Skip to content

Questions for Xuechunzi Bai concern her 5/2 talk on "Multidimensional Stereotypes Emerge Spontaneously When Exploration is Costly" #5

@jamesallenevans

Description

@jamesallenevans

Post questions here for Xuechunzi Bai regarding her 5/2 talk Multidimensional Stereotypes Emerge Spontaneously When Exploration is Costly. Stereotypes of social groups have a canonical multidimensional structure, reflecting the extent to which groups are considered competent and trustworthy. Traditional explanations for stereotypes – group motives, cognitive biases, minority/majority environments, or real-group differences – assume that they result from deficits in humans or their environments. A recently-proposed alternative explanation – that stereotypes can emerge when exploration is costly – posits that even optimal decision-makers in an ideal environment can inadvertently create incorrect impressions. However, existing theories fail to explain the multidimensionality of stereotypes. We show that multidimensional stratification and the associated stereotypes can result from feature-based exploration: when individuals make self-interested decisions based on past experiences in an environment where exploring new options carries an implicit cost, and when these options share similar attributes, they are more likely to separate groups along multiple dimensions. We formalize this theory via the contextual multi-armed bandit problem, use the resulting model to generate testable predictions, and evaluate those predictions against human behavior. In particular, we evaluate this process in incentivized decisions involving as many as 20 real jobs, and successfully recover the classic warmth-by-competence stereotype space. Further experiments show that intervening on the cost of exploration effectively mitigates bias, further demonstrating that exploration cost per se is the operating variable. Future diversity interventions may consider how to reduce exploration cost, such as introducing bonus rewards for diverse hires, assessing candidates using challenging tasks, and randomly making some groups unavailable for selection. Read the following manuscript: BaiGriffithsFiske.pdf

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions