diff --git a/LibTessDotNet/LibTessDotNet.csproj b/LibTessDotNet/LibTessDotNet.csproj index 18346fc..2829fd0 100644 --- a/LibTessDotNet/LibTessDotNet.csproj +++ b/LibTessDotNet/LibTessDotNet.csproj @@ -7,6 +7,7 @@ false false Debug;Release;ReleaseDouble;DebugDouble + 1591 true @@ -30,6 +31,7 @@ true false false + true true @@ -52,6 +54,7 @@ prompt LibTessDotNet.Double LibTessDotNet.Double + true diff --git a/LibTessDotNet/Sources/Geom.cs b/LibTessDotNet/Sources/Geom.cs index cdb3a60..8618008 100644 --- a/LibTessDotNet/Sources/Geom.cs +++ b/LibTessDotNet/Sources/Geom.cs @@ -76,7 +76,7 @@ public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs) } /// - /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), + /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), /// evaluates the t-coord of the edge uw at the s-coord of the vertex v. /// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. /// If uw is vertical (and thus passes through v), the result is zero. @@ -84,7 +84,7 @@ public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs) /// The calculation is extremely accurate and stable, even when v /// is very close to u or w. In particular if we set v->t = 0 and /// let r be the negated result (this evaluates (uw)(v->s)), then - /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). + /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). /// public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { @@ -110,7 +110,7 @@ public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Ve /// /// Returns a number whose sign matches EdgeEval(u,v,w) but which - /// is cheaper to evaluate. Returns > 0, == 0 , or < 0 + /// is cheaper to evaluate. Returns > 0, == 0 , or < 0 /// as v is above, on, or below the edge uw. /// public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)