-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
TypeError is happening in an internal code that invokes nlp.pipe from the Spacy library. The error happens in line for idx, doc in enumerate(nlp.pipe(texts, n_threads=16, batch_size=100)):, and removing n_threads=16 seems to make it work in the spacy version that I'm using.
VisualTextAnalyzer.plot_text_summary(yelp_data, category_column='category', text_column='comments')Word Frequency:
Analyzing 69 documents (positive category)
Analyzing 65 documents (negative category)
Named Entity Recognition:
Analyzing 69 documents (positive category)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-2065f93d9da3> in <module>
----> 1 VisualTextAnalyzer.plot_text_summary(yelp_data, category_column='category', text_column='comments')
~/workspace/nyu/d3m/piracy-demo/TextExplorer/VisualTextAnalyzer/_data_preprocessing.py in plot_text_summary(data, category_column, text_column, positive_label, negative_label, words_entities)
343 processed_data = {}
344 if words_entities is None:
--> 345 processed_data = get_words_entities(data,category_column, text_column, positive_label, negative_label)
346 global_processed_data = processed_data
347 else:
~/workspace/nyu/d3m/piracy-demo/TextExplorer/VisualTextAnalyzer/_data_preprocessing.py in get_words_entities(data, category_column, text_column, positive_label, negative_label)
261 processed_data["words"] = get_words (positive_texts, negative_texts, labels)
262 print('Named Entity Recognition:')
--> 263 processed_data["entities"] = get_entities (positive_texts, negative_texts, labels)
264 raw_text = {}
265 raw_text['positive_texts'] = positive_texts
~/workspace/nyu/d3m/piracy-demo/TextExplorer/VisualTextAnalyzer/_data_preprocessing.py in get_entities(positive_texts, negative_texts, labels)
219
220 def get_entities (positive_texts, negative_texts, labels):
--> 221 positive_entities = get_entities_frequency(positive_texts, labels['pos'])
222 negative_entities = get_entities_frequency(negative_texts, labels['neg'])
223
~/workspace/nyu/d3m/piracy-demo/TextExplorer/VisualTextAnalyzer/_data_preprocessing.py in get_entities_frequency(texts, label)
191 alias = {'ORG':'ORGANIZATION', 'LOC':'PLACE', 'GPE':'CITY/COUNTRY', 'NORP':'GROUP', 'FAC':'BUILDING'}
192 unique_entities = {}
--> 193 for idx, doc in enumerate(nlp.pipe(texts, n_threads=16, batch_size=100)):
194 for entity in doc.ents:
195 if entity.label_ in {'CARDINAL', 'ORDINAL', 'QUANTITY'}:
TypeError: pipe() got an unexpected keyword argument 'n_threads'
Spacy version:
$ pip show spacyName: spacy
Version: 3.0.3
Summary: Industrial-strength Natural Language Processing (NLP) in Python
Home-page: https://spacy.io
Author: Explosion
Author-email: contact@explosion.ai
License: MIT
Location: ~/miniconda2/envs/myenv/lib/python3.6/site-packages
Requires: preshed, tqdm, typer, pathy, srsly, requests, importlib-metadata, murmurhash, cymem, thinc, setuptools, pydantic, jinja2, packaging, spacy-legacy, typing-extensions, wasabi, numpy, catalogue, blis
Required-by: en-core-web-sm, text-labeling, visual-text-explorer
Metadata
Metadata
Assignees
Labels
No labels