diff --git a/source/platforms/databricks.md b/source/platforms/databricks.md index d4e26910..574b71cc 100644 --- a/source/platforms/databricks.md +++ b/source/platforms/databricks.md @@ -23,6 +23,8 @@ COPY --from=rapids /rapids/rapids-spec.txt /tmp/spec.txt RUN conda create --name rapids --file /tmp/spec.txt && \ rm -f /tmp/spec.txt + +RUN /databricks/conda/envs/rapids/bin/python -m pip install --upgrade virtualenv ``` ```console @@ -34,7 +36,8 @@ Push this image to a Docker registry (DockerHub, Amazon ECR or Azure ACR). ## 2. Configure and create GPU-enabled cluster 1. Compute > Create compute > Name your cluster > Select `Multi` or `Single` Node -2. Select a Standard Databricks runtime. +2. Select the 10.4 LTS Standard Databricks runtime. + - **Note** The 12.2 LTS runtime is known to not work with the `databricksruntime/gpu-conda:cuda11` base image - **Note** Databricks ML Runtime does not support Databricks Container Services 3. Under **Advanced Options**, in the the **Docker** tab select **"Use your own Docker container"** - In the Docker Image URL field, enter the image that you created above