diff --git a/SET Assignment2.ipynb b/SET Assignment2.ipynb
new file mode 100644
index 0000000..e8028ed
--- /dev/null
+++ b/SET Assignment2.ipynb
@@ -0,0 +1,993 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "SETAssignment2.ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "nf8JtyyGzdDR"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "import matplotlib.pyplot as plt\n",
+ "from sklearn.model_selection import train_test_split"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = pd.read_csv(\"Nutrition__Physical_Activity__and_Obesity_-_Behavioral_Risk_Factor_Surveillance_System.csv\")\n",
+ "df.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 704
+ },
+ "id": "9OHwTfqT0WWh",
+ "outputId": "1b61eac6-4ca1-43e7-a962-8e7444c74bff"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " YearStart | \n",
+ " YearEnd | \n",
+ " LocationAbbr | \n",
+ " LocationDesc | \n",
+ " Datasource | \n",
+ " Class | \n",
+ " Topic | \n",
+ " Question | \n",
+ " Data_Value_Unit | \n",
+ " Data_Value_Type | \n",
+ " Data_Value | \n",
+ " Data_Value_Alt | \n",
+ " Data_Value_Footnote_Symbol | \n",
+ " Data_Value_Footnote | \n",
+ " Low_Confidence_Limit | \n",
+ " High_Confidence_Limit | \n",
+ " Sample_Size | \n",
+ " Total | \n",
+ " Age(years) | \n",
+ " Education | \n",
+ " Gender | \n",
+ " Income | \n",
+ " Race/Ethnicity | \n",
+ " GeoLocation | \n",
+ " ClassID | \n",
+ " TopicID | \n",
+ " QuestionID | \n",
+ " DataValueTypeID | \n",
+ " LocationID | \n",
+ " StratificationCategory1 | \n",
+ " Stratification1 | \n",
+ " StratificationCategoryId1 | \n",
+ " StratificationID1 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.0 | \n",
+ " 32.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.5 | \n",
+ " 33.5 | \n",
+ " 7304.0 | \n",
+ " Total | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Total | \n",
+ " Total | \n",
+ " OVR | \n",
+ " OVERALL | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.3 | \n",
+ " 32.3 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 29.9 | \n",
+ " 34.7 | \n",
+ " 2581.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Male | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Gender | \n",
+ " Male | \n",
+ " GEN | \n",
+ " MALE | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 31.8 | \n",
+ " 31.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.0 | \n",
+ " 33.6 | \n",
+ " 4723.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Female | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Gender | \n",
+ " Female | \n",
+ " GEN | \n",
+ " FEMALE | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 33.6 | \n",
+ " 33.6 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 29.9 | \n",
+ " 37.6 | \n",
+ " 1153.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Less than high school | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Education | \n",
+ " Less than high school | \n",
+ " EDU | \n",
+ " EDUHS | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.8 | \n",
+ " 32.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.2 | \n",
+ " 35.6 | \n",
+ " 2402.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " High school graduate | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Education | \n",
+ " High school graduate | \n",
+ " EDU | \n",
+ " EDUHSGRAD | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " YearStart YearEnd ... StratificationCategoryId1 StratificationID1\n",
+ "0 2011 2011 ... OVR OVERALL\n",
+ "1 2011 2011 ... GEN MALE\n",
+ "2 2011 2011 ... GEN FEMALE\n",
+ "3 2011 2011 ... EDU EDUHS\n",
+ "4 2011 2011 ... EDU EDUHSGRAD\n",
+ "\n",
+ "[5 rows x 33 columns]"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 26
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.info()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "T9SENeyK0fk8",
+ "outputId": "530ddc12-06da-40fa-99e5-e7f00bb0faaf"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 5490 entries, 0 to 5489\n",
+ "Data columns (total 33 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 YearStart 5490 non-null int64 \n",
+ " 1 YearEnd 5490 non-null int64 \n",
+ " 2 LocationAbbr 5490 non-null object \n",
+ " 3 LocationDesc 5490 non-null object \n",
+ " 4 Datasource 5490 non-null object \n",
+ " 5 Class 5490 non-null object \n",
+ " 6 Topic 5490 non-null object \n",
+ " 7 Question 5490 non-null object \n",
+ " 8 Data_Value_Unit 0 non-null float64\n",
+ " 9 Data_Value_Type 5489 non-null object \n",
+ " 10 Data_Value 5048 non-null float64\n",
+ " 11 Data_Value_Alt 5048 non-null float64\n",
+ " 12 Data_Value_Footnote_Symbol 441 non-null object \n",
+ " 13 Data_Value_Footnote 441 non-null object \n",
+ " 14 Low_Confidence_Limit 5048 non-null float64\n",
+ " 15 High_Confidence_Limit 5048 non-null float64\n",
+ " 16 Sample_Size 5048 non-null float64\n",
+ " 17 Total 198 non-null object \n",
+ " 18 Age(years) 1178 non-null object \n",
+ " 19 Education 784 non-null object \n",
+ " 20 Gender 398 non-null object \n",
+ " 21 Income 1368 non-null object \n",
+ " 22 Race/Ethnicity 1563 non-null object \n",
+ " 23 GeoLocation 5480 non-null object \n",
+ " 24 ClassID 5489 non-null object \n",
+ " 25 TopicID 5489 non-null object \n",
+ " 26 QuestionID 5489 non-null object \n",
+ " 27 DataValueTypeID 5489 non-null object \n",
+ " 28 LocationID 5489 non-null float64\n",
+ " 29 StratificationCategory1 5489 non-null object \n",
+ " 30 Stratification1 5489 non-null object \n",
+ " 31 StratificationCategoryId1 5489 non-null object \n",
+ " 32 StratificationID1 5489 non-null object \n",
+ "dtypes: float64(7), int64(2), object(24)\n",
+ "memory usage: 1.4+ MB\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 300
+ },
+ "id": "4uVAtAze0i5t",
+ "outputId": "b5e31d8a-180d-4e61-d853-f181b4330702"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " YearStart | \n",
+ " YearEnd | \n",
+ " Data_Value_Unit | \n",
+ " Data_Value | \n",
+ " Data_Value_Alt | \n",
+ " Low_Confidence_Limit | \n",
+ " High_Confidence_Limit | \n",
+ " Sample_Size | \n",
+ " LocationID | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 5490.000000 | \n",
+ " 5490.000000 | \n",
+ " 0.0 | \n",
+ " 5048.000000 | \n",
+ " 5048.000000 | \n",
+ " 5048.00000 | \n",
+ " 5048.000000 | \n",
+ " 5048.000000 | \n",
+ " 5489.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 2012.230055 | \n",
+ " 2012.230055 | \n",
+ " NaN | \n",
+ " 31.086866 | \n",
+ " 31.086866 | \n",
+ " 26.49164 | \n",
+ " 36.311113 | \n",
+ " 2009.534271 | \n",
+ " 5.814903 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 1.094583 | \n",
+ " 1.094583 | \n",
+ " NaN | \n",
+ " 10.559682 | \n",
+ " 10.559682 | \n",
+ " 10.25472 | \n",
+ " 11.582135 | \n",
+ " 9466.816115 | \n",
+ " 3.773033 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 2011.000000 | \n",
+ " 2011.000000 | \n",
+ " NaN | \n",
+ " 0.900000 | \n",
+ " 0.900000 | \n",
+ " 0.30000 | \n",
+ " 3.000000 | \n",
+ " 50.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 2011.000000 | \n",
+ " 2011.000000 | \n",
+ " NaN | \n",
+ " 23.700000 | \n",
+ " 23.700000 | \n",
+ " 19.40000 | \n",
+ " 28.200000 | \n",
+ " 494.000000 | \n",
+ " 4.000000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 2012.000000 | \n",
+ " 2012.000000 | \n",
+ " NaN | \n",
+ " 30.400000 | \n",
+ " 30.400000 | \n",
+ " 25.70000 | \n",
+ " 36.000000 | \n",
+ " 994.000000 | \n",
+ " 6.000000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 2013.000000 | \n",
+ " 2013.000000 | \n",
+ " NaN | \n",
+ " 37.200000 | \n",
+ " 37.200000 | \n",
+ " 32.82500 | \n",
+ " 42.800000 | \n",
+ " 1995.000000 | \n",
+ " 9.000000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 2015.000000 | \n",
+ " 2015.000000 | \n",
+ " NaN | \n",
+ " 72.300000 | \n",
+ " 72.300000 | \n",
+ " 67.90000 | \n",
+ " 83.200000 | \n",
+ " 398316.000000 | \n",
+ " 59.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " YearStart YearEnd ... Sample_Size LocationID\n",
+ "count 5490.000000 5490.000000 ... 5048.000000 5489.000000\n",
+ "mean 2012.230055 2012.230055 ... 2009.534271 5.814903\n",
+ "std 1.094583 1.094583 ... 9466.816115 3.773033\n",
+ "min 2011.000000 2011.000000 ... 50.000000 1.000000\n",
+ "25% 2011.000000 2011.000000 ... 494.000000 4.000000\n",
+ "50% 2012.000000 2012.000000 ... 994.000000 6.000000\n",
+ "75% 2013.000000 2013.000000 ... 1995.000000 9.000000\n",
+ "max 2015.000000 2015.000000 ... 398316.000000 59.000000\n",
+ "\n",
+ "[8 rows x 9 columns]"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 28
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "wrangled = df[df['StratificationID1'] == 'OVERALL'][['LocationDesc','Data_Value', 'Question', \"YearStart\" ]]\n",
+ "question = wrangled[wrangled['Question'] == 'Percent of adults who engage in no leisure-time physical activity'][['LocationDesc','Data_Value', 'Question', \"YearStart\" ]]\n",
+ "x_all = question[question['YearStart'] == 2014][['LocationDesc','Data_Value' ]]\n",
+ "x = question[question['YearStart'] == 2014][['Data_Value' ]].values\n",
+ "x"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "nfvngUQ_0j3A",
+ "outputId": "1dd16745-028c-4eaa-b7be-f9250b989bde"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[27.6],\n",
+ " [19.2],\n",
+ " [21.2],\n",
+ " [30.7],\n",
+ " [21.7],\n",
+ " [16.4],\n",
+ " [20.6],\n",
+ " [24.9]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 29
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "wrangled = df[df['StratificationID1'] == 'OVERALL'][['LocationDesc','Data_Value', 'Question', \"YearStart\" ]]\n",
+ "year = wrangled[wrangled['Question'] == 'Percent of adults aged 18 years and older who have obesity'][['LocationDesc','Data_Value', 'Question', \"YearStart\" ]]\n",
+ "y_all = year[year['YearStart'] == 2014][['LocationDesc','Data_Value' ]]\n",
+ "y = year[year['YearStart'] == 2014][['Data_Value' ]].values\n",
+ "y"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ZSaSh-4A0mhY",
+ "outputId": "e691505b-f468-48a5-90fc-fcb08b7ac38e"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[33.5],\n",
+ " [29.7],\n",
+ " [28.9],\n",
+ " [35.9],\n",
+ " [24.7],\n",
+ " [21.3],\n",
+ " [26.3],\n",
+ " [30.7]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 30
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "x = x.reshape(-1, 1)\n",
+ "x"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "3X4tOzIZ0qfB",
+ "outputId": "f609deec-1dcc-4fb1-9f1f-3fa641da9693"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[27.6],\n",
+ " [19.2],\n",
+ " [21.2],\n",
+ " [30.7],\n",
+ " [21.7],\n",
+ " [16.4],\n",
+ " [20.6],\n",
+ " [24.9]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 31
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "y = y.reshape(-1, 1)\n",
+ "y"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "odnC_Qad0s4f",
+ "outputId": "2a690e65-9ec0-4363-c68f-08c415934a77"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[33.5],\n",
+ " [29.7],\n",
+ " [28.9],\n",
+ " [35.9],\n",
+ " [24.7],\n",
+ " [21.3],\n",
+ " [26.3],\n",
+ " [30.7]])"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 32
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)"
+ ],
+ "metadata": {
+ "id": "FcsS4k1m0vSK"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(f'X Train Data shape{x_train.shape}')\n",
+ "print(f'y Train Data shape{y_train.shape}')\n",
+ "print(f'X Test Data shape{x_test.shape}')\n",
+ "print(f'y Test Data shape{y_test.shape}')"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "-6qRaxN00xx5",
+ "outputId": "f5e9fe50-2599-41d0-8323-5ee03c40af41"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "X Train Data shape(6, 1)\n",
+ "y Train Data shape(6, 1)\n",
+ "X Test Data shape(2, 1)\n",
+ "y Test Data shape(2, 1)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "plt.scatter(x_train, y_train, color='orange')\n",
+ "plt.xlabel('% Adults with reporting no leisure Physical Activity')\n",
+ "plt.ylabel('% of Adults who have Obesity')\n",
+ "plt.title('Physical Data')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 295
+ },
+ "id": "PQfW9bb500zu",
+ "outputId": "e370fad2-0b49-486f-e2e1-de4d9876efa9"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxcVZn/8c83ISxt2GnWAB02EZEAthFlUxgQEQQURAkoKEZxlEXQn5JRwTHzUxQcgXGYMKwaFJBFCCIEDZssoRMStjBsCciagAMBWpaEZ/44p02l0119u9O3q6vr+3696tW3Tt3lqeqqp26de+9zFBGYmVnjGFbrAMzMbGA58ZuZNRgnfjOzBuPEb2bWYJz4zcwajBO/mVmDceK3uiXpZklH9/M6z5H0veVcx0ckPd1fMZn1Nyd+G9QkzZP0d0mvSXpB0oWSRpa1vYj4akT8a1nrB5AUkl7Pz+klSX+SdGgvlvcXiy0XJ36rB/tHxEhgR6AV+Jcax9MfxuTn9G7gQuBsST+obUjWKJz4rW5ExDPA9cC2Fc2bSvqLpFcl3ShpHQBJ10n6RuXyku6TdJCSn0uaL2mhpPslbZvnuVDSjyqWOUDSrDzf45L2ye1HSZqTt/uEpK/08Tm9GBG/Ao4Bvitp7Wrrl/Su/BpsmH8xvCZpQ0ljJd0p6WVJz0k6W9KKfYnJhj4nfqsbkjYG9gXurWg+DDgKWBdYETgpt18EHF6x7BhgI+A6YG9gN2ArYHXgM8BLXWxvLHAx8C1gjbzMvPzwfGA/YLW8/Z9L2nE5nt7vgRWAsdXWHxGvAx8Hno2Ikfn2LLAYOAFYB/gQsCfwteWIx4YwJ36rB1dLehm4HbgF+LeKxy6IiEci4u/AZcD2uf0aYCtJW+b7RwCXRsRbwNvAqsDWgCJiTkQ818V2vwScHxFTI+KdiHgmIh4GiIjrIuLxSG4BbgR27esTjIi3gReBtfqy/oiYERF3RcSiiJgH/Bewe1/jsaHNid/qwYERsUZEbBoRX8tJvsPzFdPtwEiAiHgDuBQ4XNIw4HPAr/JjfwbOBv4DmC9pkqTVutjuxsDjXQUk6eOS7pL0t/yltC9pb7tPJI0AmoG/9WX9kraSNEXS85IWkr4c+xyPDW1O/DaUXQSMI3V7tEfEnR0PRMSZEfF+YBtSl8+3ulj+r8DmnRslrQRcAfwMWC8i1gD+AGg5Yj0AWARML7D+rkrq/ifwMLBlRKwGnLyc8dgQ5sRvQ1ZO9O8Ap5P39gEkfUDSB/Ne9uvAG3m+zs4DjpK0p6RhkjaStDXpWMJKwAJgkaSPk44b9JqktSSNI/36+ElEvFRg/S8Aa0tavaJtVWAh8FqO8Zi+xGONwYnfhrqLgfcBv65oWw04F/hf4EnSgd2fdl4wIqaTD6wCr5COL2waEa8Cx5KOKfwv6QDzNb2Ma7ak14DHgKOBEyLi+3m7VdefjzP8Bngin8WzIemg9mHAq/m5XdrLeKyByAOx2FAm6fPA+IjYpdaxmA0W3uO3IUtSE+mUxkm1jsVsMHHityFJ0sdIfeQvAJfUOByzQcVdPWZmDcZ7/GZmDWaFWgdQxDrrrBMtLS21DsPMrK7MmDHjxYho7txeF4m/paWFtra2WodhZlZXJD3ZVbu7eszMGowTv5lZg3HiNzNrME78ZmYNprTEL2llSdMlzZb0oKRTc7skTZT0SB5h6NiyYjAzs2WVeVbPm8AeEfFaroJ4u6TrgfeQ6pxvHRHvSFq3xBjMzOrT3MkwewK0PwVNm8CYiTB6XL+surTEH+mS4Nfy3RH5FqRysYdFxDt5vvllxWBmVpfmTobp42Fxe7rf/mS6D/2S/Evt45c0XNIs0vihUyPibtLAFodKapN0fcXQeJ2XHZ/naVuwYEGZYZqZDS6zJyxJ+h0Wt6f2flBq4o+IxRGxPTAKGCtpW9IAE29ERCupbvj53Sw7KSJaI6K1uXmZC8/MzIau9qd6195LA3JWT0S8DEwD9gGeBq7MD10FbDcQMZiZ1Y2mTXrX3ktlntXTLGmNPL0KsBdpTNCrgY/m2XYHHikrBjOzujRmIgxvWrpteFNq7wdlntWzAXCRpOGkL5jLImKKpNuByZJOIB38PbrEGMzM6k/HAdySzuqpi3r8ra2t4SJtZma9I2lGPp66FF+5a2bWYJz4zcwajBO/mVmDceI3M2swTvxmZg3Gid/MrME48ZuZNRgnfjOzBuPEb2bWYJz4zcwajBO/mVmDceI3M2swTvxmZg3Gid/MrME48ZuZNRgnfjOzBuPEb2bWYJz4zcwaTJmDra8sabqk2ZIelHRqp8fPlPRaWds3M7OulTnY+pvAHhHxmqQRwO2Sro+IuyS1AmuWuG0zM+tGaXv8kXTs0Y/It5A0HPgp8O2ytm1mZt3rMfFLulLSJyT1+ktC0nBJs4D5wNSIuBv4OnBNRDzXw7LjJbVJaluwYEFvN21mZt0oksx/CRwGPCrpx5LeXXTlEbE4IrYHRgFjJe0GHAKcVWDZSRHRGhGtzc3NRTdpZmY96DHxR8RNETEO2BGYB9wk6Q5JR+W++x5FxMvANOCjwBbAY5LmAU2SHutr8GZm1nuFum8krQ0cCRwN3Av8gvRFMLXKMs2S1sjTqwB7ATMiYv2IaImIFqA9IrZYrmdgZma90uNZPZKuAt4N/ArYv6Jv/lJJbVUW3QC4KB/MHQZcFhFTljdgMxvi5k6G2ROg/Slo2gTGTITR42od1ZBS5HTOcyPiD5UNklaKiDcjorW7hSLiPmCHaiuOiJHFwjSzhjB3MkwfD4vb0/32J9N9cPLvR0W6en7URdud/R2ImRmzJyxJ+h0Wt6d26zfd7vFLWh/YCFhF0g6A8kOrAU0DEJuZNZr2p3rXbn1SravnY6QDuqOAMyraXwVOLjEmM2tUTZuk7p2u2q3fdJv4I+Ii0sHZT0fEFQMYk5k1qjETl+7jBxjelNqt31Tr6jk8In4NtEj6ZufHI+KMLhYzM+u7jgO4PqunVNW6et6V//rMGzMbOKPHOdGXrFpXz3/lv6d2N4+ZmdWfIkXaTpO0mqQRkv4kaYGkwwciODMz639FzuPfOyIWAvuRavVsAXyrzKDMzKw8RRJ/R3fQJ4DLI+KVEuMxM7OSFSnZMEXSw8DfgWMkNQNvlBuWmZmVpUhZ5u8AHwZaI+JtoB04oOzAzMysHEUO7jYBXwP+MzdtCHRbnM3MzAa3In38FwBvkfb6AZ6h68JtZmZWB4ok/s0j4jTgbYCIaGdJwTYzM6szRRL/W3kErQCQtDnwZqlRmZlZaYqc1fMD4I/AxpImAzuTqnaamVkd6jHxR8RUSTOBnUhdPMdFxIulR2ZmZqUosscPsDuwC6m7ZwRwVU8LSFoZuBVYKW/ndxHxg/yroZV0zGA68JV8mqiZmQ2AIqdz/hL4KnA/8ADwFUn/UWDdbwJ7RMQYYHtgH0k7AZOBrYH3AasAR/cxdjMz64Mie/x7AO+JiI6DuxcBD/a0UJ7/tXx3RL5F5cDtkqaTRvgyM7MBUuSsnseAynHPNs5tPZI0XNIsYD4wNSLurnhsBHAE6cBxV8uOl9QmqW3BggVFNmdmZgV0m/glXSvpGmBVYI6kmyVNA+bkth5FxOKI2J60Vz9W0rYVD/8SuDUibutm2UkR0RoRrc3NzUWfj5mZ9aBaV8/P+msjEfFy/tLYB3hA0g+AZuAr/bUNMzMrptoIXLcASBoNvDc3PxQRTxRZca7i+XZO+qsAewE/kXQ08DFgz4h4Z7miNzOzXqs22PqqwHnA+4HZuXl7STOAL+XBWarZALhI0nBSl9JlETFF0iLgSeBOSQBXRsQPl/N5mJlZQdW6es4CHgI+27FnrpSpvwecDXy+2ooj4j5ghy7ai147YGZmJaiWhHeOiCMrG/Ipmj+U9GipUZmZWWmKnM7ZFVfnNDOrU9US/x2Svp+7d/5B0veAO8sNy8zMylKtq+cbpIO7j+WLsCCVXrgX+FLZgZmZWTmqnc65EDgk19/fJjc/FBGPD0hkZmZWiiJlmR8HnOzNzIaIvh7cNTOzOuXEb2bWYAolfkm7SDoqTzfnMg5mZlaHigzE8gPg/wHfzU0jgF+XGZSZdWHuZLi6BS4Zlv7OnVzriKxOFSmfcBCp9MJMgIh4NtfxMbOBMncyTB8Pi9vT/fYn032A0eNqF5fVpSJdPW/lUg0dI3C9q9yQzGwZsycsSfodFrendrNeKpL4L5P0X8Aakr4M3AScW25YZraU9qd6125WRZHz+H8maS9gIfBu4PsRMbX0yMxsiaZNUvdOV+1mvdRj4pf0TeBSJ3uzGhozcek+foDhTandrJeKdPWsCtwo6TZJX5e0XtlBmVkno8fB2EnQtCmg9HfsJB/YtT5ROm5bYEZpO+BQ4NPA0xHxT2UGVqm1tTXa2toGanNmZkOCpBkR0dq5vTdX7s4HngdeAtbtr8DMzGxgFbmA62uSbgb+BKwNfDkitiuw3MqSpkuaLelBSafm9tGS7pb0mKRLJa24vE/CzMyKK7LHvzFwfES8NyJOiYiHCq77TWCPiBhDquO/j6SdgJ8AP4+ILYD/xbX9zcwGVI+JPyK+GxGzJK0raZOOW4HlIiJey3dH5FsAewC/y+0XAQf2MXYzM+uDIl09++fB1ecCtwDzgOuLrFzS8Dx613xgKqmu/8sRsSjP8jSwUTfLjpfUJqltwYIFRTZnZmYFFOnq+RGwE/BIRIwG9gTuKrLyiFgcEdsDo4CxwNZFA4uISRHRGhGtzc3NRRczM7MeFEn8b0fES8AwScMiYhqwzOlB1UTEy8A04EOk0g8dF46NAp7pzbrMzGz5FEn8L0saCdwKTJb0C+D1nhbKdfvXyNOrAHsBc0hfAAfn2b4A/L4vgZuZWd8USfwHAH8HTgD+SOqn37/AchsA0yTdB9wDTI2IKaTa/t+U9Bjp9NDz+hK4mZn1TZEibZV79xcVXXFE3Eeq49+5/QlSf7+ZmdVAkbN6PiXpUUmvSFoo6VVJCwciODMz639FRuA6Ddg/IuaUHYyZmZWvSB//C076ZmZDR7d7/JI+lSfbJF0KXE0qwwBARFxZcmxmZlaCal09lWfutAN7V9wPwInfzKwOdZv4I+KogQzEzMwGRm/q8Zstv7mT4eoWuGRY+jt3cq0jMms4Rc7qMesfcycvPW5s+5PpPngIQbMB5D1+GzizJyw9WDik+7Mn1CYeswZV5AKu1SX9vKNEsqTTJa0+EMHZENP+VO/azawURfb4zwcWAp/Jt4XABWUGZUNUUzfj93TXbmalKJL4N4+IH0TEE/l2KrBZ2YHZEDRmIgxvWrpteFNqN7MBUyTx/13SLh13JO1MqtZp1jujx8HYSdC0KaD0d+wkH9g1G2BFzur5KnBx7tcX8DfgyDKDsiFs9DgnerMaK1KWeTYwRtJq+b4rc5qZ1bEeE7+klYBPAy3ACpIAiIgflhqZmZmVokhXz++BV4AZVBRpMzOz+lQk8Y+KiH1Kj8TMzAZEkbN67pD0vt6uWNLGkqZJekjSg5KOy+3bS7pL0qx8QZiHYTQzG0DV6vHfTyq/vAJwlKQnSF09AiIituth3YuAEyNipqRVgRmSppJG9Do1Iq6XtG++/5HlfypmZlZEta6e/ZZnxRHxHPBcnn5V0hxgI9KXyWp5ttWBZ5dnO2Zm1jvV6vE/CSDpX4FbgTsi4vW+bERSC7ADcDdwPHCDpJ+Rupo+3M0y44HxAJts4kv6zcz6S5E+/ieAz5GGYJyei7QdUHQDkkYCVwDH52sAjgFOiIiNgROA87paLiImRURrRLQ2NzcX3ZyZmfVAEVFsRml9UpG2k4A1I2LVAsuMAKYAN0TEGbntFWCNiAiliwJeiYjVqq2ntbU12traCsVpZmaJpBkR0dq5vUhZ5v+WdAfwn6SuoYOBNQssJ9Le/JyOpJ89C+yep/cAHu05fDMz6y9FzuNfGxgOvEyq0/NiRCwqsNzOwBHA/ZJm5baTgS8Dv5C0AvAGuR/fzMwGRpFaPQcBSHoP8DFgmqThETGqh+VuJ5362ZX39zZQMzPrH0Vq9ewH7ArsBqwB/Bm4reS4zMysJEW6evYhJfpfRITPuTczq3NFunq+PhCBmJnZwChyHr+ZmQ0hTvxmZg2mV4lf0pqSeirOZmZmg1iRC7hulrSapLWAmcC5ks7oaTkzMxuciuzxr55r7HwKuDgiPgj8U7lhmZlZWYok/hUkbUCq0zOl5HjMzKxkRRL/qcANwGMRcY+kzXB9HTOzulXkAq7nKkfbiogn3MdvZla/iuzxn1WwzczM6kC1MXc/RBodq1nSNyseWo1UrdPMzOpQta6eFYGReZ7KQVcWkmrym5lZHao25u4twC2SLuwYf9dsGXMnw+wJ0P4UNG0CYybC6HG1jsrMqqjW1XMtEHl6mccj4pPlhWV1Ye5kmD4eFren++1Ppvvg5G82iFXr6vnZgEVh9Wn2hCVJv8Pi9tTuxG82aPXU1WPWvfanetduZoNCkVo9cyU90flWYLmNJU2T9JCkByUdV/HYNyQ9nNtPW94nYTXStEnv2s1sUChyAVdrxfTKwCHAWgWWWwScGBEzJa0KzJA0FVgPOAAYExFvSlq3t0HbIDFm4tJ9/ADDm1K7mQ1aPe7xR8RLFbdnIuLfgU8UWO65iJiZp18F5gAbAccAP46IN/Nj85frGVjtjB4HYydB06aA0t+xk9y/bzbIFRlsfceKu8NIvwCK/FKoXEcLsANwN/BTYFdJE4E3gJMi4p4ulhkPjAfYZBN3HQxao8c50ZvVmSIJ/PSK6UXAPFKlzkIkjQSuAI6PiIWSViB1Fe0EfAC4TNJmERGVy0XEJGASQGtra2BmZv2iyGDrH+3ryiWNICX9yRFxZW5+GrgyJ/rpkt4B1gEW9HU7ZmZWXLULuL7Z3WMAEVG1QqfSVV/nAXM6zXs18FFgmqStSKUhXiwcsZmZLZdqe/wd9XneTeqSuSbf3x+YXmDdOwNHAPdLmpXbTgbOB86X9ADwFvCFzt08ZmZWnmoXcJ0KIOlWYMd8Zg6STgGu62nFEXE7sGyth+TwXkdqZmb9okg9/vVIe+Yd3sptZmZWh4qc1XMx6SDsVfn+gcBF5YVkZmZlKnJWz0RJ1wO75qajIuLecsMyM7OyFOnqISJmRsQvgCnAfpIeLDcsMzMrS5EibRtKOkHSPcCDeZnPlh6ZmZmVotvEL2m8pGnAzcDawJeA5yLi1Ii4f4DiMzOzflatj/9s4E7gsIhoA5Dk8+3NzOpctcS/AakE8+mS1gcuA0YMSFRmZlaabrt6chnmcyJid2BP4GXgBUlzJP3bgEVoZmb9quhZPU9HxOkR0UoaROWNcsMyM7Oy9KquPkBEPAL8sIRYzMxsABTa4zczs6Gj2umcO+e/Kw1cOGZmVrZqe/xn5r93DkQgZmY2MKr18b8taRKwkaQzOz8YEceWF5aZmZWlWuLfD/gn4GPAjIEJx8zMylZtIJYXgd9KmhMRswcwJjMzK1GRs3peknSVpPn5doWkUaVHZmZmpSiS+C8gjbe7Yb5dm9uqkrSxpGmSHpL0oKTjOj1+oqSQtE5fAjczs74pkvjXjYgLImJRvl0INBdYbhFwYkRsA+wE/LOkbSB9KQB7A0/1MW4zM+ujIon/RUmHSxqeb4cDL/W0UEQ8FxEz8/SrwBxgo/zwz4FvA672aWY2wIok/i8CnwGeB54DDgaO6s1GJLUAOwB3SzoAeKanA8Z5PIA2SW0LFizozebMzKyKImPuPgl8sq8bkDQSuAI4ntT9czKpm6en7U4CJgG0trb6l4GZWT8ptVaPpBGkpD85Iq4ENgdGA7MlzQNGATNzvX8zMxsAva7OWZQkAecBcyLiDIA8ZOO6FfPMA1rzNQNmZjYAytzj3xk4AthD0qx827fE7ZmZWQGF9/gl7QScAqwM/HtEXF1t/oi4HVAP87QU3b6ZmfWPbhO/pPUj4vmKpm8CB5GS+d1A1cRvZmaDU7U9/nMkzQROi4g3SGPuHgy8AywciODMzKz/VRts/UDgXmCKpM+TTsdcCVgbOHBgwjMzs/5W9eBuRFxLKsu8OnAV8EhEnBkRvqLKzKxOVRt68ZOSpgF/BB4ADgUOkPRbSZsPVIBmZta/qvXx/wgYC6wC3BARY4ETJW0JTAQ+OwDxmZlZP6uW+F8BPgU0AfM7GiPiUZz0zczqVrU+/oNIB3JXAA4bmHDMzKxsPQ29eNYAxmJmZgOg1CJtZmY2+Djxm5k1GCd+M7MG48RvZtZgnPjNzBqME7+ZWYNx4jczazBO/GZmDcaJ38yswZSW+CVtLGmapIckPSjpuNz+U0kPS7pP0lWS1igrBjMzW1aZe/yLgBMjYhtgJ+CfJW0DTAW2jYjtgEeA75YYg5mZdVJa4o+I5yJiZp5+FZgDbBQRN0bEojzbXcCosmIwM7NlDUgfv6QWYAfSIO2Vvghc380y4yW1SWpbsMADfpmZ9ZfSE7+kkcAVwPERsbCifQKpO2hyV8tFxKSIaI2I1ubm5rLDNDNrGNUGYllukkaQkv7kiLiyov1IYD9gz4iIMmMwM7OllZb4JQk4D5gTEWdUtO8DfBvYPSLay9q+mZl1rcw9/p2BI4D7Jc3KbScDZwIrAVPTdwN3RcRXS4zDzMwqlJb4I+J2QF089IeytmlmZj3zlbtmZg1m6Cb+uZPh6ha4ZFj6O7fLk4fMzBpOqWf11MzcyTB9PCzOx47bn0z3AUaPq11cZmaDwNDc4589YUnS77C4PbWbmTW4oZn425/qXbuZWQMZmom/aZPetZuZNZChmfjHTIThTUu3DW9K7WZmDW5oJv7R42DsJGjaFFD6O3aSD+yamTFUz+qBlOSd6M3MljE09/jNzKxbTvxmZg3Gid/MrME48ZuZNRgnfjOzBqN6GABL0gLgyW4eXgd4cQDD6at6iRPqJ9Z6iRPqJ9Z6iRMcaxGbRsQyY9fWReKvRlJbRLTWOo6e1EucUD+x1kucUD+x1kuc4FiXh7t6zMwajBO/mVmDGQqJf1KtAyioXuKE+om1XuKE+om1XuIEx9pndd/Hb2ZmvTMU9vjNzKwXnPjNzBpM3SR+SedLmi/pgU7t35D0sKQHJZ1Wq/gqdRWrpO0l3SVplqQ2SWNrGWOOaWNJ0yQ9lF+/43L7WpKmSno0/11zEMf60/z/v0/SVZLWGIxxVjx+oqSQtE6tYqyIpdtYB9vnqsr/f1B9riStLGm6pNk5zlNz+2hJd0t6TNKlklasZZxERF3cgN2AHYEHKto+CtwErJTvr1vrOKvEeiPw8Ty9L3DzIIhzA2DHPL0q8AiwDXAa8J3c/h3gJ4M41r2BFXL7T2oda3dx5vsbAzeQLkZcZxC/poPuc1Ul1kH1uQIEjMzTI4C7gZ2Ay4DP5vZzgGNqGWfd7PFHxK3A3zo1HwP8OCLezPPMH/DAutBNrAGslqdXB54d0KC6EBHPRcTMPP0qMAfYCDgAuCjPdhFwYG0iXKK7WCPixohYlGe7CxhVqxih6msK8HPg26T3Qs1ViXXQfa6qxDqoPleRvJbvjsi3APYAfpfba/6ZqpvE342tgF3zT6hbJH2g1gFVcTzwU0l/BX4GfLfG8SxFUguwA2kPZb2IeC4/9DywXo3C6lKnWCt9Ebh+oOPpTmWckg4AnomI2TUNqhudXtNB/bnqFOug+1xJGi5pFjAfmAo8DrxcsYPyNEt2Bmqi3hP/CsBapJ9S3wIuk6TahtStY4ATImJj4ATgvBrH8w+SRgJXAMdHxMLKxyL9Nh0Ue6jQfaySJgCLgMm1iq1SZZykuE4Gvl/ToLrRxWs6aD9XXcQ66D5XEbE4IrYn/focC2xd45CWUe+J/2ngyvzzajrwDqkY0mD0BeDKPH056Q1Rc5JGkD5IkyOiI74XJG2QH9+AtOdSc93EiqQjgf2AcfmLqqa6iHNzYDQwW9I8UkKYKWn92kWZdPOaDsrPVTexDsrPFUBEvAxMAz4ErCGpY6jbUcAzNQuM+k/8V5MORCFpK2BFBm+1vmeB3fP0HsCjNYwFgLwXdx4wJyLOqHjoGtIHivz39wMdW2fdxSppH1K/+Scjor1W8VXEs0ycEXF/RKwbES0R0UJKrDtGxPM1DLXa/3/Qfa6qxDqoPleSmjvOLJO0CrAX6XjENODgPFvtP1O1PLLcmxvwG+A54G3SB+dLpDfkr4EHgJnAHrWOs0qsuwAzgNmkvsn3D4I4dyF149wHzMq3fYG1gT+RPkQ3AWsN4lgfA/5a0XbOYIyz0zzzGBxn9XT3mg66z1WVWAfV5wrYDrg3x/kA8P3cvhkwPb9fLyefMVWrm0s2mJk1mHrv6jEzs15y4jczazBO/GZmDcaJ38yswTjxm5k1GCf+fpDP3b1d0gOSDqxo/72kDXtYdpak31Z5/COSphSI4bX8t0XSYb2Jv8C6/1vSNnn65Ir2FnWqllpLnZ+7pFZJZ9Yypg4d/58e5rljIGLJ2zpS0oL8/ntI0pdz+ymSTuqH9f+hL5VSc1xnV3n8akl3FVhPr98Lkr4q6fMVcVT97NYzJ/7+8TlSxb2xpEv0kbQ/cG9EdFs0StJ7gOGkuijv6qdYWoB+TfwRcXREPJTvnlx15h5UXL3Yr/J6W6h47hHRFhHHlrG9MkTEh5d3Hb18fS+NVFrgI8C/Seq3mkwRsW+kK1f7Tf4ieT+wuqTNepi9hV6+FyLinIi4ON89EnDit6reBpqAlYDF+cN3PKm8cTWfA35FKi17QEejpH2UaqHPBD5V0b7U3lj+hdHSaZ0/Jn2RzJJ0gqT3KtUHn6VUs37LypklHSLpjDx9nKQn8vRmkv6Sp2/Oe0w/BlbJ6+qoiTNc0rlKtcdvzFcr0mkbF0o6R9LdwGmSNpf0R0kzJN0maetO87VJekTSfrl9ZUkXSLpf0r2SOq4qPVLSNZL+TLrgrPNz/8evpfzanZ+fyxOSjq2I73uS/if/avtNV3u8ObYzJd2Rlz84t0tpTIAHcnyHdv2vXmpd35J0T/5/nFrR3vGrbQNJt+bn8YCkXSsfz9MHS7qwN69vdyJV33wc2DQ3bdP5dZL0Q0nHV2x/Yn6/dBfrPOUxByR9Pj/X2ZJ+ldv2VyoCd2JWkaoAAAZ4SURBVK+kmwp+6XwKuBb4LfDZili2yOuYLWmmpM3p5r0gaViObY2K5R+VtF5+j5yU/7etwOS8/CckXV0x/16SrioQ7+BV6yvyhsKNVA72OqAN2BM4FjiywHL/A2xCqil/bW5bmXQl6pak2t6XAVPyY6cAJ1Us/wDQkqdfy38/0jF/vn8WqYYNpCsyV+kUw/rAPXn6d8A9pMqBXwD+f26/GWit3E6ebiEVINs+378MOLyL53khMAUYnu//CdgyT38Q+HPFfH8k7ZBsSbrqeWXgROD8PM/WwFO5/cg8z1rdPPd/3M+v3R2kL+d1gJdIJXM/QLoKdGVSnfdHK1/jTs/h8hzbNsBjuf3TpAqMw0lVTJ8CNuhi+Y7/z96kgbeV1zUF2K3TPCcCE/L0cGDVLl77g4ELe/P6dornSODsPL0ZqR7TWlVepxZgZp5/GOmLYu0qsc7Ly7+XVDt/ndze8b9akyVjfh8NnN45ri5ingrsSqoeen9F+93AQRWfn6Ye3gu/AI6qeH1u6vz5Yun3vICHgeZ8/xJg/1rnneW5lfKzu9FExCvAJwCURqv6DnCQpHNJb/DTI+LOymUktQIvRsRTkp4Bzpe0FumLYG5EPJrn+zUwfjnCuxOYIGkUqfDWUrVMIuJ5SSMlrUoaKOQS0kAyu7Kk+FU1cyNiVp6eQUoQXbk8IhYrVVf8MHC5lhR8XKlivssi4h3gUaVfH1uTLss/K8f7sKQnSR9+gKkR0Xnsg+5cF6nG/JuS5pMS9c7A7yPiDeANSddWWf7qHNtDFXuouwC/iYjFpOJ2t5C+TK7pZh1759u9+f5I0pfcrRXz3EN6P4zI25xFz4q+vpUOlbQL8CbwlYj4W15mmdcpIuZJeknSDqTX7d6IeElST7HukWN7EaDifzUKuFSpCOCKwNxqTy6/3lsCt0dESHpb0rakQW02ioir8vrfyPNXW92lpEqpF5B+OVxabea8vV8Bh0u6gFR07fPVlhns3NXT/74HTCR149xO2nM+pYv5PgdsrVSt8XHSYBKf7mHdi1j6f7ZyT8FExCXAJ4G/A3+QtEcXs90BHEX6BXIbKel/CPhLT+snJY0Oi6HbnYnX899hpNrk21fc3lMZcuen0MP2X+/h8UpFYy2yfF/LFIv0S6rjuW8REUuVEo40kM9upAqOFyofcGTp16Lz/77o61vp0vz4BzsSZ9bd6/TfpD3yo4Dze4i1J2eR9uzfB3yli+fT2WdIO1Fz82emhfQZ6os7gS0kNZMGRCmyg3MBcHje5uWxpLZ+XXLi70dK/eejIuJm0s/Nd0gf1lU6zTeM9EZ+Xyyp2HgA6U31MNCS+ylh6Tf3PNKQjkjakVTqt7NXSV0WHdvaDHgiIs4kVQTcrotlbgNOIu113kuqzPhm/iXT2dt5765PItVQnyvpkByfJI2pmOWQ3A+7OakLouPLaFyefyvSr6L/6WL1Sz33gv4C7K90HGEkqbxzb9xG2nMenhPJbqRiXN25Afhi3haSNpK0buUMkjYFXoiIc0nJdsf80AuS3pPfPwd1tfICr+/yuArYh/SL5oYeYu3wZ9L/dO08/1q5fXWWlCb+Aj37HLBPxefl/aShDF8FnlY+m07SSpKaqPJeiNRfcxVwBqna50tdzLbU8pFO0ngW+BfSl0Bdc+LvXxOBCXn6N6RBIu4h9SlW2pU0GlPlGT+3kvqO1yR17VyndHC3shb+FcBakh4Evk7qO+3sPtIB5tmSTiB9wTygNCLQtsDFXSxzG6mb59bcZfFX0q+VrkwC7tOSg7t9MQ74kqTZwINUHNgm9ZFPJ42k9dX80/2XwDBJ95N+lh+ZuyI66/zcexQR95C6Ze7L27wf6OoLrztX5WVnk5Lct6NKueWIuJHUnXZnfj6/Y9kE9RFS7f57gUNZ8v75Dqkv/w5S9dfuVHt9+ywi3iKVF74sv0+qxdqxzIOkz8UtOZ6OksqnkLqjZtBDyWelExg2JQ2t2bHeucArkj4IHAEcK+k+0muzPj2/Fy4l7cF3181zIXBOPrjbseM2GfhrRMypFm89cHVOGzSUzlKZEhG/62neft7uyIh4Le8p3gqMjzy+qy2Rf2nMBA7pfKyoEShdX3Bv5665euQ9fjOYlH8RzQSucNJfltIFfI8Bf2rQpD+D1E3661rH0h+8x29m1mC8x29m1mCc+M3MGowTv5lZg3HiNzNrME78ZmYN5v8AXtuiiCG6j3oAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "lm = LinearRegression()\n",
+ "lm.fit(x_train, y_train)\n",
+ "y_predict = lm.predict(x_test)"
+ ],
+ "metadata": {
+ "id": "TFQqD_Sf029n"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(f'Train Accuracy {round(lm.score(x_train, y_train)* 100,2)}%')\n",
+ "print(f'Test Accuracy {round(lm.score(x_test, y_test)* 100,2)}%')"
+ ],
+ "metadata": {
+ "id": "Eh3xosm4056N",
+ "outputId": "9c685099-321c-4a29-9767-41450044cacd",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Train Accuracy 96.51%\n",
+ "Test Accuracy -134.64%\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "plt.scatter(x_train, y_train, color='orange')\n",
+ "plt.xlabel('% Adults with reporting no leisure Physical Activity')\n",
+ "plt.ylabel('% of Adults who have Obesity')\n",
+ "plt.title('Physical Data')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "jBbc59fY08WU",
+ "outputId": "eebc0794-8e18-47ea-c031-c60739d1bead",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 295
+ }
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxcVZn/8c83ISxt2GnWAB02EZEAthFlUxgQEQQURAkoKEZxlEXQn5JRwTHzUxQcgXGYMKwaFJBFCCIEDZssoRMStjBsCciagAMBWpaEZ/44p02l0119u9O3q6vr+3696tW3Tt3lqeqqp26de+9zFBGYmVnjGFbrAMzMbGA58ZuZNRgnfjOzBuPEb2bWYJz4zcwajBO/mVmDceK3uiXpZklH9/M6z5H0veVcx0ckPd1fMZn1Nyd+G9QkzZP0d0mvSXpB0oWSRpa1vYj4akT8a1nrB5AUkl7Pz+klSX+SdGgvlvcXiy0XJ36rB/tHxEhgR6AV+Jcax9MfxuTn9G7gQuBsST+obUjWKJz4rW5ExDPA9cC2Fc2bSvqLpFcl3ShpHQBJ10n6RuXyku6TdJCSn0uaL2mhpPslbZvnuVDSjyqWOUDSrDzf45L2ye1HSZqTt/uEpK/08Tm9GBG/Ao4Bvitp7Wrrl/Su/BpsmH8xvCZpQ0ljJd0p6WVJz0k6W9KKfYnJhj4nfqsbkjYG9gXurWg+DDgKWBdYETgpt18EHF6x7BhgI+A6YG9gN2ArYHXgM8BLXWxvLHAx8C1gjbzMvPzwfGA/YLW8/Z9L2nE5nt7vgRWAsdXWHxGvAx8Hno2Ikfn2LLAYOAFYB/gQsCfwteWIx4YwJ36rB1dLehm4HbgF+LeKxy6IiEci4u/AZcD2uf0aYCtJW+b7RwCXRsRbwNvAqsDWgCJiTkQ818V2vwScHxFTI+KdiHgmIh4GiIjrIuLxSG4BbgR27esTjIi3gReBtfqy/oiYERF3RcSiiJgH/Bewe1/jsaHNid/qwYERsUZEbBoRX8tJvsPzFdPtwEiAiHgDuBQ4XNIw4HPAr/JjfwbOBv4DmC9pkqTVutjuxsDjXQUk6eOS7pL0t/yltC9pb7tPJI0AmoG/9WX9kraSNEXS85IWkr4c+xyPDW1O/DaUXQSMI3V7tEfEnR0PRMSZEfF+YBtSl8+3ulj+r8DmnRslrQRcAfwMWC8i1gD+AGg5Yj0AWARML7D+rkrq/ifwMLBlRKwGnLyc8dgQ5sRvQ1ZO9O8Ap5P39gEkfUDSB/Ne9uvAG3m+zs4DjpK0p6RhkjaStDXpWMJKwAJgkaSPk44b9JqktSSNI/36+ElEvFRg/S8Aa0tavaJtVWAh8FqO8Zi+xGONwYnfhrqLgfcBv65oWw04F/hf4EnSgd2fdl4wIqaTD6wCr5COL2waEa8Cx5KOKfwv6QDzNb2Ma7ak14DHgKOBEyLi+3m7VdefjzP8Bngin8WzIemg9mHAq/m5XdrLeKyByAOx2FAm6fPA+IjYpdaxmA0W3uO3IUtSE+mUxkm1jsVsMHHityFJ0sdIfeQvAJfUOByzQcVdPWZmDcZ7/GZmDWaFWgdQxDrrrBMtLS21DsPMrK7MmDHjxYho7txeF4m/paWFtra2WodhZlZXJD3ZVbu7eszMGowTv5lZg3HiNzNrME78ZmYNprTEL2llSdMlzZb0oKRTc7skTZT0SB5h6NiyYjAzs2WVeVbPm8AeEfFaroJ4u6TrgfeQ6pxvHRHvSFq3xBjMzOrT3MkwewK0PwVNm8CYiTB6XL+surTEH+mS4Nfy3RH5FqRysYdFxDt5vvllxWBmVpfmTobp42Fxe7rf/mS6D/2S/Evt45c0XNIs0vihUyPibtLAFodKapN0fcXQeJ2XHZ/naVuwYEGZYZqZDS6zJyxJ+h0Wt6f2flBq4o+IxRGxPTAKGCtpW9IAE29ERCupbvj53Sw7KSJaI6K1uXmZC8/MzIau9qd6195LA3JWT0S8DEwD9gGeBq7MD10FbDcQMZiZ1Y2mTXrX3ktlntXTLGmNPL0KsBdpTNCrgY/m2XYHHikrBjOzujRmIgxvWrpteFNq7wdlntWzAXCRpOGkL5jLImKKpNuByZJOIB38PbrEGMzM6k/HAdySzuqpi3r8ra2t4SJtZma9I2lGPp66FF+5a2bWYJz4zcwajBO/mVmDceI3M2swTvxmZg3Gid/MrME48ZuZNRgnfjOzBuPEb2bWYJz4zcwajBO/mVmDceI3M2swTvxmZg3Gid/MrME48ZuZNRgnfjOzBuPEb2bWYJz4zcwaTJmDra8sabqk2ZIelHRqp8fPlPRaWds3M7OulTnY+pvAHhHxmqQRwO2Sro+IuyS1AmuWuG0zM+tGaXv8kXTs0Y/It5A0HPgp8O2ytm1mZt3rMfFLulLSJyT1+ktC0nBJs4D5wNSIuBv4OnBNRDzXw7LjJbVJaluwYEFvN21mZt0oksx/CRwGPCrpx5LeXXTlEbE4IrYHRgFjJe0GHAKcVWDZSRHRGhGtzc3NRTdpZmY96DHxR8RNETEO2BGYB9wk6Q5JR+W++x5FxMvANOCjwBbAY5LmAU2SHutr8GZm1nuFum8krQ0cCRwN3Av8gvRFMLXKMs2S1sjTqwB7ATMiYv2IaImIFqA9IrZYrmdgZma90uNZPZKuAt4N/ArYv6Jv/lJJbVUW3QC4KB/MHQZcFhFTljdgMxvi5k6G2ROg/Slo2gTGTITR42od1ZBS5HTOcyPiD5UNklaKiDcjorW7hSLiPmCHaiuOiJHFwjSzhjB3MkwfD4vb0/32J9N9cPLvR0W6en7URdud/R2ImRmzJyxJ+h0Wt6d26zfd7vFLWh/YCFhF0g6A8kOrAU0DEJuZNZr2p3rXbn1SravnY6QDuqOAMyraXwVOLjEmM2tUTZuk7p2u2q3fdJv4I+Ii0sHZT0fEFQMYk5k1qjETl+7jBxjelNqt31Tr6jk8In4NtEj6ZufHI+KMLhYzM+u7jgO4PqunVNW6et6V//rMGzMbOKPHOdGXrFpXz3/lv6d2N4+ZmdWfIkXaTpO0mqQRkv4kaYGkwwciODMz639FzuPfOyIWAvuRavVsAXyrzKDMzKw8RRJ/R3fQJ4DLI+KVEuMxM7OSFSnZMEXSw8DfgWMkNQNvlBuWmZmVpUhZ5u8AHwZaI+JtoB04oOzAzMysHEUO7jYBXwP+MzdtCHRbnM3MzAa3In38FwBvkfb6AZ6h68JtZmZWB4ok/s0j4jTgbYCIaGdJwTYzM6szRRL/W3kErQCQtDnwZqlRmZlZaYqc1fMD4I/AxpImAzuTqnaamVkd6jHxR8RUSTOBnUhdPMdFxIulR2ZmZqUosscPsDuwC6m7ZwRwVU8LSFoZuBVYKW/ndxHxg/yroZV0zGA68JV8mqiZmQ2AIqdz/hL4KnA/8ADwFUn/UWDdbwJ7RMQYYHtgH0k7AZOBrYH3AasAR/cxdjMz64Mie/x7AO+JiI6DuxcBD/a0UJ7/tXx3RL5F5cDtkqaTRvgyM7MBUuSsnseAynHPNs5tPZI0XNIsYD4wNSLurnhsBHAE6cBxV8uOl9QmqW3BggVFNmdmZgV0m/glXSvpGmBVYI6kmyVNA+bkth5FxOKI2J60Vz9W0rYVD/8SuDUibutm2UkR0RoRrc3NzUWfj5mZ9aBaV8/P+msjEfFy/tLYB3hA0g+AZuAr/bUNMzMrptoIXLcASBoNvDc3PxQRTxRZca7i+XZO+qsAewE/kXQ08DFgz4h4Z7miNzOzXqs22PqqwHnA+4HZuXl7STOAL+XBWarZALhI0nBSl9JlETFF0iLgSeBOSQBXRsQPl/N5mJlZQdW6es4CHgI+27FnrpSpvwecDXy+2ooj4j5ghy7ai147YGZmJaiWhHeOiCMrG/Ipmj+U9GipUZmZWWmKnM7ZFVfnNDOrU9US/x2Svp+7d/5B0veAO8sNy8zMylKtq+cbpIO7j+WLsCCVXrgX+FLZgZmZWTmqnc65EDgk19/fJjc/FBGPD0hkZmZWiiJlmR8HnOzNzIaIvh7cNTOzOuXEb2bWYAolfkm7SDoqTzfnMg5mZlaHigzE8gPg/wHfzU0jgF+XGZSZdWHuZLi6BS4Zlv7OnVzriKxOFSmfcBCp9MJMgIh4NtfxMbOBMncyTB8Pi9vT/fYn032A0eNqF5fVpSJdPW/lUg0dI3C9q9yQzGwZsycsSfodFrendrNeKpL4L5P0X8Aakr4M3AScW25YZraU9qd6125WRZHz+H8maS9gIfBu4PsRMbX0yMxsiaZNUvdOV+1mvdRj4pf0TeBSJ3uzGhozcek+foDhTandrJeKdPWsCtwo6TZJX5e0XtlBmVkno8fB2EnQtCmg9HfsJB/YtT5ROm5bYEZpO+BQ4NPA0xHxT2UGVqm1tTXa2toGanNmZkOCpBkR0dq5vTdX7s4HngdeAtbtr8DMzGxgFbmA62uSbgb+BKwNfDkitiuw3MqSpkuaLelBSafm9tGS7pb0mKRLJa24vE/CzMyKK7LHvzFwfES8NyJOiYiHCq77TWCPiBhDquO/j6SdgJ8AP4+ILYD/xbX9zcwGVI+JPyK+GxGzJK0raZOOW4HlIiJey3dH5FsAewC/y+0XAQf2MXYzM+uDIl09++fB1ecCtwDzgOuLrFzS8Dx613xgKqmu/8sRsSjP8jSwUTfLjpfUJqltwYIFRTZnZmYFFOnq+RGwE/BIRIwG9gTuKrLyiFgcEdsDo4CxwNZFA4uISRHRGhGtzc3NRRczM7MeFEn8b0fES8AwScMiYhqwzOlB1UTEy8A04EOk0g8dF46NAp7pzbrMzGz5FEn8L0saCdwKTJb0C+D1nhbKdfvXyNOrAHsBc0hfAAfn2b4A/L4vgZuZWd8USfwHAH8HTgD+SOqn37/AchsA0yTdB9wDTI2IKaTa/t+U9Bjp9NDz+hK4mZn1TZEibZV79xcVXXFE3Eeq49+5/QlSf7+ZmdVAkbN6PiXpUUmvSFoo6VVJCwciODMz639FRuA6Ddg/IuaUHYyZmZWvSB//C076ZmZDR7d7/JI+lSfbJF0KXE0qwwBARFxZcmxmZlaCal09lWfutAN7V9wPwInfzKwOdZv4I+KogQzEzMwGRm/q8Zstv7mT4eoWuGRY+jt3cq0jMms4Rc7qMesfcycvPW5s+5PpPngIQbMB5D1+GzizJyw9WDik+7Mn1CYeswZV5AKu1SX9vKNEsqTTJa0+EMHZENP+VO/azawURfb4zwcWAp/Jt4XABWUGZUNUUzfj93TXbmalKJL4N4+IH0TEE/l2KrBZ2YHZEDRmIgxvWrpteFNqN7MBUyTx/13SLh13JO1MqtZp1jujx8HYSdC0KaD0d+wkH9g1G2BFzur5KnBx7tcX8DfgyDKDsiFs9DgnerMaK1KWeTYwRtJq+b4rc5qZ1bEeE7+klYBPAy3ACpIAiIgflhqZmZmVokhXz++BV4AZVBRpMzOz+lQk8Y+KiH1Kj8TMzAZEkbN67pD0vt6uWNLGkqZJekjSg5KOy+3bS7pL0qx8QZiHYTQzG0DV6vHfTyq/vAJwlKQnSF09AiIituth3YuAEyNipqRVgRmSppJG9Do1Iq6XtG++/5HlfypmZlZEta6e/ZZnxRHxHPBcnn5V0hxgI9KXyWp5ttWBZ5dnO2Zm1jvV6vE/CSDpX4FbgTsi4vW+bERSC7ADcDdwPHCDpJ+Rupo+3M0y44HxAJts4kv6zcz6S5E+/ieAz5GGYJyei7QdUHQDkkYCVwDH52sAjgFOiIiNgROA87paLiImRURrRLQ2NzcX3ZyZmfVAEVFsRml9UpG2k4A1I2LVAsuMAKYAN0TEGbntFWCNiAiliwJeiYjVqq2ntbU12traCsVpZmaJpBkR0dq5vUhZ5v+WdAfwn6SuoYOBNQssJ9Le/JyOpJ89C+yep/cAHu05fDMz6y9FzuNfGxgOvEyq0/NiRCwqsNzOwBHA/ZJm5baTgS8Dv5C0AvAGuR/fzMwGRpFaPQcBSHoP8DFgmqThETGqh+VuJ5362ZX39zZQMzPrH0Vq9ewH7ArsBqwB/Bm4reS4zMysJEW6evYhJfpfRITPuTczq3NFunq+PhCBmJnZwChyHr+ZmQ0hTvxmZg2mV4lf0pqSeirOZmZmg1iRC7hulrSapLWAmcC5ks7oaTkzMxuciuzxr55r7HwKuDgiPgj8U7lhmZlZWYok/hUkbUCq0zOl5HjMzKxkRRL/qcANwGMRcY+kzXB9HTOzulXkAq7nKkfbiogn3MdvZla/iuzxn1WwzczM6kC1MXc/RBodq1nSNyseWo1UrdPMzOpQta6eFYGReZ7KQVcWkmrym5lZHao25u4twC2SLuwYf9dsGXMnw+wJ0P4UNG0CYybC6HG1jsrMqqjW1XMtEHl6mccj4pPlhWV1Ye5kmD4eFren++1Ppvvg5G82iFXr6vnZgEVh9Wn2hCVJv8Pi9tTuxG82aPXU1WPWvfanetduZoNCkVo9cyU90flWYLmNJU2T9JCkByUdV/HYNyQ9nNtPW94nYTXStEnv2s1sUChyAVdrxfTKwCHAWgWWWwScGBEzJa0KzJA0FVgPOAAYExFvSlq3t0HbIDFm4tJ9/ADDm1K7mQ1aPe7xR8RLFbdnIuLfgU8UWO65iJiZp18F5gAbAccAP46IN/Nj85frGVjtjB4HYydB06aA0t+xk9y/bzbIFRlsfceKu8NIvwCK/FKoXEcLsANwN/BTYFdJE4E3gJMi4p4ulhkPjAfYZBN3HQxao8c50ZvVmSIJ/PSK6UXAPFKlzkIkjQSuAI6PiIWSViB1Fe0EfAC4TNJmERGVy0XEJGASQGtra2BmZv2iyGDrH+3ryiWNICX9yRFxZW5+GrgyJ/rpkt4B1gEW9HU7ZmZWXLULuL7Z3WMAEVG1QqfSVV/nAXM6zXs18FFgmqStSKUhXiwcsZmZLZdqe/wd9XneTeqSuSbf3x+YXmDdOwNHAPdLmpXbTgbOB86X9ADwFvCFzt08ZmZWnmoXcJ0KIOlWYMd8Zg6STgGu62nFEXE7sGyth+TwXkdqZmb9okg9/vVIe+Yd3sptZmZWh4qc1XMx6SDsVfn+gcBF5YVkZmZlKnJWz0RJ1wO75qajIuLecsMyM7OyFOnqISJmRsQvgCnAfpIeLDcsMzMrS5EibRtKOkHSPcCDeZnPlh6ZmZmVotvEL2m8pGnAzcDawJeA5yLi1Ii4f4DiMzOzflatj/9s4E7gsIhoA5Dk8+3NzOpctcS/AakE8+mS1gcuA0YMSFRmZlaabrt6chnmcyJid2BP4GXgBUlzJP3bgEVoZmb9quhZPU9HxOkR0UoaROWNcsMyM7Oy9KquPkBEPAL8sIRYzMxsABTa4zczs6Gj2umcO+e/Kw1cOGZmVrZqe/xn5r93DkQgZmY2MKr18b8taRKwkaQzOz8YEceWF5aZmZWlWuLfD/gn4GPAjIEJx8zMylZtIJYXgd9KmhMRswcwJjMzK1GRs3peknSVpPn5doWkUaVHZmZmpSiS+C8gjbe7Yb5dm9uqkrSxpGmSHpL0oKTjOj1+oqSQtE5fAjczs74pkvjXjYgLImJRvl0INBdYbhFwYkRsA+wE/LOkbSB9KQB7A0/1MW4zM+ujIon/RUmHSxqeb4cDL/W0UEQ8FxEz8/SrwBxgo/zwz4FvA672aWY2wIok/i8CnwGeB54DDgaO6s1GJLUAOwB3SzoAeKanA8Z5PIA2SW0LFizozebMzKyKImPuPgl8sq8bkDQSuAI4ntT9czKpm6en7U4CJgG0trb6l4GZWT8ptVaPpBGkpD85Iq4ENgdGA7MlzQNGATNzvX8zMxsAva7OWZQkAecBcyLiDIA8ZOO6FfPMA1rzNQNmZjYAytzj3xk4AthD0qx827fE7ZmZWQGF9/gl7QScAqwM/HtEXF1t/oi4HVAP87QU3b6ZmfWPbhO/pPUj4vmKpm8CB5GS+d1A1cRvZmaDU7U9/nMkzQROi4g3SGPuHgy8AywciODMzKz/VRts/UDgXmCKpM+TTsdcCVgbOHBgwjMzs/5W9eBuRFxLKsu8OnAV8EhEnBkRvqLKzKxOVRt68ZOSpgF/BB4ADgUOkPRbSZsPVIBmZta/qvXx/wgYC6wC3BARY4ETJW0JTAQ+OwDxmZlZP6uW+F8BPgU0AfM7GiPiUZz0zczqVrU+/oNIB3JXAA4bmHDMzKxsPQ29eNYAxmJmZgOg1CJtZmY2+Djxm5k1GCd+M7MG48RvZtZgnPjNzBqME7+ZWYNx4jczazBO/GZmDcaJ38yswZSW+CVtLGmapIckPSjpuNz+U0kPS7pP0lWS1igrBjMzW1aZe/yLgBMjYhtgJ+CfJW0DTAW2jYjtgEeA75YYg5mZdVJa4o+I5yJiZp5+FZgDbBQRN0bEojzbXcCosmIwM7NlDUgfv6QWYAfSIO2Vvghc380y4yW1SWpbsMADfpmZ9ZfSE7+kkcAVwPERsbCifQKpO2hyV8tFxKSIaI2I1ubm5rLDNDNrGNUGYllukkaQkv7kiLiyov1IYD9gz4iIMmMwM7OllZb4JQk4D5gTEWdUtO8DfBvYPSLay9q+mZl1rcw9/p2BI4D7Jc3KbScDZwIrAVPTdwN3RcRXS4zDzMwqlJb4I+J2QF089IeytmlmZj3zlbtmZg1m6Cb+uZPh6ha4ZFj6O7fLk4fMzBpOqWf11MzcyTB9PCzOx47bn0z3AUaPq11cZmaDwNDc4589YUnS77C4PbWbmTW4oZn425/qXbuZWQMZmom/aZPetZuZNZChmfjHTIThTUu3DW9K7WZmDW5oJv7R42DsJGjaFFD6O3aSD+yamTFUz+qBlOSd6M3MljE09/jNzKxbTvxmZg3Gid/MrME48ZuZNRgnfjOzBqN6GABL0gLgyW4eXgd4cQDD6at6iRPqJ9Z6iRPqJ9Z6iRMcaxGbRsQyY9fWReKvRlJbRLTWOo6e1EucUD+x1kucUD+x1kuc4FiXh7t6zMwajBO/mVmDGQqJf1KtAyioXuKE+om1XuKE+om1XuIEx9pndd/Hb2ZmvTMU9vjNzKwXnPjNzBpM3SR+SedLmi/pgU7t35D0sKQHJZ1Wq/gqdRWrpO0l3SVplqQ2SWNrGWOOaWNJ0yQ9lF+/43L7WpKmSno0/11zEMf60/z/v0/SVZLWGIxxVjx+oqSQtE6tYqyIpdtYB9vnqsr/f1B9riStLGm6pNk5zlNz+2hJd0t6TNKlklasZZxERF3cgN2AHYEHKto+CtwErJTvr1vrOKvEeiPw8Ty9L3DzIIhzA2DHPL0q8AiwDXAa8J3c/h3gJ4M41r2BFXL7T2oda3dx5vsbAzeQLkZcZxC/poPuc1Ul1kH1uQIEjMzTI4C7gZ2Ay4DP5vZzgGNqGWfd7PFHxK3A3zo1HwP8OCLezPPMH/DAutBNrAGslqdXB54d0KC6EBHPRcTMPP0qMAfYCDgAuCjPdhFwYG0iXKK7WCPixohYlGe7CxhVqxih6msK8HPg26T3Qs1ViXXQfa6qxDqoPleRvJbvjsi3APYAfpfba/6ZqpvE342tgF3zT6hbJH2g1gFVcTzwU0l/BX4GfLfG8SxFUguwA2kPZb2IeC4/9DywXo3C6lKnWCt9Ebh+oOPpTmWckg4AnomI2TUNqhudXtNB/bnqFOug+1xJGi5pFjAfmAo8DrxcsYPyNEt2Bmqi3hP/CsBapJ9S3wIuk6TahtStY4ATImJj4ATgvBrH8w+SRgJXAMdHxMLKxyL9Nh0Ue6jQfaySJgCLgMm1iq1SZZykuE4Gvl/ToLrRxWs6aD9XXcQ66D5XEbE4IrYn/focC2xd45CWUe+J/2ngyvzzajrwDqkY0mD0BeDKPH056Q1Rc5JGkD5IkyOiI74XJG2QH9+AtOdSc93EiqQjgf2AcfmLqqa6iHNzYDQwW9I8UkKYKWn92kWZdPOaDsrPVTexDsrPFUBEvAxMAz4ErCGpY6jbUcAzNQuM+k/8V5MORCFpK2BFBm+1vmeB3fP0HsCjNYwFgLwXdx4wJyLOqHjoGtIHivz39wMdW2fdxSppH1K/+Scjor1W8VXEs0ycEXF/RKwbES0R0UJKrDtGxPM1DLXa/3/Qfa6qxDqoPleSmjvOLJO0CrAX6XjENODgPFvtP1O1PLLcmxvwG+A54G3SB+dLpDfkr4EHgJnAHrWOs0qsuwAzgNmkvsn3D4I4dyF149wHzMq3fYG1gT+RPkQ3AWsN4lgfA/5a0XbOYIyz0zzzGBxn9XT3mg66z1WVWAfV5wrYDrg3x/kA8P3cvhkwPb9fLyefMVWrm0s2mJk1mHrv6jEzs15y4jczazBO/GZmDcaJ38yswTjxm5k1GCf+fpDP3b1d0gOSDqxo/72kDXtYdpak31Z5/COSphSI4bX8t0XSYb2Jv8C6/1vSNnn65Ir2FnWqllpLnZ+7pFZJZ9Yypg4d/58e5rljIGLJ2zpS0oL8/ntI0pdz+ymSTuqH9f+hL5VSc1xnV3n8akl3FVhPr98Lkr4q6fMVcVT97NYzJ/7+8TlSxb2xpEv0kbQ/cG9EdFs0StJ7gOGkuijv6qdYWoB+TfwRcXREPJTvnlx15h5UXL3Yr/J6W6h47hHRFhHHlrG9MkTEh5d3Hb18fS+NVFrgI8C/Seq3mkwRsW+kK1f7Tf4ieT+wuqTNepi9hV6+FyLinIi4ON89EnDit6reBpqAlYDF+cN3PKm8cTWfA35FKi17QEejpH2UaqHPBD5V0b7U3lj+hdHSaZ0/Jn2RzJJ0gqT3KtUHn6VUs37LypklHSLpjDx9nKQn8vRmkv6Sp2/Oe0w/BlbJ6+qoiTNc0rlKtcdvzFcr0mkbF0o6R9LdwGmSNpf0R0kzJN0maetO87VJekTSfrl9ZUkXSLpf0r2SOq4qPVLSNZL+TLrgrPNz/8evpfzanZ+fyxOSjq2I73uS/if/avtNV3u8ObYzJd2Rlz84t0tpTIAHcnyHdv2vXmpd35J0T/5/nFrR3vGrbQNJt+bn8YCkXSsfz9MHS7qwN69vdyJV33wc2DQ3bdP5dZL0Q0nHV2x/Yn6/dBfrPOUxByR9Pj/X2ZJ+ldv2VyoCd2JWkaoAAAZ4SURBVK+kmwp+6XwKuBb4LfDZili2yOuYLWmmpM3p5r0gaViObY2K5R+VtF5+j5yU/7etwOS8/CckXV0x/16SrioQ7+BV6yvyhsKNVA72OqAN2BM4FjiywHL/A2xCqil/bW5bmXQl6pak2t6XAVPyY6cAJ1Us/wDQkqdfy38/0jF/vn8WqYYNpCsyV+kUw/rAPXn6d8A9pMqBXwD+f26/GWit3E6ebiEVINs+378MOLyL53khMAUYnu//CdgyT38Q+HPFfH8k7ZBsSbrqeWXgROD8PM/WwFO5/cg8z1rdPPd/3M+v3R2kL+d1gJdIJXM/QLoKdGVSnfdHK1/jTs/h8hzbNsBjuf3TpAqMw0lVTJ8CNuhi+Y7/z96kgbeV1zUF2K3TPCcCE/L0cGDVLl77g4ELe/P6dornSODsPL0ZqR7TWlVepxZgZp5/GOmLYu0qsc7Ly7+XVDt/ndze8b9akyVjfh8NnN45ri5ingrsSqoeen9F+93AQRWfn6Ye3gu/AI6qeH1u6vz5Yun3vICHgeZ8/xJg/1rnneW5lfKzu9FExCvAJwCURqv6DnCQpHNJb/DTI+LOymUktQIvRsRTkp4Bzpe0FumLYG5EPJrn+zUwfjnCuxOYIGkUqfDWUrVMIuJ5SSMlrUoaKOQS0kAyu7Kk+FU1cyNiVp6eQUoQXbk8IhYrVVf8MHC5lhR8XKlivssi4h3gUaVfH1uTLss/K8f7sKQnSR9+gKkR0Xnsg+5cF6nG/JuS5pMS9c7A7yPiDeANSddWWf7qHNtDFXuouwC/iYjFpOJ2t5C+TK7pZh1759u9+f5I0pfcrRXz3EN6P4zI25xFz4q+vpUOlbQL8CbwlYj4W15mmdcpIuZJeknSDqTX7d6IeElST7HukWN7EaDifzUKuFSpCOCKwNxqTy6/3lsCt0dESHpb0rakQW02ioir8vrfyPNXW92lpEqpF5B+OVxabea8vV8Bh0u6gFR07fPVlhns3NXT/74HTCR149xO2nM+pYv5PgdsrVSt8XHSYBKf7mHdi1j6f7ZyT8FExCXAJ4G/A3+QtEcXs90BHEX6BXIbKel/CPhLT+snJY0Oi6HbnYnX899hpNrk21fc3lMZcuen0MP2X+/h8UpFYy2yfF/LFIv0S6rjuW8REUuVEo40kM9upAqOFyofcGTp16Lz/77o61vp0vz4BzsSZ9bd6/TfpD3yo4Dze4i1J2eR9uzfB3yli+fT2WdIO1Fz82emhfQZ6os7gS0kNZMGRCmyg3MBcHje5uWxpLZ+XXLi70dK/eejIuJm0s/Nd0gf1lU6zTeM9EZ+Xyyp2HgA6U31MNCS+ylh6Tf3PNKQjkjakVTqt7NXSV0WHdvaDHgiIs4kVQTcrotlbgNOIu113kuqzPhm/iXT2dt5765PItVQnyvpkByfJI2pmOWQ3A+7OakLouPLaFyefyvSr6L/6WL1Sz33gv4C7K90HGEkqbxzb9xG2nMenhPJbqRiXN25Afhi3haSNpK0buUMkjYFXoiIc0nJdsf80AuS3pPfPwd1tfICr+/yuArYh/SL5oYeYu3wZ9L/dO08/1q5fXWWlCb+Aj37HLBPxefl/aShDF8FnlY+m07SSpKaqPJeiNRfcxVwBqna50tdzLbU8pFO0ngW+BfSl0Bdc+LvXxOBCXn6N6RBIu4h9SlW2pU0GlPlGT+3kvqO1yR17VyndHC3shb+FcBakh4Evk7qO+3sPtIB5tmSTiB9wTygNCLQtsDFXSxzG6mb59bcZfFX0q+VrkwC7tOSg7t9MQ74kqTZwINUHNgm9ZFPJ42k9dX80/2XwDBJ95N+lh+ZuyI66/zcexQR95C6Ze7L27wf6OoLrztX5WVnk5Lct6NKueWIuJHUnXZnfj6/Y9kE9RFS7f57gUNZ8v75Dqkv/w5S9dfuVHt9+ywi3iKVF74sv0+qxdqxzIOkz8UtOZ6OksqnkLqjZtBDyWelExg2JQ2t2bHeucArkj4IHAEcK+k+0muzPj2/Fy4l7cF3181zIXBOPrjbseM2GfhrRMypFm89cHVOGzSUzlKZEhG/62neft7uyIh4Le8p3gqMjzy+qy2Rf2nMBA7pfKyoEShdX3Bv5665euQ9fjOYlH8RzQSucNJfltIFfI8Bf2rQpD+D1E3661rH0h+8x29m1mC8x29m1mCc+M3MGowTv5lZg3HiNzNrME78ZmYN5v8AXtuiiCG6j3oAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ ""
+ ],
+ "metadata": {
+ "id": "1B5LoqKA0-d9"
+ },
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/Student assignment updates.txt b/Student assignment updates.txt
index 9979d7c..cbc9235 100644
--- a/Student assignment updates.txt
+++ b/Student assignment updates.txt
@@ -1,2 +1,4 @@
Write your name and PRN no
+Pratibha Maind
+2019BTECS00088
Hello Updated