diff --git a/2019BTECS00110_02/Assignment02.zip b/2019BTECS00110_02/Assignment02.zip new file mode 100644 index 0000000..1236d68 Binary files /dev/null and b/2019BTECS00110_02/Assignment02.zip differ diff --git a/2019BTECS00110_02/Assignment02_Q2.ipynb b/2019BTECS00110_02/Assignment02_Q2.ipynb new file mode 100644 index 0000000..71ec4a6 --- /dev/null +++ b/2019BTECS00110_02/Assignment02_Q2.ipynb @@ -0,0 +1,451 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Assignment02_Q2.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "Mnx4aoF-kmF3" + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns; sns.set()\n", + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "source": [ + "dataSet = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data')\n", + "dataSet.head()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "gSjUwm8Ck3LV", + "outputId": "f2061d8b-6567-4ee6-e185-30a1d27227d5" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
adviser32/601252566000256.116128198199
0amdahl470v/72980003200032832269253
1amdahl470v/7a2980003200032832220253
2amdahl470v/7b2980003200032832172253
3amdahl470v/7c2980001600032816132132
4amdahl470v/b2680003200064832318290
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " adviser 32/60 125 256 6000 256.1 16 128 198 199\n", + "0 amdahl 470v/7 29 8000 32000 32 8 32 269 253\n", + "1 amdahl 470v/7a 29 8000 32000 32 8 32 220 253\n", + "2 amdahl 470v/7b 29 8000 32000 32 8 32 172 253\n", + "3 amdahl 470v/7c 29 8000 16000 32 8 16 132 132\n", + "4 amdahl 470v/b 26 8000 32000 64 8 32 318 290" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = np.array(dataSet['198'])\n", + "print(x)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rXHmoBXinW_a", + "outputId": "bcaaae58-3cd4-4986-a6f5-98e4a168889d" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 269, 220, 172, 132, 318, 367, 489, 636, 1144, 38, 40,\n", + " 92, 138, 10, 35, 19, 28, 31, 120, 30, 33, 61,\n", + " 76, 23, 69, 33, 27, 77, 27, 274, 368, 32, 63,\n", + " 106, 208, 20, 29, 71, 26, 36, 40, 52, 60, 72,\n", + " 72, 18, 20, 40, 62, 24, 24, 138, 36, 26, 60,\n", + " 71, 12, 14, 20, 16, 22, 36, 144, 144, 259, 17,\n", + " 26, 32, 32, 62, 64, 22, 36, 44, 50, 45, 53,\n", + " 36, 84, 16, 38, 38, 16, 22, 29, 40, 35, 134,\n", + " 66, 141, 189, 22, 132, 237, 465, 465, 277, 185, 6,\n", + " 24, 45, 7, 13, 16, 32, 32, 11, 11, 18, 22,\n", + " 37, 40, 34, 50, 76, 66, 24, 49, 66, 100, 133,\n", + " 12, 18, 20, 27, 45, 56, 70, 80, 136, 16, 26,\n", + " 32, 45, 54, 65, 30, 50, 40, 62, 60, 50, 66,\n", + " 86, 74, 93, 111, 143, 105, 214, 277, 370, 510, 214,\n", + " 326, 510, 8, 12, 17, 21, 24, 34, 42, 46, 51,\n", + " 116, 100, 140, 212, 25, 30, 41, 25, 50, 50, 30,\n", + " 32, 38, 60, 109, 6, 11, 22, 33, 58, 130, 75,\n", + " 113, 188, 173, 248, 405, 70, 114, 208, 307, 397, 915,\n", + " 1150, 12, 14, 18, 21, 42, 46, 52, 67, 45])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y = np.array(dataSet['199'])\n", + "print(y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yok2-2zkr_jo", + "outputId": "b666a643-0433-4884-909c-6f93bd42640d" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 253 253 253 132 290 381 381 749 1238 23 24 70 117 15\n", + " 64 23 29 22 124 35 39 40 45 28 21 28 22 28\n", + " 27 102 102 74 74 138 136 23 29 44 30 41 74 74\n", + " 74 54 41 18 28 36 38 34 19 72 36 30 56 42\n", + " 34 34 34 34 34 19 75 113 157 18 20 28 33 47\n", + " 54 20 23 25 52 27 50 18 53 23 30 73 20 25\n", + " 28 29 32 175 57 181 181 32 82 171 361 350 220 113\n", + " 15 21 35 18 20 20 28 45 18 17 26 28 28 31\n", + " 31 42 76 76 26 59 65 101 116 18 20 20 30 44\n", + " 44 82 82 128 37 46 46 80 88 88 33 46 29 53\n", + " 53 41 86 95 107 117 119 120 48 126 266 270 426 151\n", + " 267 603 19 21 26 35 41 47 62 78 80 80 142 281\n", + " 190 21 25 67 24 24 64 25 20 29 43 53 19 22\n", + " 31 41 47 99 67 81 149 183 275 382 56 182 227 341\n", + " 360 919 978 24 24 24 24 37 50 41 47 25]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.scatter(x, y);" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 268 + }, + "id": "hCBADquIsPLE", + "outputId": "89b12c0b-bedf-4363-9b59-3258c17dced2" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD7CAYAAAB9nHO6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd7UlEQVR4nO3dfWxU550v8O/MuB7zYms8kzEeDMKL04ID3bi1bxHK6joxKCZb40Rob821YFF5UxfRwB+hcaNbOyr0ZWyEYBdTCOpq6VUWlEq+NDgXTFZQS0VuCmmcrm1ecieAfK/H2BzbMqYwruc89w9rpjaeM55n3s6c8ffzVzjPnJnzi8fn6/Oc53mOSQghQEREFCGz3gdARETGwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSkqH3AURrePgxVDXyKSgOx0IoylgCj0gf6VgXazIG1mQcDsdCDA8/Rm7ugri8n2GDQ1WFVHAE9klH6VgXazIG1mQc8ayLXVVERCSFwUFERFIYHEREJIXBQUREUgx7c5yIaC7o6O5HS7sHyqgPjhwrNpUXYe2qfF2PicFBRJSiOrr7cebiLYxPqAAAZdSHMxdvAYCu4cGuKiKiFNXS7gmGRsD4hIqWdo9ORzSJwUFElKKUUZ/U9mRhcBARpShHjlVqe7JEFBxutxsVFRVYsWIF7ty5AwAYHh7Grl27UFlZiY0bN2Lv3r0YGhoK7tPZ2Ynq6mpUVlZi+/btUBQlojYiIpq0qbwImRnTT9OZGWZsKi/S6YgmRRQc69atw/vvv4+CgoLgNpPJhJ07d6KtrQ0XLlzA0qVLcfjwYQCAqqo4cOAA6uvr0dbWhrKysojaiIjor9auyse211YGrzAcOVZse22lMUZVlZWVzdhms9mwZs2a4L9LSkpw9uxZAEBXVxesVmtwv82bN2PdunX42c9+FraNiIimW7sqX/egeFZc7nGoqoqzZ8+ioqICAOD1erF48eJgu91uh6qqGBkZCdtGRESpLy7zOA4ePIj58+djy5Yt8Xi7iDgcC6X3cTqzE3Ak+kvHuliTMbAm44jmnKkl5uBwu924f/8+Tp48CbN58gLG5XKhr68v+JqhoSGYzWbYbLawbTIUZUxqmWCnMxuDg4+kPsMI0rEu1mQMrMk4nM5sKMpY3MIjpq6qI0eOoKurC83NzcjMzAxuX716NZ4+fYobN24AAM6dO4cNGzbM2kZERKkvoiuOQ4cO4fLly3j48CG++93vwmaz4ejRozh16hQKCwuxefNmAMCSJUvQ3NwMs9mMxsZGNDQ0wOfzoaCgAE1NTQAQto2IiFKfSQhhyMddsatqUjrWxZqMgTUZR0p1VRER0dzD4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpswaH2+1GRUUFVqxYgTt37gS33717FzU1NaisrERNTQ3u3bsXcxsREaW+WYNj3bp1eP/991FQUDBte0NDA2pra9HW1oba2lrU19fH3EZERKlv1uAoKyuDy+Watk1RFPT09KCqqgoAUFVVhZ6eHgwNDUXdRkRExpARzU5erxeLFi2CxWIBAFgsFuTl5cHr9UIIEVWb3W6XOgaHY6H0cTud2dL7GEE61sWajIE1GUc050wtUQVHKlCUMaiqiPj1Tmc2BgcfJfCI9JGOdbEmY2BNydPR3Y+Wdg+UUR8cOVZsKi/C2lX5Ee/vdGZDUcbiFh5RBYfL5cKDBw/g9/thsVjg9/sxMDAAl8sFIURUbURENFNHdz/OXLyF8QkVAKCM+nDm4i0AkAqPeIpqOK7D4UBxcTFaW1sBAK2trSguLobdbo+6jYiIZmpp9wRDI2B8QkVLu0enIwJMQoiw/T2HDh3C5cuX8fDhQ+Tm5sJms+Gjjz6Cx+NBXV0dRkdHkZOTA7fbjeXLlwNA1G0y2FU1KR3rYk3GwJqSY/vPr2i2/WtdRUTvEe+uqlmDI1UxOCalY12syRhYU3IcOHENyqhvxnZHjhVNe16K6D3iHRycOU5ElMI2lRchM2P6qTozw4xN5UU6HZGBR1UREc0FgRvgsYyqijcGBxFRilu7Kl/XoHgWu6qIiEgKrziIyDBinQhH8cHgICJDSMWJcHMVu6qIyBBScSLcXMXgICJDCDWXIdx2ShwGBxEZgiPHKrWdEofBQUSGkIoT4eYq3hwnIkNIxYlwcxWDg4gMI9Umws1V7KoiIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKQwOIiKSwuAgIiIpDA4iIpLC4CAiIikMDiIiksLgICIiKTEHx9WrV/HGG2/g9ddfR3V1NS5fvgwAuHv3LmpqalBZWYmamhrcu3cvuE+4NiIiSm0xBYcQAj/4wQ/Q2NiI3/zmN2hsbMTbb78NVVXR0NCA2tpatLW1oba2FvX19cH9wrUREVFqi/mKw2w249GjRwCAR48eIS8vD8PDw+jp6UFVVRUAoKqqCj09PRgaGoKiKJptRESU+mJaVt1kMuHo0aPYs2cP5s+fj8ePH+O9996D1+vFokWLYLFYAAAWiwV5eXnwer0QQmi22e322CsiIqKEiik4JiYmcOrUKZw4cQKlpaX49NNPsX//fjQ2Nsbr+DQ5HAul93E6sxNwJPpLx7pYkzGwJuOI5pypJabguHnzJgYGBlBaWgoAKC0txbx582C1WvHgwQP4/X5YLBb4/X4MDAzA5XJBCKHZJkNRxqCqIuLXO53ZGBx8JPUZRpCOdbEmY2BNxuF0ZkNRxuIWHjHd48jPz0d/fz++/PJLAIDH44GiKFi2bBmKi4vR2toKAGhtbUVxcTHsdjscDodmGxERpT6TECLyP9tD+PDDD3H69GmYTCYAwJtvvon169fD4/Ggrq4Oo6OjyMnJgdvtxvLlywEgbFukeMUxKR3rYk3GwJqMI95XHDEHh14YHJPSsS7WZAysyTjiHRwx3eMgovjo6O5HS7sHyqgPjhwrNpUXYe2qfL0PiygkBgeRzjq6+3Hm4i2MT6gAAGXUhzMXbwEAw4NSEteqItJZS7snGBoB4xMqWto9Oh0RUXgMDiKdKaM+qe1EemNwEOnMkWOV2k6kNwYHkc42lRchM2P6r2Jmhhmbyot0OiKi8HhznEhngRvgHFVFRsHgIEoBa1flMyjIMNhVRUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUhgcREQkhcFBRERSYn4eh8/nw09/+lN0dHTAarWipKQEBw8exN27d1FXV4eRkRHYbDa43W4UFhYCQNg2omTq6O7nA5SIJMV8xdHU1ASr1Yq2tjZcuHAB+/btAwA0NDSgtrYWbW1tqK2tRX19fXCfcG1EydLR3Y8zF29BGfUBAJRRH85cvIWO7n6dj4wotcUUHI8fP8b58+exb98+mEwmAMBzzz0HRVHQ09ODqqoqAEBVVRV6enowNDQUto0omVraPRifUKdtG59Q0dLu0emIiIwhpq6q3t5e2Gw2HD9+HJ988gkWLFiAffv2ISsrC4sWLYLFYgEAWCwW5OXlwev1Qgih2Wa322OviChCgSuNSLcT0aSYgsPv96O3txcvvPAC3n77bXz++ef43ve+h2PHjsXr+DQ5HAul93E6sxNwJPpLx7qSUZMzdx4Gh5+E3J6Iz+fPyRjSsSYgunOmlpiCw+VyISMjI9jt9OKLLyI3NxdZWVl48OAB/H4/LBYL/H4/BgYG4HK5IITQbJOhKGNQVRHx653ObAwOPpL6DCNIx7qSVdMbf/c3OHPx1rTuqswMM974u7+J++fz52QM6VgTMFmXoozFLTxiusdht9uxZs0aXLt2DcDkaClFUVBYWIji4mK0trYCAFpbW1FcXAy73Q6Hw6HZRpRMa1flY9trK+HIsQIAHDlWbHttJUdVEc3CJISI/M/2EHp7e/HOO+9gZGQEGRkZ2L9/P8rLy+HxeFBXV4fR0VHk5OTA7XZj+fLlABC2LVK84piUjnWxJmNgTcYR7yuOmINDLwyOSelYF2syBtZkHCnVVUVERHMPg4OIiKQwOIiISAqDg4iIpDA4iIhICoODiIikMDiIiEgKg4OIiKQwOIiISAqDg4iIpDA4iIhICoODiIikMDiIiEgKg4OIiKQwOIiISAqDg4iIpDA4iIhICoODiIikMDiIiEgKg4OIiKRk6H0ARHrq6O5HS7sHyqgPjhwrNpUXYe2qfL0PiyilMThozuro7seZi7cwPqECAJRRH85cvAUADA+iMNhVRXNWS7snGBoB4xMqWto9Oh0RkTEwOGjOUkZ9UtuJaFLcguP48eNYsWIF7ty5AwDo7OxEdXU1KisrsX37diiKEnxtuDaiZHHkWKW2E9GkuARHd3c3Ojs7UVBQAABQVRUHDhxAfX092traUFZWhsOHD8/aRpRMm8qLkJkx/VcgM8OMTeVFOh0RkTHEHBzj4+P48Y9/jHfffTe4raurC1arFWVlZQCAzZs349KlS7O2ESXT2lX52PbayuAVhiPHim2vreSNcaJZxDyq6tixY6iursaSJUuC27xeLxYvXhz8t91uh6qqGBkZCdtms9ki/lyHY6H0sTqd2dL7GIER6vrtp7341cWbeDj8BM/lzsM/vlaMl0uXhn7dqY5ZXxevz69+ORvVL3815vePhBF+TrJYk3FEc87UElNwfPbZZ+jq6sJbb70Vr+OJmKKMQVVFxK93OrMxOPgogUekDyPU9eyw18HhJ/iXDzox+ujptL/uI31doj4/kYzwc5LFmozD6cyGoozFLTxi6qq6fv06PB4P1q1bh4qKCvT392PHjh24f/8++vr6gq8bGhqC2WyGzWaDy+XSbKP0FOmw10QNj+WwW6L4iumKY/fu3di9e3fw3xUVFTh58iSef/55fPDBB7hx4wbKyspw7tw5bNiwAQCwevVqPH36NGQbpadIh73GY3hsqJngHHZLFF8JmTluNpvR2NiIhoYG+Hw+FBQUoKmpadY2Sk+OHGvIk/TUYa8d3f0wm4BQvY+RDo/Vmgm+IMuCx0/9Ub8vEU0X1+C4cuVK8L+/+c1v4sKFCyFfF66N0s+m8qJpJ3Rg+rDXwAk/VGjIDI/V6pLK/EoGMjPMmp9PRHI4c5wSbrZhr6FO+ABgNkFqeKxW19PYkwkOuyWKIy5ySBGJdRXZtavyNV+vdcJXhdxig1pdXWZT+M8nIjm84qBZBbqSAif4wL2Dju7+uLx/vJb+0BqdLTFqm4giwOCgWSV6OGu8lv7g2lNEycHgoFklejjrs/dAnLnzoroHwbWniJKD9zhoVpEMp43V1HsQ0c7enXqznU/0I0ocBgfNarbhtKmEN8GJEo/BQbPiX/JENBWDgyLCv+SJKIDBQdJindNBRMbG4NCJUU++WutBAXKT9YjIuBgcOtDj5BuvoAo3p4PBQTQ3MDh0kOyTbzyDKpY5HUa9yiKi6RgcOkj28yEiCapIT+paczrMpsn30AoCdnERpQ/OHNdBspfGmC2oZNaiCjU7G5hcDyrc+lV8Ch9R+uAVhw4imVAXTbeO1j7hZn53dPfjl609MxYC1Oo6C/xbZh8g+VdZRJQ4vOLQwWzPp4hmNdpw+2it4fS3RQ7NBygF3kPr+GX34QKEROmDVxw6CTehLpqb5+H2adrzUvA1U69GtB6gFBDupC67fpWRli0hovAYHCkomm6d2fYJFVSnL/Rovt9sJ3XZIOCyJUTpg8GRgmT+mv/tp734t9busO8l+zmRPLI1miDgsiVE6YHBkYIi/Wu+o7sfv7p0G76/+EO+TzRXDQAwPyuyrwWDgGhuYnCkoEj/mm9p92iGRqRXAADw7x/fxuOnf32fsScTnGNBRJoYHCkqkr/mw93zCNwQj+RzWto904ID4DIiRKQtpuG4w8PD2LVrFyorK7Fx40bs3bsXQ0NDAIDOzk5UV1ejsrIS27dvh6Iowf3CtVHk4jXElXMsiEhGTMFhMpmwc+dOtLW14cKFC1i6dCkOHz4MVVVx4MAB1NfXo62tDWVlZTh8+DAAhG0jOZvKi2D9imXatmiGuHKOBRHJiCk4bDYb1qxZE/x3SUkJ+vr60NXVBavVirKyMgDA5s2bcenSJQAI20Zy1q7Kx97/9iIWzvtrj+NXMkzS76M1QZBzLIgolLjd41BVFWfPnkVFRQW8Xi8WL14cbLPb7VBVFSMjI2HbbDZbvA4nJcSyGqzMvuN/+euoqMdP/dI3tjnHgohkxC04Dh48iPnz52PLli34+OOP4/W2mhyOhdL7OJ3ZCTiS0H77ae+0obLKqA+/unQbOdlZeLl06WT7xZt4OPwEz+XOwz++VoyXS5eG3ff/PXyM67cGpu3zq4s3Q84YP/+7u6h++asRH2/1y9lSr0+0ZP6skoU1GUM61gREd87UEpfgcLvduH//Pk6ePAmz2QyXy4W+vr5g+9DQEMxmM2w2W9g2GYoyBlVrwaQQnM5sDA4+kvqMWPxba/eMobK+v/hx6n/9CSdbPp82imlw+An+5YNOjD56irWr8jX3/d8d92fso7VkyODwE3z42y8MeRWR7J9VMrAmY0jHmoDJuhRlLG7hEfMih0eOHEFXVxeam5uRmZkJAFi9ejWePn2KGzduAADOnTuHDRs2zNqWTrRGJI09mZgx9BWYvsR4pKOZxidUmM2h72ksnJchvVAiEVEkYrri+OKLL3Dq1CkUFhZi8+bNAIAlS5agubkZjY2NaGhogM/nQ0FBAZqamgAAZrNZsy2daC3nEU7g9TL7qqpAZoZ5xixzIUTY518Y8UqEiFKDSQgReX9PCkn1rqpnn3gXCUeOFU17XpLa15k7D6sLc9He2QdVTK4zVV6yGFc/69PcJ1TQzLY2VTKlY3cBazKGdKwJSMGuKgot1DM3FmRZNF8/dfhrqH2Ll828B5SZYcZ/WZmHa//ZH3w+hiqAa//Zr/lZZhP4JD4iigmXHImjUENopy79oXUlsXBeBv77+q9N+4t/6pIjgf2e9dLX83H91kDIIMj8SkbIKwutqxjOEieiSPGKI05CPYHv9IUefP9oe/CGdKgriV0bX8A/7/uvYbuJtB649CePgsHhJyH3GXsyEfIpg5wlTkSx4hVHnGid3KdOyAu8Thn1wWyaDJdAF1G44IhmLSlHjlVzoUQ+iY+IYsHgiJNwJ/HxCXXG0/YC9yQCVyb/5/+OYGvlypD7h3vgktb4gL8tcoTczlniRBQrBkccdHT3hz2JR+LqZ314fokt5Alc68FO4UZd/cmjveIwH8BERLHgPY4YBe5txBIaAWf/407I7WtX5eOlr+cjMNfPbJq8MR7uvgRvdhNRovCKQ9KzI6d8f/FLzdUIZ+zJBDq6+2dcDXR094cccvvS1/M152vI3OyOZTHGVPoMIkoOXnFICDVyauzJRFw/I9R8ilA33scnVPzJo+Dv1y6b8XqZm92haor30iTJ+AwiSh4GhwStkVPxFKqLKdyoqn/6hxLs2vjCjGG3kf41rxVK8ZwQmIzPIKLkYVdVGFO7VzIzTBifSPzqLKG6mLRGVQVeG8vN7mQ8NpaPpiVKLwyOZ3R09+PfP749YwXbZISGVheT1qiqeMy9mC2U4iEZn0FEycPggHZYJFNgpFSoK4dEzr1IZCgl8zOIKHnmfHB0dPfjX1t74Nd5jeDASCmtuRyJmnuRjAmBnHRIlF7mfHC0tHt0D42AwA3jZJ9QkzEhkJMOidLHnB9VlWo3aFPteIiInjWngyOwVEgq4Q1jIkp1czY4Avc24rFUSKRe+cZiLJyn3TvIG8ZEZARz7h7H/2y7Ffaxqom0tXIltlaunDY/JLA4Im8YE5FRzKng0DM0pnZB8UYxERnZnOqq0is0ALALiojSxpwJjm3vXkz4Z7zyjcXIzJj5v/SVbyzmFQYRpY050VX1P053YOjReMI/Z2vlSjy/xMaJbkSU1nQLjrt376Kurg4jIyOw2Wxwu90oLCxMyGf1KU8S8r5TxWPBQSIiI9Ctq6qhoQG1tbVoa2tDbW0t6uvr9TqUmHEYLRHNJboEh6Io6OnpQVVVFQCgqqoKPT09GBoa0uNwIpJhMcESYrLgwnkZUs+/ICIyOl26qrxeLxYtWgSLxQIAsFgsyMvLg9frhd1uj/vnLXbMi6m7KnCvAuBCfUREhr057nAsjPi1p955FXvc/4HegccR7/P3a5fhn/6hZMb26pe/GvF7JIvTma33IcQdazIG1mQcMufM2egSHC6XCw8ePIDf74fFYoHf78fAwABcLlfE76EoY1Al1gs58fZ6DA4+kjpO2dfrwenMNsRxymBNxsCajMPpzIaijMUtPHS5x+FwOFBcXIzW1lYAQGtrK4qLixPSTUVERPGlW1fVu+++i7q6Opw4cQI5OTlwu916HQoREUnQLTiKiorw61//Wq+PJyKiKM2ZJUeIiCg+DDuqyhzFE5ii2ccI0rEu1mQMrMk44lmXSQiRIk/cJiIiI2BXFRERSWFwEBGRFAYHERFJYXAQEZEUBgcREUlhcBARkRQGBxERSWFwEBGRFAYHERFJmRPBcffuXdTU1KCyshI1NTW4d++e3oc0q+HhYezatQuVlZXYuHEj9u7dG3y0bmdnJ6qrq1FZWYnt27dDUZTgfuHaUsnx48exYsUK3LlzB4Cxa/L5fGhoaMCrr76KjRs34kc/+hGA8N+7VP9OXr16FW+88QZef/11VFdX4/LlywCMV5Pb7UZFRcW07xoQfR2pUGOomsKdL4AE/H6JOWDr1q3i/PnzQgghzp8/L7Zu3arzEc1ueHhY/P73vw/+++c//7n44Q9/KPx+v1i/fr24fv26EEKI5uZmUVdXJ4QQYdtSSVdXl9ixY4d45ZVXxO3btw1f08GDB8VPfvIToaqqEEKIwcFBIUT4710qfydVVRVlZWXi9u3bQgghbt68KUpKSoTf7zdcTdevXxd9fX3B71pAtHWkQo2hatI6XwgR/nco2t+vtA+Ohw8fitLSUjExMSGEEGJiYkKUlpYKRVF0PjI5ly5dEtu2bROff/65+Pa3vx3criiKKCkpEUKIsG2pwufzie985zuit7c3+MU3ck1jY2OitLRUjI2NTdse7nuX6t9JVVXFt771LXHjxg0hhBB/+MMfxKuvvmromqaeZKOtI9VqfDYMpwqcL4QI/zsU7e+XYVfHjZTX68WiRYtgsVgAABaLBXl5efB6vYZ54qCqqjh79iwqKirg9XqxePHiYJvdboeqqhgZGQnbZrPZ9Dj0GY4dO4bq6mosWbIkuM3INfX29sJms+H48eP45JNPsGDBAuzbtw9ZWVma3zshREp/J00mE44ePYo9e/Zg/vz5ePz4Md57772wv0upXtNU0dZhlBqnni+AxPx+zYl7HEZ38OBBzJ8/H1u2bNH7UGLy2WefoaurC7W1tXofStz4/X709vbihRdeQEtLC9566y18//vfx5///Ge9Dy1qExMTOHXqFE6cOIGrV6/iF7/4Bfbv32/omuaSZJwv0v6Kw+Vy4cGDB/D7/bBYLPD7/RgYGIDL5dL70CLidrtx//59nDx5EmazGS6XC319fcH2oaEhmM1m2Gy2sG2p4Pr16/B4PFi3bh0AoL+/Hzt27MDWrVsNW5PL5UJGRgaqqqoAAC+++CJyc3ORlZWl+b0TQqT0d/LmzZsYGBhAaWkpAKC0tBTz5s2D1Wo1bE1ThTsnhKvDCDU+e74AkJBzRtpfcTgcDhQXF6O1tRUA0NraiuLi4pS6tNRy5MgRdHV1obm5GZmZmQCA1atX4+nTp7hx4wYA4Ny5c9iwYcOsbalg9+7d+N3vfocrV67gypUryM/Pxy9/+Uvs3LnTsDXZ7XasWbMG165dAzA56kZRFBQWFmp+71L9O5mfn4/+/n58+eWXAACPxwNFUbBs2TLD1jRVuGONti0VhDpfAIk5Z8yJBzl5PB7U1dVhdHQUOTk5cLvdWL58ud6HFdYXX3yBqqoqFBYWIisrCwCwZMkSNDc3449//CMaGhrg8/lQUFCApqYmPPfccwAQti3VVFRU4OTJk/ja175m6Jp6e3vxzjvvYGRkBBkZGdi/fz/Ky8vDfu9S/Tv54Ycf4vTp0zCZJp8a9+abb2L9+vWGq+nQoUO4fPkyHj58iNzcXNhsNnz00UdR15EKNYaq6ejRo5rnCyD871A0v19zIjiIiCh+0r6rioiI4ovBQUREUhgcREQkhcFBRERSGBxERCSFwUFERFIYHEREJIXBQUREUv4/M9BwKVxFUtkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "model = LinearRegression(fit_intercept=True)\n", + "model.fit(x[:, np.newaxis], y)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ikfoZuTXsXzn", + "outputId": "1dbed67e-cde1-4dcc-b89e-35f877faff9c" + }, + "execution_count": 30, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LinearRegression()" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "xfit = np.linspace(0, 1200)\n", + "yfit = model.predict(xfit[:, np.newaxis])" + ], + "metadata": { + "id": "xcbAs8P5se3p" + }, + "execution_count": 31, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plt.scatter(x, y)\n", + "plt.plot(xfit, yfit);" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 268 + }, + "id": "a8pCekyAs4ew", + "outputId": "29b6a255-8c65-460c-a857-f1d5c54f2239" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVzTV94v8E8SICyCgcgSloLghrhgobXWtrjVZYra2kXLo9PbVjsznW53nnGG6XNH+6qdhdrb296pndo+vU/buS61U8cqreICUnWoSxUtoAIRFSVsAWQRAsnv9/zBQF1ISMiefN5/1Zws51uS3yf5nfM7RyKKoggiIvJaUmd3gIiInItBQETk5RgERERejkFAROTlGARERF6OQUBE5OUYBEREXs7H2R0YqubmDgiC5ZdAKJXDoNW226FHjucptXhKHQBrcVWeUos1dUilEoSGBg3Y5rZBIAjikIKg77GewlNq8ZQ6ANbiqjylFnvUwVNDRERejkFAROTlGARERF6OQUBE5OXcdrCYiMjdFJXWYnuhGtpWHZQhcizJSMK0lChnd4tBQETkCEWltfh09zl06wUAgLZVh093nwMAp4cBTw0RETnA9kJ1fwj06dYL2F6odlKPfsQgICJyAG2rzqLbHYlBQETkAMoQuUW3O5JZQZCTk4NZs2Zh7NixKC8vBwA0Nzdj1apVmDdvHhYuXIgXXngBTU1N/Y8pLi7GokWLMG/ePDzzzDPQarVmtREReaIlGUnw87n5kOvnI8WSjCQn9ehHZgXB7NmzsWnTJsTExPTfJpFIsHLlSuTl5WHXrl2Ii4vDW2+9BQAQBAGrV6/GmjVrkJeXh/T0dLPaiIg81bSUKDy1YFz/LwBliBxPLRjn9IFiwMxZQ+np6bfdplAoMHXq1P5/p6amYsuWLQCAkpISyOXy/sctW7YMs2fPxp/+9CeTbUREnmxaSpRLHPhvZZMxAkEQsGXLFsyaNQsAoNFoEB0d3d8eFhYGQRDQ0tJiso2IiBzPJtcRrFu3DoGBgVi+fLktns4sSuWwIT82PDzYhj1xLk+pxVPqAFiLq/KUWuxRh9VBkJOTg0uXLuGDDz6AVNr7A0OlUqGmpqb/Pk1NTZBKpVAoFCbbLKHVtg9pOdbw8GA0NLRZ/DhX5Cm1eEodAGtxVZ5SizV1SKUSo1+grTo19Pbbb6OkpAQbNmyAn59f/+0TJkxAV1cXTpw4AQDYunUr5s+fP2gbERE5nlm/CN544w3s3bsXjY2NePrpp6FQKPDOO+9g48aNSEhIwLJlywAAsbGx2LBhA6RSKd58802sXbsWOp0OMTExWL9+PQCYbCMiIseTiKLoltv28NSQ59TiKXUArMVVeUotLnlqiIiI3B+DgIjIyzEIiIi8HIOAiMjLMQiIiLwcg4CIyMsxCIiIvByDgIjIDZyubMTOQ/bZ1pKb1xMRubDapuvYsr8CP1zQYlx8KO4ZGw6JRGLT12AQEBG5oE6dHrn/vIi9x6vh6yPF0lmjsHReMlqaO2z+WgwCIiIXIogiviutxRcFalzr6MZ9E1V4NCMRw4fJ4etjn7P5DAIiIhdRpWnF5v3lUF9txUhVCF58dBISo0Ps/roMAiIiJ2vt6Mb2b9U4dFqD4CA/PP2TcZg+UQWpjccCjGEQEBE5id4gIP/kVXx1uArdPQbMvTsOC+8diUB/xx6aGQRERE5QerEJm/eVQ6O9jpSRYciaMxoqZZBT+sIgICJyoIaWTnyeX4mT5Q0IV/jjxUcnInXUCJtPCbUEg4CIyAF0PQZ8U3QJu49ehlQKLHkgEfPujoOvj8zZXWMQEBHZkyiKOH6uHtsKKtHUqsPU8ZF4fEYSwkL8nd21fgwCIiI7qa5vx+Z95Thf3YK4iGFYlTkeY+8IdXa3bsMgICKysfbOHuw4dAEFp64iyN8XK+aNRcbkaEilzhsHMIVBQERkI4IgovB0DbYXqnFdp8esKbFYfP9IDAvwdXbXTGIQEBHZQHl1CzbtK0d1fTvGximQ9eAYxEUMc3a3zMIgICKyQlNrF744qMbRsjqEhcjxi4cnIN0OK4Ta06BBkJOTg7y8PFy9ehW7du3CmDFjAABVVVXIzs5GS0sLFAoFcnJykJCQYFUbEZG76NEbkHesGrlFFyEIwKLpCVhwTzzkvs6fDmqpQZeymz17NjZt2oSYmJibbl+7di2ysrKQl5eHrKwsrFmzxuo2IiJXJ4oiTlU04H/951Fs//YCJo5U4g+rpuLh+xPdMgQAM4IgPT0dKpXqptu0Wi3KysqQmZkJAMjMzERZWRmampqG3EZE5Oo02g78n22n8Zcvf4Cvjwz/viwVv1wyEeGKAGd3zSpDGiPQaDSIjIyETNabfjKZDBEREdBoNBBFcUhtYWFhNiqJiMi2rnfpsfNIFQ58fwV+vjI8OXs0Zt4ZAx+ZZ+z267aDxUrl0Efjw8ODbdgT5/KUWjylDoC1uKqh1CIIIvJPXManX5/FtQ4dHrw7Hj/9STKGD5Nb1ZeD31fjs91n0djciRGhAfjpgmTMSIsz67H2+JsMKQhUKhXq6upgMBggk8lgMBhQX18PlUoFURSH1GYprbYdgiBa/Ljw8GA0NLRZ/DhX5Cm1eEodAGtxVUOpRV1zDZv3VaBK04qk6BC8+OhEjFSFoLuzGw2d3UPuS1FpLT7dfQ7degEA0NDcib9sK0ZrWxempUTZvI4+UqnE6BfoIf2uUSqVSE5ORm5uLgAgNzcXycnJCAsLG3IbEZEruNauw8dfl+EPn32PptYurMxMxu9WpGGkyjY7hW0vVPeHQJ9uvYDthWqbPP9QSERRNPm1+o033sDevXvR2NiI0NBQKBQKfP3111Cr1cjOzkZraytCQkKQk5ODxMREABhymyX4i8BzavGUOgDW4qrMqUVvELD/xBXsPFKFHr2AuXfFIfPeBATIbXsG/Zk/5xtt+3/Zs0w+1l6/CAYNAlfFIPCcWjylDoC1uKrBaim5oMXm/RWobbqOSUlKLJs9GlFhgXbpy+r3j0DbqrvtdmWIHOufn27ysfYKArcdLCYislZ983VsPVCJ4spGRIQG4KXHJiF11Ai7vuaSjKSbxggAwM9HiiUZSXZ9XVMYBETkdbq69fi66BLyjl2GTCrFYzOS8GB6HHx97D8dtG9AeHuhGtpWHZQhcizJSBp0oNieGARE5DVEUcTRs3X4okCN5jYdpqVE4rEZoxAabN10UEtNS4ly6oH/VgwCIvIKl+vasGlfOSquXEN8ZDB+vjgFo2MVzu6WS2AQEJFHa7vejS/+fhp7vruIIH9fPDV/LO6f5LqbxDgDg4CInK6otNbm58wNgoCDp2qw49AFdHYbMPvO3k1igvxde5MYZ2AQEJFT3XqlrbZVh093nwOAIYfBuUvN2Ly/HFcaOpAcH4pfPp6KQB/+AjCGQUBETmXqSltLg0B7rQvbCipx/Fw9lCH++OUjE3DnmHBERIR4zDUR9sAgICKnGujiKlO3D6S7x4A9xy7jm6JLEAE8fN9IzJ96B/zcdH8AR2MQEJFTKUPkRq+0HYwoijhZ3ojP8yvQeK0L6WPD8cSsURgx3L33B3A0BgEROdVQr7S92tiBLfvLUXaxGTHhQVj95BQkx4fau7seiUFARE5l6ZW217t68NXhizjw/RX4+8nwbw+OwYwp0ZBJPWOTGGdgEBCR05lzpa0giDj8gwZfFqrRfr0HGanReOSBRAQH+jmol56LQUBELq/y6jVs2leOS7VtGBU7HL96Ygziozxn9zRnYxAQkctqadfh7wfV+GdJLRTD/PDcwvGYOj4SEgmvCbAlBgERuRy9QcC+E9XYeeQiDAYBD02Lx0PT4uHvx0OWPfD/KhG5lDPqRmw5UIm6puuYnKTEsjmjERlqn01iqBeDgIhcQl3TdWw5UIEzai0iwwLxyuOTMSlJ6exueQUGARE5VadOj9yii9h7rBq+PlI8MXMU5qTHwkfG6aCOwiAgIqcQRRHfldZh28FKXGvvxvSJUXgsIwnDhzl2kxhiEBCRE1ysbcWmfeVQX21FQlQwXnhkIpJihju7W16LQUBEDtPa0Y3t36px6LQGwYG+ePon4zB9ogpSTgd1KgYBEdmd3iCg4ORV7Dhche4eAx68Kw6Lpo9EoD8PQa7A6r9CQUEB3n33XYiiCFEU8cILL2Du3LmoqqpCdnY2WlpaoFAokJOTg4SEBAAw2UZEnqXsYhM2769ATWMHUkaG4cnZoxE9IsjZ3aIbWBUEoijiN7/5DTZt2oQxY8bg3LlzePLJJzFnzhysXbsWWVlZWLx4Mb766iusWbMGn332GQCYbCMiz9DY0onP8yvxfXkDRgz3x4tLJiJ19AheFeyCrJ6fJZVK0dbWu/NPW1sbIiIi0NzcjLKyMmRmZgIAMjMzUVZWhqamJmi1WqNtROT+dD0G7Dh0Af/xn0fxQ5UWjzyQiD+smoopY8IZAi7Kql8EEokE77zzDp5//nkEBgaio6MDH374ITQaDSIjIyGT9e4OJJPJEBERAY1GA1EUjbaFhYVZXxEROYUoijhxvgGf51egqVWHqeMj8fiMJISF+Du7azQIq4JAr9dj48aNeP/995GWlobvv/8er7zyCt58801b9c8opXLYkB8bHu45qxZ6Si2eUgfgnbVc1LTiox0/4ExlI0ZGh2D18nRMSBph595ZxlP+Lvaow6ogOHv2LOrr65GWlgYASEtLQ0BAAORyOerq6mAwGCCTyWAwGFBfXw+VSgVRFI22WUKrbYcgiBb3OTw82GM2sfaUWjylDsD7auno6sGOQ1UoOHkVAXIZVswbi4zJ0ZBKJS71/8FT/i7W1CGVSox+gbZqjCAqKgq1tbW4cOECAECtVkOr1SI+Ph7JycnIzc0FAOTm5iI5ORlhYWFQKpVG24jIPQiCiIPFV/G7jd8h/+QVzJgSjT/9bBpmTomBVMpxAHcjEUXR8q/VN9i5cyc++uij/kGgl156CXPmzIFarUZ2djZaW1sREhKCnJwcJCYmAoDJNnPxF4Hn1OIpdQDeUUvFlRZs2leOy3XtGBunQNaDYxAXMfRTtY7gKX8Xe/0isDoInIVB4Dm1eEodgGfX0tymwxcFlfiurA6hwXIsnTUKd42LcIuZQJ7yd7FXEPCyPiIHKSqtNXuDdlfSoxew9/hl5P7zEgyCiMx7E/DQPfGQ+8mc3TWyEQYBkQMUldbi093n0K0XAADaVh0+3X0OAFw2DERRRHFFI7YeqEB9SyemjB6BpbNHI0IR4OyukY0xCIgcYHuhuj8E+nTrBWwvVLtkEGi0HXhvRwlOnquHShmIXy2djAkjuUmMp2IQEDmAtlVn0e3O0qnTY9eRi9h3ohpyPxmWzRqFWWncJMbTMQiIHEAZIh/woK8McY1NWARRRFFJLb44qEZbRzemT1LhuSWToO/qcXbXyAEYBEQOsCQj6aYxAgDw85FiSUaSE3vVq0rTis37yqGuaUVidAhefmwSRqpCEBrsjwYGgVdgEBA5QN84gCvNGrrW0Y0vC9U4fEaDkCA/PPtQMqZNiOImMV6IQUDkINNSolxiYFhvEJD//RV8daQK3T0C5k+9AwvvTUCAnIcDb8W/PJEXKanSYsv+Cmi01zEhsXeTGJWSm8R4OwYBkReob+nE5wcqcKqiEeEKf7z06CRMHqV0i6uCyf4YBEQeTNdtwNffXcSeo9WQSSV4NCMRc++Kg68PrwqmHzEIiDyQKIo4drYe2woq0dymwz0pkXh8xiiEBrvGdFVyLQwCIg9zua4Nm/dXoLy6BXdEDsPPFqVgTJzC2d0iF8YgIPIQ7Z09+MehCzh46iqC/H3x0/lj8cCkaO4PQINiEBC5OYMgoLC4Bv/49gI6dQbMvjMWi+8fiSB/X2d3jdwEg4DIjZ2/3IxN+ypwpaEd4+7o3SQmNty1N4kh18MgIHJDTa1d2FZQiWNn66EMkeP5hycgbWw4p4PSkDAIiNxIj96APUcv4+uiSxABLJqegAX3xEPuy+mgNHQMAiI3IIoiTv1rk5jGa11IGxuOpTNHYQQ3iSEbYBAQubiaxg5sOVCB0qomxIwIwuplqUhOCHN2t8iDMAiIXNT1Lj12HqnCge+vQO4rQ9ac0Zh5ZwxkUm4SQ7bFICByMYIo4sgZDb4sVKPteg8eSI3GIw8kIiTQz9ldIw/FICByIeqr17B5fzmqNG0YFTMc//OJMYiPCnZ2t8jDWR0EOp0Of/zjH1FUVAS5XI7U1FSsW7cOVVVVyM7ORktLCxQKBXJycpCQkAAAJtuI7KWotNalNoa5UUu7Dl8eVONISS2GD/PDqoXjcc/4SE4HJYewOgjWr18PuVyOvLw8SCQSNDY2AgDWrl2LrKwsLF68GF999RXWrFmDzz77bNA2InsoKq29aatIbasOn+4+BwBODQO9QcD+E1ew80gVevQCFky9A5ncJIYczKpRp46ODuzYsQMvv/xy/zeXESNGQKvVoqysDJmZmQCAzMxMlJWVoampyWQbkb1sL1TftF8wAHTrBWwvVDupR8APF7T4/cfHsK2gEmPjFHhj5VQ8PnMUQ4Aczqp3XHV1NRQKBd577z0cPXoUQUFBePnll+Hv74/IyEjIZL0XuchkMkRERECj0UAURaNtYWGcEkf2oW3VWXS7PdU1X8fnBypRXNmIyNAAvPL4JExKGuHwfhD1sSoIDAYDqqurMX78ePz2t7/F6dOn8fOf/xzvvvuurfpnlFI59PVUwsM9Z/DNU2qxdx3hoQFoaO4c8HZbv7ax5+vU6fHFgXL846Aavj4SPJ05HgvvT4Kvj+tOB/WU9xfgObXYow6rgkClUsHHx6f/NM/kyZMRGhoKf39/1NXVwWAwQCaTwWAwoL6+HiqVCqIoGm2zhFbbDkEQLe5zeHgwGhraLH6cK/KUWhxRx8P3jbxpjAAA/HykePi+kTZ97YFqEUURR8vqsK2gEi3t3ZiWEoXHZyZBMUyOluYOm722rXnK+wvwnFqsqUMqlRj9Am3VV5GwsDBMnToVR44cAdA7G0ir1SIhIQHJycnIzc0FAOTm5iI5ORlhYWFQKpVG24jsZVpKFJ5aMA7KkN4dupQhcjy1YJzdB4ov1bbhT5tO4sNdZRg+TI5XV6Rh1cLxUAzjTmHkOiSiKFr+tfoG1dXVePXVV9HS0gIfHx+88soryMjIgFqtRnZ2NlpbWxESEoKcnBwkJiYCgMk2c/EXgefU4il1AD/W0na9G//49gIKi2swLNAXj2Yk4b5JKkjdaDqoJ/5d3J29fhFYHQTOwiDwnFo8pQ4ACAsLwra957DjUBW6ug2YnRaLxfclINANN4nxpL+Lp9RiryDgPDUiGzl7sQnbPjmOS7VtSI4PRdac0YjhJjHkBhgERFZqvNaJbfmVOHG+ARFhgfjlIxNx55gRvCqY3AaDgGiIunsM2H30Mr757hIkAB6+fySWP5SC1pbrzu4akUUYBEQWEkUR359vwOf5ldC2duGucRF4YuYoKIf7c6cwcksMAiILXGlox5b9FTh7qRmx4UH4bdYUjL0j1NndIrIKg4DIDB1dPfjqUBXyT15FgFyG5XPHICM1mpvEkEdgEBCZIAgiDp2pwZeFF9DR1YMZqTF45IFEDAtwv+mgRMYwCIiMqLjSgs37KnCprg1jYocj68ExuCPSM9arIboRg4DoFs1tOvz9YCWKSusQGizHzxal4O7kCE4HJY/FICD6lx69gH0nqrHryEUYBAGZ98bjoXsSIPfjTCDybAwCIgCnKxux5UAF6ps7MWX0CCydNQoRoYHO7haRQzAIyKvVNl3Hlv0V+OGCFlFhgfjVE5MxIVHp7G4RORSDgLxSp06PXf+8iH3Hq+HrI8XSWaMwOy0WPjJOByXvwyAgryKIIopKavH3g2pc6+jGfRNVeDQjEcO5PwB5MQYBeY0qTSs27yuHuqYVI1XBePHRSUiMDnF2t4icjkFAHq+1oxtfFqpx+IwGwUF+eOYnybh3YpRbbRJDZE8MAvJYeoOAgpNXseNwFbp7DJh7dxwW3jsSgf582xPdiJ8I8kilF5uwZX8Faho7MGFkGJ6cMxoqZZCzu0XkkhgE5FEaWjrxeX4lTpY3IFzhjxcfnYjUUdwkhsgUBgF5BF2PAd8UXcLuo5chlQKPZiRi7l1x8PXhVcFEg2EQkFsTRRHHz9VjW0Elmlp1mDo+Eo/PSEJYiP9t9y0qrcX2QjW0rTooQ+RYkpGEaSlRTug1kWthEJDbqq5vx+Z95Thf3YK4iGF4bmEKxsQpBrxvUWktPt19Dt16AQCgbdXh093nAIBhQF6PQUBup72zBzsOXUDBqasIlPtgxbyxyJgcDanU+DjA9kJ1fwj06dYL2F6oZhCQ17PZ9fTvvfcexo4di/LycgBAcXExFi1ahHnz5uGZZ56BVqvtv6+pNiJjBEFEwamrePXD71Bw6ipmTonBn342DTOnxJgMAaD3F4AltxN5E5sEQWlpKYqLixETEwMAEAQBq1evxpo1a5CXl4f09HS89dZbg7YRGVNe3YLXPzmOv+WdR2x4EF57+m4snzvW7J3ClCEDLyFh7HYib2J1EHR3d+P111/Ha6+91n9bSUkJ5HI50tPTAQDLli3Dnj17Bm0julVTaxc27izFnzedRHtXD36+OAWrn5yCuIhhFj3Pkowk+Pnc/Hb385FiSUaSLbtL5JasHiN49913sWjRIsTGxvbfptFoEB0d3f/vsLAwCIKAlpYWk20KxcADfeR9evQG5B2rRm7RRQgCsGh6AhbcEw+579Cmg/aNA3DWENHtrAqCU6dOoaSkBL/+9a9t1R+zKZWWfSO8UXi45+w768q1HPy+Gp/tPovG5k6MCA3ATxckY0ZanMn7KRX+mD4pGkdLa1GrvY5pE1V4ZmEKoiy8Knig1140YzQWzRhtq/KMcuW/iaVYi+uxRx1WBcHx48ehVqsxe/ZsAEBtbS2effZZrFixAjU1Nf33a2pqglQqhUKhgEqlMtpmCa22HYIgWtzn8PBgNDS0Wfw4V+TKtdw6XbOhuRN/2VaM1raum76FF5XW4rM956HrMQAAGlu68NW3F6AY5od/X5aKlIQwQBAsqtPc17YHV/6bWIq1uB5r6pBKJUa/QFs1RvDcc8/h8OHDyM/PR35+PqKiovDxxx9j5cqV6OrqwokTJwAAW7duxfz58wEAEyZMMNpGnsPUdM1b79cXAjeSStAbAnZ8bSLqZZfrCKRSKd58802sXbsWOp0OMTExWL9+/aBt5DnMma75zxKN0fs1tXWb9ToDXS3MqaJElrFpEOTn5/f/95133oldu3YNeD9TbeQZlCHyAQ+8fdM1vzpchZ2Hq0w+fjDGrhYO8peho+v2XxmcKko0MG7QSnZhbLrm/Knx+PjrMnx1uArGRnjMndZp7BSQRCLhVFEiC3CJCTJpqAu13TpdMyzYD6PjQvFloRo9txy8b/XUgnFmvYaxUz3tnXqsWjieU0WJzMQgIKOsXahtWkoUpqVE4YcLWmzZX4GjZXWYlKTEstmj8b+3njJ66sjcA7ZUAgw0cUwq+fG1iWhwDAIyytqF2uqbr2PrgUoUVzYiIjQALz82CZNHjQDQe+roxpABLD99Y2z28BBmFRN5NQYBGTXU2Tdd3Xp8XXQJeccuQyaV/muTmDvge8N5+xtPHTW16hA2hNM3gw1IE5F5GARklKUHWlEUcfRsHb4oUKO5TYdpKVF4bEYSQoMHvn/f6ZuhXiRji18VRMQgIBMsOdBermvDpn3lqLhyDfGRwfjF4gkYFTvcrv3j+kFEtsEgIKPMOdC2Xe/GPw5VobD4KoL8ffE/FozDfRNVg+4PYMs+8sBPZB0GAZlk7EBrEAQcPFWDHYcuoFNnwOy0WCy+bySC/M3bH4CIXAeDgMx24zUFMqkEBkFEcnwosuaMRkz40FeDJSLnYhCQWYpKa/HJN2fRY+idm2kQRPhIJZg+MYohQOTmGAROMNSrdZ2lu8eA/7/3fH8I9NELIv7x7QXcO0HlpJ4RkS0wCBzM2qt1h/qaQwkeURRxsrwRn+dXoFN3+yJuwODXFLhb6BF5IwaBg1l7ta6lBgseYwfqq40d2LK/HGUXmxETHoSQQF+0Xu+57fmlkt7XGKjvzgg9IrIcg8DBHL1W/mCbtNx6oP7km7MoKqlF2cVm+PvJ8G8PjsGMKdE4drb+tmsKgN7lHIwd3B0dekQ0NAwCBzP3al1LT6kYu7+p4Pk4t+y2dXl6DCJKqpqQkRqNJQ8kIjjQD8CPB/mBHmPs4M4NYojcA/cjcDBj6/TfeLVu3ymVvgNm3ymVotLaAZ/T1P1NrbtjanG2p+aP6w+BPtNSoow+xpKlKLgWEJFrYRA42LSUKDy1YFz/wVAZIr9t/X1L99w1df+Bgmcwpg7UlhzczQk9InI+nhpygsGWRbD0lIqp2wdaJsLUqZnBDtSWrD/EtYCI3AODwAWZO45w8PtqfJJbavJ5gJuD54y6Ef/3yx8gDHCORyoZfHcwSw/uXAuIyPUxCFyQOd+6i0pr8dme89D1DDy//9b71zVdx5YDFTij1mJ4kB86OnugvyUMAv3Nezvw4E7kWRgELsicb93bC9VGQ+DG+3fq9Mgtuoi9x6rh6yPFEzNHYU56LI6fq8fmfefR0fXjc7R36jnPn8gLMQhc1FDHEQBg/fPTIYoiikpqse1gJa61d2P6hCg8OiMJimE/ni7aXqi+KQgAzvMn8kZWBUFzczN+85vf4PLly/Dz80N8fDxef/11hIWFobi4GGvWrIFOp0NMTAzWr18PpVIJACbbyDymxhEu1rZi075yqK+2YqQqGC8smYik6Ns3ieE8fyICrJw+KpFIsHLlSuTl5WHXrl2Ii4vDW2+9BUEQsHr1aqxZswZ5eXlIT0/HW2+9BQAm28h8SzKSIPeV3XSbr0yCEYoArPvkBBqaO/H0T8bhP36aPmAIAJznT0S9rAoChUKBqVOn9v87NTUVNTU1KCkpgVwuR3p6OgBg2bJl2LNnDwCYbCPzTUuJwguPT8awgB9/1PUYRJRXt+DBu+Lwx+em4f5J0ZBKjO8Uxnn+RATYcIxAEARs2bIFs2bNgkajQXR0dH9bWFgYBEFAS0uLyZmkYw0AAAxWSURBVDaFQmGr7rg9c5eY6LplVVAfqQTxUcFmzQDiPH8iAmwYBOvWrUNgYCCWL1+Offv22eppjVIqh74ZSnh4sA17YtzB76vx2e6zaGzuxIjQAPx0QTJmpMWZ13bD1FBtqw7/9c1ZbD1QgfbrPRgRGoDF9yfis91nb5sC2mMQseNwFRbNGG1WHxfNCDb7vvbkqL+JI7AW1+QptdijDpsEQU5ODi5duoQPPvgAUqkUKpUKNTU1/e1NTU2QSqVQKBQm2yyh1bYPeFHUYMLDg9HQ0Gbx4yx16xLMDc2d+Mu2Ypw8W4tjZ+tumq3T19ba1oVpKVH4JLf0tqmheoOItn8tA93Q3In/3Gn8QrKG5k7sPFjhNt/0HfU3cQTW4po8pRZr6pBKJUa/QFu91tDbb7+NkpISbNiwAX5+vYuUTZgwAV1dXThx4gQAYOvWrZg/f/6gbZ7E2Po/Badqbpuy2dfWt5aQubN2jJ3+HxbgY9GidUTk3az6RVBRUYGNGzciISEBy5YtAwDExsZiw4YNePPNN7F27dqbpogCgFQqNdrmSYYyBbPvMYOtB9RHFHsHd2+9AlkURZOL1rnLLwUicgyJKIqWn19xAa5+amj1+0csDgNliBzrn59+22klY8JDAzAhIRSFxTUQxN61gjJSo1FwqsboYwYKjsHWF7I3T/nZDrAWV+UptbjsqSEamKXLP984bXNqciTuTo7sP/XjK7v9HJBMAtw1LgJHfqjt3yNAEIEjP9QiyF922/2B3qCwZHlrIvIOXGLChm6d8jl9YhTOqLX9/56UpMSRH2pvOxgPC/DBk3PGYFpKFMqrW7B5Xzku17djTJwCWXNG42pjB/7rm7PQG378BSSRSnDodM2AB3Y/X58Bv/kb+4XBK4mJvBuDwEYG2qi94FQNgvxlWLVwfP9G8cfO1qFb3/uYGwOguU2HD3eW4ruyOoQGy/HzxSm4a1wEJBIJ/vLlmZtCALh5FtGt2jv1WLVw/G1jAX3/vhWvJCbybgwCGxlolhAAdHQZ8Onuc6i80nLbr4H2Tj3KLzejqbULuf+8BIMgIvPeBDx0Tzzkfj+e3hnKWIOxRevM3VSGiLwHg8BGTB2s+6aNDqTwtAYAkBAVjF88PAHhioDb7mPuLKI+k5IGXsCPVxIT0UAYBDYyLMAH7Z36IT++prEDlVevDRgEA21UY8oZtdZoGzeVIaJbMQiG4NZB4UlJSnR2DT0EgMH3AfD1kdw0tiCK4oAXpgEc/CUiyzAILGRsUNgWBjqAD3RNQXePgOkTo4y+rrmDv+YubDdU9n5+IrINXkdgIWODwrYgHWDJCGNLVZxRa/GTafG33d/cwd++gLHXMhT2fn4ish0GgYXsedploAulTe0i9ovHUrFq4fj+XwDKELnZVwkbCxhbXVxm7+cnItvhqaFB3Hh6w94GOqVjaktKYOiDv/beppLbYBK5DwbBAIpKa7F533mjg7H2YOyUzkAzhmwx93+wgLGWvZ+fiGyHQfAvjvzmfyuJBJg+ceBv9vaa+2+vgHHU8xOR7TAIMPDMHEcSReDQGQ1GxSqMhoGtZ9vY++IyXrxG5D4YBLDvTCBz6Q2iyesI7MHeF5fx4jUi98BZQ3CdAUxX6QcReRcGAWB0/X5H40AqETmD1wfB3/LOOWx2kNxXglULx2OAfWbgI5NwIJWInMIrxwj+lnfOZstCWELXI/afM79xeuqN+xIQETma1wXBX/9e7JQQAKy/CIyIyB687tTQnqOX7fbcfj5SDAswnq089UNErsirguBveecgDLSgjw1IJMBTC8bhyTljBty0fuaUaP4KICKX5DWnhuw9LiCKuOlAzwupiMhdOC0IqqqqkJ2djZaWFigUCuTk5CAhIcFur1dYbN9xgRunfnIMgIjcidNODa1duxZZWVnIy8tDVlYW1qxZY9fXs9MZIQBcQ4eI3JtTgkCr1aKsrAyZmZkAgMzMTJSVlaGpqclurznQpi+2MCzAx+w9AIiIXJFTTg1pNBpERkZCJuu9olcmkyEiIgIajQZhYWF2ec2M1Girxgj69iY+o9by3D8ReRS3HSxWKodZdP9fLb8Lfn6nkGdi+qjcV4puvQBRBKRSCeZPvQO/eCzV2q7aVXh4sLO7YBOeUgfAWlyVp9RijzqcEgQqlQp1dXUwGAyQyWQwGAyor6+HSqUy+zm02naLp4IunTkKLzwxBQ0NbWY/xpL7Olp4eLBL989cnlIHwFpclafUYk0dUqnE6Bdop4wRKJVKJCcnIzc3FwCQm5uL5ORku50WIiIi45x2aui1115DdnY23n//fYSEhCAnJ8dZXSEi8mpOC4KkpCR88cUXznp5IiL6F69aYoKIiG7HICAi8nIMAiIiL+e21xFIrbhU2JrHuhpPqcVT6gBYi6vylFqGWoepx0lEUbTjKjxEROTqeGqIiMjLMQiIiLwcg4CIyMsxCIiIvByDgIjIyzEIiIi8HIOAiMjLMQiIiLwcg4CIyMt5TRBUVVVh6dKlmDdvHpYuXYqLFy86u0tGNTc3Y9WqVZg3bx4WLlyIF154AU1NTQCA4uJiLFq0CPPmzcMzzzwDrVbb/zhTbc723nvvYezYsSgvLwfgnnXodDqsXbsWc+fOxcKFC/H73/8egOn3lqu+7woKCvDwww9j8eLFWLRoEfbu3QvAPWrJycnBrFmzbno/DdY/V61roFpMff4BO312RC+xYsUKcceOHaIoiuKOHTvEFStWOLlHxjU3N4vfffdd/7///Oc/i7/73e9Eg8EgzpkzRzx+/LgoiqK4YcMGMTs7WxRF0WSbs5WUlIjPPvusOHPmTPH8+fNuW8e6devEP/zhD6IgCKIoimJDQ4MoiqbfW674vhMEQUxPTxfPnz8viqIonj17VkxNTRUNBoNb1HL8+HGxpqam//1kTv9cta6BajH2+RdF058Paz47XhEEjY2NYlpamqjX60VRFEW9Xi+mpaWJWq3WyT0zz549e8SnnnpKPH36tPjQQw/1367VasXU1FRRFEWTbc6k0+nEJ554Qqyuru5/s7tjHe3t7WJaWprY3t5+0+2m3luu+r4TBEG8++67xRMnToiiKIrHjh0T586d63a13HjwHGrfXaWuW0PtRn2ff1E0/fmw5rPjtquPWkKj0SAyMhIymQwAIJPJEBERAY1G4/L7JAuCgC1btmDWrFnQaDSIjo7ubwsLC4MgCGhpaTHZplAonNF1AMC7776LRYsWITY2tv82d6yjuroaCoUC7733Ho4ePYqgoCC8/PLL8Pf3N/reEkXRJd93EokE77zzDp5//nkEBgaio6MDH374ocnPiavW0meofXf1um78/AP2++x4zRiBu1q3bh0CAwOxfPlyZ3fFYqdOnUJJSQmysrKc3RWrGQwGVFdXY/z48di+fTt+/etf48UXX8T169ed3TWL6fV6bNy4Ee+//z4KCgrw17/+Fa+88opb1uLpHPX594pfBCqVCnV1dTAYDJDJZDAYDKivr4dKpXJ210zKycnBpUuX8MEHH0AqlUKlUqGmpqa/vampCVKpFAqFwmSbsxw/fhxqtRqzZ88GANTW1uLZZ5/FihUr3KoOoPc95OPjg8zMTADA5MmTERoaCn9/f6PvLVEUXfJ9d/bsWdTX1yMtLQ0AkJaWhoCAAMjlcrerpY+pz7ipvrtyXbd+/gHY7RjgFb8IlEolkpOTkZubCwDIzc1FcnKyS/z0M+btt99GSUkJNmzYAD8/PwDAhAkT0NXVhRMnTgAAtm7divnz5w/a5izPPfccDh8+jPz8fOTn5yMqKgoff/wxVq5c6VZ1AL0/s6dOnYojR44A6J1potVqkZCQYPS95arvu6ioKNTW1uLChQsAALVaDa1Wi/j4eLerpY+p/g21zZkG+vwD9jsGeM3GNGq1GtnZ2WhtbUVISAhycnKQmJjo7G4NqKKiApmZmUhISIC/vz8AIDY2Fhs2bMDJkyexdu1a6HQ6xMTEYP369RgxYgQAmGxzBbNmzcIHH3yAMWPGuGUd1dXVePXVV9HS0gIfHx+88soryMjIMPnectX33c6dO/HRRx9BIundteqll17CnDlz3KKWN954A3v37kVjYyNCQ0OhUCjw9ddfD7nvzqxroFreeecdo59/wPTnY6ifHa8JAiIiGphXnBoiIiLjGARERF6OQUBE5OUYBEREXo5BQETk5RgERERejkFAROTlGARERF7uvwFRLH/KqLy4SwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"Model slope: \", model.coef_[0])\n", + "print(\"Model intercept:\", model.intercept_)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uE5LoFGPs91n", + "outputId": "5ec156c0-75af-45c1-e34d-3c57d4a9c6ac" + }, + "execution_count": 33, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model slope: 0.9297359226144815\n", + "Model intercept: 1.0633039469374381\n" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/2019BTECS00110_02/Assignment2.docx b/2019BTECS00110_02/Assignment2.docx new file mode 100644 index 0000000..a6ff287 Binary files /dev/null and b/2019BTECS00110_02/Assignment2.docx differ diff --git a/Student assignment updates.txt b/Student assignment updates.txt index 9979d7c..e752038 100644 --- a/Student assignment updates.txt +++ b/Student assignment updates.txt @@ -1,2 +1,2 @@ -Write your name and PRN no +2019BTECS00110 Hello Updated