diff --git a/Q2.ipynb b/Q2.ipynb
new file mode 100644
index 0000000..835c992
--- /dev/null
+++ b/Q2.ipynb
@@ -0,0 +1,822 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "A3F2afIDn2Xy"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "import matplotlib.pyplot as plt\n",
+ "from sklearn.model_selection import train_test_split\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uUfOgqI4osh6"
+ },
+ "source": [
+ "# Assignment No.2 \n",
+ "# Linear Regression\n",
+ "PRN 2019BTECS00077 Avinash Biradar"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 704
+ },
+ "id": "oa4l2FWRsHVX",
+ "outputId": "e3b727f9-cb44-466e-d642-cc3fcd000920"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " YearStart | \n",
+ " YearEnd | \n",
+ " LocationAbbr | \n",
+ " LocationDesc | \n",
+ " Datasource | \n",
+ " Class | \n",
+ " Topic | \n",
+ " Question | \n",
+ " Data_Value_Unit | \n",
+ " Data_Value_Type | \n",
+ " Data_Value | \n",
+ " Data_Value_Alt | \n",
+ " Data_Value_Footnote_Symbol | \n",
+ " Data_Value_Footnote | \n",
+ " Low_Confidence_Limit | \n",
+ " High_Confidence_Limit | \n",
+ " Sample_Size | \n",
+ " Total | \n",
+ " Age(years) | \n",
+ " Education | \n",
+ " Gender | \n",
+ " Income | \n",
+ " Race/Ethnicity | \n",
+ " GeoLocation | \n",
+ " ClassID | \n",
+ " TopicID | \n",
+ " QuestionID | \n",
+ " DataValueTypeID | \n",
+ " LocationID | \n",
+ " StratificationCategory1 | \n",
+ " Stratification1 | \n",
+ " StratificationCategoryId1 | \n",
+ " StratificationID1 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.0 | \n",
+ " 32.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.5 | \n",
+ " 33.5 | \n",
+ " 7304.0 | \n",
+ " Total | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Total | \n",
+ " Total | \n",
+ " OVR | \n",
+ " OVERALL | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.3 | \n",
+ " 32.3 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 29.9 | \n",
+ " 34.7 | \n",
+ " 2581.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Male | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Gender | \n",
+ " Male | \n",
+ " GEN | \n",
+ " MALE | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 31.8 | \n",
+ " 31.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.0 | \n",
+ " 33.6 | \n",
+ " 4723.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Female | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Gender | \n",
+ " Female | \n",
+ " GEN | \n",
+ " FEMALE | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 33.6 | \n",
+ " 33.6 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 29.9 | \n",
+ " 37.6 | \n",
+ " 1153.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Less than high school | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Education | \n",
+ " Less than high school | \n",
+ " EDU | \n",
+ " EDUHS | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2011 | \n",
+ " 2011 | \n",
+ " AL | \n",
+ " Alabama | \n",
+ " Behavioral Risk Factor Surveillance System | \n",
+ " Obesity / Weight Status | \n",
+ " Obesity / Weight Status | \n",
+ " Percent of adults aged 18 years and older who ... | \n",
+ " NaN | \n",
+ " Value | \n",
+ " 32.8 | \n",
+ " 32.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 30.2 | \n",
+ " 35.6 | \n",
+ " 2402.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " High school graduate | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " (32.84057112200048, -86.63186076199969) | \n",
+ " OWS | \n",
+ " OWS1 | \n",
+ " Q036 | \n",
+ " VALUE | \n",
+ " 1.0 | \n",
+ " Education | \n",
+ " High school graduate | \n",
+ " EDU | \n",
+ " EDUHSGRAD | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " YearStart YearEnd ... StratificationCategoryId1 StratificationID1\n",
+ "0 2011 2011 ... OVR OVERALL\n",
+ "1 2011 2011 ... GEN MALE\n",
+ "2 2011 2011 ... GEN FEMALE\n",
+ "3 2011 2011 ... EDU EDUHS\n",
+ "4 2011 2011 ... EDU EDUHSGRAD\n",
+ "\n",
+ "[5 rows x 33 columns]"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv(\"/content/dataset.csv\")\n",
+ "df.size\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ZZiolEh9sKS5",
+ "outputId": "7c41dc0c-85c5-41f8-abde-c7004108aaef"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 1082 entries, 0 to 1081\n",
+ "Data columns (total 33 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 YearStart 1082 non-null int64 \n",
+ " 1 YearEnd 1082 non-null int64 \n",
+ " 2 LocationAbbr 1082 non-null object \n",
+ " 3 LocationDesc 1082 non-null object \n",
+ " 4 Datasource 1082 non-null object \n",
+ " 5 Class 1082 non-null object \n",
+ " 6 Topic 1082 non-null object \n",
+ " 7 Question 1082 non-null object \n",
+ " 8 Data_Value_Unit 0 non-null float64\n",
+ " 9 Data_Value_Type 1082 non-null object \n",
+ " 10 Data_Value 967 non-null float64\n",
+ " 11 Data_Value_Alt 967 non-null float64\n",
+ " 12 Data_Value_Footnote_Symbol 114 non-null object \n",
+ " 13 Data_Value_Footnote 114 non-null object \n",
+ " 14 Low_Confidence_Limit 967 non-null float64\n",
+ " 15 High_Confidence_Limit 967 non-null float64\n",
+ " 16 Sample_Size 967 non-null float64\n",
+ " 17 Total 39 non-null object \n",
+ " 18 Age(years) 235 non-null object \n",
+ " 19 Education 153 non-null object \n",
+ " 20 Gender 81 non-null object \n",
+ " 21 Income 266 non-null object \n",
+ " 22 Race/Ethnicity 307 non-null object \n",
+ " 23 GeoLocation 1072 non-null object \n",
+ " 24 ClassID 1081 non-null object \n",
+ " 25 TopicID 1081 non-null object \n",
+ " 26 QuestionID 1081 non-null object \n",
+ " 27 DataValueTypeID 1081 non-null object \n",
+ " 28 LocationID 1081 non-null float64\n",
+ " 29 StratificationCategory1 1081 non-null object \n",
+ " 30 Stratification1 1081 non-null object \n",
+ " 31 StratificationCategoryId1 1081 non-null object \n",
+ " 32 StratificationID1 1081 non-null object \n",
+ "dtypes: float64(7), int64(2), object(24)\n",
+ "memory usage: 279.1+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 364
+ },
+ "id": "aDX5APBztnHb",
+ "outputId": "41b17a4c-fea8-4f11-aca8-0a2c950cef51"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " YearStart | \n",
+ " YearEnd | \n",
+ " Data_Value_Unit | \n",
+ " Data_Value | \n",
+ " Data_Value_Alt | \n",
+ " Low_Confidence_Limit | \n",
+ " High_Confidence_Limit | \n",
+ " Sample_Size | \n",
+ " LocationID | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 1082.000000 | \n",
+ " 1082.000000 | \n",
+ " 0.0 | \n",
+ " 967.000000 | \n",
+ " 967.000000 | \n",
+ " 967.000000 | \n",
+ " 967.000000 | \n",
+ " 967.000000 | \n",
+ " 1081.000000 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 2011.995379 | \n",
+ " 2011.995379 | \n",
+ " NaN | \n",
+ " 31.452327 | \n",
+ " 31.452327 | \n",
+ " 26.702896 | \n",
+ " 36.870631 | \n",
+ " 3008.447777 | \n",
+ " 1.852914 | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 1.050517 | \n",
+ " 1.050517 | \n",
+ " NaN | \n",
+ " 9.962425 | \n",
+ " 9.962425 | \n",
+ " 9.775315 | \n",
+ " 11.059743 | \n",
+ " 21136.231064 | \n",
+ " 5.260757 | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 2011.000000 | \n",
+ " 2011.000000 | \n",
+ " NaN | \n",
+ " 2.300000 | \n",
+ " 2.300000 | \n",
+ " 0.900000 | \n",
+ " 5.700000 | \n",
+ " 50.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 2011.000000 | \n",
+ " 2011.000000 | \n",
+ " NaN | \n",
+ " 24.500000 | \n",
+ " 24.500000 | \n",
+ " 19.600000 | \n",
+ " 29.500000 | \n",
+ " 455.500000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 2012.000000 | \n",
+ " 2012.000000 | \n",
+ " NaN | \n",
+ " 31.500000 | \n",
+ " 31.500000 | \n",
+ " 26.200000 | \n",
+ " 36.600000 | \n",
+ " 971.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 2013.000000 | \n",
+ " 2013.000000 | \n",
+ " NaN | \n",
+ " 37.900000 | \n",
+ " 37.900000 | \n",
+ " 33.050000 | \n",
+ " 43.700000 | \n",
+ " 1808.000000 | \n",
+ " 2.000000 | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 2015.000000 | \n",
+ " 2015.000000 | \n",
+ " NaN | \n",
+ " 67.200000 | \n",
+ " 67.200000 | \n",
+ " 63.300000 | \n",
+ " 70.900000 | \n",
+ " 398316.000000 | \n",
+ " 59.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ "
\n",
+ "
\n",
+ " "
+ ],
+ "text/plain": [
+ " YearStart YearEnd ... Sample_Size LocationID\n",
+ "count 1082.000000 1082.000000 ... 967.000000 1081.000000\n",
+ "mean 2011.995379 2011.995379 ... 3008.447777 1.852914\n",
+ "std 1.050517 1.050517 ... 21136.231064 5.260757\n",
+ "min 2011.000000 2011.000000 ... 50.000000 1.000000\n",
+ "25% 2011.000000 2011.000000 ... 455.500000 1.000000\n",
+ "50% 2012.000000 2012.000000 ... 971.000000 1.000000\n",
+ "75% 2013.000000 2013.000000 ... 1808.000000 2.000000\n",
+ "max 2015.000000 2015.000000 ... 398316.000000 59.000000\n",
+ "\n",
+ "[8 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "background_save": true,
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Hm4qgdYUsY0_",
+ "outputId": "03edf47c-5cf9-46f5-fc8e-535eb809ffcb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([], shape=(0, 1), dtype=float64)"
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wrangled=df[df['StratificationID1'] == 'OVERALL'][['LocationDesc', 'Data_Value', 'Question', \"YearStart\" ]] \n",
+ "question=wrangled[wrangled['Question'] == 'Percent of adults who engage in no leisure-time physical activity '][['LocationDesc', 'Data_Value', 'Question', \"YearStart\" ]]\n",
+ "x_all=question[question['YearStart']==2014][['LocationDesc', 'Data_Value' ]] \n",
+ "x=question[question['YearStart']==2014][['Data_Value' ]].values\n",
+ "x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "OWXpMKeouR3Z",
+ "outputId": "4a6dec29-8ace-47ef-d2fe-f2a4f4813e84"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([], shape=(0, 1), dtype=float64)"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wrangled=df[df['StratificationID1'] == 'OVERALL'][['LocationDesc', 'Data_Value', 'Question', \"YearStart\" ]] \n",
+ "year=wrangled[wrangled['Question'] == 'Percent of adults aged 18 years and older who have obesity '][['LocationDesc', 'Data_Value', 'Question', \"YearStart\" ]]\n",
+ "y_all=year[year['YearStart']==2014][['LocationDesc', 'Data_Value' ]] \n",
+ "y=year[year['YearStart']==2014][['Data_Value' ]].values\n",
+ "y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "66GmCtvTwZbb"
+ },
+ "outputs": [],
+ "source": [
+ "x=x.reshape(-1,1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "dyOOx_k9wcYF"
+ },
+ "outputs": [],
+ "source": [
+ "x=x.reshape(-1,1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 346
+ },
+ "id": "wDVswbihweia",
+ "outputId": "58b7a5ab-1282-4b37-be36-99073dc4d5c1"
+ },
+ "outputs": [
+ {
+ "ename": "ValueError",
+ "evalue": "ignored",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mx_train\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mx_test\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrain_test_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtrain_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.8\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtest_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mrandom_state\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py\u001b[0m in \u001b[0;36mtrain_test_split\u001b[0;34m(test_size, train_size, random_state, shuffle, stratify, *arrays)\u001b[0m\n\u001b[1;32m 2419\u001b[0m \u001b[0mn_samples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_num_samples\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marrays\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2420\u001b[0m n_train, n_test = _validate_shuffle_split(\n\u001b[0;32m-> 2421\u001b[0;31m \u001b[0mn_samples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault_test_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.25\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2422\u001b[0m )\n\u001b[1;32m 2423\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py\u001b[0m in \u001b[0;36m_validate_shuffle_split\u001b[0;34m(n_samples, test_size, train_size, default_test_size)\u001b[0m\n\u001b[1;32m 2099\u001b[0m \u001b[0;34m\"With n_samples={}, test_size={} and train_size={}, the \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2100\u001b[0m \u001b[0;34m\"resulting train set will be empty. Adjust any of the \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2101\u001b[0;31m \u001b[0;34m\"aforementioned parameters.\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2102\u001b[0m )\n\u001b[1;32m 2103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mValueError\u001b[0m: With n_samples=0, test_size=0.2 and train_size=0.8, the resulting train set will be empty. Adjust any of the aforementioned parameters."
+ ]
+ }
+ ],
+ "source": [
+ "x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=.8,test_size=.2,random_state=100)"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "collapsed_sections": [],
+ "name": "Q2.ipynb",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file
diff --git a/Student assignment updates.txt b/Student assignment updates.txt
index 9979d7c..d06b6ee 100644
--- a/Student assignment updates.txt
+++ b/Student assignment updates.txt
@@ -1,2 +1,3 @@
-Write your name and PRN no
+Name : Avinash Biradar
+PRN:2019BTECS00077
Hello Updated