",
- " 0.000120 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000119 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000124 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000135 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000417 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 572 | \n",
- " 190496.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
471960 rows × 2 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_combined ln_ged_sb_dep\n",
- "month_id priogrid_gid \n",
- "537 62356.0 0.000120 NaN\n",
- " 79599.0 0.000119 NaN\n",
- " 79600.0 0.000124 NaN\n",
- " 79601.0 0.000135 NaN\n",
- " 80317.0 0.000417 NaN\n",
- "... ... ...\n",
- "572 190496.0 0.000000 NaN\n",
- " 190507.0 0.000000 NaN\n",
- " 190508.0 0.000000 NaN\n",
- " 190510.0 0.000000 NaN\n",
- " 190511.0 0.000000 NaN\n",
- "\n",
- "[471960 rows x 2 columns]"
- ]
- },
- "execution_count": 103,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pd.read_pickle('models/old_money/data/generated/predictions_36_forecasting_20241009_153720.pkl')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_1 | \n",
- " step_pred_2 | \n",
- " step_pred_3 | \n",
- " step_pred_4 | \n",
- " step_pred_5 | \n",
- " step_pred_6 | \n",
- " step_pred_7 | \n",
- " step_pred_8 | \n",
- " step_pred_9 | \n",
- " step_pred_10 | \n",
- " ... | \n",
- " step_pred_27 | \n",
- " step_pred_28 | \n",
- " step_pred_29 | \n",
- " step_pred_30 | \n",
- " step_pred_31 | \n",
- " step_pred_32 | \n",
- " step_pred_33 | \n",
- " step_pred_34 | \n",
- " step_pred_35 | \n",
- " step_pred_36 | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 538 | \n",
- " 62356.0 | \n",
- " 0.000083 | \n",
- " 0.000087 | \n",
- " 0.000050 | \n",
- " 0.000116 | \n",
- " 0.000106 | \n",
- " 0.000112 | \n",
- " 0.000087 | \n",
- " 0.000068 | \n",
- " 0.000094 | \n",
- " 0.000026 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.00000 | \n",
- " 0.000000 | \n",
- " 0.000023 | \n",
- " 0.000045 | \n",
- " 0.000171 | \n",
- " 0.000065 | \n",
- " 0.000014 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000083 | \n",
- " 0.000087 | \n",
- " 0.000050 | \n",
- " 0.000116 | \n",
- " 0.000106 | \n",
- " 0.000112 | \n",
- " 0.000087 | \n",
- " 0.000068 | \n",
- " 0.000094 | \n",
- " 0.000026 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.00000 | \n",
- " 0.000000 | \n",
- " 0.000023 | \n",
- " 0.000045 | \n",
- " 0.000171 | \n",
- " 0.000065 | \n",
- " 0.000014 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000083 | \n",
- " 0.000087 | \n",
- " 0.000050 | \n",
- " 0.000116 | \n",
- " 0.000106 | \n",
- " 0.000112 | \n",
- " 0.000087 | \n",
- " 0.000068 | \n",
- " 0.000094 | \n",
- " 0.000026 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.00000 | \n",
- " 0.000000 | \n",
- " 0.000023 | \n",
- " 0.000045 | \n",
- " 0.000171 | \n",
- " 0.000065 | \n",
- " 0.000014 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000083 | \n",
- " 0.000087 | \n",
- " 0.000050 | \n",
- " 0.000116 | \n",
- " 0.000106 | \n",
- " 0.000112 | \n",
- " 0.000087 | \n",
- " 0.000068 | \n",
- " 0.000094 | \n",
- " 0.000026 | \n",
- " ... | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.00000 | \n",
- " 0.000000 | \n",
- " 0.000023 | \n",
- " 0.000045 | \n",
- " 0.000171 | \n",
- " 0.000065 | \n",
- " 0.000014 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000372 | \n",
- " 0.000540 | \n",
- " 0.000613 | \n",
- " 0.000722 | \n",
- " 0.000815 | \n",
- " 0.001095 | \n",
- " 0.001092 | \n",
- " 0.001170 | \n",
- " 0.001545 | \n",
- " 0.001709 | \n",
- " ... | \n",
- " 0.001885 | \n",
- " 0.002085 | \n",
- " 0.00216 | \n",
- " 0.003642 | \n",
- " 0.002133 | \n",
- " 0.002913 | \n",
- " 0.002323 | \n",
- " 0.003203 | \n",
- " 0.003237 | \n",
- " 0.003281 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 573 | \n",
- " 190496.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " ... | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
471960 rows × 36 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_1 step_pred_2 step_pred_3 step_pred_4 \\\n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000083 0.000087 0.000050 0.000116 \n",
- " 79599.0 0.000083 0.000087 0.000050 0.000116 \n",
- " 79600.0 0.000083 0.000087 0.000050 0.000116 \n",
- " 79601.0 0.000083 0.000087 0.000050 0.000116 \n",
- " 80317.0 0.000372 0.000540 0.000613 0.000722 \n",
- "... ... ... ... ... \n",
- "573 190496.0 NaN NaN NaN NaN \n",
- " 190507.0 NaN NaN NaN NaN \n",
- " 190508.0 NaN NaN NaN NaN \n",
- " 190510.0 NaN NaN NaN NaN \n",
- " 190511.0 NaN NaN NaN NaN \n",
- "\n",
- " step_pred_5 step_pred_6 step_pred_7 step_pred_8 \\\n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000106 0.000112 0.000087 0.000068 \n",
- " 79599.0 0.000106 0.000112 0.000087 0.000068 \n",
- " 79600.0 0.000106 0.000112 0.000087 0.000068 \n",
- " 79601.0 0.000106 0.000112 0.000087 0.000068 \n",
- " 80317.0 0.000815 0.001095 0.001092 0.001170 \n",
- "... ... ... ... ... \n",
- "573 190496.0 NaN NaN NaN NaN \n",
- " 190507.0 NaN NaN NaN NaN \n",
- " 190508.0 NaN NaN NaN NaN \n",
- " 190510.0 NaN NaN NaN NaN \n",
- " 190511.0 NaN NaN NaN NaN \n",
- "\n",
- " step_pred_9 step_pred_10 ... step_pred_27 \\\n",
- "month_id priogrid_gid ... \n",
- "538 62356.0 0.000094 0.000026 ... 0.000000 \n",
- " 79599.0 0.000094 0.000026 ... 0.000000 \n",
- " 79600.0 0.000094 0.000026 ... 0.000000 \n",
- " 79601.0 0.000094 0.000026 ... 0.000000 \n",
- " 80317.0 0.001545 0.001709 ... 0.001885 \n",
- "... ... ... ... ... \n",
- "573 190496.0 NaN NaN ... NaN \n",
- " 190507.0 NaN NaN ... NaN \n",
- " 190508.0 NaN NaN ... NaN \n",
- " 190510.0 NaN NaN ... NaN \n",
- " 190511.0 NaN NaN ... NaN \n",
- "\n",
- " step_pred_28 step_pred_29 step_pred_30 step_pred_31 \\\n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000000 0.00000 0.000000 0.000023 \n",
- " 79599.0 0.000000 0.00000 0.000000 0.000023 \n",
- " 79600.0 0.000000 0.00000 0.000000 0.000023 \n",
- " 79601.0 0.000000 0.00000 0.000000 0.000023 \n",
- " 80317.0 0.002085 0.00216 0.003642 0.002133 \n",
- "... ... ... ... ... \n",
- "573 190496.0 NaN NaN NaN NaN \n",
- " 190507.0 NaN NaN NaN NaN \n",
- " 190508.0 NaN NaN NaN NaN \n",
- " 190510.0 NaN NaN NaN NaN \n",
- " 190511.0 NaN NaN NaN NaN \n",
- "\n",
- " step_pred_32 step_pred_33 step_pred_34 step_pred_35 \\\n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000045 0.000171 0.000065 0.000014 \n",
- " 79599.0 0.000045 0.000171 0.000065 0.000014 \n",
- " 79600.0 0.000045 0.000171 0.000065 0.000014 \n",
- " 79601.0 0.000045 0.000171 0.000065 0.000014 \n",
- " 80317.0 0.002913 0.002323 0.003203 0.003237 \n",
- "... ... ... ... ... \n",
- "573 190496.0 NaN NaN NaN NaN \n",
- " 190507.0 NaN NaN NaN NaN \n",
- " 190508.0 NaN NaN NaN NaN \n",
- " 190510.0 NaN NaN NaN NaN \n",
- " 190511.0 NaN NaN NaN NaN \n",
- "\n",
- " step_pred_36 \n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000000 \n",
- " 79599.0 0.000000 \n",
- " 79600.0 0.000000 \n",
- " 79601.0 0.000000 \n",
- " 80317.0 0.003281 \n",
- "... ... \n",
- "573 190496.0 0.000000 \n",
- " 190507.0 0.000000 \n",
- " 190508.0 0.000000 \n",
- " 190510.0 0.000000 \n",
- " 190511.0 0.000000 \n",
- "\n",
- "[471960 rows x 36 columns]"
- ]
- },
- "execution_count": 74,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_forecast_old = pd.read_pickle('models/orange_pasta/data/generated/predictions_36_forecasting_20241108_162549_old.pkl')\n",
- "df_forecast_old"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 72,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_combined | \n",
- " ln_ged_sb_dep | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 538 | \n",
- " 62356.0 | \n",
- " 0.000083 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000083 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000083 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000083 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000372 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 573 | \n",
- " 190496.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " 0.000000 | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
471960 rows × 2 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_combined ln_ged_sb_dep\n",
- "month_id priogrid_gid \n",
- "538 62356.0 0.000083 NaN\n",
- " 79599.0 0.000083 NaN\n",
- " 79600.0 0.000083 NaN\n",
- " 79601.0 0.000083 NaN\n",
- " 80317.0 0.000372 NaN\n",
- "... ... ...\n",
- "573 190496.0 0.000000 NaN\n",
- " 190507.0 0.000000 NaN\n",
- " 190508.0 0.000000 NaN\n",
- " 190510.0 0.000000 NaN\n",
- " 190511.0 0.000000 NaN\n",
- "\n",
- "[471960 rows x 2 columns]"
- ]
- },
- "execution_count": 72,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_forecast_new = pd.read_pickle('models/orange_pasta/data/generated/predictions_36_forecasting_20241108_162549.pkl')\n",
- "df_forecast_new"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 100,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'ln_ged_sb_dep'"
- ]
- },
- "execution_count": 100,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_forecast_new.forecasts.target"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 87,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "month_id priogrid_gid\n",
- "539 62356.0 0.000087\n",
- " 79599.0 0.000087\n",
- " 79600.0 0.000087\n",
- " 79601.0 0.000087\n",
- " 80317.0 0.000540\n",
- " ... \n",
- " 190496.0 0.000062\n",
- " 190507.0 0.000000\n",
- " 190508.0 0.000000\n",
- " 190510.0 0.000000\n",
- " 190511.0 0.000000\n",
- "Name: step_pred_2, Length: 13110, dtype: float64"
- ]
- },
- "execution_count": 87,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_forecast_old.loc[df_forecast_old.index.get_level_values(0) == 539].iloc[:, 1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 95,
- "metadata": {},
- "outputs": [],
- "source": [
- "for i in df_forecast_new.index.get_level_values(0).unique().tolist():\n",
- " if (df_forecast_new.loc[df_forecast_new.index.get_level_values(0) == i].iloc[:, 0] != \n",
- " df_forecast_old.loc[df_forecast_old.index.get_level_values(0) == i].iloc[:, i-538]).any():\n",
- " print(i)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = pd.read_pickle('models/orange_pasta/artifacts/forecasting_model_20241108_162549.pkl')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 31,
- "metadata": {},
- "outputs": [],
- "source": [
- "from ingester3.ViewsMonth import ViewsMonth\n",
- "month_last = ViewsMonth.now().id - 2\n",
- "partitioner_dict = {\"train\":(121, month_last),\"predict\":(month_last +1, month_last + 1 + 36)}\n",
- "train_start, train_end = partitioner_dict[\"train\"]\n",
- "test_start, test_end = partitioner_dict[\"predict\"]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "UserWarning: `time_col` was not set and `df` has a monotonically increasing (time) index. This results in time series groups with non-overlapping (time) index. You can ignore this warning if the index represents the actual index of each individual time series group.\n"
- ]
- }
- ],
- "source": [
- "df = pd.read_pickle('models/orange_pasta/data/raw/forecasting_viewser_df.pkl')\n",
- "level = df.index.names[1]\n",
- "time = df.index.names[0]\n",
- "independent_variables = [c for c in df.columns if c != 'ln_ged_sb_dep']\n",
- "\n",
- "df_reset = df.reset_index(level=[1])\n",
- "series = TimeSeries.from_group_dataframe(df_reset, group_cols=level,\n",
- " value_cols=independent_variables + ['ln_ged_sb_dep'])\n",
- "target_train = [s.slice(train_start, train_end + 1)['ln_ged_sb_dep']\n",
- " for s in series] # ts.slice is different from df.slice\n",
- "past_cov_train = [series.slice(train_start, train_end + 1)[independent_variables]\n",
- " for series in series]\n",
- "past_cov = [s[independent_variables] for s in series]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "metadata": {},
- "outputs": [],
- "source": [
- "model_1 = model.models[1]\n",
- "pred = model_1.predict(n=2,\n",
- " series=target_train,\n",
- " # darts automatically locates the time period of past_covariates\n",
- " past_covariates=past_cov,\n",
- " show_warnings=False)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "metadata": {},
- "outputs": [],
- "source": [
- "index_tuples, df_list = [], []\n",
- "for p in pred:\n",
- " # For forecasting only need to keep predictions with last-month-with-data, i.e., diagonal prediction\n",
- " df_pred = p.pd_dataframe().loc[[test_start + 1]]\n",
- " l = p.static_covariates.iat[0, 0]\n",
- " index_tuples.extend([(month, l) for month in df_pred.index])\n",
- " df_list.append(df_pred.values)\n",
- "\n",
- "df_preds = pd.DataFrame(\n",
- " data=np.concatenate(df_list),\n",
- " index=pd.MultiIndex.from_tuples(index_tuples, names=[time, level]),\n",
- " columns=[f\"step_pred_combined\"]\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 60,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_combined | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 539 | \n",
- " 62356.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000540 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 190496.0 | \n",
- " 0.000062 | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " -0.000260 | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " -0.000260 | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " -0.000260 | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " -0.000260 | \n",
- "
\n",
- " \n",
- "
\n",
- "
13110 rows × 1 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_combined\n",
- "month_id priogrid_gid \n",
- "539 62356.0 0.000087\n",
- " 79599.0 0.000087\n",
- " 79600.0 0.000087\n",
- " 79601.0 0.000087\n",
- " 80317.0 0.000540\n",
- "... ...\n",
- " 190496.0 0.000062\n",
- " 190507.0 -0.000260\n",
- " 190508.0 -0.000260\n",
- " 190510.0 -0.000260\n",
- " 190511.0 -0.000260\n",
- "\n",
- "[13110 rows x 1 columns]"
- ]
- },
- "execution_count": 60,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_preds"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 64,
- "metadata": {},
- "outputs": [],
- "source": [
- "model_2 = model.models[2]\n",
- "pred_2 = model_2.predict(n=3,\n",
- " series=target_train,\n",
- " # darts automatically locates the time period of past_covariates\n",
- " past_covariates=past_cov,\n",
- " show_warnings=False)\n",
- "\n",
- "index_tuples, df_list = [], []\n",
- "for p in pred_2:\n",
- " # For forecasting only need to keep predictions with last-month-with-data, i.e., diagonal prediction\n",
- " df_pred = p.pd_dataframe().loc[[test_start + 2]]\n",
- " l = p.static_covariates.iat[0, 0]\n",
- " index_tuples.extend([(month, l) for month in df_pred.index])\n",
- " df_list.append(df_pred.values)\n",
- "\n",
- "df_preds_2 = pd.DataFrame(\n",
- " data=np.concatenate(df_list),\n",
- " index=pd.MultiIndex.from_tuples(index_tuples, names=[time, level]),\n",
- " columns=[f\"step_pred_combined\"]\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_combined | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 540 | \n",
- " 62356.0 | \n",
- " 0.000050 | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000050 | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000050 | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000050 | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000613 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 190496.0 | \n",
- " -0.000126 | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- "
\n",
- "
13110 rows × 1 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_combined\n",
- "month_id priogrid_gid \n",
- "540 62356.0 0.000050\n",
- " 79599.0 0.000050\n",
- " 79600.0 0.000050\n",
- " 79601.0 0.000050\n",
- " 80317.0 0.000613\n",
- "... ...\n",
- " 190496.0 -0.000126\n",
- " 190507.0 -0.000385\n",
- " 190508.0 -0.000385\n",
- " 190510.0 -0.000385\n",
- " 190511.0 -0.000385\n",
- "\n",
- "[13110 rows x 1 columns]"
- ]
- },
- "execution_count": 65,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df_preds_2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 68,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " | \n",
- " step_pred_combined | \n",
- "
\n",
- " \n",
- " | month_id | \n",
- " priogrid_gid | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 539 | \n",
- " 62356.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79599.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79600.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 79601.0 | \n",
- " 0.000087 | \n",
- "
\n",
- " \n",
- " | 80317.0 | \n",
- " 0.000540 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 540 | \n",
- " 190496.0 | \n",
- " -0.000126 | \n",
- "
\n",
- " \n",
- " | 190507.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190508.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190510.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- " | 190511.0 | \n",
- " -0.000385 | \n",
- "
\n",
- " \n",
- "
\n",
- "
26220 rows × 1 columns
\n",
- "
"
- ],
- "text/plain": [
- " step_pred_combined\n",
- "month_id priogrid_gid \n",
- "539 62356.0 0.000087\n",
- " 79599.0 0.000087\n",
- " 79600.0 0.000087\n",
- " 79601.0 0.000087\n",
- " 80317.0 0.000540\n",
- "... ...\n",
- "540 190496.0 -0.000126\n",
- " 190507.0 -0.000385\n",
- " 190508.0 -0.000385\n",
- " 190510.0 -0.000385\n",
- " 190511.0 -0.000385\n",
- "\n",
- "[26220 rows x 1 columns]"
- ]
- },
- "execution_count": 68,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pd.concat([df_preds, df_preds_2])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "viewser",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.5"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
From 1869f614037fe7344ce2a40470986c7f438875ab Mon Sep 17 00:00:00 2001
From: xiaolongsun <95378566+xiaolong0728@users.noreply.github.com>
Date: Thu, 6 Mar 2025 13:45:37 +0100
Subject: [PATCH 2/2] rename target variables
---
models/bad_blood/configs/config_queryset.py | 34 +-
.../configs/config_queryset.py | 352 +++++++++---------
models/blank_space/configs/config_queryset.py | 34 +-
.../brown_cheese/configs/config_queryset.py | 8 +-
models/car_radio/configs/config_queryset.py | 136 +++----
models/caring_fish/configs/config_queryset.py | 12 +-
models/chunky_cat/configs/config_queryset.py | 34 +-
.../counting_stars/configs/config_queryset.py | 80 ++--
.../dark_paradise/configs/config_queryset.py | 34 +-
models/demon_days/configs/config_queryset.py | 78 ++--
.../configs/config_queryset.py | 82 ++--
models/fast_car/configs/config_queryset.py | 124 +++---
.../configs/config_queryset.py | 54 +--
.../good_riddance/configs/config_queryset.py | 54 +--
.../green_squirrel/configs/config_queryset.py | 132 +++----
.../heavy_rotation/configs/config_queryset.py | 132 +++----
models/high_hopes/configs/config_queryset.py | 30 +-
.../configs/config_queryset.py | 36 +-
.../lavender_haze/configs/config_queryset.py | 36 +-
models/little_lies/configs/config_queryset.py | 54 +--
.../midnight_rain/configs/config_queryset.py | 50 +--
.../configs/config_queryset.py | 64 ++--
models/old_money/configs/config_queryset.py | 50 +--
models/ominous_ox/configs/config_queryset.py | 30 +-
.../orange_pasta/configs/config_queryset.py | 10 +-
.../plastic_beach/configs/config_queryset.py | 30 +-
.../configs/config_queryset.py | 136 +++----
models/teen_spirit/configs/config_queryset.py | 30 +-
models/twin_flame/configs/config_queryset.py | 136 +++----
.../wildest_dream/configs/config_queryset.py | 20 +-
.../yellow_pikachu/configs/config_queryset.py | 14 +-
.../configs/config_queryset.py | 18 +-
32 files changed, 1062 insertions(+), 1062 deletions(-)
diff --git a/models/bad_blood/configs/config_queryset.py b/models/bad_blood/configs/config_queryset.py
index 2d363b8..e80dc5d 100644
--- a/models/bad_blood/configs/config_queryset.py
+++ b/models/bad_blood/configs/config_queryset.py
@@ -14,57 +14,57 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('mountains_mean', from_loa='priogrid_year', from_column='mountains_mean')
+ .with_column(Column('lr_mountains_mean', from_loa='priogrid_year', from_column='mountains_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
+ .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs')
+ .with_column(Column('lr_dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('agri_ih', from_loa='priogrid_year', from_column='agri_ih')
+ .with_column(Column('lr_agri_ih', from_loa='priogrid_year', from_column='agri_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('barren_ih', from_loa='priogrid_year', from_column='barren_ih')
+ .with_column(Column('lr_barren_ih', from_loa='priogrid_year', from_column='barren_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('forest_ih', from_loa='priogrid_year', from_column='forest_ih')
+ .with_column(Column('lr_forest_ih', from_loa='priogrid_year', from_column='forest_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('pasture_ih', from_loa='priogrid_year', from_column='pasture_ih')
+ .with_column(Column('lr_pasture_ih', from_loa='priogrid_year', from_column='pasture_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('savanna_ih', from_loa='priogrid_year', from_column='savanna_ih')
+ .with_column(Column('lr_savanna_ih', from_loa='priogrid_year', from_column='savanna_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('shrub_ih', from_loa='priogrid_year', from_column='shrub_ih')
+ .with_column(Column('lr_shrub_ih', from_loa='priogrid_year', from_column='shrub_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('urban_ih', from_loa='priogrid_year', from_column='urban_ih')
+ .with_column(Column('lr_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -99,13 +99,13 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
+ .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
.transform.bool.gte(1)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -113,7 +113,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -121,7 +121,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -129,7 +129,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -138,7 +138,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/bittersweet_symphony/configs/config_queryset.py b/models/bittersweet_symphony/configs/config_queryset.py
index 22678a7..5b5e7ba 100644
--- a/models/bittersweet_symphony/configs/config_queryset.py
+++ b/models/bittersweet_symphony/configs/config_queryset.py
@@ -18,9 +18,6 @@ def generate():
.transform.ops.ln()
.transform.missing.fill()
)
-
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
- )
.with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
@@ -36,6 +33,9 @@ def generate():
.transform.ops.ln()
.transform.missing.fill()
)
+
+ .with_column(Column('lr_lr_gleditsch_ward', from_loa='country', from_column='gwcode')
+ )
.with_column(Column('ln_acled_sb', from_loa='country_month', from_column='acled_sb_fat')
.transform.ops.ln()
@@ -52,457 +52,457 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
+ .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
+ .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd')
+ .with_column(Column('lr_wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in')
+ .with_column(Column('lr_wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr')
+ .with_column(Column('lr_wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
+ .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs')
+ .with_column(Column('lr_wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe')
+ .with_column(Column('lr_wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
+ .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem')
+ .with_column(Column('lr_vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem')
+ .with_column(Column('lr_vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(60)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip')
+ .with_column(Column('lr_vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem')
+ .with_column(Column('lr_vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib')
+ .with_column(Column('lr_vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
+ .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart')
+ .with_column(Column('lr_vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
+ .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick')
+ .with_column(Column('lr_vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal')
+ .with_column(Column('lr_vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr')
+ .with_column(Column('lr_vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick')
+ .with_column(Column('lr_vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs')
+ .with_column(Column('lr_vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender')
+ .with_column(Column('lr_vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
+ .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
+ .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat')
+ .with_column(Column('lr_vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr')
+ .with_column(Column('lr_vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule')
+ .with_column(Column('lr_vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
+ .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
+ .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
+ .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp')
+ .with_column(Column('lr_vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst')
+ .with_column(Column('lr_vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
+ .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave')
+ .with_column(Column('lr_vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd')
+ .with_column(Column('lr_vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib')
+ .with_column(Column('lr_vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
+ .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair')
+ .with_column(Column('lr_vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec')
+ .with_column(Column('lr_vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf')
+ .with_column(Column('lr_vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
+ .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
+ .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon')
+ .with_column(Column('lr_vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
+ .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
+ .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party')
+ .with_column(Column('lr_vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi')
+ .with_column(Column('lr_vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres')
+ .with_column(Column('lr_vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess')
+ .with_column(Column('lr_vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
+ .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev')
+ .with_column(Column('lr_vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -565,21 +565,21 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -601,231 +601,231 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -833,231 +833,231 @@ def generate():
)
- .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct')
+ .with_column(Column('lr_agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap')
+ .with_column(Column('lr_dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('groundwater_export_t48', from_loa='country_year', from_column='groundwater_export')
+ .with_column(Column('lr_groundwater_export_t48', from_loa='country_year', from_column='groundwater_export')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct')
+ .with_column(Column('lr_fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency')
+ .with_column(Column('lr_ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency')
+ .with_column(Column('lr_irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('services_efficiency_t48', from_loa='country_year', from_column='services_efficiency')
+ .with_column(Column('lr_services_efficiency_t48', from_loa='country_year', from_column='services_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('general_efficiency_t48', from_loa='country_year', from_column='general_efficiency')
+ .with_column(Column('lr_general_efficiency_t48', from_loa='country_year', from_column='general_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('water_stress_t48', from_loa='country_year', from_column='water_stress')
+ .with_column(Column('lr_water_stress_t48', from_loa='country_year', from_column='water_stress')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap')
+ .with_column(Column('lr_renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap')
+ .with_column(Column('lr_renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1065,7 +1065,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1073,7 +1073,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -1081,7 +1081,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -1089,7 +1089,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -1097,7 +1097,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1105,7 +1105,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -1113,7 +1113,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1121,7 +1121,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1129,7 +1129,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1137,7 +1137,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1146,7 +1146,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1155,7 +1155,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -1164,7 +1164,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1173,7 +1173,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1182,7 +1182,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1191,7 +1191,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1200,7 +1200,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1209,7 +1209,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1218,7 +1218,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1227,7 +1227,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1236,7 +1236,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1245,7 +1245,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1254,7 +1254,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1263,7 +1263,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1272,7 +1272,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1281,7 +1281,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1290,7 +1290,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -1299,7 +1299,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/blank_space/configs/config_queryset.py b/models/blank_space/configs/config_queryset.py
index 2d363b8..e80dc5d 100644
--- a/models/blank_space/configs/config_queryset.py
+++ b/models/blank_space/configs/config_queryset.py
@@ -14,57 +14,57 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('mountains_mean', from_loa='priogrid_year', from_column='mountains_mean')
+ .with_column(Column('lr_mountains_mean', from_loa='priogrid_year', from_column='mountains_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
+ .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs')
+ .with_column(Column('lr_dist_petroleum', from_loa='priogrid', from_column='dist_petroleum_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('agri_ih', from_loa='priogrid_year', from_column='agri_ih')
+ .with_column(Column('lr_agri_ih', from_loa='priogrid_year', from_column='agri_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('barren_ih', from_loa='priogrid_year', from_column='barren_ih')
+ .with_column(Column('lr_barren_ih', from_loa='priogrid_year', from_column='barren_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('forest_ih', from_loa='priogrid_year', from_column='forest_ih')
+ .with_column(Column('lr_forest_ih', from_loa='priogrid_year', from_column='forest_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('pasture_ih', from_loa='priogrid_year', from_column='pasture_ih')
+ .with_column(Column('lr_pasture_ih', from_loa='priogrid_year', from_column='pasture_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('savanna_ih', from_loa='priogrid_year', from_column='savanna_ih')
+ .with_column(Column('lr_savanna_ih', from_loa='priogrid_year', from_column='savanna_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('shrub_ih', from_loa='priogrid_year', from_column='shrub_ih')
+ .with_column(Column('lr_shrub_ih', from_loa='priogrid_year', from_column='shrub_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('urban_ih', from_loa='priogrid_year', from_column='urban_ih')
+ .with_column(Column('lr_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -99,13 +99,13 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
+ .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
.transform.bool.gte(1)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -113,7 +113,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -121,7 +121,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -129,7 +129,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -138,7 +138,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/brown_cheese/configs/config_queryset.py b/models/brown_cheese/configs/config_queryset.py
index 853185d..d5797e3 100644
--- a/models/brown_cheese/configs/config_queryset.py
+++ b/models/brown_cheese/configs/config_queryset.py
@@ -21,14 +21,14 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -36,7 +36,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -44,7 +44,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/car_radio/configs/config_queryset.py b/models/car_radio/configs/config_queryset.py
index ae9ed83..9e0f5f3 100644
--- a/models/car_radio/configs/config_queryset.py
+++ b/models/car_radio/configs/config_queryset.py
@@ -23,350 +23,350 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -374,7 +374,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -382,7 +382,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -391,7 +391,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -400,7 +400,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -409,7 +409,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -418,7 +418,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -427,7 +427,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -436,7 +436,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -445,7 +445,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -454,7 +454,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -463,7 +463,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -472,7 +472,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -481,7 +481,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -490,7 +490,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -499,7 +499,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -508,7 +508,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -517,7 +517,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -526,7 +526,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/caring_fish/configs/config_queryset.py b/models/caring_fish/configs/config_queryset.py
index cafe495..c329f8e 100644
--- a/models/caring_fish/configs/config_queryset.py
+++ b/models/caring_fish/configs/config_queryset.py
@@ -45,37 +45,37 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('mov_avg_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_avg_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_average(6)
)
- .with_column(Column('mov_avg_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_avg_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_average(12)
)
- .with_column(Column('mov_avg_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_avg_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_average(36)
)
- .with_column(Column('mov_sum_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_sum_6_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_sum(6)
)
- .with_column(Column('mov_sum_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_sum_12_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_sum(12)
)
- .with_column(Column('mov_sum_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('ln_mov_sum_36_ged_best_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.ops.ln()
.transform.missing.fill()
.transform.temporal.moving_sum(36)
diff --git a/models/chunky_cat/configs/config_queryset.py b/models/chunky_cat/configs/config_queryset.py
index 1a42751..87bc80f 100644
--- a/models/chunky_cat/configs/config_queryset.py
+++ b/models/chunky_cat/configs/config_queryset.py
@@ -8,17 +8,17 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -29,7 +29,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -37,7 +37,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -45,7 +45,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -53,7 +53,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -61,7 +61,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -69,7 +69,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -77,7 +77,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -85,7 +85,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -93,7 +93,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -101,7 +101,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -109,7 +109,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -117,7 +117,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -125,7 +125,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -134,7 +134,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/counting_stars/configs/config_queryset.py b/models/counting_stars/configs/config_queryset.py
index 1162af6..7b6b869 100644
--- a/models/counting_stars/configs/config_queryset.py
+++ b/models/counting_stars/configs/config_queryset.py
@@ -13,7 +13,17 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_conflict_history_long','country_month')
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .transform.ops.ln()
+ .transform.missing.fill()
+ )
+
+ .with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .transform.ops.ln()
+ .transform.missing.fill()
+ )
+
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
)
.with_column(Column('ln_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
@@ -41,22 +51,22 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('splag_1_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.countrylag(1,1,0,0)
)
- .with_column(Column('splag_2_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_2_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.countrylag(1,2,0,0)
)
- .with_column(Column('splag_1_ged_os', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_ged_os', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.countrylag(1,1,0,0)
)
- .with_column(Column('splag_1_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_ged_ns', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.countrylag(1,1,0,0)
)
@@ -91,17 +101,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
- .transform.ops.ln()
- .transform.missing.fill()
- )
-
- .with_column(Column('ln_ged_sb', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
- .transform.ops.ln()
- .transform.missing.fill()
- )
-
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -241,7 +241,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -249,7 +249,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -257,7 +257,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -265,7 +265,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -273,7 +273,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -281,7 +281,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -289,7 +289,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -297,7 +297,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -305,7 +305,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -313,7 +313,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -321,7 +321,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_1', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -329,7 +329,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -337,7 +337,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -345,7 +345,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_25', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_25', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -353,7 +353,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_500', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_500', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -361,7 +361,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_1', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_1', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -369,7 +369,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_25', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_25', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -377,7 +377,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_500', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_500', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -385,7 +385,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -394,7 +394,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -403,7 +403,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -412,7 +412,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -421,7 +421,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -430,7 +430,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
diff --git a/models/dark_paradise/configs/config_queryset.py b/models/dark_paradise/configs/config_queryset.py
index 7dedbf0..51fa8ec 100644
--- a/models/dark_paradise/configs/config_queryset.py
+++ b/models/dark_paradise/configs/config_queryset.py
@@ -9,17 +9,17 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -30,7 +30,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -38,7 +38,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -46,7 +46,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -54,7 +54,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -62,7 +62,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -70,7 +70,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_25', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -78,7 +78,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -86,7 +86,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_500', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -94,7 +94,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -102,7 +102,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_25', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -110,7 +110,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -118,7 +118,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_500', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -126,7 +126,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -135,7 +135,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/demon_days/configs/config_queryset.py b/models/demon_days/configs/config_queryset.py
index 27be9ee..ef3a4c0 100644
--- a/models/demon_days/configs/config_queryset.py
+++ b/models/demon_days/configs/config_queryset.py
@@ -23,223 +23,223 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('consumer_prices_food_indices', from_loa='country_month', from_column='consumer_prices_food_indices')
+ .with_column(Column('lr_consumer_prices_food_indices', from_loa='country_month', from_column='consumer_prices_food_indices')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('consumer_prices_general_indices', from_loa='country_month', from_column='consumer_prices_general_indices')
+ .with_column(Column('lr_consumer_prices_general_indices', from_loa='country_month', from_column='consumer_prices_general_indices')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('food_price_inflation', from_loa='country_month', from_column='food_price_inflation')
+ .with_column(Column('lr_food_price_inflation', from_loa='country_month', from_column='food_price_inflation')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('avg_adequate_diet', from_loa='country_year', from_column='avg_adequate_diet')
+ .with_column(Column('lr_avg_adequate_diet', from_loa='country_year', from_column='avg_adequate_diet')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('avg_animalprotein_pcap_day', from_loa='country_year', from_column='avg_animalprotein_pcap_day')
+ .with_column(Column('lr_avg_animalprotein_pcap_day', from_loa='country_year', from_column='avg_animalprotein_pcap_day')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('avg_fprod_value', from_loa='country_year', from_column='avg_fprod_value')
+ .with_column(Column('lr_avg_fprod_value', from_loa='country_year', from_column='avg_fprod_value')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('avg_protein_pcap_day', from_loa='country_year', from_column='avg_protein_pcap_day')
+ .with_column(Column('lr_avg_protein_pcap_day', from_loa='country_year', from_column='avg_protein_pcap_day')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('gdp_pc_ppp', from_loa='country_year', from_column='gdp_pc_ppp')
+ .with_column(Column('lr_gdp_pc_ppp', from_loa='country_year', from_column='gdp_pc_ppp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('kcal_pcap_day', from_loa='country_year', from_column='kcal_pcap_day')
+ .with_column(Column('lr_kcal_pcap_day', from_loa='country_year', from_column='kcal_pcap_day')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('kcal_pcap_day_cerotu', from_loa='country_year', from_column='kcal_pcap_day_cerotu')
+ .with_column(Column('lr_kcal_pcap_day_cerotu', from_loa='country_year', from_column='kcal_pcap_day_cerotu')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pcap_fprod_var', from_loa='country_year', from_column='pcap_fprod_var')
+ .with_column(Column('lr_pcap_fprod_var', from_loa='country_year', from_column='pcap_fprod_var')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pcap_fsupply_var', from_loa='country_year', from_column='pcap_fsupply_var')
+ .with_column(Column('lr_pcap_fsupply_var', from_loa='country_year', from_column='pcap_fsupply_var')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_arable_land', from_loa='country_year', from_column='pct_arable_land')
+ .with_column(Column('lr_pct_arable_land', from_loa='country_year', from_column='pct_arable_land')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_cereal_import', from_loa='country_year', from_column='pct_cereal_import')
+ .with_column(Column('lr_pct_cereal_import', from_loa='country_year', from_column='pct_cereal_import')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_fimport_merch', from_loa='country_year', from_column='pct_fimport_merch')
+ .with_column(Column('lr_pct_fimport_merch', from_loa='country_year', from_column='pct_fimport_merch')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_modsevere_finsecurity', from_loa='country_year', from_column='pct_modsevere_finsecurity')
+ .with_column(Column('lr_pct_modsevere_finsecurity', from_loa='country_year', from_column='pct_modsevere_finsecurity')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_pop_basicdrink', from_loa='country_year', from_column='pct_pop_basicdrink')
+ .with_column(Column('lr_pct_pop_basicdrink', from_loa='country_year', from_column='pct_pop_basicdrink')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_pop_basicsani', from_loa='country_year', from_column='pct_pop_basicsani')
+ .with_column(Column('lr_pct_pop_basicsani', from_loa='country_year', from_column='pct_pop_basicsani')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_pop_safedrink', from_loa='country_year', from_column='pct_pop_safedrink')
+ .with_column(Column('lr_pct_pop_safedrink', from_loa='country_year', from_column='pct_pop_safedrink')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_pop_safesani', from_loa='country_year', from_column='pct_pop_safesani')
+ .with_column(Column('lr_pct_pop_safesani', from_loa='country_year', from_column='pct_pop_safesani')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_severe_finsecurity', from_loa='country_year', from_column='pct_severe_finsecurity')
+ .with_column(Column('lr_pct_severe_finsecurity', from_loa='country_year', from_column='pct_severe_finsecurity')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_und5_overweight', from_loa='country_year', from_column='pct_und5_overweight')
+ .with_column(Column('lr_pct_und5_overweight', from_loa='country_year', from_column='pct_und5_overweight')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_und5_stunted', from_loa='country_year', from_column='pct_und5_stunted')
+ .with_column(Column('lr_pct_und5_stunted', from_loa='country_year', from_column='pct_und5_stunted')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_und5_wasting', from_loa='country_year', from_column='pct_und5_wasting')
+ .with_column(Column('lr_pct_und5_wasting', from_loa='country_year', from_column='pct_und5_wasting')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pct_undernourished', from_loa='country_year', from_column='pct_undernourished')
+ .with_column(Column('lr_pct_undernourished', from_loa='country_year', from_column='pct_undernourished')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pol_stability', from_loa='country_year', from_column='pol_stability')
+ .with_column(Column('lr_pol_stability', from_loa='country_year', from_column='pol_stability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pop_modsevere_finsecurity', from_loa='country_year', from_column='pop_modsevere_finsecurity')
+ .with_column(Column('lr_pop_modsevere_finsecurity', from_loa='country_year', from_column='pop_modsevere_finsecurity')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pop_severe_finsecurity', from_loa='country_year', from_column='pop_severe_finsecurity')
+ .with_column(Column('lr_pop_severe_finsecurity', from_loa='country_year', from_column='pop_severe_finsecurity')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('pop_undernourished', from_loa='country_year', from_column='pop_undernourished')
+ .with_column(Column('lr_pop_undernourished', from_loa='country_year', from_column='pop_undernourished')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('prev_adult_obesity', from_loa='country_year', from_column='prev_adult_obesity')
+ .with_column(Column('lr_prev_adult_obesity', from_loa='country_year', from_column='prev_adult_obesity')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('prev_infant_bfeed', from_loa='country_year', from_column='prev_infant_bfeed')
+ .with_column(Column('lr_prev_infant_bfeed', from_loa='country_year', from_column='prev_infant_bfeed')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('prev_lowbweight', from_loa='country_year', from_column='prev_lowbweight')
+ .with_column(Column('lr_prev_lowbweight', from_loa='country_year', from_column='prev_lowbweight')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('prev_repr_anemia', from_loa='country_year', from_column='prev_repr_anemia')
+ .with_column(Column('lr_prev_repr_anemia', from_loa='country_year', from_column='prev_repr_anemia')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('rail_density', from_loa='country_year', from_column='rail_density')
+ .with_column(Column('lr_rail_density', from_loa='country_year', from_column='rail_density')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -247,7 +247,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -255,7 +255,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/electric_relaxation/configs/config_queryset.py b/models/electric_relaxation/configs/config_queryset.py
index af8ca51..d1c470c 100644
--- a/models/electric_relaxation/configs/config_queryset.py
+++ b/models/electric_relaxation/configs/config_queryset.py
@@ -11,48 +11,48 @@ def generate():
qs_cm_cflong = (Queryset("escwa001_cflong", "country_month")
# target variable
- .with_column(Column("ged_sb_dep", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dep", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
)
# timelag 0 of target variable
- .with_column(Column("ged_sb_dummy_t0", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t0", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
)
# further timelags of target variable
# sb
- .with_column(Column("ged_sb_dummy_t1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column("ged_sb_dummy_t2", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t2", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column("ged_sb_dummy_t3", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t3", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(3)
.transform.missing.fill()
)
- .with_column(Column("ged_sb_dummy_t4", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t4", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(4)
.transform.missing.fill()
)
- .with_column(Column("ged_sb_dummy_t5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(5)
.transform.missing.fill()
)
- .with_column(Column("ged_sb_dummy_t6", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_ged_sb_dummy_t6", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(6)
@@ -60,82 +60,82 @@ def generate():
)
# os
- .with_column(Column("ged_os_dummy_t0", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t0", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t1", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t1", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t2", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t2", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t3", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t3", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(3)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t4", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t4", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(4)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t5", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t5", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(5)
.transform.missing.fill()
)
- .with_column(Column("ged_os_dummy_t6", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_ged_os_dummy_t6", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(6)
.transform.missing.fill()
)
# ns
- .with_column(Column("ged_ns_dummy_t0", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t0", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t2", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t2", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t3", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t3", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(3)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t4", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t4", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(4)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(5)
.transform.missing.fill()
)
- .with_column(Column("ged_ns_dummy_t6", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_ged_ns_dummy_t6", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.bool.gte(25)
.transform.missing.fill()
.transform.temporal.tlag(6)
@@ -143,35 +143,35 @@ def generate():
)
# Decay functions
# sb
- .with_column(Column("decay_ged_sb_1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_sb_1", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_sb_5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_sb_5", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_sb_25", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_sb_25", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_sb_100", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_sb_100", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_sb_500", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_sb_500", from_loa="country_month", from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -180,28 +180,28 @@ def generate():
)
# os
- .with_column(Column("decay_ged_os_1", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_os_1", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_os_5", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_os_5", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_os_25", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_os_25", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_os_100", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_os_100", from_loa="country_month", from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -210,28 +210,28 @@ def generate():
)
# ns
- .with_column(Column("decay_ged_ns_1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_ns_1", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_ns_5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_ns_5", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_ns_25", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_ns_25", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
.transform.temporal.decay(24)
.transform.missing.replace_na()
)
- .with_column(Column("decay_ged_ns_100", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
+ .with_column(Column("lr_decay_ged_ns_100", from_loa="country_month", from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -241,7 +241,7 @@ def generate():
# Spatial lag decay functions
# sb
- .with_column(Column("splag_1_decay_ged_sb_25", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_sb_25", from_loa="country_month",
from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
@@ -251,7 +251,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column("splag_1_decay_ged_sb_500", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_sb_500", from_loa="country_month",
from_column="ged_sb_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(500)
@@ -261,7 +261,7 @@ def generate():
.transform.missing.replace_na()
)
# os
- .with_column(Column("splag_1_decay_ged_os_25", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_os_25", from_loa="country_month",
from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
@@ -270,7 +270,7 @@ def generate():
.transform.spatial.countrylag(1, 1, 0, 0)
.transform.missing.replace_na()
)
- .with_column(Column("splag_1_decay_ged_os_500", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_os_500", from_loa="country_month",
from_column="ged_os_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(500)
@@ -280,7 +280,7 @@ def generate():
.transform.missing.replace_na()
)
# ns
- .with_column(Column("splag_1_decay_ged_ns_25", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_ns_25", from_loa="country_month",
from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(25)
@@ -289,7 +289,7 @@ def generate():
.transform.spatial.countrylag(1, 1, 0, 0)
.transform.missing.replace_na()
)
- .with_column(Column("splag_1_decay_ged_ns_500", from_loa="country_month",
+ .with_column(Column("lr_splag_1_decay_ged_ns_500", from_loa="country_month",
from_column="ged_ns_best_sum_nokgi")
.transform.missing.replace_na()
.transform.bool.gte(500)
diff --git a/models/fast_car/configs/config_queryset.py b/models/fast_car/configs/config_queryset.py
index fd651bb..3fad9d1 100644
--- a/models/fast_car/configs/config_queryset.py
+++ b/models/fast_car/configs/config_queryset.py
@@ -23,367 +23,367 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem')
+ .with_column(Column('lr_vdem_v2x_delibdem', from_loa='country_year', from_column='vdem_v2x_delibdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem')
+ .with_column(Column('lr_vdem_v2x_egaldem', from_loa='country_year', from_column='vdem_v2x_egaldem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_vdem_v2x_libdem_48', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(60)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip')
+ .with_column(Column('lr_vdem_v2x_partip', from_loa='country_year', from_column='vdem_v2x_partip')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem')
+ .with_column(Column('lr_vdem_v2x_partipdem', from_loa='country_year', from_column='vdem_v2x_partipdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib')
+ .with_column(Column('lr_vdem_v2x_civlib', from_loa='country_year', from_column='vdem_v2x_civlib')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
+ .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart')
+ .with_column(Column('lr_vdem_v2x_cspart', from_loa='country_year', from_column='vdem_v2x_cspart')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
+ .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick')
+ .with_column(Column('lr_vdem_v2x_edcomp_thick', from_loa='country_year', from_column='vdem_v2x_edcomp_thick')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal')
+ .with_column(Column('lr_vdem_v2x_egal', from_loa='country_year', from_column='vdem_v2x_egal')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr')
+ .with_column(Column('lr_vdem_v2x_execorr', from_loa='country_year', from_column='vdem_v2x_execorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick')
+ .with_column(Column('lr_vdem_v2x_frassoc_thick', from_loa='country_year', from_column='vdem_v2x_frassoc_thick')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs')
+ .with_column(Column('lr_vdem_v2x_gencs', from_loa='country_year', from_column='vdem_v2x_gencs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender')
+ .with_column(Column('lr_vdem_v2x_gender', from_loa='country_year', from_column='vdem_v2x_gender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
+ .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
+ .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat')
+ .with_column(Column('lr_vdem_v2x_neopat', from_loa='country_year', from_column='vdem_v2x_neopat')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr')
+ .with_column(Column('lr_vdem_v2x_pubcorr', from_loa='country_year', from_column='vdem_v2x_pubcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule')
+ .with_column(Column('lr_vdem_v2x_rule', from_loa='country_year', from_column='vdem_v2x_rule')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
+ .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
+ .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
+ .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp')
+ .with_column(Column('lr_vdem_v2x_freexp', from_loa='country_year', from_column='vdem_v2x_freexp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst')
+ .with_column(Column('lr_vdem_v2xcl_acjst', from_loa='country_year', from_column='vdem_v2xcl_acjst')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
+ .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave')
+ .with_column(Column('lr_vdem_v2xcl_slave', from_loa='country_year', from_column='vdem_v2xcl_slave')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd')
+ .with_column(Column('lr_vdem_v2xdd_dd', from_loa='country_year', from_column='vdem_v2xdd_dd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib')
+ .with_column(Column('lr_vdem_v2xdl_delib', from_loa='country_year', from_column='vdem_v2xdl_delib')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
+ .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair')
+ .with_column(Column('lr_vdem_v2xel_frefair', from_loa='country_year', from_column='vdem_v2xel_frefair')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec')
+ .with_column(Column('lr_vdem_v2xel_regelec', from_loa='country_year', from_column='vdem_v2xel_regelec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf')
+ .with_column(Column('lr_vdem_v2xme_altinf', from_loa='country_year', from_column='vdem_v2xme_altinf')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
+ .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
+ .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon')
+ .with_column(Column('lr_vdem_v2xpe_exlecon', from_loa='country_year', from_column='vdem_v2xpe_exlecon')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
+ .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
+ .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party')
+ .with_column(Column('lr_vdem_v2xps_party', from_loa='country_year', from_column='vdem_v2xps_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi')
+ .with_column(Column('lr_vdem_v2xcs_ccsi', from_loa='country_year', from_column='vdem_v2xcs_ccsi')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres')
+ .with_column(Column('lr_vdem_v2xnp_pres', from_loa='country_year', from_column='vdem_v2xnp_pres')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess')
+ .with_column(Column('lr_vdem_v2xeg_eqaccess', from_loa='country_year', from_column='vdem_v2xeg_eqaccess')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
+ .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev')
+ .with_column(Column('lr_vdem_v2clrgunev', from_loa='country_year', from_column='vdem_v2clrgunev')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -391,7 +391,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -399,7 +399,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/fluorescent_adolescent/configs/config_queryset.py b/models/fluorescent_adolescent/configs/config_queryset.py
index 46edf09..4e7f380 100644
--- a/models/fluorescent_adolescent/configs/config_queryset.py
+++ b/models/fluorescent_adolescent/configs/config_queryset.py
@@ -18,7 +18,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -28,90 +28,90 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months')
+ .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -131,42 +131,42 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -174,7 +174,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -182,7 +182,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -190,7 +190,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -198,7 +198,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -206,7 +206,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/good_riddance/configs/config_queryset.py b/models/good_riddance/configs/config_queryset.py
index 46edf09..4e7f380 100644
--- a/models/good_riddance/configs/config_queryset.py
+++ b/models/good_riddance/configs/config_queryset.py
@@ -18,7 +18,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -28,90 +28,90 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months')
+ .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -131,42 +131,42 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -174,7 +174,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -182,7 +182,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -190,7 +190,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -198,7 +198,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -206,7 +206,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/green_squirrel/configs/config_queryset.py b/models/green_squirrel/configs/config_queryset.py
index bb2497a..3c3b8fe 100644
--- a/models/green_squirrel/configs/config_queryset.py
+++ b/models/green_squirrel/configs/config_queryset.py
@@ -13,7 +13,7 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_joint_broad','country_month')
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
)
.with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
@@ -58,231 +58,231 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
+ .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
+ .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd')
+ .with_column(Column('lr_wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
+ .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
+ .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
+ .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
+ .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
+ .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
+ .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
+ .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
+ .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
+ .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
+ .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
+ .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
+ .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
+ .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
+ .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort')
+ .with_column(Column('lr_vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
+ .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -345,7 +345,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -353,7 +353,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -361,7 +361,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -369,7 +369,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -377,7 +377,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -385,7 +385,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -393,7 +393,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -401,7 +401,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -409,70 +409,70 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -480,7 +480,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -488,7 +488,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -496,7 +496,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -504,7 +504,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -512,7 +512,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -520,7 +520,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -528,7 +528,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -536,7 +536,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -544,7 +544,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -552,7 +552,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -561,7 +561,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -570,7 +570,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -579,7 +579,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -588,7 +588,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/heavy_rotation/configs/config_queryset.py b/models/heavy_rotation/configs/config_queryset.py
index bb2497a..3c3b8fe 100644
--- a/models/heavy_rotation/configs/config_queryset.py
+++ b/models/heavy_rotation/configs/config_queryset.py
@@ -13,7 +13,7 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_joint_broad','country_month')
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
)
.with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
@@ -58,231 +58,231 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
+ .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
+ .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_fe_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_fe_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd')
+ .with_column(Column('lr_wdi_ny_gdp_mktp_kd', from_loa='country_year', from_column='wdi_ny_gdp_mktp_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
+ .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
+ .with_column(Column('lr_vdem_v2x_horacc', from_loa='country_year', from_column='vdem_v2x_horacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
+ .with_column(Column('lr_vdem_v2xnp_client', from_loa='country_year', from_column='vdem_v2xnp_client')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
+ .with_column(Column('lr_vdem_v2x_veracc', from_loa='country_year', from_column='vdem_v2x_veracc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
+ .with_column(Column('lr_vdem_v2x_divparctrl', from_loa='country_year', from_column='vdem_v2x_divparctrl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
+ .with_column(Column('lr_vdem_v2x_diagacc', from_loa='country_year', from_column='vdem_v2x_diagacc')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
+ .with_column(Column('lr_vdem_v2xpe_exlgeo', from_loa='country_year', from_column='vdem_v2xpe_exlgeo')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
+ .with_column(Column('lr_vdem_v2xpe_exlgender', from_loa='country_year', from_column='vdem_v2xpe_exlgender')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
+ .with_column(Column('lr_vdem_v2x_ex_party', from_loa='country_year', from_column='vdem_v2x_ex_party')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
+ .with_column(Column('lr_vdem_v2x_genpp', from_loa='country_year', from_column='vdem_v2x_genpp')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
+ .with_column(Column('lr_vdem_v2xcl_prpty', from_loa='country_year', from_column='vdem_v2xcl_prpty')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
+ .with_column(Column('lr_vdem_v2xeg_eqprotec', from_loa='country_year', from_column='vdem_v2xeg_eqprotec')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
+ .with_column(Column('lr_vdem_v2x_ex_military', from_loa='country_year', from_column='vdem_v2x_ex_military')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
+ .with_column(Column('lr_vdem_v2x_clphy', from_loa='country_year', from_column='vdem_v2x_clphy')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort')
+ .with_column(Column('lr_vdem_v2x_hosabort', from_loa='country_year', from_column='vdem_v2x_hosabort')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
+ .with_column(Column('lr_vdem_v2xnp_regcorr', from_loa='country_year', from_column='vdem_v2xnp_regcorr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -345,7 +345,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -353,7 +353,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -361,7 +361,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -369,7 +369,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -377,7 +377,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -385,7 +385,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
@@ -393,7 +393,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
@@ -401,7 +401,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -409,70 +409,70 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
+ .with_column(Column('lr_splag_vdem_v2x_libdem', from_loa='country_year', from_column='vdem_v2x_libdem')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_splag_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
+ .with_column(Column('lr_splag_vdem_v2x_accountability', from_loa='country_year', from_column='vdem_v2x_accountability')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -480,7 +480,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -488,7 +488,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -496,7 +496,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -504,7 +504,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -512,7 +512,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -520,7 +520,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -528,7 +528,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -536,7 +536,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -544,7 +544,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -552,7 +552,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -561,7 +561,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -570,7 +570,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -579,7 +579,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -588,7 +588,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/high_hopes/configs/config_queryset.py b/models/high_hopes/configs/config_queryset.py
index 295f8fd..e200fde 100644
--- a/models/high_hopes/configs/config_queryset.py
+++ b/models/high_hopes/configs/config_queryset.py
@@ -13,7 +13,7 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_conflict_history','country_month')
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
)
.with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
@@ -51,7 +51,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -114,7 +114,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -122,7 +122,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -130,7 +130,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -138,7 +138,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -146,7 +146,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -154,7 +154,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -162,7 +162,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -170,7 +170,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -178,7 +178,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -186,7 +186,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -194,7 +194,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -203,7 +203,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -212,7 +212,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/invisible_string/configs/config_queryset.py b/models/invisible_string/configs/config_queryset.py
index d2166a3..b76f604 100644
--- a/models/invisible_string/configs/config_queryset.py
+++ b/models/invisible_string/configs/config_queryset.py
@@ -4,19 +4,19 @@ def generate():
qs_broad = (Queryset('fatalities003_pgm_broad','priogrid_month')
- .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
+ .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
+ .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
+ .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
+ .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
.transform.missing.replace_na(0)
)
@@ -25,52 +25,52 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,1)
)
- .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,2)
)
- .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,1.0,0.0)
)
- .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,10.0,0.0)
)
- .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,0.01,0.0)
)
- .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
+ .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -99,7 +99,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -107,7 +107,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -115,7 +115,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -123,7 +123,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/lavender_haze/configs/config_queryset.py b/models/lavender_haze/configs/config_queryset.py
index d2166a3..b76f604 100644
--- a/models/lavender_haze/configs/config_queryset.py
+++ b/models/lavender_haze/configs/config_queryset.py
@@ -4,19 +4,19 @@ def generate():
qs_broad = (Queryset('fatalities003_pgm_broad','priogrid_month')
- .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
+ .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
+ .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
+ .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
+ .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
.transform.missing.replace_na(0)
)
@@ -25,52 +25,52 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,1)
)
- .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,2)
)
- .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,1.0,0.0)
)
- .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,10.0,0.0)
)
- .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist('distances',1,0.01,0.0)
)
- .with_column(Column('dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
+ .with_column(Column('lr_dist_diamsec', from_loa='priogrid', from_column='dist_diamsec_s_wgs')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -99,7 +99,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -107,7 +107,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -115,7 +115,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -123,7 +123,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/little_lies/configs/config_queryset.py b/models/little_lies/configs/config_queryset.py
index 46edf09..4e7f380 100644
--- a/models/little_lies/configs/config_queryset.py
+++ b/models/little_lies/configs/config_queryset.py
@@ -18,7 +18,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
@@ -28,90 +28,90 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('reign_tenure_months', from_loa='country_month', from_column='tenure_months')
+ .with_column(Column('lr_reign_tenure_months', from_loa='country_month', from_column='tenure_months')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
+ .with_column(Column('lr_vdem_v2xcl_dmove', from_loa='country_year', from_column='vdem_v2xcl_dmove')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
+ .with_column(Column('lr_vdem_v2xeg_eqdr', from_loa='country_year', from_column='vdem_v2xeg_eqdr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
+ .with_column(Column('lr_vdem_v2xpe_exlpol', from_loa='country_year', from_column='vdem_v2xpe_exlpol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
)
- .with_column(Column('vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -131,42 +131,42 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
+ .with_column(Column('lr_splag_vdem_v2xpe_exlsocgr', from_loa='country_year', from_column='vdem_v2xpe_exlsocgr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
+ .with_column(Column('lr_splag_vdem_v2xcl_rol', from_loa='country_year', from_column='vdem_v2xcl_rol')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -174,7 +174,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -182,7 +182,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -190,7 +190,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -198,7 +198,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -206,7 +206,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/midnight_rain/configs/config_queryset.py b/models/midnight_rain/configs/config_queryset.py
index 7f9498e..e777ae8 100644
--- a/models/midnight_rain/configs/config_queryset.py
+++ b/models/midnight_rain/configs/config_queryset.py
@@ -12,83 +12,83 @@ def generate():
qs_escwa_drought = (Queryset('fatalities003_pgm_escwa_drought','priogrid_month')
- .with_column(Column('pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean')
+ .with_column(Column('lr_pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean')
.transform.missing.replace_na(0)
)
- .with_column(Column('pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.replace_na(0)
)
- .with_column(Column('pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
+ .with_column(Column('lr_pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
.transform.missing.replace_na(0)
)
- .with_column(Column('count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10')
+ .with_column(Column('lr_count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10')
.transform.missing.replace_na(0)
)
- .with_column(Column('cropprop', from_loa='priogrid_month', from_column='cropprop')
+ .with_column(Column('lr_cropprop', from_loa='priogrid_month', from_column='cropprop')
.transform.missing.replace_na(0)
)
- .with_column(Column('growseasdummy', from_loa='priogrid_month', from_column='growseasdummy')
+ .with_column(Column('lr_growseasdummy', from_loa='priogrid_month', from_column='growseasdummy')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10')
+ .with_column(Column('lr_spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
+ .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom')
+ .with_column(Column('lr_spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend')
+ .with_column(Column('lr_spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
+ .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend')
+ .with_column(Column('lr_spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
+ .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs')
+ .with_column(Column('lr_tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs')
+ .with_column(Column('lr_tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm')
+ .with_column(Column('lr_tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
+ .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops')
+ .with_column(Column('lr_tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops')
+ .with_column(Column('lr_tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops')
+ .with_column(Column('lr_tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops')
.transform.missing.replace_na(0)
)
@@ -102,7 +102,7 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
+ .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
.transform.bool.gte(1)
.transform.missing.fill()
)
@@ -117,13 +117,13 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
+ .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
.transform.missing.replace_na(0)
.transform.temporal.tlag(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -131,7 +131,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -139,7 +139,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/national_anthem/configs/config_queryset.py b/models/national_anthem/configs/config_queryset.py
index 012b6cc..e6f6c47 100644
--- a/models/national_anthem/configs/config_queryset.py
+++ b/models/national_anthem/configs/config_queryset.py
@@ -25,210 +25,210 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
+ .with_column(Column('lr_wdi_dt_oda_odat_pc_zs', from_loa='country_year', from_column='wdi_dt_oda_odat_pc_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_gd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_gd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs')
+ .with_column(Column('lr_wdi_ms_mil_xpnd_zs', from_loa='country_year', from_column='wdi_ms_mil_xpnd_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
+ .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
+ .with_column(Column('lr_wdi_nv_agr_totl_kn', from_loa='country_year', from_column='wdi_nv_agr_totl_kn')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd')
+ .with_column(Column('lr_wdi_ny_gdp_pcap_kd', from_loa='country_year', from_column='wdi_ny_gdp_pcap_kd')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in')
+ .with_column(Column('lr_wdi_sp_dyn_le00_in', from_loa='country_year', from_column='wdi_sp_dyn_le00_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prim_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prim_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs')
+ .with_column(Column('lr_wdi_se_enr_prsc_fm_zs', from_loa='country_year', from_column='wdi_se_enr_prsc_fm_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr')
+ .with_column(Column('lr_wdi_se_prm_nenr', from_loa='country_year', from_column='wdi_se_prm_nenr')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
+ .with_column(Column('lr_wdi_sh_sta_maln_zs', from_loa='country_year', from_column='wdi_sh_sta_maln_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
+ .with_column(Column('lr_wdi_sh_sta_stnt_zs', from_loa='country_year', from_column='wdi_sh_sta_stnt_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs')
+ .with_column(Column('lr_wdi_sm_pop_totl_zs', from_loa='country_year', from_column='wdi_sm_pop_totl_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
+ .with_column(Column('lr_wdi_sp_dyn_imrt_in', from_loa='country_year', from_column='wdi_sp_dyn_imrt_in')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe')
+ .with_column(Column('lr_wdi_sh_dyn_mort_fe', from_loa='country_year', from_column='wdi_sh_dyn_mort_fe')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_14_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_0014_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_1564_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_1564_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs')
+ .with_column(Column('lr_wdi_sp_pop_65up_fe_zs', from_loa='country_year', from_column='wdi_sp_pop_65up_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
+ .with_column(Column('lr_wdi_sp_pop_grow', from_loa='country_year', from_column='wdi_sp_pop_grow')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
+ .with_column(Column('lr_wdi_sp_urb_totl_in_zs', from_loa='country_year', from_column='wdi_sp_urb_totl_in_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
+ .with_column(Column('lr_splag_wdi_sl_tlf_totl_fe_zs', from_loa='country_year', from_column='wdi_sl_tlf_totl_fe_zs')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
+ .with_column(Column('lr_splag_wdi_sm_pop_refg_or', from_loa='country_year', from_column='wdi_sm_pop_refg_or')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
+ .with_column(Column('lr_splag_wdi_sm_pop_netm', from_loa='country_year', from_column='wdi_sm_pop_netm')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
+ .with_column(Column('lr_splag_wdi_ag_lnd_frst_k2', from_loa='country_year', from_column='wdi_ag_lnd_frst_k2')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.spatial.countrylag(1,1,0,0)
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -236,7 +236,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -244,7 +244,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/old_money/configs/config_queryset.py b/models/old_money/configs/config_queryset.py
index 11cd459..31055a5 100644
--- a/models/old_money/configs/config_queryset.py
+++ b/models/old_money/configs/config_queryset.py
@@ -4,83 +4,83 @@ def generate():
qs_escwa_drought = (Queryset('fatalities003_pgm_escwa_drought','priogrid_month')
- .with_column(Column('pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean')
+ .with_column(Column('lr_pgd_nlights_calib_mean', from_loa='priogrid_year', from_column='nlights_calib_mean')
.transform.missing.replace_na(0)
)
- .with_column(Column('pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
+ .with_column(Column('lr_pgd_imr_mean', from_loa='priogrid_year', from_column='imr_mean')
.transform.missing.replace_na(0)
)
- .with_column(Column('pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
+ .with_column(Column('lr_pgd_urban_ih', from_loa='priogrid_year', from_column='urban_ih')
.transform.missing.replace_na(0)
)
- .with_column(Column('count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10')
+ .with_column(Column('lr_count_moder_drought_prev10', from_loa='priogrid_month', from_column='count_moder_drought_prev10')
.transform.missing.replace_na(0)
)
- .with_column(Column('cropprop', from_loa='priogrid_month', from_column='cropprop')
+ .with_column(Column('lr_cropprop', from_loa='priogrid_month', from_column='cropprop')
.transform.missing.replace_na(0)
)
- .with_column(Column('growseasdummy', from_loa='priogrid_month', from_column='growseasdummy')
+ .with_column(Column('lr_growseasdummy', from_loa='priogrid_month', from_column='growseasdummy')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10')
+ .with_column(Column('lr_spei1_gs_prev10', from_loa='priogrid_month', from_column='spei1_gs_prev10')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
+ .with_column(Column('lr_spei1_gs_prev10_anom', from_loa='priogrid_month', from_column='spei1_gs_prev10_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom')
+ .with_column(Column('lr_spei1_gsm_cv_anom', from_loa='priogrid_month', from_column='spei1_gsm_cv_anom')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend')
+ .with_column(Column('lr_spei1_gsm_detrend', from_loa='priogrid_month', from_column='spei1_gsm_detrend')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
+ .with_column(Column('lr_spei1gsy_lowermedian_count', from_loa='priogrid_month', from_column='spei1gsy_lowermedian_count')
.transform.missing.replace_na(0)
)
- .with_column(Column('spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend')
+ .with_column(Column('lr_spei_48_detrend', from_loa='priogrid_month', from_column='spei_48_detrend')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
+ .with_column(Column('lr_tlag1_dr_mod_gs', from_loa='priogrid_month', from_column='tlag1_dr_mod_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs')
+ .with_column(Column('lr_tlag1_dr_moder_gs', from_loa='priogrid_month', from_column='tlag1_dr_moder_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs')
+ .with_column(Column('lr_tlag1_dr_sev_gs', from_loa='priogrid_month', from_column='tlag1_dr_sev_gs')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm')
+ .with_column(Column('lr_tlag1_spei1_gsm', from_loa='priogrid_month', from_column='tlag1_spei1_gsm')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
+ .with_column(Column('lr_tlag_12_crop_sum', from_loa='priogrid_month', from_column='tlag_12_crop_sum')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops')
+ .with_column(Column('lr_tlag_12_harvarea_maincrops', from_loa='priogrid_month', from_column='tlag_12_harvarea_maincrops')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops')
+ .with_column(Column('lr_tlag_12_irr_maincrops', from_loa='priogrid_month', from_column='tlag_12_irr_maincrops')
.transform.missing.replace_na(0)
)
- .with_column(Column('tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops')
+ .with_column(Column('lr_tlag_12_rainf_maincrops', from_loa='priogrid_month', from_column='tlag_12_rainf_maincrops')
.transform.missing.replace_na(0)
)
@@ -94,7 +94,7 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
+ .with_column(Column('lr_greq_1_excluded', from_loa='priogrid_year', from_column='excluded')
.transform.bool.gte(1)
.transform.missing.fill()
)
@@ -109,13 +109,13 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
+ .with_column(Column('lr_wdi_nv_agr_totl_kd', from_loa='country_year', from_column='wdi_nv_agr_totl_kd')
.transform.missing.replace_na(0)
.transform.temporal.tlag(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -123,7 +123,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -131,7 +131,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_1', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/ominous_ox/configs/config_queryset.py b/models/ominous_ox/configs/config_queryset.py
index 6fd9718..4040d16 100644
--- a/models/ominous_ox/configs/config_queryset.py
+++ b/models/ominous_ox/configs/config_queryset.py
@@ -13,7 +13,7 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_conflict_history','country_month')
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
)
.with_column(Column('ln_ged_sb_dep', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
@@ -51,7 +51,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
@@ -114,7 +114,7 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -122,7 +122,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -130,7 +130,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_100', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -138,7 +138,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_500', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(500)
.transform.temporal.time_since()
@@ -146,7 +146,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_100', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -154,7 +154,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -162,7 +162,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_ns_100', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(100)
.transform.temporal.time_since()
@@ -170,7 +170,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
+ .with_column(Column('lr_decay_acled_sb_5', from_loa='country_month', from_column='acled_sb_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -178,7 +178,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
+ .with_column(Column('lr_decay_acled_os_5', from_loa='country_month', from_column='acled_os_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -186,7 +186,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
+ .with_column(Column('lr_decay_acled_ns_5', from_loa='country_month', from_column='acled_ns_fat')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -194,7 +194,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -203,7 +203,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -212,7 +212,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_ns_5', from_loa='country_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/orange_pasta/configs/config_queryset.py b/models/orange_pasta/configs/config_queryset.py
index 1f9beb7..1d431f9 100644
--- a/models/orange_pasta/configs/config_queryset.py
+++ b/models/orange_pasta/configs/config_queryset.py
@@ -20,7 +20,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -28,7 +28,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_25', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(25)
.transform.temporal.time_since()
@@ -36,7 +36,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_1', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -44,7 +44,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_1_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
@@ -53,7 +53,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(1)
.transform.temporal.time_since()
diff --git a/models/plastic_beach/configs/config_queryset.py b/models/plastic_beach/configs/config_queryset.py
index cb85613..0830586 100644
--- a/models/plastic_beach/configs/config_queryset.py
+++ b/models/plastic_beach/configs/config_queryset.py
@@ -23,91 +23,91 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct')
+ .with_column(Column('lr_agr_withdrawal_pct_t48', from_loa='country_year', from_column='agr_withdrawal_pct')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap')
+ .with_column(Column('lr_dam_cap_pcap_t48', from_loa='country_year', from_column='dam_cap_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('groundwater_export_t48', from_loa='country_year', from_column='groundwater_export')
+ .with_column(Column('lr_groundwater_export_t48', from_loa='country_year', from_column='groundwater_export')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct')
+ .with_column(Column('lr_fresh_withdrawal_pct_t48', from_loa='country_year', from_column='fresh_withdrawal_pct')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency')
+ .with_column(Column('lr_ind_efficiency_t48', from_loa='country_year', from_column='ind_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency')
+ .with_column(Column('lr_irr_agr_efficiency_t48', from_loa='country_year', from_column='irr_agr_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('services_efficiency_t48', from_loa='country_year', from_column='services_efficiency')
+ .with_column(Column('lr_services_efficiency_t48', from_loa='country_year', from_column='services_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('general_efficiency_t48', from_loa='country_year', from_column='general_efficiency')
+ .with_column(Column('lr_general_efficiency_t48', from_loa='country_year', from_column='general_efficiency')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('water_stress_t48', from_loa='country_year', from_column='water_stress')
+ .with_column(Column('lr_water_stress_t48', from_loa='country_year', from_column='water_stress')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap')
+ .with_column(Column('lr_renewable_internal_pcap_t48', from_loa='country_year', from_column='renewable_internal_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap')
+ .with_column(Column('lr_renewable_pcap_t48', from_loa='country_year', from_column='renewable_pcap')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(48)
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -115,7 +115,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -123,7 +123,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/popular_monster/configs/config_queryset.py b/models/popular_monster/configs/config_queryset.py
index ae9ed83..9e0f5f3 100644
--- a/models/popular_monster/configs/config_queryset.py
+++ b/models/popular_monster/configs/config_queryset.py
@@ -23,350 +23,350 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -374,7 +374,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -382,7 +382,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -391,7 +391,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -400,7 +400,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -409,7 +409,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -418,7 +418,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -427,7 +427,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -436,7 +436,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -445,7 +445,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -454,7 +454,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -463,7 +463,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -472,7 +472,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -481,7 +481,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -490,7 +490,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -499,7 +499,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -508,7 +508,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -517,7 +517,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -526,7 +526,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/teen_spirit/configs/config_queryset.py b/models/teen_spirit/configs/config_queryset.py
index 3910ff7..32f8b1a 100644
--- a/models/teen_spirit/configs/config_queryset.py
+++ b/models/teen_spirit/configs/config_queryset.py
@@ -13,23 +13,23 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_faoprices','country_month')
- .with_column(Column('fao_wheat_price', from_loa='country_month', from_column='wheat_price')
+ .with_column(Column('lr_fao_wheat_price', from_loa='country_month', from_column='wheat_price')
.transform.missing.replace_na(0)
)
- .with_column(Column('fao_mp_price', from_loa='country_month', from_column='mp_price')
+ .with_column(Column('lr_fao_mp_price', from_loa='country_month', from_column='mp_price')
.transform.missing.replace_na(0)
)
- .with_column(Column('fao_sugar_price', from_loa='country_month', from_column='sugar_price')
+ .with_column(Column('lr_fao_sugar_price', from_loa='country_month', from_column='sugar_price')
.transform.missing.replace_na(0)
)
- .with_column(Column('fao_meat_price', from_loa='country_month', from_column='meat_price')
+ .with_column(Column('lr_fao_meat_price', from_loa='country_month', from_column='meat_price')
.transform.missing.replace_na(0)
)
- .with_column(Column('fao_milk_price', from_loa='country_month', from_column='milk_price')
+ .with_column(Column('lr_fao_milk_price', from_loa='country_month', from_column='milk_price')
.transform.missing.replace_na(0)
)
@@ -43,44 +43,44 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('delta_fao_wheat_price', from_loa='country_month', from_column='wheat_price')
+ .with_column(Column('lr_delta_fao_wheat_price', from_loa='country_month', from_column='wheat_price')
.transform.temporal.delta(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('delta_fao_mp_price', from_loa='country_month', from_column='mp_price')
+ .with_column(Column('lr_delta_fao_mp_price', from_loa='country_month', from_column='mp_price')
.transform.temporal.delta(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('delta_fao_sugar_price', from_loa='country_month', from_column='sugar_price')
+ .with_column(Column('lr_delta_fao_sugar_price', from_loa='country_month', from_column='sugar_price')
.transform.temporal.delta(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('delta_fao_meat_price', from_loa='country_month', from_column='meat_price')
+ .with_column(Column('lr_delta_fao_meat_price', from_loa='country_month', from_column='meat_price')
.transform.temporal.delta(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('delta_fao_milk_price', from_loa='country_month', from_column='milk_price')
+ .with_column(Column('lr_delta_fao_milk_price', from_loa='country_month', from_column='milk_price')
.transform.temporal.delta(12)
.transform.missing.replace_na(0)
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -88,7 +88,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -96,7 +96,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
diff --git a/models/twin_flame/configs/config_queryset.py b/models/twin_flame/configs/config_queryset.py
index ae9ed83..9e0f5f3 100644
--- a/models/twin_flame/configs/config_queryset.py
+++ b/models/twin_flame/configs/config_queryset.py
@@ -23,350 +23,350 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t2', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t13', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t2', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t13', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t2', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t13', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t2', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t13', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t2', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t13', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t2', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t13', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t2', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t13', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t2', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t13', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t2', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t13', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t2', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t13', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t2', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t13', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t2', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t13', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t2', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t13', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t2', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t13', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t2', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t13', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(1)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t2', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(2)
.transform.missing.fill()
)
- .with_column(Column('topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t13', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
.transform.missing.fill()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -374,7 +374,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -382,7 +382,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -391,7 +391,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
+ .with_column(Column('lr_topic_tokens_t1_splag', from_loa='country_month', from_column='topic_tokens')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -400,7 +400,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
+ .with_column(Column('lr_topic_ste_theta0_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta0_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -409,7 +409,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
+ .with_column(Column('lr_topic_ste_theta1_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta1_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -418,7 +418,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
+ .with_column(Column('lr_topic_ste_theta2_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta2_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -427,7 +427,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
+ .with_column(Column('lr_topic_ste_theta3_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta3_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -436,7 +436,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
+ .with_column(Column('lr_topic_ste_theta4_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta4_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -445,7 +445,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
+ .with_column(Column('lr_topic_ste_theta5_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta5_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -454,7 +454,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
+ .with_column(Column('lr_topic_ste_theta6_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta6_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -463,7 +463,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
+ .with_column(Column('lr_topic_ste_theta7_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta7_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -472,7 +472,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
+ .with_column(Column('lr_topic_ste_theta8_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta8_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -481,7 +481,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
+ .with_column(Column('lr_topic_ste_theta9_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta9_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -490,7 +490,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
+ .with_column(Column('lr_topic_ste_theta10_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta10_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -499,7 +499,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
+ .with_column(Column('lr_topic_ste_theta11_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta11_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -508,7 +508,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
+ .with_column(Column('lr_topic_ste_theta12_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta12_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -517,7 +517,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
+ .with_column(Column('lr_topic_ste_theta13_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta13_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
@@ -526,7 +526,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
+ .with_column(Column('lr_topic_ste_theta14_stock_t1_splag', from_loa='country_month', from_column='topic_ste_theta14_stock')
.transform.missing.fill()
.transform.missing.replace_na()
.transform.temporal.tlag(13)
diff --git a/models/wildest_dream/configs/config_queryset.py b/models/wildest_dream/configs/config_queryset.py
index 90884a3..395baaf 100644
--- a/models/wildest_dream/configs/config_queryset.py
+++ b/models/wildest_dream/configs/config_queryset.py
@@ -5,7 +5,7 @@ def generate():
qs_sptime_dist = (Queryset('fatalities003_pgm_conflict_sptime_dist','priogrid_month')
- .with_column(Column('ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.bool.gte(1)
)
@@ -14,47 +14,47 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k1_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,1.0,0.0)
)
- .with_column(Column('sptime_dist_k1_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k1_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,1.0,0.0)
)
- .with_column(Column('sptime_dist_k1_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k1_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,1.0,0.0)
)
- .with_column(Column('sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k10_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,10.0,0.0)
)
- .with_column(Column('sptime_dist_k10_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k10_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,10.0,0.0)
)
- .with_column(Column('sptime_dist_k10_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k10_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,10.0,0.0)
)
- .with_column(Column('sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k001_ged_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,0.01,0.0)
)
- .with_column(Column('sptime_dist_k001_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k001_ged_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,0.01,0.0)
)
- .with_column(Column('sptime_dist_k001_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_sptime_dist_k001_ged_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.sptime_dist("distances",1,0.01,0.0)
)
diff --git a/models/yellow_pikachu/configs/config_queryset.py b/models/yellow_pikachu/configs/config_queryset.py
index 29caf78..ad382c3 100644
--- a/models/yellow_pikachu/configs/config_queryset.py
+++ b/models/yellow_pikachu/configs/config_queryset.py
@@ -4,7 +4,7 @@ def generate():
qs_treelag = (Queryset('fatalities003_pgm_conflict_treelag','priogrid_month')
- .with_column(Column('ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_ged_gte_1', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.bool.gte(1)
)
@@ -13,32 +13,32 @@ def generate():
.transform.ops.ln()
)
- .with_column(Column('treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_1_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,1)
)
- .with_column(Column('treelag_1_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_treelag_1_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,1)
)
- .with_column(Column('treelag_1_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_treelag_1_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,1)
)
- .with_column(Column('treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_treelag_2_sb', from_loa='priogrid_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,2)
)
- .with_column(Column('treelag_2_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
+ .with_column(Column('lr_treelag_2_ns', from_loa='priogrid_month', from_column='ged_ns_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,2)
)
- .with_column(Column('treelag_2_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_treelag_2_os', from_loa='priogrid_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.spatial.treelag(0.7,2)
)
diff --git a/models/yellow_submarine/configs/config_queryset.py b/models/yellow_submarine/configs/config_queryset.py
index 9d2a4a8..90eb87a 100644
--- a/models/yellow_submarine/configs/config_queryset.py
+++ b/models/yellow_submarine/configs/config_queryset.py
@@ -13,19 +13,19 @@ def generate():
# VIEWSER 6, Example configuration. Modify as needed.
queryset = (Queryset('fatalities003_imfweo','country_month')
- .with_column(Column('imfweo_ngdp_rpch_tcurrent', from_loa='country_month', from_column='ngdp_rpch_tcurrent')
+ .with_column(Column('lr_imfweo_ngdp_rpch_tcurrent', from_loa='country_month', from_column='ngdp_rpch_tcurrent')
.transform.missing.replace_na(0)
)
- .with_column(Column('imfweo_ngdp_rpch_tmin1', from_loa='country_month', from_column='ngdp_rpch_tmin1')
+ .with_column(Column('lr_imfweo_ngdp_rpch_tmin1', from_loa='country_month', from_column='ngdp_rpch_tmin1')
.transform.missing.replace_na(0)
)
- .with_column(Column('imfweo_ngdp_rpch_tplus1', from_loa='country_month', from_column='ngdp_rpch_tplus1')
+ .with_column(Column('lr_imfweo_ngdp_rpch_tplus1', from_loa='country_month', from_column='ngdp_rpch_tplus1')
.transform.missing.replace_na(0)
)
- .with_column(Column('imfweo_ngdp_rpch_tplus2', from_loa='country_month', from_column='ngdp_rpch_tplus2')
+ .with_column(Column('lr_imfweo_ngdp_rpch_tplus2', from_loa='country_month', from_column='ngdp_rpch_tplus2')
.transform.missing.replace_na(0)
)
@@ -39,19 +39,19 @@ def generate():
.transform.missing.fill()
)
- .with_column(Column('gleditsch_ward', from_loa='country', from_column='gwcode')
+ .with_column(Column('lr_gleditsch_ward', from_loa='country', from_column='gwcode')
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
+ .with_column(Column('lr_wdi_sp_pop_totl', from_loa='country_year', from_column='wdi_sp_pop_totl')
.transform.missing.fill()
.transform.temporal.tlag(12)
.transform.missing.fill()
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -59,7 +59,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
+ .with_column(Column('lr_decay_ged_os_5', from_loa='country_month', from_column='ged_os_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()
@@ -67,7 +67,7 @@ def generate():
.transform.missing.replace_na()
)
- .with_column(Column('splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
+ .with_column(Column('lr_splag_1_decay_ged_sb_5', from_loa='country_month', from_column='ged_sb_best_sum_nokgi')
.transform.missing.replace_na()
.transform.bool.gte(5)
.transform.temporal.time_since()