-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Labels
enhancementNew feature or requestNew feature or request
Description
Measurement results with macbook pro 2015 Early (3.1 GHz Intel Corei7)
❯ time ./relesae_imagenet_vgg19.o -i ../data/imagenet/n01443537_693.JPEG -m ../data/vgg19/model.onnx
inference result
1 : 0.0286738
973 : 0.0252736
397 : 0.0235154
392 : 0.0227232
115 : 0.0138855
393 : 0.0132342
390 : 0.0118524
983 : 0.0102448
0 : 0.00987771
396 : 0.00940968
./relesae_imagenet_vgg19.o -i ../data/imagenet/n01443537_693.JPEG -m 29.57s user 1.17s system 96% cpu 31.827 total😢
The result by onnxruntime with the same model and the same image
venv ❯ time python vgg19_test.py -i n01443537_693.JPEG
0: (1, 0.9999995)
1: (392, 3.7388313e-07)
2: (0, 1.02450905e-07)
3: (393, 2.3306047e-08)
4: (391, 1.8048546e-08)
5: (973, 1.2090326e-08)
python vgg19_test.py -i n01443537_693.JPEG 1.38s user 1.21s system 79% cpu 3.262 totalimport argparse
import cv2
import numpy as np
import onnxruntime
parser = argparse.ArgumentParser()
parser.add_argument('--image', '-i', type=str, required=True)
args = parser.parse_args()
img = cv2.imread(args.image)
img = img.astype(np.float32)
mean = np.array([103.939, 116.779, 123.68])
img -= mean
img = cv2.resize(img, (224, 224))
img = np.expand_dims(img.transpose(2, 0, 1), 0).astype(np.float32)
session = onnxruntime.InferenceSession('vgg19.onnx')
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
output = session.run([output_name], {input_name: img})[0]
result = sorted(enumerate(output[0]), key=lambda x: x[1], reverse=True)
for i in range(0, 6):
print(f'{i}: {result[i]}')Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request