Skip to content

Get much higher accuracy than those in your paper. #1

@clevercool

Description

@clevercool

Hi,

Thanks for your open-source of the AdaptivFloat. It is an impressive paper.

I implemented your code in Resnet-50 model with imageNet dataset.(https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py)
I quantized 54 layers (including downsample layers) only on weight:
enabling quant: conv1
enabling quant: layer1.0.conv1
enabling quant: layer1.0.conv2
enabling quant: layer1.0.conv3
enabling quant: layer1.0.downsample.0
enabling quant: layer1.1.conv1
enabling quant: layer1.1.conv2
enabling quant: layer1.1.conv3
enabling quant: layer1.2.conv1
enabling quant: layer1.2.conv2
enabling quant: layer1.2.conv3
enabling quant: layer2.0.conv1
enabling quant: layer2.0.conv2
enabling quant: layer2.0.conv3
enabling quant: layer2.0.downsample.0
enabling quant: layer2.1.conv1
enabling quant: layer2.1.conv2
enabling quant: layer2.1.conv3
enabling quant: layer2.2.conv1
enabling quant: layer2.2.conv2
enabling quant: layer2.2.conv3
enabling quant: layer2.3.conv1
enabling quant: layer2.3.conv2
enabling quant: layer2.3.conv3
enabling quant: layer3.0.conv1
enabling quant: layer3.0.conv2
enabling quant: layer3.0.conv3
enabling quant: layer3.0.downsample.0
enabling quant: layer3.1.conv1
enabling quant: layer3.1.conv2
enabling quant: layer3.1.conv3
enabling quant: layer3.2.conv1
enabling quant: layer3.2.conv2
enabling quant: layer3.2.conv3
enabling quant: layer3.3.conv1
enabling quant: layer3.3.conv2
enabling quant: layer3.3.conv3
enabling quant: layer3.4.conv1
enabling quant: layer3.4.conv2
enabling quant: layer3.4.conv3
enabling quant: layer3.5.conv1
enabling quant: layer3.5.conv2
enabling quant: layer3.5.conv3
enabling quant: layer4.0.conv1
enabling quant: layer4.0.conv2
enabling quant: layer4.0.conv3
enabling quant: layer4.0.downsample.0
enabling quant: layer4.1.conv1
enabling quant: layer4.1.conv2
enabling quant: layer4.1.conv3
enabling quant: layer4.2.conv1
enabling quant: layer4.2.conv2
enabling quant: layer4.2.conv3
enabling quant: fc

I only replace the weight tensors using the NumPy function in this repository.
However, the post-training results are much higher than those in your paper.
For example, the 4-bit and 5-bit results of mine are 49.25% and 69.56% (The source accuracy is 76.13% in PyTorch), the paper reported 29.0% and 67.2%.

Is there something about calibration I missed?
Could you provide more details about the implementation?

Thanks!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions