Skip to content

Questions for Ashton Anderston concerning his talk about "Generative AI for Human Benefit" #2

@jamesallenevans

Description

@jamesallenevans

Pose your (and uprank 5 others') questions here for Ashton Anderson about his 2024 ICLR paper "Designing Skill-Compatible AI: Methodologies and Frameworks in Chess", Karim Hamade, Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. and associated talk on Generative AI for Human Benefit: Lessons from Chess: Artificial intelligence is becoming increasingly intelligent, kicking off a Cambrian explosion of AI models filling thousands of niches. Although these tools may replace human effort in some domains, many other areas will foster a combination of human and AI participation. A central challenge in realizing the full potential of human-AI collaboration is that algorithms often act very differently than people, and thus may be uninterpretable, hard to learn from, or even dangerous for humans to follow. For the past six years, my group has been exploring how to align generative AI for human benefit in an ideal model system, chess, in which AI has been superhuman for over two decades, a massive amount of fine-grained data on human actions is available, and a wide spectrum of skill levels exist. We developed Maia, a generative AI model that captures human style and ability in chess across the spectrum of human skill, and predicts likely next human actions analogously to how large language models predict likely next tokens. The Maia project started with these aggregated population models, which have now played millions of games against human opponents online, and has grown to encompass individual models that act like specific people, embedding models that can identify a person by a small sample of their actions alone, an ethical framework for issues that arise with individual models in any domain, various types of partner agents designed from combining human-like and superhuman AI, and algorithmic teaching systems. In this talk, I will share our approaches to designing generative AI for human benefit and the broadly applicable lessons we have learned about human-AI interaction.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions