diff --git a/LibTessDotNet/LibTessDotNet.csproj b/LibTessDotNet/LibTessDotNet.csproj
index 18346fc..2829fd0 100644
--- a/LibTessDotNet/LibTessDotNet.csproj
+++ b/LibTessDotNet/LibTessDotNet.csproj
@@ -7,6 +7,7 @@
false
false
Debug;Release;ReleaseDouble;DebugDouble
+ 1591
true
@@ -30,6 +31,7 @@
true
false
false
+ true
true
@@ -52,6 +54,7 @@
prompt
LibTessDotNet.Double
LibTessDotNet.Double
+ true
diff --git a/LibTessDotNet/Sources/Geom.cs b/LibTessDotNet/Sources/Geom.cs
index cdb3a60..8618008 100644
--- a/LibTessDotNet/Sources/Geom.cs
+++ b/LibTessDotNet/Sources/Geom.cs
@@ -76,7 +76,7 @@ public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
}
///
- /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
+ /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
/// evaluates the t-coord of the edge uw at the s-coord of the vertex v.
/// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
/// If uw is vertical (and thus passes through v), the result is zero.
@@ -84,7 +84,7 @@ public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
/// The calculation is extremely accurate and stable, even when v
/// is very close to u or w. In particular if we set v->t = 0 and
/// let r be the negated result (this evaluates (uw)(v->s)), then
- /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
+ /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
///
public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
@@ -110,7 +110,7 @@ public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Ve
///
/// Returns a number whose sign matches EdgeEval(u,v,w) but which
- /// is cheaper to evaluate. Returns > 0, == 0 , or < 0
+ /// is cheaper to evaluate. Returns > 0, == 0 , or < 0
/// as v is above, on, or below the edge uw.
///
public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)