diff --git a/public/dyn/multi_body_systems/GearsChains_edited.png b/public/dyn/multi_body_systems/GearsChains_edited.png index 719d4edfe..215303eb8 100644 Binary files a/public/dyn/multi_body_systems/GearsChains_edited.png and b/public/dyn/multi_body_systems/GearsChains_edited.png differ diff --git a/src/pages/dyn/coordinate_systems.astro b/src/pages/dyn/coordinate_systems.astro index 6c1fa8186..6356d74a1 100644 --- a/src/pages/dyn/coordinate_systems.astro +++ b/src/pages/dyn/coordinate_systems.astro @@ -23,18 +23,28 @@ import InlineCanvas from "../../components/InlineCanvas.astro" --- -
+
+
  • 2D + +
  • +
  • 3D + +
  • +
    - + + +

    Cartesian coordinates (also known as rectangular @@ -79,7 +89,9 @@ import InlineCanvas from "../../components/InlineCanvas.astro"

    - +

    @@ -114,9 +126,9 @@ import InlineCanvas from "../../components/InlineCanvas.astro"

    -
    + - +

    Polar coordinates are an alternative 2D coordinate system @@ -171,7 +183,9 @@ import InlineCanvas from "../../components/InlineCanvas.astro"

    - +

    @@ -224,9 +238,11 @@ import InlineCanvas from "../../components/InlineCanvas.astro"

    -
    + + + - +

    The spherical coordinate system extends polar coordinates @@ -491,9 +507,9 @@ import InlineCanvas from "../../components/InlineCanvas.astro"

    -
    + - +

    The cylindrical coordinate system extends polar coordinates into 3D by using the standard vertical coordinate \(z\) for the third. @@ -698,7 +714,7 @@ import InlineCanvas from "../../components/InlineCanvas.astro" vector derivatives.

    -
    + diff --git a/src/pages/dyn/momentum.astro b/src/pages/dyn/momentum.astro index e6533c41a..eceb0c709 100644 --- a/src/pages/dyn/momentum.astro +++ b/src/pages/dyn/momentum.astro @@ -30,6 +30,7 @@ import Col from "../../components/Col.astro"
  • Momentum
  • Impulse
  • Collisions
  • +
  • Rotation about arbitrary reference points
  • @@ -675,7 +676,61 @@ import Col from "../../components/Col.astro" - + +

    + In some cases, using the center of mass as a reference point is not ideal, and we might encounter situations in which we would need to consider the dynamics about another point. + We will begin by finding the angular momentum of a rigid body about any arbitrary point, and extend that from there. +

    + +

    + We can differentiate the above expression with respect to time and obtain the time derivative of the angular momentum of the rigid body about point \(P\). + This will yield two important special cases of rotations. +

    + +

    + The important special cases are outlined below. +

    + + + + + case + + + result + + + consequence + + + + + + + \(P = C\) + + + + + + This is Euler's 2nd law. + + + + + + + + + + + The rigid body is rotating about a fixed point \(P\). + This is another form of Euler's 2nd law. + + + + +
    diff --git a/src/pages/dyn/multi_body_systems.astro b/src/pages/dyn/multi_body_systems.astro index 3569782f7..00c7c33d7 100644 --- a/src/pages/dyn/multi_body_systems.astro +++ b/src/pages/dyn/multi_body_systems.astro @@ -31,6 +31,7 @@ import DisplayTable from "../../components/DisplayTable.astro"