From 23ce92d169f17d6aa36d7df382f1de71055eec86 Mon Sep 17 00:00:00 2001 From: aryanvakharia <46436846+aryanvakharia@users.noreply.github.com> Date: Mon, 19 Sep 2022 19:07:07 -0500 Subject: [PATCH 01/12] Create analysis.ipynb --- analysis.ipynb | 1 + 1 file changed, 1 insertion(+) create mode 100644 analysis.ipynb diff --git a/analysis.ipynb b/analysis.ipynb new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/analysis.ipynb @@ -0,0 +1 @@ + From 118735724366209862cf3d8e5d45071518788fa4 Mon Sep 17 00:00:00 2001 From: aryanvakharia <46436846+aryanvakharia@users.noreply.github.com> Date: Mon, 19 Sep 2022 19:27:27 -0500 Subject: [PATCH 02/12] Delete analysis.ipynb --- analysis.ipynb | 1 - 1 file changed, 1 deletion(-) delete mode 100644 analysis.ipynb diff --git a/analysis.ipynb b/analysis.ipynb deleted file mode 100644 index 8b13789..0000000 --- a/analysis.ipynb +++ /dev/null @@ -1 +0,0 @@ - From 0f4363ad1221902d13459e5ef654e90ea10e813f Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Mon, 19 Sep 2022 19:35:35 -0500 Subject: [PATCH 03/12] Added dataset --- .gitignore | 1 + consumer_analysis.ipynb | 435 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 436 insertions(+) create mode 100644 .gitignore create mode 100644 consumer_analysis.ipynb diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..7076c91 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +consumer_complaints.csv \ No newline at end of file diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb new file mode 100644 index 0000000..9a9acf9 --- /dev/null +++ b/consumer_analysis.ipynb @@ -0,0 +1,435 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "0060a11a", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import nltk" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f92ee33a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedproductsub_productissuesub_issueconsumer_complaint_narrativecompany_public_responsecompanystatezipcodetagsconsumer_consent_providedsubmitted_viadate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?complaint_id
008/30/2013MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNNaNU.S. BancorpCA95993NaNNaNReferral09/03/2013Closed with explanationYesYes511074
108/30/2013MortgageOther mortgageLoan servicing, payments, escrow accountNaNNaNNaNWells Fargo & CompanyCA91104NaNNaNReferral09/03/2013Closed with explanationYesYes511080
208/30/2013Credit reportingNaNIncorrect information on credit reportAccount statusNaNNaNWells Fargo & CompanyNY11764NaNNaNPostal mail09/18/2013Closed with explanationYesNo510473
308/30/2013Student loanNon-federal student loanRepaying your loanRepaying your loanNaNNaNNavient Solutions, Inc.MD21402NaNNaNEmail08/30/2013Closed with explanationYesYes510326
408/30/2013Debt collectionCredit cardFalse statements or representationAttempted to collect wrong amountNaNNaNResurgent Capital Services L.P.GA30106NaNNaNWeb08/30/2013Closed with explanationYesYes511067
.........................................................
55595207/01/2014MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNNaNBank of AmericaNaNNaNNaNNaNReferral07/07/2014Closed with explanationYesNo919529
55595307/01/2014MortgageOther mortgageLoan servicing, payments, escrow accountNaNNaNNaNResidential Credit SolutionsNaNNaNOlder American, ServicememberNaNReferral07/23/2014Closed with explanationNoNo918447
55595407/10/2012MortgageConventional fixed mortgageLoan modification,collection,foreclosureNaNNaNNaNBB&T FinancialNaNNaNNaNNaNPhone11/18/2013Closed with explanationYesNo114550
55595504/14/2015Debt collectionI do not knowCommunication tacticsFrequent or repeated callsNaNNaNGlobal Recovery GroupNaNNaNNaNNaNPhone04/14/2015Untimely responseNoNo1329963
55595608/14/2014Debt collectionI do not knowCont'd attempts collect debt not owedDebt is not mineNaNNaNCCS Financial Services, Inc.NaNNaNNaNNaNPhone08/18/2014Closed with explanationYesNo984116
\n", + "

555957 rows × 18 columns

\n", + "
" + ], + "text/plain": [ + " date_received product sub_product \\\n", + "0 08/30/2013 Mortgage Other mortgage \n", + "1 08/30/2013 Mortgage Other mortgage \n", + "2 08/30/2013 Credit reporting NaN \n", + "3 08/30/2013 Student loan Non-federal student loan \n", + "4 08/30/2013 Debt collection Credit card \n", + "... ... ... ... \n", + "555952 07/01/2014 Mortgage Other mortgage \n", + "555953 07/01/2014 Mortgage Other mortgage \n", + "555954 07/10/2012 Mortgage Conventional fixed mortgage \n", + "555955 04/14/2015 Debt collection I do not know \n", + "555956 08/14/2014 Debt collection I do not know \n", + "\n", + " issue \\\n", + "0 Loan modification,collection,foreclosure \n", + "1 Loan servicing, payments, escrow account \n", + "2 Incorrect information on credit report \n", + "3 Repaying your loan \n", + "4 False statements or representation \n", + "... ... \n", + "555952 Loan modification,collection,foreclosure \n", + "555953 Loan servicing, payments, escrow account \n", + "555954 Loan modification,collection,foreclosure \n", + "555955 Communication tactics \n", + "555956 Cont'd attempts collect debt not owed \n", + "\n", + " sub_issue consumer_complaint_narrative \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 Account status NaN \n", + "3 Repaying your loan NaN \n", + "4 Attempted to collect wrong amount NaN \n", + "... ... ... \n", + "555952 NaN NaN \n", + "555953 NaN NaN \n", + "555954 NaN NaN \n", + "555955 Frequent or repeated calls NaN \n", + "555956 Debt is not mine NaN \n", + "\n", + " company_public_response company state zipcode \\\n", + "0 NaN U.S. Bancorp CA 95993 \n", + "1 NaN Wells Fargo & Company CA 91104 \n", + "2 NaN Wells Fargo & Company NY 11764 \n", + "3 NaN Navient Solutions, Inc. MD 21402 \n", + "4 NaN Resurgent Capital Services L.P. GA 30106 \n", + "... ... ... ... ... \n", + "555952 NaN Bank of America NaN NaN \n", + "555953 NaN Residential Credit Solutions NaN NaN \n", + "555954 NaN BB&T Financial NaN NaN \n", + "555955 NaN Global Recovery Group NaN NaN \n", + "555956 NaN CCS Financial Services, Inc. NaN NaN \n", + "\n", + " tags consumer_consent_provided submitted_via \\\n", + "0 NaN NaN Referral \n", + "1 NaN NaN Referral \n", + "2 NaN NaN Postal mail \n", + "3 NaN NaN Email \n", + "4 NaN NaN Web \n", + "... ... ... ... \n", + "555952 NaN NaN Referral \n", + "555953 Older American, Servicemember NaN Referral \n", + "555954 NaN NaN Phone \n", + "555955 NaN NaN Phone \n", + "555956 NaN NaN Phone \n", + "\n", + " date_sent_to_company company_response_to_consumer timely_response \\\n", + "0 09/03/2013 Closed with explanation Yes \n", + "1 09/03/2013 Closed with explanation Yes \n", + "2 09/18/2013 Closed with explanation Yes \n", + "3 08/30/2013 Closed with explanation Yes \n", + "4 08/30/2013 Closed with explanation Yes \n", + "... ... ... ... \n", + "555952 07/07/2014 Closed with explanation Yes \n", + "555953 07/23/2014 Closed with explanation No \n", + "555954 11/18/2013 Closed with explanation Yes \n", + "555955 04/14/2015 Untimely response No \n", + "555956 08/18/2014 Closed with explanation Yes \n", + "\n", + " consumer_disputed? complaint_id \n", + "0 Yes 511074 \n", + "1 Yes 511080 \n", + "2 No 510473 \n", + "3 Yes 510326 \n", + "4 Yes 511067 \n", + "... ... ... \n", + "555952 No 919529 \n", + "555953 No 918447 \n", + "555954 No 114550 \n", + "555955 No 1329963 \n", + "555956 No 984116 \n", + "\n", + "[555957 rows x 18 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('consumer_complaints.csv', low_memory=False)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bfd962a4", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 866219140b9cac0fff4c4aea0da70dbf965cfbd0 Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Mon, 19 Sep 2022 19:54:42 -0500 Subject: [PATCH 04/12] Found state with most disputed complaints with number of complaints, still needs to be formatted and elaborated on --- consumer_analysis.ipynb | 26 +++++++++++++++++++++++++- 1 file changed, 25 insertions(+), 1 deletion(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index 9a9acf9..a742a6d 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -404,9 +404,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "bfd962a4", "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State is CA with disputes: 17615\n" + ] + } + ], + "source": [ + "#State with most disputes:\n", + "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", + "states = disputed_complaint_clean['state']\n", + "states_clean = states.dropna()\n", + "disp_states, counts = np.unique(states, return_counts=True)\n", + "state = disp_states[np.argmax(counts)]\n", + "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "efe4b5b5", + "metadata": {}, "outputs": [], "source": [] } From 0e7a49cabd44ca3a09fa53f888f21f77a00446da Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Sun, 25 Sep 2022 20:20:20 -0500 Subject: [PATCH 05/12] Progress on exploring maximum issues per state --- consumer_analysis.ipynb | 956 +++++++++++++++++++++++++++++++++++++++- 1 file changed, 939 insertions(+), 17 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index a742a6d..b584304 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -404,35 +404,957 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, + "id": "73bf52d6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedproductsub_productissuesub_issueconsumer_complaint_narrativecompany_public_responsecompanystatezipcodetagsconsumer_consent_providedsubmitted_viadate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?complaint_id
008/30/2013MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNNaNU.S. BancorpCA95993NaNNaNReferral09/03/2013Closed with explanationYesYes511074
108/30/2013MortgageOther mortgageLoan servicing, payments, escrow accountNaNNaNNaNWells Fargo & CompanyCA91104NaNNaNReferral09/03/2013Closed with explanationYesYes511080
208/30/2013Credit reportingNaNIncorrect information on credit reportAccount statusNaNNaNWells Fargo & CompanyNY11764NaNNaNPostal mail09/18/2013Closed with explanationYesNo510473
308/30/2013Student loanNon-federal student loanRepaying your loanRepaying your loanNaNNaNNavient Solutions, Inc.MD21402NaNNaNEmail08/30/2013Closed with explanationYesYes510326
408/30/2013Debt collectionCredit cardFalse statements or representationAttempted to collect wrong amountNaNNaNResurgent Capital Services L.P.GA30106NaNNaNWeb08/30/2013Closed with explanationYesYes511067
.........................................................
55309203/23/2016MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNNaNBank of AmericaNJ080XXNaNNaNWeb03/31/2016In progressYesNo1846137
55309303/31/2016MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNCompany has responded to the consumer and the ...U.S. BancorpOH44647NaNNaNReferral04/04/2016Closed with explanationYesNo1859306
55309403/08/2016MortgageConventional fixed mortgageLoan servicing, payments, escrow accountNaNNaNNaNDovenmuehle Mortgage Inc.CO802XXNaNNaNWeb03/08/2016Closed with explanationYesNo1822445
55309503/28/2016MortgageOther mortgageLoan servicing, payments, escrow accountNaNNaNCompany has responded to the consumer and the ...Wells Fargo & CompanyPA17236NaNNaNReferral03/31/2016Closed with explanationYesNo1852707
55309602/12/2016MortgageConventional fixed mortgageApplication, originator, mortgage brokerNaNBank of America has demonstrated an on-going l...Company has responded to the consumer and the ...Bank of AmericaGA300XXNaNConsent providedWeb02/12/2016Closed with explanationYesYes1786225
\n", + "

551070 rows × 18 columns

\n", + "
" + ], + "text/plain": [ + " date_received product sub_product \\\n", + "0 08/30/2013 Mortgage Other mortgage \n", + "1 08/30/2013 Mortgage Other mortgage \n", + "2 08/30/2013 Credit reporting NaN \n", + "3 08/30/2013 Student loan Non-federal student loan \n", + "4 08/30/2013 Debt collection Credit card \n", + "... ... ... ... \n", + "553092 03/23/2016 Mortgage Other mortgage \n", + "553093 03/31/2016 Mortgage Other mortgage \n", + "553094 03/08/2016 Mortgage Conventional fixed mortgage \n", + "553095 03/28/2016 Mortgage Other mortgage \n", + "553096 02/12/2016 Mortgage Conventional fixed mortgage \n", + "\n", + " issue \\\n", + "0 Loan modification,collection,foreclosure \n", + "1 Loan servicing, payments, escrow account \n", + "2 Incorrect information on credit report \n", + "3 Repaying your loan \n", + "4 False statements or representation \n", + "... ... \n", + "553092 Loan modification,collection,foreclosure \n", + "553093 Loan modification,collection,foreclosure \n", + "553094 Loan servicing, payments, escrow account \n", + "553095 Loan servicing, payments, escrow account \n", + "553096 Application, originator, mortgage broker \n", + "\n", + " sub_issue \\\n", + "0 NaN \n", + "1 NaN \n", + "2 Account status \n", + "3 Repaying your loan \n", + "4 Attempted to collect wrong amount \n", + "... ... \n", + "553092 NaN \n", + "553093 NaN \n", + "553094 NaN \n", + "553095 NaN \n", + "553096 NaN \n", + "\n", + " consumer_complaint_narrative \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "553092 NaN \n", + "553093 NaN \n", + "553094 NaN \n", + "553095 NaN \n", + "553096 Bank of America has demonstrated an on-going l... \n", + "\n", + " company_public_response \\\n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "553092 NaN \n", + "553093 Company has responded to the consumer and the ... \n", + "553094 NaN \n", + "553095 Company has responded to the consumer and the ... \n", + "553096 Company has responded to the consumer and the ... \n", + "\n", + " company state zipcode tags \\\n", + "0 U.S. Bancorp CA 95993 NaN \n", + "1 Wells Fargo & Company CA 91104 NaN \n", + "2 Wells Fargo & Company NY 11764 NaN \n", + "3 Navient Solutions, Inc. MD 21402 NaN \n", + "4 Resurgent Capital Services L.P. GA 30106 NaN \n", + "... ... ... ... ... \n", + "553092 Bank of America NJ 080XX NaN \n", + "553093 U.S. Bancorp OH 44647 NaN \n", + "553094 Dovenmuehle Mortgage Inc. CO 802XX NaN \n", + "553095 Wells Fargo & Company PA 17236 NaN \n", + "553096 Bank of America GA 300XX NaN \n", + "\n", + " consumer_consent_provided submitted_via date_sent_to_company \\\n", + "0 NaN Referral 09/03/2013 \n", + "1 NaN Referral 09/03/2013 \n", + "2 NaN Postal mail 09/18/2013 \n", + "3 NaN Email 08/30/2013 \n", + "4 NaN Web 08/30/2013 \n", + "... ... ... ... \n", + "553092 NaN Web 03/31/2016 \n", + "553093 NaN Referral 04/04/2016 \n", + "553094 NaN Web 03/08/2016 \n", + "553095 NaN Referral 03/31/2016 \n", + "553096 Consent provided Web 02/12/2016 \n", + "\n", + " company_response_to_consumer timely_response consumer_disputed? \\\n", + "0 Closed with explanation Yes Yes \n", + "1 Closed with explanation Yes Yes \n", + "2 Closed with explanation Yes No \n", + "3 Closed with explanation Yes Yes \n", + "4 Closed with explanation Yes Yes \n", + "... ... ... ... \n", + "553092 In progress Yes No \n", + "553093 Closed with explanation Yes No \n", + "553094 Closed with explanation Yes No \n", + "553095 Closed with explanation Yes No \n", + "553096 Closed with explanation Yes Yes \n", + "\n", + " complaint_id \n", + "0 511074 \n", + "1 511080 \n", + "2 510473 \n", + "3 510326 \n", + "4 511067 \n", + "... ... \n", + "553092 1846137 \n", + "553093 1859306 \n", + "553094 1822445 \n", + "553095 1852707 \n", + "553096 1786225 \n", + "\n", + "[551070 rows x 18 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_clean_states = df[df['state'].notna()] \n", + "df_clean_states" + ] + }, + { + "cell_type": "code", + "execution_count": 88, "id": "bfd962a4", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "State is CA with disputes: 17615\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "State is CA with disputes: 17615\n" + ] + } + ], + "source": [ + "#State with most disputes:\n", + "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", + "states = disputed_complaint['state']\n", + "states_clean = states.dropna()\n", + "disp_states, counts = np.unique(states, return_counts=True)\n", + "state = disp_states[np.argmax(counts)]\n", + "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "59075f2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statecount
0CA17615
1FL10443
2TX7601
3NY7463
4GA4802
.........
57AS5
58MH5
59PW3
60AA3
61MP3
\n", + "

62 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " state count\n", + "0 CA 17615\n", + "1 FL 10443\n", + "2 TX 7601\n", + "3 NY 7463\n", + "4 GA 4802\n", + ".. ... ...\n", + "57 AS 5\n", + "58 MH 5\n", + "59 PW 3\n", + "60 AA 3\n", + "61 MP 3\n", + "\n", + "[62 rows x 2 columns]" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#State with most disputes:\n", + "disputed_complaint = df_clean_states[df_clean_states['consumer_disputed?'] == 'Yes']\n", + "disp_states = disputed_complaint['state'].value_counts().reset_index()\n", + "disp_states.columns = ['state', 'count']\n", + "disp_states" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "511e81cf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateissue0
0AAAccount opening, closing, or management1
1AADealing with my lender or servicer1
2AAIdentity theft / Fraud / Embezzlement1
3AALoan modification,collection,foreclosure2
4AALoan servicing, payments, escrow account2
............
4359WYTaking/threatening an illegal action6
4360WYTransaction issue3
4361WYUnable to get credit report/credit score13
4362WYUnsolicited issuance of credit card3
4363WYUsing a debit or ATM card3
\n", + "

4364 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " state issue 0\n", + "0 AA Account opening, closing, or management 1\n", + "1 AA Dealing with my lender or servicer 1\n", + "2 AA Identity theft / Fraud / Embezzlement 1\n", + "3 AA Loan modification,collection,foreclosure 2\n", + "4 AA Loan servicing, payments, escrow account 2\n", + "... ... ... ..\n", + "4359 WY Taking/threatening an illegal action 6\n", + "4360 WY Transaction issue 3\n", + "4361 WY Unable to get credit report/credit score 13\n", + "4362 WY Unsolicited issuance of credit card 3\n", + "4363 WY Using a debit or ATM card 3\n", + "\n", + "[4364 rows x 3 columns]" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "#State with most disputes:\n", - "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", - "states = disputed_complaint_clean['state']\n", - "states_clean = states.dropna()\n", - "disp_states, counts = np.unique(states, return_counts=True)\n", - "state = disp_states[np.argmax(counts)]\n", - "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + "b = df.groupby(['state','issue']).size().reset_index()\n", + "b" ] }, { "cell_type": "code", - "execution_count": null, - "id": "efe4b5b5", + "execution_count": 85, + "id": "17ec819c", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateissuecount
0AAAccount opening, closing, or management1
1AADealing with my lender or servicer1
2AAIdentity theft / Fraud / Embezzlement1
3AALoan modification,collection,foreclosure2
4AALoan servicing, payments, escrow account2
............
4359WYTaking/threatening an illegal action6
4360WYTransaction issue3
4361WYUnable to get credit report/credit score13
4362WYUnsolicited issuance of credit card3
4363WYUsing a debit or ATM card3
\n", + "

4364 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " state issue count\n", + "0 AA Account opening, closing, or management 1\n", + "1 AA Dealing with my lender or servicer 1\n", + "2 AA Identity theft / Fraud / Embezzlement 1\n", + "3 AA Loan modification,collection,foreclosure 2\n", + "4 AA Loan servicing, payments, escrow account 2\n", + "... ... ... ...\n", + "4359 WY Taking/threatening an illegal action 6\n", + "4360 WY Transaction issue 3\n", + "4361 WY Unable to get credit report/credit score 13\n", + "4362 WY Unsolicited issuance of credit card 3\n", + "4363 WY Using a debit or ATM card 3\n", + "\n", + "[4364 rows x 3 columns]" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = df.groupby(['state','issue']).size().reset_index()\n", + "a.columns = ['state', 'issue','count']\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "15c92542", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateissuecount
462CALoan modification,collection,foreclosure19433
874FLLoan modification,collection,foreclosure11337
463CALoan servicing, payments, escrow account8957
3775TXIncorrect information on credit report8712
458CAIncorrect information on credit report8585
............
1855MEApplied for loan/did not receive money1
1853MEApplication processing delay1
1851MEAccount terms and changes1
1817MDLost or stolen check1
0AAAccount opening, closing, or management1
\n", + "

4364 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " state issue count\n", + "462 CA Loan modification,collection,foreclosure 19433\n", + "874 FL Loan modification,collection,foreclosure 11337\n", + "463 CA Loan servicing, payments, escrow account 8957\n", + "3775 TX Incorrect information on credit report 8712\n", + "458 CA Incorrect information on credit report 8585\n", + "... ... ... ...\n", + "1855 ME Applied for loan/did not receive money 1\n", + "1853 ME Application processing delay 1\n", + "1851 ME Account terms and changes 1\n", + "1817 MD Lost or stolen check 1\n", + "0 AA Account opening, closing, or management 1\n", + "\n", + "[4364 rows x 3 columns]" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.sort_values(by = 'count', ascending = False)" + ] } ], "metadata": { From 477bd552657b8e81a16347b878d2fb6e2d4ac1b5 Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Thu, 29 Sep 2022 19:11:32 -0500 Subject: [PATCH 06/12] Random commit to save progress --- consumer_analysis.ipynb | 1042 +++++++++++++++------------------------ 1 file changed, 407 insertions(+), 635 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index b584304..383b0da 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -10,7 +10,8 @@ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "import nltk" + "import nltk\n", + "%matplotlib inline" ] }, { @@ -404,9 +405,79 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 4, "id": "73bf52d6", "metadata": {}, + "outputs": [], + "source": [ + "#Drop NaN values for states\n", + "df_clean_states = df[df['state'].notna()] " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bfd962a4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State is CA with disputes: 17615\n" + ] + } + ], + "source": [ + "#State with most disputes:\n", + "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", + "states = disputed_complaint['state']\n", + "states_clean = states.dropna().values\n", + "disp_states, counts = np.unique(states_clean, return_counts=True)\n", + "state = disp_states[np.argmax(counts)]\n", + "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "59075f2b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFkAAAIICAYAAAC1nzFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA01klEQVR4nO3de5hsV10n/O/PRGNQuRgihiRwuASERAySF1CEQaMQQCEoSPKioDIGGfAVFCVBZ2SciUQHJprh9oJgwJEE5BohEZCIgAbhACE3QBII5JAYjqDAyM2ENX/s3UmdOtVdVd3rpE/nfD7P009Xr9q/vXdV76ra9d1rr12ttQAAAACwMd+y2SsAAAAAcHMgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA723+wVWK/b3va2bdu2bZu9GgAAAMA+5IMf/OA/t9YOnnXflg1Ztm3blu3bt2/2agAAAAD7kKr69Gr3OV0IAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA62H/eBFX1iiQ/meRzrbWjxrbXJLn7OMmtk/xra+3oqtqW5KNJPj7e977W2q+MNfdJcmaSA5Ocm+TXWmutqg5I8qok90ny+SSPa61d2ePBwd5k28lvXbrmytMesQfWBAAAgD1hkZ4sZyY5brKhtfa41trRrbWjk7w+yRsm7r5i5b6VgGX04iQnJTli/FmZ55OS/Etr7a5JTk/yB+t5IAAAAACbaW7I0lp7d5IvzLqvqirJzyY5a615VNUhSW7ZWrugtdYy9Fw5frz7UUleOd5+XZJjx/kCAAAAbBkbHZPlgUmuba19YqLtTlX14ar626p64Nh2aJIdE9PsGNtW7rsqSVpr1yX5YpKDZi2sqk6qqu1VtX3nzp0bXHUAAACAfjYaspyYXXuxXJPkDq21eyf59SSvrqpbJpnVM6WNv9e6b9fG1l7aWjumtXbMwQcfvIHVBgAAAOhr7sC3q6mq/ZP8dIYBa5MkrbWvJ/n6ePuDVXVFkrtl6Lly2ET5YUmuHm/vSHJ4kh3jPG+VVU5PAgAAANhbbaQny48n+Vhr7YbTgKrq4Krab7x95wwD3H6ytXZNki9X1f3H8VaekOTNY9k5SZ443n5MkvPHcVsAAAAAtoy5IUtVnZXkgiR3r6odVfWk8a4TsvuAtw9KclFVfSTDILa/0lpb6ZXylCR/kuTyJFckOW9sf3mSg6rq8gynGJ28gccDAAAAsCnmni7UWjtxlfZfmNH2+gyXdJ41/fYkR81o/1qSx85bDwAAAIC92UYHvgUAAAAgQhYAAACALoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHc0OWqnpFVX2uqi6ZaHtOVX22qi4cfx4+cd8pVXV5VX28qh460X6fqrp4vO+Mqqqx/YCqes3Y/g9Vta3zYwQAAADY4xbpyXJmkuNmtJ/eWjt6/Dk3SarqnklOSHLkWPOiqtpvnP7FSU5KcsT4szLPJyX5l9baXZOcnuQP1vlYAAAAADbN3JCltfbuJF9YcH6PSnJ2a+3rrbVPJbk8yX2r6pAkt2ytXdBaa0leleT4iZpXjrdfl+TYlV4uAAAAAFvFRsZkeVpVXTSeTnSbse3QJFdNTLNjbDt0vD3dvktNa+26JF9MctCsBVbVSVW1vaq279y5cwOrDgAAANDXekOWFye5S5Kjk1yT5Plj+6weKG2N9rVqdm9s7aWttWNaa8ccfPDBS60wAAAAwJ60rpCltXZta+361to3k7wsyX3Hu3YkOXxi0sOSXD22HzajfZeaqto/ya2y+OlJAAAAAHuFdYUs4xgrKx6dZOXKQ+ckOWG8YtCdMgxw+/7W2jVJvlxV9x/HW3lCkjdP1DxxvP2YJOeP47YAAAAAbBn7z5ugqs5K8uAkt62qHUl+N8mDq+roDKf1XJnkyUnSWru0ql6b5LIk1yV5amvt+nFWT8lwpaIDk5w3/iTJy5P8WVVdnqEHywkdHhcAAADATWpuyNJaO3FG88vXmP7UJKfOaN+e5KgZ7V9L8th56wEAAACwN9vI1YUAAAAAGAlZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHcwNWarqFVX1uaq6ZKLtf1TVx6rqoqp6Y1XdemzfVlVfraoLx5+XTNTcp6ourqrLq+qMqqqx/YCqes3Y/g9Vta3/wwQAAADYsxbpyXJmkuOm2t6R5KjW2r2S/GOSUybuu6K1dvT48ysT7S9OclKSI8aflXk+Kcm/tNbumuT0JH+w9KMAAAAA2GRzQ5bW2ruTfGGq7e2ttevGP9+X5LC15lFVhyS5ZWvtgtZaS/KqJMePdz8qySvH269LcuxKLxcAAACAraLHmCy/lOS8ib/vVFUfrqq/raoHjm2HJtkxMc2OsW3lvquSZAxuvpjkoFkLqqqTqmp7VW3fuXNnh1UHAAAA6GNDIUtV/XaS65L8+dh0TZI7tNbuneTXk7y6qm6ZZFbPlLYymzXu27WxtZe21o5prR1z8MEHb2TVAQAAALraf72FVfXEJD+Z5NjxFKC01r6e5Ovj7Q9W1RVJ7pah58rkKUWHJbl6vL0jyeFJdlTV/klulanTkwAAAAD2duvqyVJVxyV5VpJHtta+MtF+cFXtN96+c4YBbj/ZWrsmyZer6v7jeCtPSPLmseycJE8cbz8myfkroQ0AAADAVjG3J0tVnZXkwUluW1U7kvxuhqsJHZDkHeMYte8bryT0oCS/V1XXJbk+ya+01lZ6pTwlw5WKDswwhsvKOC4vT/JnVXV5hh4sJ3R5ZAAAAAA3obkhS2vtxBnNL19l2tcnef0q921PctSM9q8leey89QAAAADYm/W4uhAAAADAPk/IAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6GD/zV4BgLVsO/mtS01/5WmP2ENrAgAAsDY9WQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADuaGLFX1iqr6XFVdMtH23VX1jqr6xPj7NhP3nVJVl1fVx6vqoRPt96mqi8f7zqiqGtsPqKrXjO3/UFXbOj9GAAAAgD1ukZ4sZyY5bqrt5CTvbK0dkeSd49+pqnsmOSHJkWPNi6pqv7HmxUlOSnLE+LMyzycl+ZfW2l2TnJ7kD9b7YAAAAAA2y9yQpbX27iRfmGp+VJJXjrdfmeT4ifazW2tfb619KsnlSe5bVYckuWVr7YLWWkvyqqmalXm9LsmxK71cAAAAALaK9Y7JcrvW2jVJMv7+nrH90CRXTUy3Y2w7dLw93b5LTWvtuiRfTHLQrIVW1UlVtb2qtu/cuXOdqw4AAADQX++Bb2f1QGlrtK9Vs3tjay9trR3TWjvm4IMPXucqAgAAAPS33pDl2vEUoIy/Pze270hy+MR0hyW5emw/bEb7LjVVtX+SW2X305MAAAAA9mrrDVnOSfLE8fYTk7x5ov2E8YpBd8owwO37x1OKvlxV9x/HW3nCVM3KvB6T5Pxx3BYAAACALWP/eRNU1VlJHpzktlW1I8nvJjktyWur6klJPpPksUnSWru0ql6b5LIk1yV5amvt+nFWT8lwpaIDk5w3/iTJy5P8WVVdnqEHywldHhkAAADATWhuyNJaO3GVu45dZfpTk5w6o317kqNmtH8tY0gDAAAAsFX1HvgWAAAAYJ8kZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHSw7pClqu5eVRdO/Hypqp5eVc+pqs9OtD98ouaUqrq8qj5eVQ+daL9PVV083ndGVdVGHxgAAADATWn/9Ra21j6e5Ogkqar9knw2yRuT/GKS01trz5ucvqrumeSEJEcmuX2Sv66qu7XWrk/y4iQnJXlfknOTHJfkvPWuGwAAAJtj28lvXWr6K097xB5aE7jp9Tpd6NgkV7TWPr3GNI9KcnZr7euttU8luTzJfavqkCS3bK1d0FprSV6V5PhO6wUAAABwk+gVspyQ5KyJv59WVRdV1Suq6jZj26FJrpqYZsfYduh4e7p9N1V1UlVtr6rtO3fu7LTqAAAAABu37tOFVlTVtyV5ZJJTxqYXJ/lvSdr4+/lJfinJrHFW2hrtuze29tIkL02SY445ZuY0AABwc7Ps6ReJUzAANkOPniwPS/Kh1tq1SdJau7a1dn1r7ZtJXpbkvuN0O5IcPlF3WJKrx/bDZrQDAAAAbBk9QpYTM3Gq0DjGyopHJ7lkvH1OkhOq6oCqulOSI5K8v7V2TZIvV9X9x6sKPSHJmzusFwAAAMBNZkOnC1XVLZL8RJInTzT/YVUdneGUnytX7mutXVpVr01yWZLrkjx1vLJQkjwlyZlJDsxwVSFXFgIAAAC2lA2FLK21ryQ5aKrt59eY/tQkp85o357kqI2sCwAAAMBm6nV1IQAAAIB9mpAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQwYZClqq6sqourqoLq2r72PbdVfWOqvrE+Ps2E9OfUlWXV9XHq+qhE+33GedzeVWdUVW1kfUCAAAAuKn16Mnyo621o1trx4x/n5zkna21I5K8c/w7VXXPJCckOTLJcUleVFX7jTUvTnJSkiPGn+M6rBcAAADATWZPnC70qCSvHG+/MsnxE+1nt9a+3lr7VJLLk9y3qg5JcsvW2gWttZbkVRM1AAAAAFvCRkOWluTtVfXBqjppbLtda+2aJBl/f8/YfmiSqyZqd4xth463p9sBAAAAtoz9N1j/gNba1VX1PUneUVUfW2PaWeOstDXad5/BEOSclCR3uMMdll1XAAAAgD1mQz1ZWmtXj78/l+SNSe6b5NrxFKCMvz83Tr4jyeET5YcluXpsP2xG+6zlvbS1dkxr7ZiDDz54I6sOAAAA0NW6Q5aq+o6q+q6V20kekuSSJOckeeI42ROTvHm8fU6SE6rqgKq6U4YBbt8/nlL05aq6/3hVoSdM1AAAAABsCRs5Xeh2Sd44Xm15/ySvbq39VVV9IMlrq+pJST6T5LFJ0lq7tKpem+SyJNcleWpr7fpxXk9JcmaSA5OcN/4AAAAAbBnrDllaa59M8gMz2j+f5NhVak5NcuqM9u1JjlrvugAAAABsto0OfAtws7Xt5LcuXXPlaY/YA2sCAABsBRu9hDMAAAAAEbIAAAAAdCFkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB3sv9krAAAAN5VtJ791qemvPO0Re2hNALg50pMFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhg/81eAQBuXrad/Nala6487RF7YE0AAOCmpScLAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6MAlnAHgZmDZS2e7bDawVXh/YxnLbi+JbYa+9GQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANDB/pu9AgAAwJ617eS3LjX9lac9Yg+tCcDNm54sAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADvbf7BUAAOCmte3kty5dc+Vpj9gDawIANy96sgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOXMIZANhUy15O2KWEAYC9lZ4sAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOjAwLewoGUHZkwMzggAALAvWXdPlqo6vKr+pqo+WlWXVtWvje3PqarPVtWF48/DJ2pOqarLq+rjVfXQifb7VNXF431nVFVt7GEBAAAA3LQ20pPluiS/0Vr7UFV9V5IPVtU7xvtOb609b3LiqrpnkhOSHJnk9kn+uqru1lq7PsmLk5yU5H1Jzk1yXJLzNrBuAAAAADepdfdkaa1d01r70Hj7y0k+muTQNUoeleTs1trXW2ufSnJ5kvtW1SFJbtlau6C11pK8Ksnx610vAAAAgM3QZeDbqtqW5N5J/mFselpVXVRVr6iq24xthya5aqJsx9h26Hh7uh0AAABgy9hwyFJV35nk9Ume3lr7UoZTf+6S5Ogk1yR5/sqkM8rbGu2zlnVSVW2vqu07d+7c6KoDAAAAdLOhqwtV1bdmCFj+vLX2hiRprV07cf/Lkrxl/HNHksMnyg9LcvXYftiM9t201l6a5KVJcswxx8wMYgAAAGCrWfZqpq5kunfayNWFKsnLk3y0tfY/J9oPmZjs0UkuGW+fk+SEqjqgqu6U5Igk72+tXZPky1V1/3GeT0jy5vWuFwAAAMBm2EhPlgck+fkkF1fVhWPbs5OcWFVHZzjl58okT06S1tqlVfXaJJdluDLRU8crCyXJU5KcmeTADFcVcmUhAAAAYEtZd8jSWntvZo+ncu4aNacmOXVG+/YkR613XQAAAAA2W5erCwEAAADs6zY08C0A0Meyg90lBrwDANjb6MkCAAAA0IGQBQAAAKADIQsAAABAB8ZkgS1i2fEajNUAAABw09KTBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA723+wVAAAAYO+x7eS3Ll1z5WmP2ANrAluPniwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6MDAtwDAPmvZwR0N7MhG7Kvbm0FUgX2JniwAAAAAHQhZAAAAADoQsgAAAAB0YEwW2Ac4Fxq4ufL+BtxceX+DrUnIAgAAAFuYUG7v4XQhAAAAgA6ELAAAAAAdCFkAAAAAOjAmC0tzvh+wJy37HuP9BQCAvYWeLAAAAAAdCFkAAAAAOhCyAAAAAHRgTBYA6MR4MgAA+zY9WQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgYFvAWBk4FoAADZCTxYAAACADoQsAAAAAB04XQjYo5Y9/SJxCgYA7E18lgMsTk8WAAAAgA70ZAHmMhgoAAA3BT2n2OqELAAAm0CADQA3P0IWAG42HP2Cmz/hFAB7M2OyAAAAAHSgJwtbiqPU7Cts69yUbG+wGK8VAOYRsgDcDOlODwCbSygH+yYhCwC7EdIAe4ovngDcnBmTBQAAAKADIQsAAABAB04XAgAAbpacngaLcap4P3qyAAAAAHSgJwsAwBbkqCPA3kXPKZK9qCdLVR1XVR+vqsur6uTNXh8AAACAZewVPVmqar8kL0zyE0l2JPlAVZ3TWrtsc9fs5knCCgBshF40sPfzOuWmZHu70d7Sk+W+SS5vrX2ytfaNJGcnedQmrxMAAADAwvaKnixJDk1y1cTfO5Lcb5PWZUvYyknhVl53WIZtHQBga7H/xkZVa22z1yFV9dgkD22t/cfx759Pct/W2q9OTXdSkpPGP++e5OM36YredG6b5J83odayN6d+X132Ruv31WVvtH5fXfZG6/fVZW+0fl9d9kbr99Vlb7R+X132Ruv31WVvtN6yt179vrrsjdZv9rrvre7YWjt45j2ttU3/SfJDSd428fcpSU7Z7PXaxOdj+2bUWva+t+6et6237K287p63rbfsrbzunrett+ytvO6et6237K287vvqsrfyunve1l+/FX/2ljFZPpDkiKq6U1V9W5ITkpyzyesEAAAAsLC9YkyW1tp1VfW0JG9Lsl+SV7TWLt3k1QIAAABY2F4RsiRJa+3cJOdu9nrsJV66SbWWvTn1++qyN1q/ry57o/X76rI3Wr+vLnuj9fvqsjdav68ue6P1++qyN1q/ry57o/WWvfXq99Vlb7R+s9d9y9krBr4FAAAA2Or2ljFZAAAAALY0Icsmq6pHV1Wrqu+bar/32P7QZeqraltVfbWqLpz4ecIStZdM3P/LVfWhqrrNeuqXfexT635ZVb2kqmZuowvUvqqqvnWJZX9LVZ1RVZdU1cVV9YGqutOCtU+der4vGe+/x4za762qs6vqinE9z62qu433PaOqvlZVt1pluTNrq+rIqjq/qv6xqj5RVf+5qmrBefxNVX1lXO8vVNWnxtt/PVV3/dh+aVV9pKp+ffJ/U1X3rap3V9XHq+pjVfUnVXWLReqr6sFV9cWp5/DHZ6z79VPTbBtr3zLrsS5Q16rqSRPT3Xtse+ZU/e2q6tVV9cmq+mBVXVBVj564/4+r6rOzttXVaqvqF6rqBVPTvquqjpkxj/8z9fcNtVX1nOn1XaB+ze1stfq68TX24ar6aFW9v6qeuGT9wu8PM2pbVf3qxH0vqKpfWKtuvP3w8XVxh6q6+/g8Xzg+hpndV1epP7+qnjLRfr+quqiq9l+tdsZ8V91WxvtbVf3ZxN/7V9XO6W28qt5cVRcsUztuNzvH/98nquptVfXD66iffC3dc4naudv7OuezSM03q+peE9NcUlXbFn3Oq+r48X/9sRo+H45f5/N2WVX98pLrf7uqeksN75uXVdW5i9RW1S9O/J++Ma73hVV12lT98yf+fmZVPWfi7yeMz9Wl47KfuUhtDe9Lnx2X94mqesPKtjLjsS8yj5WfWy9RO/0+fmVV3XYd6zA9n3nTt6q668T9zxjbjpk3jxo+l6Zf1/tX1bVVdcgC9Q+p4TOmxvb9xudt8nV+WA3vH5+oYT/gj6vq22rGZ2lVnVlVj5lqW6i+qv57De8xByxR/8Ua3p8+VlXPm/5fjfUrn+eXVNVf1LifMT5P/1xVz51VN6d2sv0vJ7ez1eqq6vSqevrENG+rqj+Z+Pv5VfXrc9bhhmXVnM/HqvrtGl6HF43196uqb62q08bn8pIaPpMftkT9u2rYZ1t5b3vBjMd+UN34+vun2vU1ueb7x5z6K2rY3/zucbrbjH/fcap+t+elhm393+rG99TJ7zyPmZjuXTX1Haqqnl5VL6qqg6vq36vqyas953Pmce6c/9esuv88ru+Ftcr+9qLb1bztfYn5XLJkTauqu08t64+q6rcWrP9GVX3/RNtvVdVLZj+LW5+QZfOdmOS9Ga6oNKv9xHXUX9FaO3ri51VLLjtV9fNJfjXJQ1pr/7Js/YJWXfck90pyzyTHr6P2+5McluRnl1j245LcPsm9Wmvfn+TRSf51kdrW2gsnn+8MV8b689baRyeLqqqSvDHJu1prd2mt3TPJs5PcbmK+HxiXnSVqz0lyWmvtbkl+IMkPJ/lPC87jGUkeOrHevzk+jumQ46tj+5FJfiLJw5P87jjf2yX5iyTPaq3dPck9kvxVku9apH70nqltdpeQZ2oeKz9XzphmltXqLs7wf19xQpKPTBaOz9mbkry7tXbn1tp9xukOG+//lgz/r6uSPGiZ2k206na2gCtaa/durd0jw2N5RlX9Yte1W93nkvxaDVegW0hVHZvkfyU5rrX2mSRnJDl93A7uMd63UH2G5+03x52zb0nygiT/qbV23YLrsuq2MuHfkhxVVQeOf/9Eks9OzefWSX4wya1r1yB4bm2S14z/vyOSnJbkDXVjGLxo/eRr6bIlahexnvksUrMjyW+vp76qfiDJ85I8qrX2fUkemeR5dWNos/DzluTBSX5/fM9cdP1/L8k7Wms/ML5nn7xIbWvtTyc+k65O8qPj35P1X0/y0zU7fHhYkqdn2Ac4MsM298VFakcrr7MjkrwmyflVdfDUNIvOY+XnX5eoXdSy85k3/cXZdb/kMUkum5pmtXm8O8lhNQaAox9Pcklr7Zp59a21tyf5dJKVgwe/muQDrbW/T274THpDkjeN/5e7JfnOJKeu8lh2sWh9Vf12kgckOb619vUl6t/TWrt3knsn+cmqesCM1Vj5PD8qyTeS/MrY/pAkH0/ys+NyZlmtdrL9C0meukDd32fY11p5b79tkiMnan44yd/NWYdZy9pNVf1Qkp9M8oOttXtl2CauSvLfkhyS5Khxfj+VXfe75tUnyePHtntl2K7ePFnbWvv8xPvISzLxmswCr5016u+S5MUZPocy/n5pa+3T856P0e+O83x4dv3O87qJac7K7t9PThjbH5vkfZn/HWu1eawa5q1R94gkT56zv73odjVve1/P9rlIzV9NPq5xusdkeI9fpP7UJC+qwaFJnpzklBnrf7MgZNlEVfWdGT6InpRdN9rKsNH+QpKHVNW3L1O/kWWP9/1shh25h7TW/rn3shepH7+4/H2Su07ft0Dt9Unen+TQJZZ9SJJrWmvfHOexY1a4NG/ZVfWgDOHObiFHkh9N8u+ttRtS29baha2191TVXTLsbPxOZr/pz6zNsJPyd+POVVprX0nytOy6Iz53+TOmXVVr7XNJTkrytHFbfWqSV7bWLhjvb62117XWrl2wfrN8Jsm313CkuDJ8kT5vapofS/KNqefs0621lS/nP5rkkgw7C9P/t3m1N7kFtrOFtdY+meTXk/x/HVZtETuTvDPJ3N4zSVJVD0zysiSPaK1dMTYfkuELd5KktXbxovXj9vy8JH+YYSf7otbae5dY/7W2lUnnZdgZyzjdWVP3/0ySv0xydnZ/D5pXe4PW2t9kGIjupPXUr2O99+R85tW8JcmR00fgFqx/ZpLfb619KknG389N8pvLrvP43ndFkjtO3bVW/fQ2e9EStfNcl2EbeMaM+05J8szW2tXjcr/WWnvZgrW7aK29Jsnbk/y/Syx/no3UbmQ+86Z/U5JHJUlV3TlDMLVzkXmM+x9/kd3D/+n/6Vrr8Iwkp1TVkRn2BZ41cd+PJflaa+1Px+VdP07/S0luMT2jGebWV9VvZPji+1Otta8uWz+2fzXJhVllH27Ce3LjPuKJSf44w+f6/Rd4LJO1ky6Ys9yVur/L+IUywxfJS5J8uYYeGQdkONj04TnrMG9ZKw5J8s8rgdW4X/6vSX45ya9OtF/bWnvtIvUrr+sVrbVvJPmtJHcYg+VFbPQ1eHqS+4+9H34kyfPXnnxpr8sQ1h2QDL1iMhxMXTmA/RsZQs21/gerzWPHGjXzlr2WRberedv7IvOZ/o6zSM2zsut+x4OSXDmGY4vUPzfJNUmekOH//5xZ37VuLoQsm+v4JH/VWvvHJF+oqh8c2x+Q5FPjF4N3ZfjAWqb+LrVrF9sHLlF7xwxHaB/SWvundaz7otasr6Eb57EZjgotW/vtSe6XIXFddNmvTfJT4/P1/Kq697LrPR5h/tMkT2ytfWlG7VFJPrjKfFd2jt+T5O5V9T0L1h453T5uN99ZVbdcYvlLGb9gf0uS71nPfKfqk+SBU9vsXWaUHThx/xuXWNxada/LcETjh5N8KMORmUlHju2rWfm/vTHDB+rkKWrzahc1uf4XZjiyvV7ztrNlfSjJ982dqp/TkvxGVe03Z7oDMhyRO7619rGJ9tMzHFE/r4Zu/Ldesv4lGXrY/WaGHdJlrLWtTDo7yQnj+9i9kvzDKvM5K7uHNfNqp03//+bVP27qdXrgemuT7HZq3DofwyI138wQjj17HfW7vccm2Z5dj9AttM7jl+47J7l8ieW/MMnLazi187er6vZL1C7ihUkeX7ufPrjI+/pqtbOs9l6x1jyeMbHN/M0Gai/M8AVnNcs8jnnTfynJVVV1VIbX52uWnMcNR8DHLyYPT/L6RevHHi9/lOEL/H9vrX1h4u5Z+wtfyvBF7a6Z+hzO0GsrS9Q/IEMA/bDW2qzTJufVZ3zct0lyRIaePTPVcJrmw5JcPL4PHZshTJ31vrhq7VT7fuN8zplXN4YU11XVHTLsP1yQ4bX3Qxne2y4ag4vV1mHNZU15e5LDazgl/EVV9R8yPF+fWWVfc5H63Yyh10ey3Gf6sq+dyeX9e4bP0tOTPH2t52s9Wmufz3DA9bix6YQMr8fDknxva+39Gfb9Hzd7DmvOY82rxqxW19raV5tZZLtKsrLtrLq9LzifbyxbM4b835wI4m4IgZd4TTw9Q4+Wg1trN5zuenMkZNlcJ2bYQcr4+8Q57YvWT58uNKunwmq1OzN84K11qs0y67hs/V3GD/e/S/LW1tp0z4JFaj+f4cNn+ojfqvWttR1J7p7h6N03k7yzhlMFFl12Mhyh/t+ttVldROc5IcnZ45GsN2T44r+Iyupv9nv60mEb7YUyWT99utAVM6afPO1nmVNd1qp7bYbneqEjwFX1whrGRvhADaetPDxD1+cvZfgwecgitVnuf7bL6U5J/su89VzDerez1dykPZHGXgTvz+5HxKf9e4aecE+abByPoN4jw9HiByd5X02NGTCn/ptJ/v8k5407UQtZZlsZ37e2Zdgmz528r4bTTO6a5L1j0Hvd+GVubu1qq7boskfTpwt9db21GYKK3azjMSxa8+oMR013G2trTv2s99hd2hZY/uPGz6azMnQXn/ziu2Z9a+1tGYKZl2X48vPhmjjtZj3P19T8v5TkVVlHj7Qla2e+V8yZx+kT28yPbqD26AynTM207HOwwPQrvcyOzxCqLjyP1toHMhwkuXuGL/Tvm3Wkd846vDDJfq21M6faV9tfWGl/z9RzNh0AzKu/fLy92ufgvPoHVtVFSf4pyVtWOdB34Pha2p5hX/XlGU6F+Zs29OR9fZJHrxLEz6qdbP98ku9O8o4F61aO3K98obxg4u+/X+U5mLes3YyB1X0y9DrcmeFL/oPn1a1VX6uMZ5YlP9M38v4xeliGng1HrXL/RvdvJ0/bOWHi75UeP4t8f5k1j/UuexHztqtFt/f1bJ+L1JyVIdjfP0Ovvb9Ypn4MY87P8J3pZm3/+ZOwJ1TVQRm6Th5VVS1DMtmq6uQM3cEfWcN5rZXkoKr6rtbal+fVJ3nRepc91n4lw5vee6vqc621P1+yft2PfaxfGVdl3bU1DBD3rqp6ZGvtnEXqq+q32tCV8rwk51XVtRl2kN65SG2Grm/bkvz8Gg/90gyngU0/pntlOGrzjhrOnvm2JJ/MsKO0Zu3YPj0WyJ2T/J/J7WXOPJY2LuP6DONkXJrhA/zNaxatXn+PHuu0Hq21f6qqf88wlsGv5caujisuzfB6XJn+qTWcf7w9wxGKW2U4kpYM3Z2/kuStC9R+Psn0gNLfnWTm6Xk9LLidLeveST46d6q+fj9DD6RVj3JmCEp/NslfV9WzW2u/v3LH+AH/iiSvqGHQt1lH7FetH+/75pLrPG9bmXZOhlOTHpzkoIn2x2XYbj41zueWGXbefmeB2llm/f+WqV90vZe1nvmsWdNau66GQRqfNX3fnPpLc+ORvxU/mN3H2Vhr+a9prT1tves/hjKvTvLqGgYXfVB27d2w0ef9jzL0NPnTibaV9/Xz11E7y72zSrC2xDx6125kPmtN/5dJ/keS7a21L9XqZ8WuNo+VkOYeWfuL2cz61to3x32Uabt8JiVJDT1eD89wGts88+qvTfL4DAepPt+GUxKXqX9Pa+0na7gYwHur6o1tOC160len9xGr6sQkD6iqK8emgzKcnjk9tttutZPtY2+Mt2Q4BfqMBepWxqD4/gynRlyV4RSUL2X4jJll3rJmGnuZvCvDvu3FGcayuMP0d4Ml6nc77Xb8ov79Wf4z/Y+yjtdgVR2dYd/r/hn+32e3XcceSlbfV/rUgot5U5L/WUOv8wNbax+qYTDW21XV48dpbl9VR7TWPrHEPLatZ9kLrvO87eoXs9j2vp7tc5GaszL0jvrbDL1TPreOZa5nP2rL0ZNl8zwmyataa3dsrW1rrR2e4U3jd5J8pLV2+Nh+xww7U8cvWL/IoJpr1rbWdmb4UvD7NfvqRhtZ9h5d93H9r8kwJsmswZRWq39Qjd2waxiw6V4ZBpBbqDZD17fHt7UHwTw/yQE1cXWJqvp/MpxX+Zxxnttaa7dPcmjtOsr6arWfSPIjNV6NZ+w2e0aGrvELLX+1rqOrGY+iviTJC1prLcPpZU+sqvtNTPNzVfW9C9Zvtv+SYdDe62fcd36GcVueMtG2cu74iUn+48r/LcmdMoyhdIsFaj+Q4UPye5OkhitPHJAbB6PbE07M/O1sYeNOxvMyZ/DY3tpw+s5lGY7mrDXdV8ZpHl/jVaSq6rgaT9MZn/uDssrAqrPqN2DetjLtFUl+r+0+ZsyJGQbxXZnPymDKi9TuYnzdn5Shh8TS9Uuu900xn0Vqzsww6OP0AKxr1T8vwxgX25IbtvtnZ/fxAzb62GfWV9WP1Y1XQfmuJHfJcDS927LHEOe12bXn1nOT/OHEe9QBVbXb0epVandRVT+ToXfDamPVzJ3Hkuu+tGXns9b0bejh9azMGVB2jXmcleTnMhzUWfV0knU89ncmuUWNV5wcv1Q/P8Pr4is96tvQw+6nk/zv8Uv00ssf5/HcrB6I3mAMaX4kyR0m3hefmnWMOdZa+2KGHhnPrDWuTjnh7zJ8RnyhtXb9+P+4dYbTIy7otawarop3xETT0RkGPX15kjNqHAy+qg6pqp9bsP7TU9N8a4bn/Kq2ei/w1R7L0q/BGpLHF2c4TegzGULJ3a4o1YZeONfU2LO8hqsRHZf5Y5tM1r8rw3vkWTX0EPuO1tqhE9vLc7PG2JLT81jwIa67LmtvVx/J4tv7erbPuTVt6Gn++Qynb08/rnW/Jm6OhCyb58Ts3o309RkS3Vnt093jV6t/dnYfk2V6x2it2iQ3dMt/ZIajvfebmnat+rtX1Y6Jn1mnI8xd/hoWrX1Thg/z6fFoVqs/M8lfjke2L8owoNcLpqZbrfYXknxHhit1rDoWzhgoPDrJT9Rw+bpLkzwnw9HH6fm+MRNv+mvUXp2hu97vVNXHM5xj/IEZ6z5vHvOsjAtyaYa0/O1J/us432vHdX1eDZcD/GiSB2ZIrufWj6bHZFmmx82xU9vcDy1Rm9ba37fW3rTKfS1DwPkfarjc3vuTvDLDlZEemomeCK21f8vwwf9Tc2qfNT5nv5bk3Bq6Dv9RhtPW9mSyf0LmbGcLuEuNl3DOsFP1v9o4iOGCFnl/WMSpWSCUHT/gj8vw+nhUhi96l1TVR5K8LcPo/quOPTWjfhG3mHqMz86cbWXGcne01v54sm38cn+HDFdEWJnuU0m+NPkePat2wsq4KP+Y4T3zZ9rUVdAWrF/5+eElahe2nvksUtOG88HPyI1jQc2tb8OR9Gdl+Hz4WIZeCr/Vpo6wb/Sxr1F/nyTbaziN4oIkf9KGU0q6LXv0/AxXg1iZ57kZern99fi+/cGs3vt5l9rRM8Zt5BMZA4M2HMBZaPlT81j52bZE7XpMz2f/7D5O10LLba2d3RY7cr3bPNpw1a6vJDl/fK9Yqn41E/sAjx3/L/+Y5GtZbN9r4fpx+/zFJOfUxPhqSy7/JRkOfu12et+Un87wPE3+n96coTf4rFNB19Ra+3CGL7KLfC5enOG5f99U2xfbKheNWOeyvjPJK2u4/O9FGcYFe06Gg7I7k1w27ru+KbsPsrxWfZL8+dh2SYb92EU/56Yt+xr85Qyn9a+cLvWiJN9Xsw/6PSHDZ/CFGQ5e/dc2+5Ty1ZyV4cqbK6cGzdqPX+SUoZV5LGM9datuVxmC10W39/Vsn4vWnJXh9NXp53JDr4mbm2p7xYFkAADYO9QwUPrLxsAJABamJwsAAIxqGLfimxl6XQLAUvRkAQAAAOhATxYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQwf8F2ksMVQAfXTsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Bar plot of states and dispute counts:\n", + "fig1, ax1 = plt.subplots(figsize=(19, 9))\n", + "ax1.bar(disp_states, counts, align='center')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "17ec819c", + "metadata": {}, "outputs": [ { "data": { @@ -429,131 +500,47 @@ " \n", " \n", " \n", - " date_received\n", + " state\n", " product\n", - " sub_product\n", " issue\n", - " sub_issue\n", - " consumer_complaint_narrative\n", - " company_public_response\n", - " company\n", - " state\n", - " zipcode\n", - " tags\n", - " consumer_consent_provided\n", - " submitted_via\n", - " date_sent_to_company\n", - " company_response_to_consumer\n", - " timely_response\n", - " consumer_disputed?\n", - " complaint_id\n", + " count\n", " \n", " \n", " \n", " \n", " 0\n", - " 08/30/2013\n", - " Mortgage\n", - " Other mortgage\n", - " Loan modification,collection,foreclosure\n", - " NaN\n", - " NaN\n", - " NaN\n", - " U.S. Bancorp\n", - " CA\n", - " 95993\n", - " NaN\n", - " NaN\n", - " Referral\n", - " 09/03/2013\n", - " Closed with explanation\n", - " Yes\n", - " Yes\n", - " 511074\n", + " AA\n", + " Bank account or service\n", + " Account opening, closing, or management\n", + " 1\n", " \n", " \n", " 1\n", - " 08/30/2013\n", - " Mortgage\n", - " Other mortgage\n", - " Loan servicing, payments, escrow account\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Wells Fargo & Company\n", - " CA\n", - " 91104\n", - " NaN\n", - " NaN\n", - " Referral\n", - " 09/03/2013\n", - " Closed with explanation\n", - " Yes\n", - " Yes\n", - " 511080\n", + " AA\n", + " Credit card\n", + " Identity theft / Fraud / Embezzlement\n", + " 1\n", " \n", " \n", " 2\n", - " 08/30/2013\n", - " Credit reporting\n", - " NaN\n", - " Incorrect information on credit report\n", - " Account status\n", - " NaN\n", - " NaN\n", - " Wells Fargo & Company\n", - " NY\n", - " 11764\n", - " NaN\n", - " NaN\n", - " Postal mail\n", - " 09/18/2013\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 510473\n", + " AA\n", + " Credit card\n", + " Rewards\n", + " 1\n", " \n", " \n", " 3\n", - " 08/30/2013\n", - " Student loan\n", - " Non-federal student loan\n", - " Repaying your loan\n", - " Repaying your loan\n", - " NaN\n", - " NaN\n", - " Navient Solutions, Inc.\n", - " MD\n", - " 21402\n", - " NaN\n", - " NaN\n", - " Email\n", - " 08/30/2013\n", - " Closed with explanation\n", - " Yes\n", - " Yes\n", - " 510326\n", + " AA\n", + " Mortgage\n", + " Loan modification,collection,foreclosure\n", + " 2\n", " \n", " \n", " 4\n", - " 08/30/2013\n", - " Debt collection\n", - " Credit card\n", - " False statements or representation\n", - " Attempted to collect wrong amount\n", - " NaN\n", - " NaN\n", - " Resurgent Capital Services L.P.\n", - " GA\n", - " 30106\n", - " NaN\n", - " NaN\n", - " Web\n", - " 08/30/2013\n", - " Closed with explanation\n", - " Yes\n", - " Yes\n", - " 511067\n", + " AA\n", + " Mortgage\n", + " Loan servicing, payments, escrow account\n", + " 2\n", " \n", " \n", " ...\n", @@ -561,290 +548,93 @@ " ...\n", " ...\n", " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", " \n", " \n", - " 553092\n", - " 03/23/2016\n", - " Mortgage\n", - " Other mortgage\n", - " Loan modification,collection,foreclosure\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Bank of America\n", - " NJ\n", - " 080XX\n", - " NaN\n", - " NaN\n", - " Web\n", - " 03/31/2016\n", - " In progress\n", - " Yes\n", - " No\n", - " 1846137\n", + " 4651\n", + " WY\n", + " Student loan\n", + " Can't repay my loan\n", + " 3\n", " \n", " \n", - " 553093\n", - " 03/31/2016\n", - " Mortgage\n", - " Other mortgage\n", - " Loan modification,collection,foreclosure\n", - " NaN\n", - " NaN\n", - " Company has responded to the consumer and the ...\n", - " U.S. Bancorp\n", - " OH\n", - " 44647\n", - " NaN\n", - " NaN\n", - " Referral\n", - " 04/04/2016\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 1859306\n", + " 4652\n", + " WY\n", + " Student loan\n", + " Dealing with my lender or servicer\n", + " 9\n", " \n", " \n", - " 553094\n", - " 03/08/2016\n", - " Mortgage\n", - " Conventional fixed mortgage\n", - " Loan servicing, payments, escrow account\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Dovenmuehle Mortgage Inc.\n", - " CO\n", - " 802XX\n", - " NaN\n", - " NaN\n", - " Web\n", - " 03/08/2016\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 1822445\n", + " 4653\n", + " WY\n", + " Student loan\n", + " Getting a loan\n", + " 1\n", " \n", " \n", - " 553095\n", - " 03/28/2016\n", - " Mortgage\n", - " Other mortgage\n", - " Loan servicing, payments, escrow account\n", - " NaN\n", - " NaN\n", - " Company has responded to the consumer and the ...\n", - " Wells Fargo & Company\n", - " PA\n", - " 17236\n", - " NaN\n", - " NaN\n", - " Referral\n", - " 03/31/2016\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 1852707\n", + " 4654\n", + " WY\n", + " Student loan\n", + " Problems when you are unable to pay\n", + " 1\n", " \n", " \n", - " 553096\n", - " 02/12/2016\n", - " Mortgage\n", - " Conventional fixed mortgage\n", - " Application, originator, mortgage broker\n", - " NaN\n", - " Bank of America has demonstrated an on-going l...\n", - " Company has responded to the consumer and the ...\n", - " Bank of America\n", - " GA\n", - " 300XX\n", - " NaN\n", - " Consent provided\n", - " Web\n", - " 02/12/2016\n", - " Closed with explanation\n", - " Yes\n", - " Yes\n", - " 1786225\n", + " 4655\n", + " WY\n", + " Student loan\n", + " Repaying your loan\n", + " 9\n", " \n", " \n", "\n", - "

551070 rows × 18 columns

\n", + "

4656 rows × 4 columns

\n", "" ], "text/plain": [ - " date_received product sub_product \\\n", - "0 08/30/2013 Mortgage Other mortgage \n", - "1 08/30/2013 Mortgage Other mortgage \n", - "2 08/30/2013 Credit reporting NaN \n", - "3 08/30/2013 Student loan Non-federal student loan \n", - "4 08/30/2013 Debt collection Credit card \n", - "... ... ... ... \n", - "553092 03/23/2016 Mortgage Other mortgage \n", - "553093 03/31/2016 Mortgage Other mortgage \n", - "553094 03/08/2016 Mortgage Conventional fixed mortgage \n", - "553095 03/28/2016 Mortgage Other mortgage \n", - "553096 02/12/2016 Mortgage Conventional fixed mortgage \n", - "\n", - " issue \\\n", - "0 Loan modification,collection,foreclosure \n", - "1 Loan servicing, payments, escrow account \n", - "2 Incorrect information on credit report \n", - "3 Repaying your loan \n", - "4 False statements or representation \n", - "... ... \n", - "553092 Loan modification,collection,foreclosure \n", - "553093 Loan modification,collection,foreclosure \n", - "553094 Loan servicing, payments, escrow account \n", - "553095 Loan servicing, payments, escrow account \n", - "553096 Application, originator, mortgage broker \n", - "\n", - " sub_issue \\\n", - "0 NaN \n", - "1 NaN \n", - "2 Account status \n", - "3 Repaying your loan \n", - "4 Attempted to collect wrong amount \n", - "... ... \n", - "553092 NaN \n", - "553093 NaN \n", - "553094 NaN \n", - "553095 NaN \n", - "553096 NaN \n", - "\n", - " consumer_complaint_narrative \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "553092 NaN \n", - "553093 NaN \n", - "553094 NaN \n", - "553095 NaN \n", - "553096 Bank of America has demonstrated an on-going l... \n", - "\n", - " company_public_response \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "553092 NaN \n", - "553093 Company has responded to the consumer and the ... \n", - "553094 NaN \n", - "553095 Company has responded to the consumer and the ... \n", - "553096 Company has responded to the consumer and the ... \n", - "\n", - " company state zipcode tags \\\n", - "0 U.S. Bancorp CA 95993 NaN \n", - "1 Wells Fargo & Company CA 91104 NaN \n", - "2 Wells Fargo & Company NY 11764 NaN \n", - "3 Navient Solutions, Inc. MD 21402 NaN \n", - "4 Resurgent Capital Services L.P. GA 30106 NaN \n", - "... ... ... ... ... \n", - "553092 Bank of America NJ 080XX NaN \n", - "553093 U.S. Bancorp OH 44647 NaN \n", - "553094 Dovenmuehle Mortgage Inc. CO 802XX NaN \n", - "553095 Wells Fargo & Company PA 17236 NaN \n", - "553096 Bank of America GA 300XX NaN \n", - "\n", - " consumer_consent_provided submitted_via date_sent_to_company \\\n", - "0 NaN Referral 09/03/2013 \n", - "1 NaN Referral 09/03/2013 \n", - "2 NaN Postal mail 09/18/2013 \n", - "3 NaN Email 08/30/2013 \n", - "4 NaN Web 08/30/2013 \n", - "... ... ... ... \n", - "553092 NaN Web 03/31/2016 \n", - "553093 NaN Referral 04/04/2016 \n", - "553094 NaN Web 03/08/2016 \n", - "553095 NaN Referral 03/31/2016 \n", - "553096 Consent provided Web 02/12/2016 \n", - "\n", - " company_response_to_consumer timely_response consumer_disputed? \\\n", - "0 Closed with explanation Yes Yes \n", - "1 Closed with explanation Yes Yes \n", - "2 Closed with explanation Yes No \n", - "3 Closed with explanation Yes Yes \n", - "4 Closed with explanation Yes Yes \n", - "... ... ... ... \n", - "553092 In progress Yes No \n", - "553093 Closed with explanation Yes No \n", - "553094 Closed with explanation Yes No \n", - "553095 Closed with explanation Yes No \n", - "553096 Closed with explanation Yes Yes \n", - "\n", - " complaint_id \n", - "0 511074 \n", - "1 511080 \n", - "2 510473 \n", - "3 510326 \n", - "4 511067 \n", - "... ... \n", - "553092 1846137 \n", - "553093 1859306 \n", - "553094 1822445 \n", - "553095 1852707 \n", - "553096 1786225 \n", - "\n", - "[551070 rows x 18 columns]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_clean_states = df[df['state'].notna()] \n", - "df_clean_states" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "id": "bfd962a4", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "State is CA with disputes: 17615\n" - ] + " state product issue \\\n", + "0 AA Bank account or service Account opening, closing, or management \n", + "1 AA Credit card Identity theft / Fraud / Embezzlement \n", + "2 AA Credit card Rewards \n", + "3 AA Mortgage Loan modification,collection,foreclosure \n", + "4 AA Mortgage Loan servicing, payments, escrow account \n", + "... ... ... ... \n", + "4651 WY Student loan Can't repay my loan \n", + "4652 WY Student loan Dealing with my lender or servicer \n", + "4653 WY Student loan Getting a loan \n", + "4654 WY Student loan Problems when you are unable to pay \n", + "4655 WY Student loan Repaying your loan \n", + "\n", + " count \n", + "0 1 \n", + "1 1 \n", + "2 1 \n", + "3 2 \n", + "4 2 \n", + "... ... \n", + "4651 3 \n", + "4652 9 \n", + "4653 1 \n", + "4654 1 \n", + "4655 9 \n", + "\n", + "[4656 rows x 4 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "#State with most disputes:\n", - "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", - "states = disputed_complaint['state']\n", - "states_clean = states.dropna()\n", - "disp_states, counts = np.unique(states, return_counts=True)\n", - "state = disp_states[np.argmax(counts)]\n", - "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + "#Getting count of issues per state with products\n", + "state_issue_count = df.groupby(['state', 'product', 'issue']).size().reset_index()\n", + "state_issue_count.columns = ['state', 'product', 'issue','count']\n", + "state_issue_count" ] }, { "cell_type": "code", - "execution_count": 89, - "id": "59075f2b", + "execution_count": 9, + "id": "15c92542", "metadata": {}, "outputs": [ { @@ -869,104 +659,74 @@ " \n", " \n", " state\n", + " product\n", + " issue\n", " count\n", " \n", " \n", " \n", " \n", - " 0\n", + " 501\n", " CA\n", - " 17615\n", + " Mortgage\n", + " Loan modification,collection,foreclosure\n", + " 19433\n", " \n", " \n", - " 1\n", + " 942\n", " FL\n", - " 10443\n", - " \n", - " \n", - " 2\n", - " TX\n", - " 7601\n", - " \n", - " \n", - " 3\n", - " NY\n", - " 7463\n", - " \n", - " \n", - " 4\n", - " GA\n", - " 4802\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 57\n", - " AS\n", - " 5\n", - " \n", - " \n", - " 58\n", - " MH\n", - " 5\n", + " Mortgage\n", + " Loan modification,collection,foreclosure\n", + " 11337\n", " \n", " \n", - " 59\n", - " PW\n", - " 3\n", + " 502\n", + " CA\n", + " Mortgage\n", + " Loan servicing, payments, escrow account\n", + " 8957\n", " \n", " \n", - " 60\n", - " AA\n", - " 3\n", + " 4028\n", + " TX\n", + " Credit reporting\n", + " Incorrect information on credit report\n", + " 8712\n", " \n", " \n", - " 61\n", - " MP\n", - " 3\n", + " 485\n", + " CA\n", + " Credit reporting\n", + " Incorrect information on credit report\n", + " 8585\n", " \n", " \n", "\n", - "

62 rows × 2 columns

\n", "" ], "text/plain": [ - " state count\n", - "0 CA 17615\n", - "1 FL 10443\n", - "2 TX 7601\n", - "3 NY 7463\n", - "4 GA 4802\n", - ".. ... ...\n", - "57 AS 5\n", - "58 MH 5\n", - "59 PW 3\n", - "60 AA 3\n", - "61 MP 3\n", - "\n", - "[62 rows x 2 columns]" + " state product issue count\n", + "501 CA Mortgage Loan modification,collection,foreclosure 19433\n", + "942 FL Mortgage Loan modification,collection,foreclosure 11337\n", + "502 CA Mortgage Loan servicing, payments, escrow account 8957\n", + "4028 TX Credit reporting Incorrect information on credit report 8712\n", + "485 CA Credit reporting Incorrect information on credit report 8585" ] }, - "execution_count": 89, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "#State with most disputes:\n", - "disputed_complaint = df_clean_states[df_clean_states['consumer_disputed?'] == 'Yes']\n", - "disp_states = disputed_complaint['state'].value_counts().reset_index()\n", - "disp_states.columns = ['state', 'count']\n", - "disp_states" + "#States with 5 highest dispute counts, issues and product\n", + "state_issue_count.sort_values(by = 'count', ascending = False).head()" ] }, { "cell_type": "code", - "execution_count": 91, - "id": "511e81cf", + "execution_count": 10, + "id": "63fa2a3a", "metadata": {}, "outputs": [ { @@ -991,113 +751,81 @@ " \n", " \n", " state\n", + " product\n", " issue\n", - " 0\n", + " count\n", " \n", " \n", " \n", " \n", - " 0\n", - " AA\n", - " Account opening, closing, or management\n", + " 3083\n", + " NV\n", + " Prepaid card\n", + " Overdraft, savings or rewards features\n", " 1\n", " \n", " \n", - " 1\n", - " AA\n", - " Dealing with my lender or servicer\n", + " 347\n", + " AZ\n", + " Consumer Loan\n", + " Payment to acct not credited\n", " 1\n", " \n", " \n", - " 2\n", - " AA\n", - " Identity theft / Fraud / Embezzlement\n", + " 344\n", + " AZ\n", + " Consumer Loan\n", + " Lender repossessed or sold the vehicle\n", " 1\n", " \n", " \n", - " 3\n", + " 1\n", " AA\n", - " Loan modification,collection,foreclosure\n", - " 2\n", + " Credit card\n", + " Identity theft / Fraud / Embezzlement\n", + " 1\n", " \n", " \n", - " 4\n", + " 0\n", " AA\n", - " Loan servicing, payments, escrow account\n", - " 2\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 4359\n", - " WY\n", - " Taking/threatening an illegal action\n", - " 6\n", - " \n", - " \n", - " 4360\n", - " WY\n", - " Transaction issue\n", - " 3\n", - " \n", - " \n", - " 4361\n", - " WY\n", - " Unable to get credit report/credit score\n", - " 13\n", - " \n", - " \n", - " 4362\n", - " WY\n", - " Unsolicited issuance of credit card\n", - " 3\n", - " \n", - " \n", - " 4363\n", - " WY\n", - " Using a debit or ATM card\n", - " 3\n", + " Bank account or service\n", + " Account opening, closing, or management\n", + " 1\n", " \n", " \n", "\n", - "

4364 rows × 3 columns

\n", "" ], "text/plain": [ - " state issue 0\n", - "0 AA Account opening, closing, or management 1\n", - "1 AA Dealing with my lender or servicer 1\n", - "2 AA Identity theft / Fraud / Embezzlement 1\n", - "3 AA Loan modification,collection,foreclosure 2\n", - "4 AA Loan servicing, payments, escrow account 2\n", - "... ... ... ..\n", - "4359 WY Taking/threatening an illegal action 6\n", - "4360 WY Transaction issue 3\n", - "4361 WY Unable to get credit report/credit score 13\n", - "4362 WY Unsolicited issuance of credit card 3\n", - "4363 WY Using a debit or ATM card 3\n", + " state product issue \\\n", + "3083 NV Prepaid card Overdraft, savings or rewards features \n", + "347 AZ Consumer Loan Payment to acct not credited \n", + "344 AZ Consumer Loan Lender repossessed or sold the vehicle \n", + "1 AA Credit card Identity theft / Fraud / Embezzlement \n", + "0 AA Bank account or service Account opening, closing, or management \n", "\n", - "[4364 rows x 3 columns]" + " count \n", + "3083 1 \n", + "347 1 \n", + "344 1 \n", + "1 1 \n", + "0 1 " ] }, - "execution_count": 91, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "b = df.groupby(['state','issue']).size().reset_index()\n", - "b" + "#States with 5 lowest dispute counts with related issues and products\n", + "state_issue_count.sort_values(by = 'count', ascending = False).tail()" ] }, { "cell_type": "code", - "execution_count": 85, - "id": "17ec819c", + "execution_count": 21, + "id": "95b32810", "metadata": {}, "outputs": [ { @@ -1121,115 +849,112 @@ " \n", " \n", " \n", - " state\n", + " product\n", " issue\n", " count\n", " \n", " \n", " \n", " \n", - " 0\n", - " AA\n", - " Account opening, closing, or management\n", - " 1\n", - " \n", - " \n", - " 1\n", - " AA\n", - " Dealing with my lender or servicer\n", - " 1\n", - " \n", - " \n", - " 2\n", - " AA\n", - " Identity theft / Fraud / Embezzlement\n", - " 1\n", - " \n", - " \n", - " 3\n", - " AA\n", + " 75\n", + " Mortgage\n", " Loan modification,collection,foreclosure\n", - " 2\n", - " \n", - " \n", - " 4\n", - " AA\n", - " Loan servicing, payments, escrow account\n", - " 2\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 4359\n", - " WY\n", - " Taking/threatening an illegal action\n", - " 6\n", + " 97191\n", " \n", " \n", - " 4360\n", - " WY\n", - " Transaction issue\n", - " 3\n", + " 59\n", + " Credit reporting\n", + " Incorrect information on credit report\n", + " 66718\n", " \n", " \n", - " 4361\n", - " WY\n", - " Unable to get credit report/credit score\n", - " 13\n", + " 76\n", + " Mortgage\n", + " Loan servicing, payments, escrow account\n", + " 60375\n", " \n", " \n", - " 4362\n", - " WY\n", - " Unsolicited issuance of credit card\n", - " 3\n", + " 62\n", + " Debt collection\n", + " Cont'd attempts collect debt not owed\n", + " 42285\n", " \n", " \n", - " 4363\n", - " WY\n", - " Using a debit or ATM card\n", - " 3\n", + " 0\n", + " Bank account or service\n", + " Account opening, closing, or management\n", + " 26661\n", " \n", " \n", "\n", - "

4364 rows × 3 columns

\n", "" ], "text/plain": [ - " state issue count\n", - "0 AA Account opening, closing, or management 1\n", - "1 AA Dealing with my lender or servicer 1\n", - "2 AA Identity theft / Fraud / Embezzlement 1\n", - "3 AA Loan modification,collection,foreclosure 2\n", - "4 AA Loan servicing, payments, escrow account 2\n", - "... ... ... ...\n", - "4359 WY Taking/threatening an illegal action 6\n", - "4360 WY Transaction issue 3\n", - "4361 WY Unable to get credit report/credit score 13\n", - "4362 WY Unsolicited issuance of credit card 3\n", - "4363 WY Using a debit or ATM card 3\n", - "\n", - "[4364 rows x 3 columns]" + " product issue count\n", + "75 Mortgage Loan modification,collection,foreclosure 97191\n", + "59 Credit reporting Incorrect information on credit report 66718\n", + "76 Mortgage Loan servicing, payments, escrow account 60375\n", + "62 Debt collection Cont'd attempts collect debt not owed 42285\n", + "0 Bank account or service Account opening, closing, or management 26661" ] }, - "execution_count": 85, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = df.groupby(['state','issue']).size().reset_index()\n", - "a.columns = ['state', 'issue','count']\n", - "a" + "#Highest issues per product\n", + "product_issue_count = df.groupby(['product', 'issue']).size().reset_index()\n", + "product_issue_count.columns = ['product', 'issue', 'count']\n", + "product_issue_count.sort_values(by = 'count', ascending=False).head()" ] }, { "cell_type": "code", - "execution_count": 86, - "id": "15c92542", + "execution_count": 23, + "id": "cd258ff1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Product')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBkAAAImCAYAAAAWg1KwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABF+ElEQVR4nO3deZRdVZ3+//dDQgcQiCKIEYcgBmkmowQQR0Ck1djthKKNCk6oraL9/amNaCuOHRtt0UbRiIoDAg5g06ISBQFFBRIICeCASmzFARGMgoAQP78/7i68lFWVSjiVm6q8X2tl1bn7nLP359w6i8V9ap99U1VIkiRJkiTdVRsNugBJkiRJkjQ1GDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiTpTpJUkgcNug5J0uRjyCBJkkaUZEWSAwZdx6AkOTfJiwddx2SV5Ogknxl0HZKkdcuQQZIkaT2Vnrv0/2tJpndVjyRJq2PIIEmSVivJg5Kcl2RlkuuSnNrak+R9Sa5t+5Yl2bXtu9NMgCSHJfl23+udknw9yfVJfpjkWWOMv1WSTyT5ZZIbknypb99Lkvy49XNGkvu09tlt2v/0vmPvqGmoniTvaX1eneSJbd87gUcDxyW5MclxY13rCPWem+Q/klzUjv2fJFv17X94ku8k+X2Sy5LsO+zcdya5APgT8MAR+l+R5A1Jrmy1fyLJJm3fvkl+keTfkvwa+ESSGUmObe/fL9v2jL7+XpfkV23fC0e4lrF+j7v0/R5/k+SoJE8AjgIObu/fZaP9biVJU4shgyRJGo+3A4uAewD3Bf67tR8IPAbYEbg7cDDwu9V1luRuwNeBzwL3Ap4DfCjJLqOc8mlgM2CXdvz7Wj/7A/8BPAuYBfwMOGUNrmtv4IfA1sB/Ah9Lkqp6I/At4JVVtXlVvXItrvX5wAuB+wC3Ax9oNW8HnAm8A9gKeC3wxSTb9J37POBwYIt2TSM5BPgHYIdW05v69t279f2A1s8bgYcDc4GHAHsNHd8CgdcCjwfmAON+RCbJFsA3gK+163wQcHZVfQ14F3Bqe/8eMt4+JUmTmyGDJEkaj9vofWC9T1XdUlXf7mvfAtgJSFV9v6p+NY7+ngysqKpPVNXtVXUJ8EXgoOEHJpkFPBF4WVXdUFW3VdV5bfchwMer6pKquhV4A7BPktnjvK6fVdVHq2oV8El6QcW2oxy7ptf66aq6vKpuAv4deFaSacBzga9U1Veq6i9V9XVgMfCkvnNPrKor2ntz2yj9H1dVP6+q64F30gtqhvwFeEtV3VpVN9N7n95WVddW1W+Bt9ILMqAX0Hyir9ajx7im4Z4M/Lqq3tvuiz9W1YVrcL4kaYoxZJAkSePxeiDARUmuGJpSX1XnAMcBHwR+k2Rhki3H0d8DgL3b4wK/T/J7eh+E7z3CsfcDrq+qG0bYdx/6/tJfVTfSm12w3Tiv69d95/6pbW4+0oFrca0/79v+GbAxvRkTDwCeOezaH0Uv4Bjp3PH2f5++17+tqlv6Xt/pfRp2/H1G6Gu87gf8ZA2OlyRNcYYMkiRptarq11X1kqq6D/BSeo82PKjt+0BV7UHvUYYdgde1026i94jDkP4A4efAeVV1975/m1fVy0cY/ufAVknuPsK+X9L70A7c8RjGPYFr2viMUcPq1N80jH6tI7lf3/b96c2EuI7e9Xx62LXfraoWjDX2OPr/5Rjn3+l9Gnb8r0boq9/qfo87jFLfeK5BkjTFGDJIkqTVSvLMJPdtL2+g9wFyVZI9k+ydZGN6H0ZvAVa145YCT0+yWQskXtTX5ZeBHZM8L8nG7d+eSf5++NjtkYSv0gs27tGOfUzb/VngBUnmtoUM3wVcWFUr2mMB1wDPTTKtzb4Y7QPxSH5D36KLq7nWkTw3yc5JNgPeBnyhPZbxGeAfk/xDq2uTtljjfcfoaySvSHLftqDkUcCpYxx7MvCmJNsk2Rp4c6sD4HPAYX21vmXYuUsZ+/d47ySvaYtLbpFk77bvN8Ds3MVvx5AkTS7+R1+SJI3HnsCFSW4EzgBeXVVXA1sCH6UXPPyM3qMK72nnvA/4M70Pm58EThrqrKr+SG8hxWfT+4v6r4F3A3d848Ewz6M3E+AHwLXAa1o/Z9Nb7+CL9P4iv0Prc8hL6M02+B292QffWYNrfj9wUPv2hg+s5lpH8mngxHZtmwBHtJp/DjyFXjDwW3qzAV7Hmv9/2WfpLcb50/bvHWMc+w566z4sA5YDlwwdX1VfBY4FzgF+3H72W93v8fHAP7brvArYr+3+fPv5uySXrOG1SZImqVQ5k02SJKlLSc4FPlNVJ0xQ/yuAF1fVNyaif0mS1pYzGSRJkiRJUicMGSRJkiRJUid8XEKSJEmSJHXCmQySJEmSJKkThgySJEmSJKkT0wddgKaWrbfeumbPnj3oMiRJkiRJE2DJkiXXVdU2o+03ZFCnZs+ezeLFiwddhiRJkiRpAiT52Vj7fVxCkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUsvyalcw+8sxBl9GZFQvmD7oESZIkSZo0nMkgSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YchwFyR5Y5IrkixLsjTJ3q39NUk2W4v+brwLtRyW5D6j7DsxyUFr27ckSZIkSeNhyLCWkuwDPBl4WFXtDhwA/Lztfg2wxiHDXXQYMGLIIEmSJEnSumDIsPZmAddV1a0AVXVdVf0yyRH0Pux/M8k34c4zFJIclOTEtr19ku8muTjJ2/s7T/K61r4syVtb2+wk30/y0TaDYlGSTdsshXnASW1GxaajFZ3kcUkuTbI8yceTzGjtb27jXZ5kYZK09nOTvDvJRUl+lOTR3b2FkiRJkqSpxJBh7S0C7tc+eH8oyWMBquoDwC+B/apqv9X08X7g+KraE/j1UGOSA4E5wF7AXGCPJI9pu+cAH6yqXYDfA8+oqi8Ai4FDqmpuVd080mBJNgFOBA6uqt2A6cDL2+7jqmrPqtoV2JTeLI0h06tqL3ozNN4yQr+HJ1mcZPGqP61czSVLkiRJkqYqQ4a1VFU3AnsAhwO/BU5NctgadvNI4OS2/em+9gPbv0uBS4Cd6IULAFdX1dK2vQSYvQbjPbid/6P2+pPAUHixX5ILkywH9gd26TvvtLHGq6qFVTWvquZN22zmGpQjSZIkSZpKpg+6gMmsqlYB5wLntg/nh9KbKfA3h/ZtbzLGviEB/qOqPnKnxmQ2cGtf0yp6sw7GKyM29mY4fAiYV1U/T3L0sDqHxlyF94wkSZIkaRTOZFhLSR6cZE5f01zgZ237j8AWfft+k+Tvk2wEPK2v/QLg2W37kL72s4AXJtm8jbVdknutpqThY47kB8DsJA9qr58HnMdfA4Xr2ph+E4UkSZIkaY35V+m1tznw30nuDtwO/JjeoxMAC4GvJvlVW5fhSODL9L594vJ2LsCrgc8meTXwxaGOq2pRkr8HvtvWX7wReC69mQSjORH4cJKbgX1GWpehqm5J8gLg80mmAxcDH66qW5N8FFgOrGjtkiRJkiStkVSNNFtfWjszZs2pWYceO+gyOrNiwfxBlyBJkiRJ640kS6pq3mj7fVxCkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUstt2M1m8YP6gy5AkSZIkDYAzGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUiemD7oATS3Lr1nJ7CPPHHX/igXz12E1kiRJkqR1yZkMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMd1GSVUmWJrk8yeeTbDbB452QZOcR2g9LctwEj71vki9P5BiSJEmSpMnLkOGuu7mq5lbVrsCfgZf170wyrcvBqurFVXVll32OpuvaJUmSJElTmyFDt74FPKj9xf+bST4LLE8yLckxSS5OsizJS+GOmQHnJzk9yZVJPpxko7bv+CSLk1yR5K1DAyQ5N8m8tv2CJD9Kch7wyJEKSrJ5kk8kWd7GfsZq+l+R5M1Jvg08M8kTkvygvX76BL1vkiRJkqQpYPqgC5gqkkwHngh8rTXtBexaVVcnORxYWVV7JpkBXJBkUd9xOwM/a+c+HfgC8Maqur7NJjg7ye5VtaxvvFnAW4E9gJXAN4FLRyjt39vYu7Xz7tHax+r/lqp6VJJNgKuA/YEfA6eOcu2HA4cDTNtym3G/Z5IkSZKkqcWZDHfdpkmWAouB/wM+1tovqqqr2/aBwPPbcRcC9wTm9B3306paBZwMPKq1PyvJJfSCg13oBRH99gbOrarfVtWfGSUAAA4APjj0oqpuGEf/Q33tBFxdVVdVVQGfGWmAqlpYVfOqat60zWaOUoYkSZIkaapzJsNdd3NVze1vSAJwU38T8KqqOmvYcfsCNay/SrI98Fpgz6q6IcmJwCYjjD383JFk+HHj6L+/9vGMIUmSJEmSMxnWkbOAlyfZGCDJjknu1vbtlWT7thbDwcC3gS3pfdBfmWRbeo9hDHchsG+Se7Z+nznK2IuAVw69aI9LjKd/gB8A2yfZob1+zvguV5IkSZK0IXImw7pxAjAbuCS9aQ6/BZ7a9n0XWADsBpwPnF5Vf0lyKXAF8FPgguEdVtWvkhzdzv8VcAkw0rdBvAP4YJLLgVXAW6vqtNX138a4pa23cGaS6+gFILuu8dVLkiRJkjYI6T1qr0Foj0u8tqqePOBSOjNj1pyadeixo+5fsWD+uitGkiRJktSpJEuqat5o+31cQpIkSZIkdcLHJQaoqs4Fzh1wGZIkSZIkdcKZDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqRPTB12AppbdtpvJ4gXzB12GJEmSJGkAnMkgSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6MX3QBWhqWX7NSmYfeeZan79iwfwOq5EkSZIkrUvOZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZOhIklVJlia5PMnnk2zWQZ83dlRbJ/1IkiRJkjQWQ4bu3FxVc6tqV+DPwMsGXZAkSZIkSeuSIcPE+BbwoCT/mOTCJJcm+UaSbZNslOSqJNsAtNc/TrJ1ku2TfDfJxUnePtRZks2TnJ3kkiTLkzyltb89yav7jntnkiNGKyo9x7TZFsuTHLya/mcn+X6Sjya5IsmiJJtO0HsmSZIkSZrkDBk6lmQ68ERgOfBt4OFV9VDgFOD1VfUX4DPAIe2UA4DLquo64P3A8VW1J/Drvm5vAZ5WVQ8D9gPemyTAx4BD27gbAc8GThqjvKcDc4GHtHGPSTJrjP4B5gAfrKpdgN8Dz1ib90WSJEmSNPUZMnRn0yRLgcXA/9ELAO4LnJVkOfA6YJd27MeB57ftFwKfaNuPBE5u25/u6zvAu5IsA74BbAdsW1UrgN8leShwIHBpVf1ujBofBZxcVauq6jfAecCeo/Xfzrm6qpa27SXA7OGdJjk8yeIki1f9aeUYw0uSJEmSprLpgy5gCrm5qub2NyT5b+C/quqMJPsCRwNU1c+T/CbJ/sDe/HVWA0CN0PchwDbAHlV1W5IVwCZt3wnAYcC96YUXY8ko7WP1f2vfcauAv3lcoqoWAgsBZsyaM1L9kiRJkqQNgDMZJtZM4Jq2feiwfSfQe2zic1W1qrVdQO+RB7hz8DATuLYFAPsBD+jbdzrwBHozEs5aTT3nAwcnmdbWhHgMcNFq+pckSZIkaVwMGSbW0cDnk3wLuG7YvjOAzfnroxIArwZekeRieh/8h5wEzEuymF748IOhHVX1Z+Cb3DmsGM3pwDLgMuAcemtE/Hqs/iVJkiRJGq9UObt9EJLMA95XVY++i/1sBFwCPLOqruqkuLtgxqw5NevQY9f6/BUL5ndXjCRJkiSpU0mWVNW80fY7k2EAkhwJfBF4w13sZ2fgx8DZ60PAIEmSJEnasLnw4wBU1QJgQQf9XAk88K5XJEmSJEnSXedMBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1Inpgy5AU8tu281k8YL5gy5DkiRJkjQAzmSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGRQp5Zfs5LZR5456DIkSZIkSQNgyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjoxkJAhyX2T/E+Sq5L8JMn7k/xd2zc3yZP6jj06yWs7HHunJEuTXJpkhyTf6arvcYx9QpKdV3PMuUnmraN6/inJketiLEmSJEnS1LfOQ4YkAU4DvlRVc4Adgc2Bd7ZD5gJPGvnstRpv2rCmpwL/U1UPraqfVNUjuhprdarqxVV15boaDyDJ9DHqOaOqFqzLeiRJkiRJU9cgZjLsD9xSVZ8AqKpVwL8CL0yyJfA24OA22+Dgds7O7S/8P01yxFBHSZ6b5KJ27EeGAoUkNyZ5W5ILgX36jn8S8BrgxUm+OXRs+7lvG+MLSX6Q5KQWiJDkzUkuTnJ5koV97ecmeXer4UdJHt3apyV5T5LlSZYleVXf8fPa9vFJFie5IslbV/emJVmQ5MrW33ta2zZJvthquzjJI1v70a3ORcCnklyYZJe+vs5NskeSw5Ic19q2TXJ6ksvav0eM9R5LkiRJkjTcIEKGXYAl/Q1V9Qfg/4DZwJuBU6tqblWd2g7ZCfgHYC/gLUk2TvL3wMHAI6tqLrAKOKQdfzfg8qrau6q+3TfOV4APA++rqv1GqO2h9EKInYEHAo9s7cdV1Z5VtSuwKfDkvnOmV9Ve7by3tLbDge2Bh1bV7sBJI4z1xqqaB+wOPDbJ7iMcA0CSrYCnAbu0/t7Rdr2/XcuewDOAE/pO2wN4SlX9M3AK8KzW1yzgPlV1p98B8AHgvKp6CPAw4IrVvMeSJEmSJN3JqFPpJ1CAWoN2gDOr6lbg1iTXAtsCj6P3QfriNrFgU+Dadvwq4ItrUdtFVfULgCRL6YUe3wb2S/J6YDNgK+AK4H/bOae1n0va8QAHAB+uqtsBqur6EcZ6VpLD6f0OZtELNpaNUtcfgFuAE5KcCXy5b5yd2/UDbJlki7Z9RlXd3LY/B3ydXgjyLODzI4yxP/D8Vu8qYGWS5zH6e3yHdh2HA0zbcptRLkGSJEmSNNUNImS4gt5f3e/QHpO4H/ATeh9qh7u1b3sVvboDfLKq3jDC8be0D8pr6m/GSbIJ8CFgXlX9PMnRwCYjnDNUF4wdmJBke+C1wJ5VdUOSE4f1eSdVdXuSvegFK88GXkkvFNgI2KcvTBjqH+CmvvOvSfK7NlviYOClo401vFRGf4/761sILASYMWvOqNctSZIkSZraBvG4xNnAZkmeD3cszPhe4MSq+hPwR2CLMc7v7+egJPdq/WyV5AETUO/Qh//rkmwOHDSOcxYBLxtadLE97tBvS3ohwMok2wJPHKuzNu7M9rjHa+gtjjk0ziv7jps7/Nw+pwCvb/0sH2H/2cDLWz/TWvCzrt5jSZIkSdIUsM5DhqoqeusLPDPJVcCP6D0KcFQ75Jv0HgHoX/hxpH6uBN4ELEqyjN7jALMmoN7fAx8FlgNfAi4ex2kn0FtjYlmSy4B/HtbnZcCl9GZ1fBy4YDX9bQF8uV3nefQWygQ4ApjXFoO8EnjZGH18gd4siM+Nsv/V9B4LWU7v0Y9d1tV7LEmSJEmaGtL7zC91Y8asOTXr0GNZsWD+oEuRJEmSJHUsyZL2JQYjGsTjEpIkSZIkaQoyZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZFCndttuJisWzB90GZIkSZKkATBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tSy/ZiWzjzxz0GVIkiRJ0qSyYsH8QZfQCWcySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgyDFCSSvLpvtfTk/w2yZfXsJ+5SZ7UfYWSJEmSJI2fIcNg3QTsmmTT9vrxwDVr0kGS6cBcwJBBkiRJkjRQhgyD91Vgftt+DnDy0I4kWyX5UpJlSb6XZPfWfnSShUkWAZ8C3gYcnGRpkoOTbJPk60kuSfKRJD9LsnU790tJliS5IsnhfWO9KMmPkpyb5KNJjmvt2yT5YpKL279Hrpu3RZIkSZI02RgyDN4pwLOTbALsDlzYt++twKVVtTtwFL1AYcgewFOq6p+BNwOnVtXcqjoVeAtwTlU9DDgduH/feS+sqj2AecARSe6Z5D7AvwMPpzebYqe+498PvK+q9gSeAZww/AKSHJ5kcZLFq/60cu3fCUmSJEnSpDZ90AVs6KpqWZLZ9GYxfGXY7kfR+2BPVZ3TAoGZbd8ZVXXzKN0+CnhaO+9rSW7o23dEkqe17fsBc4B7A+dV1fUAST4P7NiOOQDYOcnQ+Vsm2aKq/th3DQuBhQAzZs2pcV+8JEmSJGlKMWRYP5wBvAfYF7hnX3tGOHboQ/xNY/Q30nkk2ZdeaLBPVf0pybnAJqMd32zUjh8t0JAkSZIkCfBxifXFx4G3VdXyYe3nA4fAHQHBdVX1hxHO/yOwRd/rbwPPaucdCNyjtc8EbmgBw070Ho8AuAh4bJJ7tIUkn9HX1yLglUMvksxd04uTJEmSJG0YDBnWA1X1i6p6/wi7jgbmJVkGLAAOHaWLb9J7pGFpkoPpreVwYJJLgCcCv6IXRHwNmN76ezvwvTb+NcC76K0H8Q3gSmBocYUjhmpIciXwsrt6vZIkSZKkqSlVPkI/1SSZAayqqtuT7AMcX1VzV3PO5lV1Y5vJcDrw8ao6fU3HnjFrTs069Ni1KVuSJEmSNlgrFsxf/UHrgSRLqmreaPtdk2Fquj/wuSQbAX8GXjKOc45OcgC9NRoWAV+auPIkSZIkSVORIcMUVFVXAQ9dw3NeO0HlSJIkSZI2EK7JIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOjF90AVoatltu5ksXjB/0GVIkiRJkgbAmQySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkT08dzUJJ3V9W/ra5NWn7NSmYfeeYanbNiwfwJqkaSJEmStC6NdybD40doe2KXhUiSJEmSpMltzJkMSV4O/AuwQ5Jlfbu2AL4zkYVJkiRJkqTJZXWPS3wW+CrwH8CRfe1/rKrrJ6wqSZIkSZI06Yz5uERVrayqFcD7geur6mdV9TPgtiR7r4sCJUmSJEnS5DDeNRmOB27se31Ta5MkSZIkSQLGHzKkqmroRVX9hXF+M4UkSZIkSdowjDdk+GmSI5Js3P69GvjpRBYmSZIkSZIml/GGDC8DHgFcA/wC2Bs4fKKKkiRJkiRJk8+4HnmoqmuBZ09wLZIkSZIkaRIbV8iQ5BNADW+vqhd2XpEkSZIkSZqUxrt445f7tjcBngb8svtyJEmSJEnSZDXexyW+2P86ycnANyakIkmSJEmSNCmNd+HH4eYA9++ykHUpSSX5dN/r6Ul+m+TLY503gfUctY7GOSbJFUmOWRfjSZIkSZI2LONdk+GP9NZkSPv5a+DfJrCuiXYTsGuSTavqZuDx9L45Y1COAt41vDFJgFTVXzoa56XANlV163gOTjK9qm7vaGxJkiRJ0hQ3rpkMVbVFVW3Z93PH4Y9QTEJfBea37ecAJw/tSLJVki8lWZbke0l2b+1HJ/l4knOT/DTJEX3nPDfJRUmWJvlIkmlJXpTkfX3HvCTJf/UXkWQBsGk776Qks5N8P8mHgEuA+yU5PsniNgvhrX3nrkjy1iSXJFmeZKfW/tjW39IklybZIskZwN2AC5McnGSbJF9McnH798i+a1yYZBHwqSS79F3XsiRzOv0tSJIkSZKmjDFnMiR52Fj7q+qSbstZp04B3twekdgd+Djw6LbvrcClVfXUJPsDnwLmtn07AfsBWwA/THI88CDgYOCRVXVbCwgOaWMsS/L6qroNeAG92QR3qKojk7yyquYCJJkNPBh4QVX9S2t7Y1Vdn2QacHaS3atqWeviuqp6WJJ/AV4LvLj9fEVVXZBkc+CWqvqnJDf2jfNZ4H1V9e0k9wfOAv6+9bkH8KiqujnJfwPvr6qTkvwdMG34G5nkcOBwgGlbbjPuX4AkSZIkaWpZ3eMS720/NwHmAZfRe2Rid+BC4FETV9rEqqpl7QP9c4CvDNv9KOAZ7bhzktwzycy278z2uMGtSa4FtgUeR++D+cW9JxzYFLi2qm5Kcg7w5CTfBzauquXjKO9nVfW9vtfPah/kpwOzgJ2BoZDhtPZzCfD0tn0B8F9JTgJOq6pfjDDGAcDOrV6ALZNs0bbPaI+RAHwXeGOS+7a+rhreUVUtBBYCzJg152++6lSSJEmStGEYM2Soqv0AkpwCHD70ATnJrvT+Wj7ZnQG8B9gXuGdfe0Y4dujDc/96BqvovYcBPllVbxjhvBPorbnwA+AT46zrpjsKSban917vWVU3JDmRXugzZKieoVqoqgVJzgSeBHwvyQFV9YNhY2wE7NMXJgyNd6fxq+qzSS6k92jJWUleXFXnjPM6JEmSJEkbkPF+u8RO/X+Br6rL+evjA5PZx4G3jTC74Hx6jzuQZF96jyT8YYx+zgYOSnKvds5WSR4AUFUXAvcD/pm+dR+GuS3JxqPs25Leh/6VSbYFnri6i0qyQ1Utr6p3A4vpPeIx3CLglX3nzB2lrwcCP62qD9ALZXZf3fiSJEmSpA3TeEOG7yc5Icm+bVHBjwLfn8jC1oWq+kVVvX+EXUcD85IsAxYAh66mnyuBNwGL2jlfp/dYw5DPARdU1Q2jdLGQ3toNJ43Q92XApcAV9EKRC8a8qJ7XJLk8yWXAzfQWuRzuCNo1JrkSeNkofR0MXJ5kKb2w4lPjGF+SJEmStAFK1eofoU+yCfBy4DGt6Xzg+Kq6ZQJrmzLa4pLvq6qzB13LRJsxa07NOvTYNTpnxYL5qz9IkiRJkjRwSZZU1bzR9q9u4UcAquqWJB8EvkFvbYIftm9L0BiS3B24CLhsQwgYJEmSJEkbtnGFDG1dgk8CK+gtcni/JIdW1fkTVtkUUFW/B3YcdB2SJEmSJK0L4woZ6H2V5YFV9UOAJDvSW8Rwj4kqTJIkSZIkTS7jXfhx46GAAaCqfgSM9m0IkiRJkiRpAzTemQxLknwM+HR7fQiwZGJKkiRJkiRJk9F4Q4aXAa+g97WHofftEh+aqKIkSZIkSdLks9qQIclGwJKq2hX4r4kvSZIkSZIkTUarXZOhqv4CXJbk/uugHkmSJEmSNEmN93GJWcAVSS4CbhpqrKp/mpCqJEmSJEnSpDPekOGtE1qFJEmSJEma9MYMGZJsQm/RxwcBy4GPVdXt66IwSZIkSZI0uaxuJsMngduAbwFPBHYGXj3RRWny2m27mSxeMH/QZUiSJEmSBmB1IcPOVbUbQJKPARdNfEmSJEmSJGkyWt23S9w2tOFjEpIkSZIkaSyrm8nwkCR/aNsBNm2vA1RVbTmh1UmSJEmSpEljzJChqqatq0IkSZIkSdLktrrHJSRJkiRJksbFkEGSJEmSJHXCkEGSJEmSJHVidQs/Smtk+TUrmX3kmYMuQ5K0llYsmD/oEiRJ0iTmTAZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQ4Y+SVYlWZrkiiSXJfl/ScZ8j5Lsm+TLo+w7qqO6DktyXNs+Oslr16KPuyf5l77X90nyhS7qkyRJkiQJDBmGu7mq5lbVLsDjgScBb7kL/XUSMnTk7sAdIUNV/bKqDhpcOZIkSZKkqcaQYRRVdS1wOPDK9ExLckySi5MsS/LSvsO3THJ6kiuTfDjJRkkWAJu2mREnDe8/yROSXNJmTJzd2rZK8qXW//eS7D5WjUl2SPK1JEuSfCvJTq1921bPZe3fI4AFwA6tnmOSzE5yeTt+kySfSLI8yaVJ9mvthyU5rY1xVZL/7OK9lSRJkiRNTdMHXcD6rKp+2h6XuBfwFGBlVe2ZZAZwQZJF7dC9gJ2BnwFfA55eVUcmeWVVzR3eb5JtgI8Cj6mqq5Ns1Xa9Fbi0qp6aZH/gU8DfnN9nIfCyqroqyd7Ah4D9gQ8A51XV05JMAzYHjgR2Haonyey+fl7Rrne3FlQsSrJj2zcXeChwK/DDJP9dVT8fdj2H0wtkmLblNmOUK0mSJEmaygwZVi/t54HA7kmGHjGYCcwB/gxcVFU/BUhyMvAoYKz1Dh4OnF9VVwNU1fWt/VHAM1rbOUnumWTmiEUlmwOPAD6fDJXIjPZzf+D5rZ9VwMok9xijnkcB/92O/0GSnwFDIcPZVbWyjXkl8ADgTiFDVS2kF3gwY9acGmMcSZIkSdIUZsgwhiQPBFYB19ILG15VVWcNO2ZfYPgH69V90M4ox2SEttH62gj4/UgzJdbCSOMOubVvexXeM5IkSZKkUbgmwyjaIw0fBo6rqgLOAl6eZOO2f8ckd2uH75Vk+/ZoxcHAt1v7bUPHD/Nd4LFJtm99DT0ucT5wSGvbF7iuqv4wUn2t/eokz2zHJ8lD2u6zgZe39mlJtgT+CGwxyuX2j7sjcH/gh6O9N5IkSZIkjcSQ4c6GFmq8AvgGsIjeOgkAJwBXApe0BRM/wl//qv9degsrXg5cDZze2hcCy4Yv/FhVv6W3hsFpSS4DTm27jgbmJVnW+jt0NfUeAryo9XEFvXUjAF4N7JdkObAE2KWqfkdvHYnLkxwzrJ8PAdPa8acCh1XVrUiSJEmStAbS+yO91I0Zs+bUrEOPHXQZkqS1tGLB/EGXIEmS1mNJllTVvNH2O5NBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUstt2M1m8YP6gy5AkSZIkDYAzGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUiemD7oATS3Lr1nJ7CPPHHQZkiRJ640VC+YPugRJWmecySBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjqxQYcMSe6d5JQkP0lyZZKvJNnxLvR3YpKD2vYJSXZu20d1VfPaSvLUoXra67clOWCQNUmSJEmSppYNNmRIEuB04Nyq2qGqdgaOArYddty0tem/ql5cVVe2l+MKGdZ2rHH0Ox14KnBHyFBVb66qb0zEeJIkSZKkDdMGGzIA+wG3VdWHhxqqamlVfSvJvkm+meSzwPIk05Ick+TiJMuSvBR6QUWS49osiDOBew31leTcJPOSLAA2TbI0yUnDi0hyY5tVcCGwT5LnJrmoHf+RoeChHffeJJckOTvJNq19bpLvtbpOT3KPvvHfleQ84N+AfwKOaf3uMGzWxYokb219L0+yU2vfJsnXW/tHkvwsydYT8cuQJEmSJE1+G3LIsCuwZIz9ewFvbDMcXgSsrKo9gT2BlyTZHnga8GBgN+AlwCOGd1JVRwI3V9XcqjpkhHHuBlxeVXsDvwMOBh5ZVXOBVcAhfcddUlUPA84D3tLaPwX8W1XtDizvawe4e1U9tqreCZwBvK7V8ZMR6riu9X088NrW9hbgnNZ+OnD/Md4vSZIkSdIGbvqgC1iPXVRVV7ftA4Hdh/7yD8wE5gCPAU6uqlXAL5OcsxbjrAK+2LYfB+wBXNx7moNNgWvbvr8Ap7btzwCnJZlJL0g4r7V/Evh8X9+nMn6ntZ9LgKe37UfRC1Koqq8luWGkE5McDhwOMG3LbdZgSEmSJEnSVLIhhwxXAAeNsf+mvu0Ar6qqs/oPSPIkoO5iHbe0kGJonE9W1RvGcd54xr1p9Yfc4db2cxV/vS8ynhOraiGwEGDGrDl39f2QJEmSJE1SG/LjEucAM5K8ZKghyZ5JHjvCsWcBL0+ycTtuxyR3A84Hnt3WbJhFb52Hkdw2dO5qnA0clORebZytkjyg7duIv4Yi/wx8u6pWAjckeXRrfx69RylG8kdgi3HU0O/bwLNaLQcC91jD8yVJkiRJG5ANNmSoqqL3KMDj21dYXgEcDfxyhMNPAK4ELklyOfARen/tPx24it5aCMcz+gf8hcCykRZ+HFbTlcCbgEVJlgFfB2a13TcBuyRZAuwPvK21H0pvQcdlwNy+9uFOAV6X5NIkO4xVR5+3AgcmuQR4IvAremGFJEmSJEl/I73P2lrfJbmxqjZfx2POAFZV1e1J9gGObwtSjmrGrDk169Bj10V5kiRJk8KKBfMHXYIkdSbJkqqaN9r+DXlNBq3e/YHPJdkI+DO9b9CQJEmSJGlEhgyTxLqexdDGvAp46LoeV5IkSZI0OW2wazJIkiRJkqRuGTJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROTB90AZpadttuJosXzB90GZIkSZKkAXAmgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6sT0QRegqWX5NSuZfeSZgy5jg7ZiwfxBlyBJkiRpA+VMBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDhgmU5N5JTknykyRXJvlKkh3vQn8nJjmobZ+QZOe2fVRXNa9m/HOTzFsXY0mSJEmSJh9DhgmSJMDpwLlVtUNV7QwcBWw77Lhpa9N/Vb24qq5sLzsPGZJM77pPSZIkSdLUZsgwcfYDbquqDw81VNXSqvpWkn2TfDPJZ4HlSaYlOSbJxUmWJXkp9IKKJMe1WRBnAvca6mtoVkGSBcCmSZYmOWl4EUmekOSSJJclObu17ZXkO0kubT8f3NoPS/L5JP8LLEqyaZuJsSzJqcCmE/mGSZIkSZImN/9aPXF2BZaMsX8vYNequjrJ4cDKqtozyQzggiSLgIcCDwZ2ozcD4krg4/2dVNWRSV5ZVXOHD5BkG+CjwGPaOFu1XT9obbcnOQB4F/CMtm8fYPequj7J/wP+VFW7J9kduGRt3ghJkiRJ0obBkGFwLqqqq9v2gcDuQ+stADOBOcBjgJOrahXwyyTnrOEYDwfOHxqnqq7v6/+TSeYABWzcd87X+457DPCBdu6yJMtGGqSFJIcDTNtymzUsUZIkSZI0Vfi4xMS5AthjjP039W0HeFVVzW3/tq+qRW1f3YUaMsr5bwe+WVW7Av8IbDJKXeMav6oWVtW8qpo3bbOZa12sJEmSJGlyM2SYOOcAM5K8ZKghyZ5JHjvCsWcBL0+ycTtuxyR3A84Hnt3WbJhFb52Hkdw2dO4w3wUem2T71u/Q4xIzgWva9mFjXMP5wCHt3F2B3cc4VpIkSZK0gTNkmCBVVcDTgMe3r7C8Ajga+OUIh59Ab72FS5JcDnyE3qMspwNXAcuB44HzRhluIbBs+MKPVfVbeo8xnJbkMuDUtus/gf9IcgEw1rdbHA9s3h6TeD1w0ZgXLUmSJEnaoKX3WVjqxoxZc2rWoccOuowN2ooF8wddgiRJkqQpKsmSqpo32n5nMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE5MH3QBmlp2224mixfMH3QZkiRJkqQBcCaDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqxPRBF6CpZfk1K5l95JmDLmNKWrFg/qBLkCRJkqQxOZNBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpABSHLvJKck+UmSK5N8JcmOg67rrkgyO8nlg65DkiRJkrTh2OBDhiQBTgfOraodqmpn4Chg28FWtmaSTB90DZIkSZKkDdsGHzIA+wG3VdWHhxqqamlVfSs9xyS5PMnyJAcDJNk3yblJvpDkB0lOamEFSRa02RDLkryntZ2Y5KCh/pPc2NfPeUk+l+RH7dxDklzUxtuhHbdNki8mubj9e2RrPzrJwiSLgE+N52KTPC7Jpa3/jyeZ0drf3Pq+vPU5dD3nJnl3q+lHSR59199ySZIkSdJUZMgAuwJLRtn3dGAu8BDgAOCYJLPavocCrwF2Bh4IPDLJVsDTgF2qanfgHeMY/yHAq4HdgOcBO1bVXsAJwKvaMe8H3ldVewLPaPuG7AE8par+eXUDJdkEOBE4uKp2A6YDL2+7j6uqPatqV2BT4Ml9p05vNb0GeMsI/R6eZHGSxav+tHIclyxJkiRJmooMGcb2KODkqlpVVb8BzgP2bPsuqqpfVNVfgKXAbOAPwC3ACUmeDvxpHGNcXFW/qqpbgZ8Ai1r78tYn9AKO45IsBc4AtkyyRdt3RlXdPM7reTBwdVX9qL3+JPCYtr1fkguTLAf2B3bpO++09nNJX013qKqFVTWvquZN22zmOEuRJEmSJE01PscPVwAHjbIvY5x3a9/2Knp/7b89yV7A44BnA6+k94H9dlqg0x5D+LtR+vlL3+u/8Nffz0bAPsPDhPZEw01j1Diu62kzHD4EzKuqnyc5GthkhBpX4T0jSZIkSRqFMxngHGBGkpcMNSTZM8ljgfOBg5NMS7INvb/6XzRaR0k2B2ZW1VfoPVowt+1aQe+xBoCnABuvYY2L6AUWQ+PMHf3QMf0AmJ3kQe318+jNzhgKFK5r1zBa6CJJkiRJ0qg2+L9KV1UleRpwbJIj6T3usIJeSHA+sA9wGVDA66vq10l2GqW7LYD/aTMDAvxra/9oa78IOJs1m30AcATwwSTL6P3OzgdeNo7zHpzkF32v/xV4AfD59m0UFwMfrqpbk3yU3iMaK1q7JEmSJElrJFU16Bo0hcyYNadmHXrsoMuYklYsmD/oEiRJkiRt4JIsqap5o+33cQlJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktSJ6YMuQFPLbtvNZPGC+YMuQ5IkSZI0AM5kkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tSy/ZiWzjzxz0GVIGsOKBfMHXYIkSZKmKGcySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkTkxYyJBkVZKlSS5LckmSR9yFvs5NMq/L+iZakqMGXcPqJJmX5AODrkOSJEmSNDVM5EyGm6tqblU9BHgD8B8TONb66C6FDEmmdVFEkumj7auqxVV1RBfjSJIkSZK0rh6X2BK4ASDJ5knObrMblid5SmufneT7ST6a5Ioki5Js2t9Jko2SfDLJO4YPkOTNSS5OcnmShUnS2h+U5Bt9Myp2aO2vb+NflmRBa5ub5HtJliU5Pck9WvsdMymSbJ1kRds+LMlpSb6W5Kok/9naFwCbtpkcJ41Q63Pa2JcneXdf+41J3pbkQmCfYecckeTKVtspre1uST7ervvSvvfysCSfT/K/wKIkpyZ5Ul9fJyZ5RpJ9k3y57/fyiVbXsiTPaO0HJvlue+8+n2Tzcf7OJUmSJEkbmIkMGYY+ZP8AOAF4e2u/BXhaVT0M2A9471AgAMwBPlhVuwC/B57R19904CTgR1X1phHGO66q9qyqXYFNgSe39pNanw8BHgH8KskTgacCe7f2/2zHfgr4t6raHVgOvGUc1zkXOBjYDTg4yf2q6kj+OpPjkP6Dk9wHeDewfzt3zyRPbbvvBlxeVXtX1beHjXMk8NBW28ta2xuBc6pqT3rv5TFJ7tb27QMcWlX7A6e0Gknyd8DjgK8M6//fgZVVtVsb45wkWwNvAg5ov6/FwP8b/gYkOTzJ4iSLV/1p5TjeMkmSJEnSVLQuHpfYCXgC8KkWJgR4V5JlwDeA7YBt2zlXV9XStr0EmN3X30fofQB/5yjj7ZfkwiTL6X2A3yXJFsB2VXU6QFXdUlV/Ag4APtG2qarrk8wE7l5V57X+Pgk8ZhzXeXZVrayqW4ArgQes5vg9gXOr6rdVdTu9EGRonFXAF0c5bxlwUpLnAre3tgOBI5MsBc4FNgHu3/Z9vaqub9tfBfZPMgN4InB+Vd08rP8DgA8OvaiqG4CHAzsDF7QxDh3p+qpqYVXNq6p50zabuZrLlyRJkiRNVaM+r9+lqvpu+6v4NsCT2s89quq29ujBJu3QW/tOW0VvRsKQ79ALEt7bPtDfIckmwIeAeVX18yRHtz7DyALUGlzC7fw1kNlk2L7hNa/uPR2tJoBbqmrVKPvm0wsj/gn49yS7tL6eUVU/vNMAyd7ATUOvq+qWJOcC/0BvRsPJo9Q1/D0JvbDiOWPULEmSJEkSsI7WZEiyEzAN+B0wE7i2BQz7sfq//A/5GL0p/p8fYTHDoQ/+17U1Aw4CqKo/AL8YehwhyYwkmwGLgBe2bZJsVVUrgRuSPLr19TxgaFbDCmCPtn3QOOu9LcnGI7RfCDy2re0wDXhO3zgjSrIRcL+q+ibweuDuwObAWcCr+tafeOgY3ZwCvAB4dDtvuEXAK/vGvAfwPeCRSR7U2jZLsuNYtUqSJEmSNlzrYk2GpcCp9NYHWEXv8YB5SRYDhwA/GG+HVfVfwCXAp9sH76H23wMfpbeOwpeAi/tOex5wRHs84zvAvavqa8AZwOJW32vbsYfSW9dgGb31Et7W2t8DvDzJd4Ctx1nuQmDZ8IUfq+pX9L5t45vAZcAlVfU/q+lrGvCZ9ijIpcD72jW/Hdi4jXM5f133YiSL6M2E+EZV/XmE/e8A7tEWo7wM2K+qfgscBpzc3pPvATutplZJkiRJ0gYqVWvy1IA0thmz5tSsQ48ddBmSxrBiwfxBlyBJkqRJKsmSqpo32v519RWWkiRJkiRpijNkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tey23UwWL5g/6DIkSZIkSQPgTAZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktSJVNWga9AUkuSPwA8HXYe0FrYGrht0EdJa8N7VZOW9q8nKe1eTVVf37gOqapvRdk7vYACp3w+rat6gi5DWVJLF3ruajLx3NVl572qy8t7VZLWu7l0fl5AkSZIkSZ0wZJAkSZIkSZ0wZFDXFg66AGktee9qsvLe1WTlvavJyntXk9U6uXdd+FGSJEmSJHXCmQySJEmSJKkThgzqTJInJPlhkh8nOXLQ9WjDk+R+Sb6Z5PtJrkjy6ta+VZKvJ7mq/bxH3zlvaPfsD5P8Q1/7HkmWt30fSJLWPiPJqa39wiSz1/mFaspKMi3JpUm+3F5772q9l+TuSb6Q5Aftv7/7eO9qMkjyr+3/Fy5PcnKSTbx3tT5K8vEk1ya5vK9tndyrSQ5tY1yV5NDx1GvIoE4kmQZ8EHgisDPwnCQ7D7YqbYBuB/6/qvp74OHAK9p9eCRwdlXNAc5ur2n7ng3sAjwB+FC7lwGOBw4H5rR/T2jtLwJuqKoHAe8D3r0uLkwbjFcD3+977b2ryeD9wNeqaifgIfTuYe9drdeSbAccAcyrql2BafTuTe9drY9O5K/31ZAJv1eTbAW8Bdgb2At4S3+YMRpDBnVlL+DHVfXTqvozcArwlAHXpA1MVf2qqi5p23+k9z+629G7Fz/ZDvsk8NS2/RTglKq6taquBn4M7JVkFrBlVX23egvXfGrYOUN9fQF43FAKLN0VSe4LzAdO6Gv23tV6LcmWwGOAjwFU1Z+r6vd472pymA5smmQ6sBnwS7x3tR6qqvOB64c1r4t79R+Ar1fV9VV1A/B1/jbs+BuGDOrKdsDP+17/orVJA9GmeT0UuBDYtqp+Bb0gArhXO2y0+3a7tj28/U7nVNXtwErgnhNyEdrQHAu8HvhLX5v3rtZ3DwR+C3wivUd9TkhyN7x3tZ6rqmuA9wD/B/wKWFlVi/De1eSxLu7VtfqMZ8igroyUyvrVJRqIJJsDXwReU1V/GOvQEdpqjPaxzpHWWpInA9dW1ZLxnjJCm/euBmE68DDg+Kp6KHATbcruKLx3tV5oU76fAmwP3Ae4W5LnjnXKCG3eu1ofdXmvrtU9bMigrvwCuF/f6/vSm3ImrVNJNqYXMJxUVae15t+0KWK0n9e29tHu21+07eHtdzqnTa+cyd9OX5PW1COBf0qygt7jZvsn+Qzeu1r//QL4RVVd2F5/gV7o4L2r9d0BwNVV9duqug04DXgE3ruaPNbFvbpWn/EMGdSVi4E5SbZP8nf0Fhs5Y8A1aQPTnh37GPD9qvqvvl1nAEOr4R4K/E9f+7Pbirrb01sA56I25eyPSR7e+nz+sHOG+joIOKc91yattap6Q1Xdt6pm0/vv5zlV9Vy8d7Weq6pfAz9P8uDW9DjgSrx3tf77P+DhSTZr99zj6K3l5L2ryWJd3KtnAQcmuUeb/XNgaxvT9Lt+bVLv2Z0kr6R3000DPl5VVwy4LG14Hgk8D1ieZGlrOwpYAHwuyYvo/U/FMwGq6ookn6P3P8S3A6+oqlXtvJfTW8l3U+Cr7R/0QoxPJ/kxvYT32RN8Tdqwee9qMngVcFL7I8NPgRfQ+0OW967WW1V1YZIvAJfQuxcvBRYCm+O9q/VMkpOBfYGtk/yC3jc+TPj/I1TV9UneTu8PygBvq6rVzsaJYZokSZIkSeqCj0tIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkqRJL8mNAxjz3klOSfKTJFcm+UqSHTseY98kj+iyT0mSJpIhgyRJ0hpKEuB04Nyq2qGqdgaOArbteKh9AUMGSdKkYcggSZKmjCSzkpyfZGmSy5M8Osm0JCe218uT/Gs79twk89r21klWtO1pSY5JcnGSZUleOsJQ+wG3VdWHhxqqamlVfSs9x/SNd3Drd98kX+6r9bgkh7XtFUnemuSSds5OSWYDLwP+tV3Po5M8s/V7WZLzJ+RNlCTpLpg+6AIkSZI69M/AWVX1ziTTgM2AucB2VbUrQJK7r6aPFwErq2rPJDOAC5Isqqqr+47ZFVgyyvlPb2M+BNgauHicgcB1VfWwJP8CvLaqXpzkw8CNVfWeVvty4B+q6ppxXIckSeucMxkkSdJUcjHwgiRHA7tV1R+BnwIPTPLfSZ4A/GE1fRwIPD/JUuBC4J7AnDWo4VHAyVW1qqp+A5wH7DmO805rP5cAs0c55gLgxCQvAaatQU2SJK0ThgySJGnKqKrzgccA1wCfTvL8qrqB3qyCc4FXACe0w2/nr/8vtElfNwFeVVVz27/tq2rRsKGuAPYYpYyM0t4/3vAxAW5tP1cxymzTqnoZ8CbgfsDSJPccZSxJkgbCkEGSJE0ZSR4AXFtVHwU+BjwsydbARlX1ReDfgYe1w1fw16DgoL5uzgJenmTj1ueOSe42bKhzgBltRsHQ2HsmeSxwPnBwW9thG3qhx0XAz4Cdk8xIMhN43Dgu6Y/AFn1j7FBVF1bVm4Hr6IUNkiStN1yTQZIkTSX7Aq9LchtwI/B8YDvgE0mG/rjyhvbzPcDnkjyPXmgw5AR6jytc0r5F4rfAU/sHqapK8jTg2CRHArfQCy1eQy9k2Ae4DCjg9VX1a4AknwOWAVcBl47jev4X+EKSpwCvorcI5Bx6syXObmNIkrTeSFUNugZJkiRJkjQF+LiEJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqxP8PQid5I8MfzawAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#BAR PLOT\n", + "fig2, ax2 = plt.subplots(figsize=(16, 9))\n", + "#prod_u, counts = np.unique(product_issue_count['product'].values, return_counts=True)\n", + "ax2.barh(product_issue_count['product'], product_issue_count['count'])\n", + " \n", + "#ax2.set_title(\"Issue counts per product with (companies are bar colors)\")\n", + "ax2.set_title(\"Issue counts per product\")\n", + "ax2.set_xlabel('Issue Counts')\n", + "ax2.set_ylabel('Product')" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "97e58ef5", "metadata": {}, "outputs": [ { @@ -1253,107 +978,154 @@ " \n", " \n", " \n", - " state\n", + " company\n", + " product\n", " issue\n", - " count\n", + " 0\n", " \n", " \n", " \n", " \n", - " 462\n", - " CA\n", - " Loan modification,collection,foreclosure\n", - " 19433\n", + " 0\n", + " (Former)Shapiro, Swertfeger & Hasty, LLP\n", + " Debt collection\n", + " Disclosure verification of debt\n", + " 2\n", " \n", " \n", - " 874\n", - " FL\n", + " 1\n", + " (Former)Shapiro, Swertfeger & Hasty, LLP\n", + " Mortgage\n", " Loan modification,collection,foreclosure\n", - " 11337\n", + " 1\n", " \n", " \n", - " 463\n", - " CA\n", + " 2\n", + " (Former)Shapiro, Swertfeger & Hasty, LLP\n", + " Mortgage\n", " Loan servicing, payments, escrow account\n", - " 8957\n", + " 1\n", " \n", " \n", - " 3775\n", - " TX\n", - " Incorrect information on credit report\n", - " 8712\n", + " 3\n", + " 1st 2nd Mortgage Company Of NJ, Inc.\n", + " Mortgage\n", + " Application, originator, mortgage broker\n", + " 1\n", " \n", " \n", - " 458\n", - " CA\n", - " Incorrect information on credit report\n", - " 8585\n", + " 4\n", + " 1st Alliance Lending\n", + " Debt collection\n", + " Cont'd attempts collect debt not owed\n", + " 1\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", " \n", " \n", - " 1855\n", - " ME\n", - " Applied for loan/did not receive money\n", + " 18372\n", + " iQuantified Management Services, LLC\n", + " Debt collection\n", + " Cont'd attempts collect debt not owed\n", " 1\n", " \n", " \n", - " 1853\n", - " ME\n", - " Application processing delay\n", + " 18373\n", + " iServe Trust\n", + " Mortgage\n", + " Credit decision / Underwriting\n", " 1\n", " \n", " \n", - " 1851\n", - " ME\n", - " Account terms and changes\n", - " 1\n", + " 18374\n", + " iServe Trust\n", + " Mortgage\n", + " Loan modification,collection,foreclosure\n", + " 4\n", " \n", " \n", - " 1817\n", - " MD\n", - " Lost or stolen check\n", + " 18375\n", + " iServe Trust\n", + " Mortgage\n", + " Loan servicing, payments, escrow account\n", " 1\n", " \n", " \n", - " 0\n", - " AA\n", - " Account opening, closing, or management\n", + " 18376\n", + " iServe Trust\n", + " Mortgage\n", + " Other\n", " 1\n", " \n", " \n", "\n", - "

4364 rows × 3 columns

\n", + "

18377 rows × 4 columns

\n", "" ], "text/plain": [ - " state issue count\n", - "462 CA Loan modification,collection,foreclosure 19433\n", - "874 FL Loan modification,collection,foreclosure 11337\n", - "463 CA Loan servicing, payments, escrow account 8957\n", - "3775 TX Incorrect information on credit report 8712\n", - "458 CA Incorrect information on credit report 8585\n", - "... ... ... ...\n", - "1855 ME Applied for loan/did not receive money 1\n", - "1853 ME Application processing delay 1\n", - "1851 ME Account terms and changes 1\n", - "1817 MD Lost or stolen check 1\n", - "0 AA Account opening, closing, or management 1\n", + " company product \\\n", + "0 (Former)Shapiro, Swertfeger & Hasty, LLP Debt collection \n", + "1 (Former)Shapiro, Swertfeger & Hasty, LLP Mortgage \n", + "2 (Former)Shapiro, Swertfeger & Hasty, LLP Mortgage \n", + "3 1st 2nd Mortgage Company Of NJ, Inc. Mortgage \n", + "4 1st Alliance Lending Debt collection \n", + "... ... ... \n", + "18372 iQuantified Management Services, LLC Debt collection \n", + "18373 iServe Trust Mortgage \n", + "18374 iServe Trust Mortgage \n", + "18375 iServe Trust Mortgage \n", + "18376 iServe Trust Mortgage \n", + "\n", + " issue 0 \n", + "0 Disclosure verification of debt 2 \n", + "1 Loan modification,collection,foreclosure 1 \n", + "2 Loan servicing, payments, escrow account 1 \n", + "3 Application, originator, mortgage broker 1 \n", + "4 Cont'd attempts collect debt not owed 1 \n", + "... ... .. \n", + "18372 Cont'd attempts collect debt not owed 1 \n", + "18373 Credit decision / Underwriting 1 \n", + "18374 Loan modification,collection,foreclosure 4 \n", + "18375 Loan servicing, payments, escrow account 1 \n", + "18376 Other 1 \n", "\n", - "[4364 rows x 3 columns]" + "[18377 rows x 4 columns]" ] }, - "execution_count": 86, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a.sort_values(by = 'count', ascending = False)" + "#@TODO Banks' products with highest issues\n", + "bank_prod_count = df.groupby(['company', 'product', 'issue']).size().reset_index()\n", + "bank_prod_count" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "5aa0caf7", + "metadata": {}, + "outputs": [], + "source": [ + "#@TODO Common words in complaints" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61231007", + "metadata": {}, + "outputs": [], + "source": [ + "#@TODO NLP prediction" ] } ], From 2c3a8558fe66c34f12e433293ea9fd6b850fac15 Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Fri, 30 Sep 2022 13:56:43 -0500 Subject: [PATCH 07/12] Added markdown explanations for notebook, proper cleaning of dataset and modular analysis functions --- consumer_analysis.ipynb | 745 ++++++++++++++++++++-------------------- 1 file changed, 382 insertions(+), 363 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index 383b0da..35806be 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "id": "0060a11a", "metadata": {}, "outputs": [], @@ -14,9 +14,26 @@ "%matplotlib inline" ] }, + { + "cell_type": "markdown", + "id": "d2a97118", + "metadata": {}, + "source": [ + "## Introduction\n", + "In this notebook I will be analyzing the counts and percentage of **disputed** customer complaints with regard to financial institutions, states and financial products along with a quick and dirty machine learning model to give a rough prediction of when the disputes will occur" + ] + }, + { + "cell_type": "markdown", + "id": "69ab7e9e", + "metadata": {}, + "source": [ + "### Importing and Cleaning Data" + ] + }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "id": "f92ee33a", "metadata": {}, "outputs": [ @@ -64,7 +81,7 @@ " \n", " \n", " 0\n", - " 08/30/2013\n", + " 2013-08-30\n", " Mortgage\n", " Other mortgage\n", " Loan modification,collection,foreclosure\n", @@ -77,7 +94,7 @@ " NaN\n", " NaN\n", " Referral\n", - " 09/03/2013\n", + " 2013-09-03\n", " Closed with explanation\n", " Yes\n", " Yes\n", @@ -85,7 +102,7 @@ " \n", " \n", " 1\n", - " 08/30/2013\n", + " 2013-08-30\n", " Mortgage\n", " Other mortgage\n", " Loan servicing, payments, escrow account\n", @@ -98,7 +115,7 @@ " NaN\n", " NaN\n", " Referral\n", - " 09/03/2013\n", + " 2013-09-03\n", " Closed with explanation\n", " Yes\n", " Yes\n", @@ -106,7 +123,7 @@ " \n", " \n", " 2\n", - " 08/30/2013\n", + " 2013-08-30\n", " Credit reporting\n", " NaN\n", " Incorrect information on credit report\n", @@ -119,7 +136,7 @@ " NaN\n", " NaN\n", " Postal mail\n", - " 09/18/2013\n", + " 2013-09-18\n", " Closed with explanation\n", " Yes\n", " No\n", @@ -127,7 +144,7 @@ " \n", " \n", " 3\n", - " 08/30/2013\n", + " 2013-08-30\n", " Student loan\n", " Non-federal student loan\n", " Repaying your loan\n", @@ -140,7 +157,7 @@ " NaN\n", " NaN\n", " Email\n", - " 08/30/2013\n", + " 2013-08-30\n", " Closed with explanation\n", " Yes\n", " Yes\n", @@ -148,7 +165,7 @@ " \n", " \n", " 4\n", - " 08/30/2013\n", + " 2013-08-30\n", " Debt collection\n", " Credit card\n", " False statements or representation\n", @@ -161,322 +178,178 @@ " NaN\n", " NaN\n", " Web\n", - " 08/30/2013\n", + " 2013-08-30\n", " Closed with explanation\n", " Yes\n", " Yes\n", " 511067\n", " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 555952\n", - " 07/01/2014\n", - " Mortgage\n", - " Other mortgage\n", - " Loan modification,collection,foreclosure\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Bank of America\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Referral\n", - " 07/07/2014\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 919529\n", - " \n", - " \n", - " 555953\n", - " 07/01/2014\n", - " Mortgage\n", - " Other mortgage\n", - " Loan servicing, payments, escrow account\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Residential Credit Solutions\n", - " NaN\n", - " NaN\n", - " Older American, Servicemember\n", - " NaN\n", - " Referral\n", - " 07/23/2014\n", - " Closed with explanation\n", - " No\n", - " No\n", - " 918447\n", - " \n", - " \n", - " 555954\n", - " 07/10/2012\n", - " Mortgage\n", - " Conventional fixed mortgage\n", - " Loan modification,collection,foreclosure\n", - " NaN\n", - " NaN\n", - " NaN\n", - " BB&T Financial\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Phone\n", - " 11/18/2013\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 114550\n", - " \n", - " \n", - " 555955\n", - " 04/14/2015\n", - " Debt collection\n", - " I do not know\n", - " Communication tactics\n", - " Frequent or repeated calls\n", - " NaN\n", - " NaN\n", - " Global Recovery Group\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Phone\n", - " 04/14/2015\n", - " Untimely response\n", - " No\n", - " No\n", - " 1329963\n", - " \n", - " \n", - " 555956\n", - " 08/14/2014\n", - " Debt collection\n", - " I do not know\n", - " Cont'd attempts collect debt not owed\n", - " Debt is not mine\n", - " NaN\n", - " NaN\n", - " CCS Financial Services, Inc.\n", - " NaN\n", - " NaN\n", - " NaN\n", - " NaN\n", - " Phone\n", - " 08/18/2014\n", - " Closed with explanation\n", - " Yes\n", - " No\n", - " 984116\n", - " \n", " \n", "\n", - "

555957 rows × 18 columns

\n", "" ], "text/plain": [ - " date_received product sub_product \\\n", - "0 08/30/2013 Mortgage Other mortgage \n", - "1 08/30/2013 Mortgage Other mortgage \n", - "2 08/30/2013 Credit reporting NaN \n", - "3 08/30/2013 Student loan Non-federal student loan \n", - "4 08/30/2013 Debt collection Credit card \n", - "... ... ... ... \n", - "555952 07/01/2014 Mortgage Other mortgage \n", - "555953 07/01/2014 Mortgage Other mortgage \n", - "555954 07/10/2012 Mortgage Conventional fixed mortgage \n", - "555955 04/14/2015 Debt collection I do not know \n", - "555956 08/14/2014 Debt collection I do not know \n", + " date_received product sub_product \\\n", + "0 2013-08-30 Mortgage Other mortgage \n", + "1 2013-08-30 Mortgage Other mortgage \n", + "2 2013-08-30 Credit reporting NaN \n", + "3 2013-08-30 Student loan Non-federal student loan \n", + "4 2013-08-30 Debt collection Credit card \n", "\n", - " issue \\\n", - "0 Loan modification,collection,foreclosure \n", - "1 Loan servicing, payments, escrow account \n", - "2 Incorrect information on credit report \n", - "3 Repaying your loan \n", - "4 False statements or representation \n", - "... ... \n", - "555952 Loan modification,collection,foreclosure \n", - "555953 Loan servicing, payments, escrow account \n", - "555954 Loan modification,collection,foreclosure \n", - "555955 Communication tactics \n", - "555956 Cont'd attempts collect debt not owed \n", + " issue \\\n", + "0 Loan modification,collection,foreclosure \n", + "1 Loan servicing, payments, escrow account \n", + "2 Incorrect information on credit report \n", + "3 Repaying your loan \n", + "4 False statements or representation \n", "\n", - " sub_issue consumer_complaint_narrative \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 Account status NaN \n", - "3 Repaying your loan NaN \n", - "4 Attempted to collect wrong amount NaN \n", - "... ... ... \n", - "555952 NaN NaN \n", - "555953 NaN NaN \n", - "555954 NaN NaN \n", - "555955 Frequent or repeated calls NaN \n", - "555956 Debt is not mine NaN \n", + " sub_issue consumer_complaint_narrative \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 Account status NaN \n", + "3 Repaying your loan NaN \n", + "4 Attempted to collect wrong amount NaN \n", "\n", - " company_public_response company state zipcode \\\n", - "0 NaN U.S. Bancorp CA 95993 \n", - "1 NaN Wells Fargo & Company CA 91104 \n", - "2 NaN Wells Fargo & Company NY 11764 \n", - "3 NaN Navient Solutions, Inc. MD 21402 \n", - "4 NaN Resurgent Capital Services L.P. GA 30106 \n", - "... ... ... ... ... \n", - "555952 NaN Bank of America NaN NaN \n", - "555953 NaN Residential Credit Solutions NaN NaN \n", - "555954 NaN BB&T Financial NaN NaN \n", - "555955 NaN Global Recovery Group NaN NaN \n", - "555956 NaN CCS Financial Services, Inc. NaN NaN \n", + " company_public_response company state zipcode tags \\\n", + "0 NaN U.S. Bancorp CA 95993 NaN \n", + "1 NaN Wells Fargo & Company CA 91104 NaN \n", + "2 NaN Wells Fargo & Company NY 11764 NaN \n", + "3 NaN Navient Solutions, Inc. MD 21402 NaN \n", + "4 NaN Resurgent Capital Services L.P. GA 30106 NaN \n", "\n", - " tags consumer_consent_provided submitted_via \\\n", - "0 NaN NaN Referral \n", - "1 NaN NaN Referral \n", - "2 NaN NaN Postal mail \n", - "3 NaN NaN Email \n", - "4 NaN NaN Web \n", - "... ... ... ... \n", - "555952 NaN NaN Referral \n", - "555953 Older American, Servicemember NaN Referral \n", - "555954 NaN NaN Phone \n", - "555955 NaN NaN Phone \n", - "555956 NaN NaN Phone \n", + " consumer_consent_provided submitted_via date_sent_to_company \\\n", + "0 NaN Referral 2013-09-03 \n", + "1 NaN Referral 2013-09-03 \n", + "2 NaN Postal mail 2013-09-18 \n", + "3 NaN Email 2013-08-30 \n", + "4 NaN Web 2013-08-30 \n", "\n", - " date_sent_to_company company_response_to_consumer timely_response \\\n", - "0 09/03/2013 Closed with explanation Yes \n", - "1 09/03/2013 Closed with explanation Yes \n", - "2 09/18/2013 Closed with explanation Yes \n", - "3 08/30/2013 Closed with explanation Yes \n", - "4 08/30/2013 Closed with explanation Yes \n", - "... ... ... ... \n", - "555952 07/07/2014 Closed with explanation Yes \n", - "555953 07/23/2014 Closed with explanation No \n", - "555954 11/18/2013 Closed with explanation Yes \n", - "555955 04/14/2015 Untimely response No \n", - "555956 08/18/2014 Closed with explanation Yes \n", + " company_response_to_consumer timely_response consumer_disputed? \\\n", + "0 Closed with explanation Yes Yes \n", + "1 Closed with explanation Yes Yes \n", + "2 Closed with explanation Yes No \n", + "3 Closed with explanation Yes Yes \n", + "4 Closed with explanation Yes Yes \n", "\n", - " consumer_disputed? complaint_id \n", - "0 Yes 511074 \n", - "1 Yes 511080 \n", - "2 No 510473 \n", - "3 Yes 510326 \n", - "4 Yes 511067 \n", - "... ... ... \n", - "555952 No 919529 \n", - "555953 No 918447 \n", - "555954 No 114550 \n", - "555955 No 1329963 \n", - "555956 No 984116 \n", - "\n", - "[555957 rows x 18 columns]" + " complaint_id \n", + "0 511074 \n", + "1 511080 \n", + "2 510473 \n", + "3 510326 \n", + "4 511067 " ] }, - "execution_count": 3, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df = pd.read_csv('consumer_complaints.csv', low_memory=False)\n", - "df" + "df = pd.read_csv('consumer_complaints.csv', parse_dates=['date_received', 'date_sent_to_company'], low_memory=False)\n", + "df.head()" ] }, { - "cell_type": "code", - "execution_count": 4, - "id": "73bf52d6", + "cell_type": "markdown", + "id": "8f01fecb", "metadata": {}, - "outputs": [], "source": [ - "#Drop NaN values for states\n", - "df_clean_states = df[df['state'].notna()] " + "Having a clean dataset allows for higher accuracy in visualizing, analyzing and in this case predicting on the dataset. In order to make the most efficient use of the above data, I am checking for the number of empty/NaN rows:" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "bfd962a4", + "execution_count": 26, + "id": "73bf52d6", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "State is CA with disputes: 17615\n" - ] + "data": { + "text/plain": [ + "date_received 0\n", + "product 0\n", + "sub_product 158322\n", + "issue 0\n", + "sub_issue 343335\n", + "consumer_complaint_narrative 489151\n", + "company_public_response 470833\n", + "company 0\n", + "state 4887\n", + "zipcode 4505\n", + "tags 477998\n", + "consumer_consent_provided 432499\n", + "submitted_via 0\n", + "date_sent_to_company 0\n", + "company_response_to_consumer 0\n", + "timely_response 0\n", + "consumer_disputed? 0\n", + "complaint_id 0\n", + "dtype: int64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "#State with most disputes:\n", - "disputed_complaint = df[df['consumer_disputed?'] == 'Yes']\n", - "states = disputed_complaint['state']\n", - "states_clean = states.dropna().values\n", - "disp_states, counts = np.unique(states_clean, return_counts=True)\n", - "state = disp_states[np.argmax(counts)]\n", - "print(\"State is\", state, \"with disputes:\", counts[np.argmax(counts)])" + "#Check NaNs\n", + "df.isna().sum()" + ] + }, + { + "cell_type": "markdown", + "id": "ab4ba910", + "metadata": {}, + "source": [ + "From the above output it is evident that the dataset if populated with many NaNs. However, removing all NaN values can cause overfitting in the prediction model and inaccuracies in the data analysis.\n", + "\n", + "So, keeping threshold of *column contains >= 10% NaNs* we will clean each column" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "59075f2b", + "execution_count": 27, + "id": "9d108372", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "sub_product 0.284774\n", + "sub_issue 0.617557\n", + "consumer_complaint_narrative 0.879836\n", + "company_public_response 0.846887\n", + "tags 0.859775\n", + "consumer_consent_provided 0.777936\n", + "dtype: float64" ] }, - "execution_count": 7, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFkAAAIICAYAAAC1nzFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA01klEQVR4nO3de5hsV10n/O/PRGNQuRgihiRwuASERAySF1CEQaMQQCEoSPKioDIGGfAVFCVBZ2SciUQHJprh9oJgwJEE5BohEZCIgAbhACE3QBII5JAYjqDAyM2ENX/s3UmdOtVdVd3rpE/nfD7P009Xr9q/vXdV76ra9d1rr12ttQAAAACwMd+y2SsAAAAAcHMgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA723+wVWK/b3va2bdu2bZu9GgAAAMA+5IMf/OA/t9YOnnXflg1Ztm3blu3bt2/2agAAAAD7kKr69Gr3OV0IAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA62H/eBFX1iiQ/meRzrbWjxrbXJLn7OMmtk/xra+3oqtqW5KNJPj7e977W2q+MNfdJcmaSA5Ocm+TXWmutqg5I8qok90ny+SSPa61d2ePBwd5k28lvXbrmytMesQfWBAAAgD1hkZ4sZyY5brKhtfa41trRrbWjk7w+yRsm7r5i5b6VgGX04iQnJTli/FmZ55OS/Etr7a5JTk/yB+t5IAAAAACbaW7I0lp7d5IvzLqvqirJzyY5a615VNUhSW7ZWrugtdYy9Fw5frz7UUleOd5+XZJjx/kCAAAAbBkbHZPlgUmuba19YqLtTlX14ar626p64Nh2aJIdE9PsGNtW7rsqSVpr1yX5YpKDZi2sqk6qqu1VtX3nzp0bXHUAAACAfjYaspyYXXuxXJPkDq21eyf59SSvrqpbJpnVM6WNv9e6b9fG1l7aWjumtXbMwQcfvIHVBgAAAOhr7sC3q6mq/ZP8dIYBa5MkrbWvJ/n6ePuDVXVFkrtl6Lly2ET5YUmuHm/vSHJ4kh3jPG+VVU5PAgAAANhbbaQny48n+Vhr7YbTgKrq4Krab7x95wwD3H6ytXZNki9X1f3H8VaekOTNY9k5SZ443n5MkvPHcVsAAAAAtoy5IUtVnZXkgiR3r6odVfWk8a4TsvuAtw9KclFVfSTDILa/0lpb6ZXylCR/kuTyJFckOW9sf3mSg6rq8gynGJ28gccDAAAAsCnmni7UWjtxlfZfmNH2+gyXdJ41/fYkR81o/1qSx85bDwAAAIC92UYHvgUAAAAgQhYAAACALoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHc0OWqnpFVX2uqi6ZaHtOVX22qi4cfx4+cd8pVXV5VX28qh460X6fqrp4vO+Mqqqx/YCqes3Y/g9Vta3zYwQAAADY4xbpyXJmkuNmtJ/eWjt6/Dk3SarqnklOSHLkWPOiqtpvnP7FSU5KcsT4szLPJyX5l9baXZOcnuQP1vlYAAAAADbN3JCltfbuJF9YcH6PSnJ2a+3rrbVPJbk8yX2r6pAkt2ytXdBaa0leleT4iZpXjrdfl+TYlV4uAAAAAFvFRsZkeVpVXTSeTnSbse3QJFdNTLNjbDt0vD3dvktNa+26JF9MctCsBVbVSVW1vaq279y5cwOrDgAAANDXekOWFye5S5Kjk1yT5Plj+6weKG2N9rVqdm9s7aWttWNaa8ccfPDBS60wAAAAwJ60rpCltXZta+361to3k7wsyX3Hu3YkOXxi0sOSXD22HzajfZeaqto/ya2y+OlJAAAAAHuFdYUs4xgrKx6dZOXKQ+ckOWG8YtCdMgxw+/7W2jVJvlxV9x/HW3lCkjdP1DxxvP2YJOeP47YAAAAAbBn7z5ugqs5K8uAkt62qHUl+N8mDq+roDKf1XJnkyUnSWru0ql6b5LIk1yV5amvt+nFWT8lwpaIDk5w3/iTJy5P8WVVdnqEHywkdHhcAAADATWpuyNJaO3FG88vXmP7UJKfOaN+e5KgZ7V9L8th56wEAAACwN9vI1YUAAAAAGAlZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHcwNWarqFVX1uaq6ZKLtf1TVx6rqoqp6Y1XdemzfVlVfraoLx5+XTNTcp6ourqrLq+qMqqqx/YCqes3Y/g9Vta3/wwQAAADYsxbpyXJmkuOm2t6R5KjW2r2S/GOSUybuu6K1dvT48ysT7S9OclKSI8aflXk+Kcm/tNbumuT0JH+w9KMAAAAA2GRzQ5bW2ruTfGGq7e2ttevGP9+X5LC15lFVhyS5ZWvtgtZaS/KqJMePdz8qySvH269LcuxKLxcAAACAraLHmCy/lOS8ib/vVFUfrqq/raoHjm2HJtkxMc2OsW3lvquSZAxuvpjkoFkLqqqTqmp7VW3fuXNnh1UHAAAA6GNDIUtV/XaS65L8+dh0TZI7tNbuneTXk7y6qm6ZZFbPlLYymzXu27WxtZe21o5prR1z8MEHb2TVAQAAALraf72FVfXEJD+Z5NjxFKC01r6e5Ovj7Q9W1RVJ7pah58rkKUWHJbl6vL0jyeFJdlTV/klulanTkwAAAAD2duvqyVJVxyV5VpJHtta+MtF+cFXtN96+c4YBbj/ZWrsmyZer6v7jeCtPSPLmseycJE8cbz8myfkroQ0AAADAVjG3J0tVnZXkwUluW1U7kvxuhqsJHZDkHeMYte8bryT0oCS/V1XXJbk+ya+01lZ6pTwlw5WKDswwhsvKOC4vT/JnVXV5hh4sJ3R5ZAAAAAA3obkhS2vtxBnNL19l2tcnef0q921PctSM9q8leey89QAAAADYm/W4uhAAAADAPk/IAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6GD/zV4BgLVsO/mtS01/5WmP2ENrAgAAsDY9WQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADuaGLFX1iqr6XFVdMtH23VX1jqr6xPj7NhP3nVJVl1fVx6vqoRPt96mqi8f7zqiqGtsPqKrXjO3/UFXbOj9GAAAAgD1ukZ4sZyY5bqrt5CTvbK0dkeSd49+pqnsmOSHJkWPNi6pqv7HmxUlOSnLE+LMyzycl+ZfW2l2TnJ7kD9b7YAAAAAA2y9yQpbX27iRfmGp+VJJXjrdfmeT4ifazW2tfb619KsnlSe5bVYckuWVr7YLWWkvyqqmalXm9LsmxK71cAAAAALaK9Y7JcrvW2jVJMv7+nrH90CRXTUy3Y2w7dLw93b5LTWvtuiRfTHLQrIVW1UlVtb2qtu/cuXOdqw4AAADQX++Bb2f1QGlrtK9Vs3tjay9trR3TWjvm4IMPXucqAgAAAPS33pDl2vEUoIy/Pze270hy+MR0hyW5emw/bEb7LjVVtX+SW2X305MAAAAA9mrrDVnOSfLE8fYTk7x5ov2E8YpBd8owwO37x1OKvlxV9x/HW3nCVM3KvB6T5Pxx3BYAAACALWP/eRNU1VlJHpzktlW1I8nvJjktyWur6klJPpPksUnSWru0ql6b5LIk1yV5amvt+nFWT8lwpaIDk5w3/iTJy5P8WVVdnqEHywldHhkAAADATWhuyNJaO3GVu45dZfpTk5w6o317kqNmtH8tY0gDAAAAsFX1HvgWAAAAYJ8kZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHSw7pClqu5eVRdO/Hypqp5eVc+pqs9OtD98ouaUqrq8qj5eVQ+daL9PVV083ndGVdVGHxgAAADATWn/9Ra21j6e5Ogkqar9knw2yRuT/GKS01trz5ucvqrumeSEJEcmuX2Sv66qu7XWrk/y4iQnJXlfknOTHJfkvPWuGwAAAJtj28lvXWr6K097xB5aE7jp9Tpd6NgkV7TWPr3GNI9KcnZr7euttU8luTzJfavqkCS3bK1d0FprSV6V5PhO6wUAAABwk+gVspyQ5KyJv59WVRdV1Suq6jZj26FJrpqYZsfYduh4e7p9N1V1UlVtr6rtO3fu7LTqAAAAABu37tOFVlTVtyV5ZJJTxqYXJ/lvSdr4+/lJfinJrHFW2hrtuze29tIkL02SY445ZuY0AABwc7Ps6ReJUzAANkOPniwPS/Kh1tq1SdJau7a1dn1r7ZtJXpbkvuN0O5IcPlF3WJKrx/bDZrQDAAAAbBk9QpYTM3Gq0DjGyopHJ7lkvH1OkhOq6oCqulOSI5K8v7V2TZIvV9X9x6sKPSHJmzusFwAAAMBNZkOnC1XVLZL8RJInTzT/YVUdneGUnytX7mutXVpVr01yWZLrkjx1vLJQkjwlyZlJDsxwVSFXFgIAAAC2lA2FLK21ryQ5aKrt59eY/tQkp85o357kqI2sCwAAAMBm6nV1IQAAAIB9mpAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQwYZClqq6sqourqoLq2r72PbdVfWOqvrE+Ps2E9OfUlWXV9XHq+qhE+33GedzeVWdUVW1kfUCAAAAuKn16Mnyo621o1trx4x/n5zkna21I5K8c/w7VXXPJCckOTLJcUleVFX7jTUvTnJSkiPGn+M6rBcAAADATWZPnC70qCSvHG+/MsnxE+1nt9a+3lr7VJLLk9y3qg5JcsvW2gWttZbkVRM1AAAAAFvCRkOWluTtVfXBqjppbLtda+2aJBl/f8/YfmiSqyZqd4xth463p9sBAAAAtoz9N1j/gNba1VX1PUneUVUfW2PaWeOstDXad5/BEOSclCR3uMMdll1XAAAAgD1mQz1ZWmtXj78/l+SNSe6b5NrxFKCMvz83Tr4jyeET5YcluXpsP2xG+6zlvbS1dkxr7ZiDDz54I6sOAAAA0NW6Q5aq+o6q+q6V20kekuSSJOckeeI42ROTvHm8fU6SE6rqgKq6U4YBbt8/nlL05aq6/3hVoSdM1AAAAABsCRs5Xeh2Sd44Xm15/ySvbq39VVV9IMlrq+pJST6T5LFJ0lq7tKpem+SyJNcleWpr7fpxXk9JcmaSA5OcN/4AAAAAbBnrDllaa59M8gMz2j+f5NhVak5NcuqM9u1JjlrvugAAAABsto0OfAtws7Xt5LcuXXPlaY/YA2sCAABsBRu9hDMAAAAAEbIAAAAAdCFkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB3sv9krAAAAN5VtJ791qemvPO0Re2hNALg50pMFAAAAoAMhCwAAAEAHQhYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhg/81eAQBuXrad/Nala6487RF7YE0AAOCmpScLAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6MAlnAHgZmDZS2e7bDawVXh/YxnLbi+JbYa+9GQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOhCwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6EDIAgAAANDB/pu9AgAAwJ617eS3LjX9lac9Yg+tCcDNm54sAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgZAFAAAAoAMhCwAAAEAHQhYAAACADvbf7BUAAOCmte3kty5dc+Vpj9gDawIANy96sgAAAAB0IGQBAAAA6EDIAgAAANCBkAUAAACgAyELAAAAQAdCFgAAAIAOXMIZANhUy15O2KWEAYC9lZ4sAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOjAwLewoGUHZkwMzggAALAvWXdPlqo6vKr+pqo+WlWXVtWvje3PqarPVtWF48/DJ2pOqarLq+rjVfXQifb7VNXF431nVFVt7GEBAAAA3LQ20pPluiS/0Vr7UFV9V5IPVtU7xvtOb609b3LiqrpnkhOSHJnk9kn+uqru1lq7PsmLk5yU5H1Jzk1yXJLzNrBuAAAAADepdfdkaa1d01r70Hj7y0k+muTQNUoeleTs1trXW2ufSnJ5kvtW1SFJbtlau6C11pK8Ksnx610vAAAAgM3QZeDbqtqW5N5J/mFselpVXVRVr6iq24xthya5aqJsx9h26Hh7uh0AAABgy9hwyFJV35nk9Ume3lr7UoZTf+6S5Ogk1yR5/sqkM8rbGu2zlnVSVW2vqu07d+7c6KoDAAAAdLOhqwtV1bdmCFj+vLX2hiRprV07cf/Lkrxl/HNHksMnyg9LcvXYftiM9t201l6a5KVJcswxx8wMYgAAAGCrWfZqpq5kunfayNWFKsnLk3y0tfY/J9oPmZjs0UkuGW+fk+SEqjqgqu6U5Igk72+tXZPky1V1/3GeT0jy5vWuFwAAAMBm2EhPlgck+fkkF1fVhWPbs5OcWFVHZzjl58okT06S1tqlVfXaJJdluDLRU8crCyXJU5KcmeTADFcVcmUhAAAAYEtZd8jSWntvZo+ncu4aNacmOXVG+/YkR613XQAAAAA2W5erCwEAAADs6zY08C0A0Meyg90lBrwDANjb6MkCAAAA0IGQBQAAAKADIQsAAABAB8ZkgS1i2fEajNUAAABw09KTBQAAAKADIQsAAABAB0IWAAAAgA6ELAAAAAAdCFkAAAAAOhCyAAAAAHQgZAEAAADoQMgCAAAA0IGQBQAAAKADIQsAAABAB0IWAAAAgA723+wVAAAAYO+x7eS3Ll1z5WmP2ANrAluPniwAAAAAHQhZAAAAADoQsgAAAAB0IGQBAAAA6MDAtwDAPmvZwR0N7MhG7Kvbm0FUgX2JniwAAAAAHQhZAAAAADoQsgAAAAB0YEwW2Ac4Fxq4ufL+BtxceX+DrUnIAgAAAFuYUG7v4XQhAAAAgA6ELAAAAAAdCFkAAAAAOjAmC0tzvh+wJy37HuP9BQCAvYWeLAAAAAAdCFkAAAAAOhCyAAAAAHRgTBYA6MR4MgAA+zY9WQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQgYFvAWBk4FoAADZCTxYAAACADoQsAAAAAB04XQjYo5Y9/SJxCgYA7E18lgMsTk8WAAAAgA70ZAHmMhgoAAA3BT2n2OqELAAAm0CADQA3P0IWAG42HP2Cmz/hFAB7M2OyAAAAAHSgJwtbiqPU7Cts69yUbG+wGK8VAOYRsgDcDOlODwCbSygH+yYhCwC7EdIAe4ovngDcnBmTBQAAAKADIQsAAABAB04XAgAAbpacngaLcap4P3qyAAAAAHSgJwsAwBbkqCPA3kXPKZK9qCdLVR1XVR+vqsur6uTNXh8AAACAZewVPVmqar8kL0zyE0l2JPlAVZ3TWrtsc9fs5knCCgBshF40sPfzOuWmZHu70d7Sk+W+SS5vrX2ytfaNJGcnedQmrxMAAADAwvaKnixJDk1y1cTfO5Lcb5PWZUvYyknhVl53WIZtHQBga7H/xkZVa22z1yFV9dgkD22t/cfx759Pct/W2q9OTXdSkpPGP++e5OM36YredG6b5J83odayN6d+X132Ruv31WVvtH5fXfZG6/fVZW+0fl9d9kbr99Vlb7R+X132Ruv31WVvtN6yt179vrrsjdZv9rrvre7YWjt45j2ttU3/SfJDSd428fcpSU7Z7PXaxOdj+2bUWva+t+6et6237K287p63rbfsrbzunrett+ytvO6et6237K287vvqsrfyunve1l+/FX/2ljFZPpDkiKq6U1V9W5ITkpyzyesEAAAAsLC9YkyW1tp1VfW0JG9Lsl+SV7TWLt3k1QIAAABY2F4RsiRJa+3cJOdu9nrsJV66SbWWvTn1++qyN1q/ry57o/X76rI3Wr+vLnuj9fvqsjdav68ue6P1++qyN1q/ry57o/WWvfXq99Vlb7R+s9d9y9krBr4FAAAA2Or2ljFZAAAAALY0Icsmq6pHV1Wrqu+bar/32P7QZeqraltVfbWqLpz4ecIStZdM3P/LVfWhqrrNeuqXfexT635ZVb2kqmZuowvUvqqqvnWJZX9LVZ1RVZdU1cVV9YGqutOCtU+der4vGe+/x4za762qs6vqinE9z62qu433PaOqvlZVt1pluTNrq+rIqjq/qv6xqj5RVf+5qmrBefxNVX1lXO8vVNWnxtt/PVV3/dh+aVV9pKp+ffJ/U1X3rap3V9XHq+pjVfUnVXWLReqr6sFV9cWp5/DHZ6z79VPTbBtr3zLrsS5Q16rqSRPT3Xtse+ZU/e2q6tVV9cmq+mBVXVBVj564/4+r6rOzttXVaqvqF6rqBVPTvquqjpkxj/8z9fcNtVX1nOn1XaB+ze1stfq68TX24ar6aFW9v6qeuGT9wu8PM2pbVf3qxH0vqKpfWKtuvP3w8XVxh6q6+/g8Xzg+hpndV1epP7+qnjLRfr+quqiq9l+tdsZ8V91WxvtbVf3ZxN/7V9XO6W28qt5cVRcsUztuNzvH/98nquptVfXD66iffC3dc4naudv7OuezSM03q+peE9NcUlXbFn3Oq+r48X/9sRo+H45f5/N2WVX98pLrf7uqeksN75uXVdW5i9RW1S9O/J++Ma73hVV12lT98yf+fmZVPWfi7yeMz9Wl47KfuUhtDe9Lnx2X94mqesPKtjLjsS8yj5WfWy9RO/0+fmVV3XYd6zA9n3nTt6q668T9zxjbjpk3jxo+l6Zf1/tX1bVVdcgC9Q+p4TOmxvb9xudt8nV+WA3vH5+oYT/gj6vq22rGZ2lVnVlVj5lqW6i+qv57De8xByxR/8Ua3p8+VlXPm/5fjfUrn+eXVNVf1LifMT5P/1xVz51VN6d2sv0vJ7ez1eqq6vSqevrENG+rqj+Z+Pv5VfXrc9bhhmXVnM/HqvrtGl6HF43196uqb62q08bn8pIaPpMftkT9u2rYZ1t5b3vBjMd+UN34+vun2vU1ueb7x5z6K2rY3/zucbrbjH/fcap+t+elhm393+rG99TJ7zyPmZjuXTX1Haqqnl5VL6qqg6vq36vqyas953Pmce6c/9esuv88ru+Ftcr+9qLb1bztfYn5XLJkTauqu08t64+q6rcWrP9GVX3/RNtvVdVLZj+LW5+QZfOdmOS9Ga6oNKv9xHXUX9FaO3ri51VLLjtV9fNJfjXJQ1pr/7Js/YJWXfck90pyzyTHr6P2+5McluRnl1j245LcPsm9Wmvfn+TRSf51kdrW2gsnn+8MV8b689baRyeLqqqSvDHJu1prd2mt3TPJs5PcbmK+HxiXnSVqz0lyWmvtbkl+IMkPJ/lPC87jGUkeOrHevzk+jumQ46tj+5FJfiLJw5P87jjf2yX5iyTPaq3dPck9kvxVku9apH70nqltdpeQZ2oeKz9XzphmltXqLs7wf19xQpKPTBaOz9mbkry7tXbn1tp9xukOG+//lgz/r6uSPGiZ2k206na2gCtaa/durd0jw2N5RlX9Yte1W93nkvxaDVegW0hVHZvkfyU5rrX2mSRnJDl93A7uMd63UH2G5+03x52zb0nygiT/qbV23YLrsuq2MuHfkhxVVQeOf/9Eks9OzefWSX4wya1r1yB4bm2S14z/vyOSnJbkDXVjGLxo/eRr6bIlahexnvksUrMjyW+vp76qfiDJ85I8qrX2fUkemeR5dWNos/DzluTBSX5/fM9cdP1/L8k7Wms/ML5nn7xIbWvtTyc+k65O8qPj35P1X0/y0zU7fHhYkqdn2Ac4MsM298VFakcrr7MjkrwmyflVdfDUNIvOY+XnX5eoXdSy85k3/cXZdb/kMUkum5pmtXm8O8lhNQaAox9Pcklr7Zp59a21tyf5dJKVgwe/muQDrbW/T274THpDkjeN/5e7JfnOJKeu8lh2sWh9Vf12kgckOb619vUl6t/TWrt3knsn+cmqesCM1Vj5PD8qyTeS/MrY/pAkH0/ys+NyZlmtdrL9C0meukDd32fY11p5b79tkiMnan44yd/NWYdZy9pNVf1Qkp9M8oOttXtl2CauSvLfkhyS5Khxfj+VXfe75tUnyePHtntl2K7ePFnbWvv8xPvISzLxmswCr5016u+S5MUZPocy/n5pa+3T856P0e+O83x4dv3O87qJac7K7t9PThjbH5vkfZn/HWu1eawa5q1R94gkT56zv73odjVve1/P9rlIzV9NPq5xusdkeI9fpP7UJC+qwaFJnpzklBnrf7MgZNlEVfWdGT6InpRdN9rKsNH+QpKHVNW3L1O/kWWP9/1shh25h7TW/rn3shepH7+4/H2Su07ft0Dt9Unen+TQJZZ9SJJrWmvfHOexY1a4NG/ZVfWgDOHObiFHkh9N8u+ttRtS29baha2191TVXTLsbPxOZr/pz6zNsJPyd+POVVprX0nytOy6Iz53+TOmXVVr7XNJTkrytHFbfWqSV7bWLhjvb62117XWrl2wfrN8Jsm313CkuDJ8kT5vapofS/KNqefs0621lS/nP5rkkgw7C9P/t3m1N7kFtrOFtdY+meTXk/x/HVZtETuTvDPJ3N4zSVJVD0zysiSPaK1dMTYfkuELd5KktXbxovXj9vy8JH+YYSf7otbae5dY/7W2lUnnZdgZyzjdWVP3/0ySv0xydnZ/D5pXe4PW2t9kGIjupPXUr2O99+R85tW8JcmR00fgFqx/ZpLfb619KknG389N8pvLrvP43ndFkjtO3bVW/fQ2e9EStfNcl2EbeMaM+05J8szW2tXjcr/WWnvZgrW7aK29Jsnbk/y/Syx/no3UbmQ+86Z/U5JHJUlV3TlDMLVzkXmM+x9/kd3D/+n/6Vrr8Iwkp1TVkRn2BZ41cd+PJflaa+1Px+VdP07/S0luMT2jGebWV9VvZPji+1Otta8uWz+2fzXJhVllH27Ce3LjPuKJSf44w+f6/Rd4LJO1ky6Ys9yVur/L+IUywxfJS5J8uYYeGQdkONj04TnrMG9ZKw5J8s8rgdW4X/6vSX45ya9OtF/bWnvtIvUrr+sVrbVvJPmtJHcYg+VFbPQ1eHqS+4+9H34kyfPXnnxpr8sQ1h2QDL1iMhxMXTmA/RsZQs21/gerzWPHGjXzlr2WRberedv7IvOZ/o6zSM2zsut+x4OSXDmGY4vUPzfJNUmekOH//5xZ37VuLoQsm+v4JH/VWvvHJF+oqh8c2x+Q5FPjF4N3ZfjAWqb+LrVrF9sHLlF7xwxHaB/SWvundaz7otasr6Eb57EZjgotW/vtSe6XIXFddNmvTfJT4/P1/Kq697LrPR5h/tMkT2ytfWlG7VFJPrjKfFd2jt+T5O5V9T0L1h453T5uN99ZVbdcYvlLGb9gf0uS71nPfKfqk+SBU9vsXWaUHThx/xuXWNxada/LcETjh5N8KMORmUlHju2rWfm/vTHDB+rkKWrzahc1uf4XZjiyvV7ztrNlfSjJ982dqp/TkvxGVe03Z7oDMhyRO7619rGJ9tMzHFE/r4Zu/Ldesv4lGXrY/WaGHdJlrLWtTDo7yQnj+9i9kvzDKvM5K7uHNfNqp03//+bVP27qdXrgemuT7HZq3DofwyI138wQjj17HfW7vccm2Z5dj9AttM7jl+47J7l8ieW/MMnLazi187er6vZL1C7ihUkeX7ufPrjI+/pqtbOs9l6x1jyeMbHN/M0Gai/M8AVnNcs8jnnTfynJVVV1VIbX52uWnMcNR8DHLyYPT/L6RevHHi9/lOEL/H9vrX1h4u5Z+wtfyvBF7a6Z+hzO0GsrS9Q/IEMA/bDW2qzTJufVZ3zct0lyRIaePTPVcJrmw5JcPL4PHZshTJ31vrhq7VT7fuN8zplXN4YU11XVHTLsP1yQ4bX3Qxne2y4ag4vV1mHNZU15e5LDazgl/EVV9R8yPF+fWWVfc5H63Yyh10ey3Gf6sq+dyeX9e4bP0tOTPH2t52s9Wmufz3DA9bix6YQMr8fDknxva+39Gfb9Hzd7DmvOY82rxqxW19raV5tZZLtKsrLtrLq9LzifbyxbM4b835wI4m4IgZd4TTw9Q4+Wg1trN5zuenMkZNlcJ2bYQcr4+8Q57YvWT58uNKunwmq1OzN84K11qs0y67hs/V3GD/e/S/LW1tp0z4JFaj+f4cNn+ojfqvWttR1J7p7h6N03k7yzhlMFFl12Mhyh/t+ttVldROc5IcnZ45GsN2T44r+Iyupv9nv60mEb7YUyWT99utAVM6afPO1nmVNd1qp7bYbneqEjwFX1whrGRvhADaetPDxD1+cvZfgwecgitVnuf7bL6U5J/su89VzDerez1dykPZHGXgTvz+5HxKf9e4aecE+abByPoN4jw9HiByd5X02NGTCn/ptJ/v8k5407UQtZZlsZ37e2Zdgmz528r4bTTO6a5L1j0Hvd+GVubu1qq7boskfTpwt9db21GYKK3azjMSxa8+oMR013G2trTv2s99hd2hZY/uPGz6azMnQXn/ziu2Z9a+1tGYKZl2X48vPhmjjtZj3P19T8v5TkVVlHj7Qla2e+V8yZx+kT28yPbqD26AynTM207HOwwPQrvcyOzxCqLjyP1toHMhwkuXuGL/Tvm3Wkd846vDDJfq21M6faV9tfWGl/z9RzNh0AzKu/fLy92ufgvPoHVtVFSf4pyVtWOdB34Pha2p5hX/XlGU6F+Zs29OR9fZJHrxLEz6qdbP98ku9O8o4F61aO3K98obxg4u+/X+U5mLes3YyB1X0y9DrcmeFL/oPn1a1VX6uMZ5YlP9M38v4xeliGng1HrXL/RvdvJ0/bOWHi75UeP4t8f5k1j/UuexHztqtFt/f1bJ+L1JyVIdjfP0Ovvb9Ypn4MY87P8J3pZm3/+ZOwJ1TVQRm6Th5VVS1DMtmq6uQM3cEfWcN5rZXkoKr6rtbal+fVJ3nRepc91n4lw5vee6vqc621P1+yft2PfaxfGVdl3bU1DBD3rqp6ZGvtnEXqq+q32tCV8rwk51XVtRl2kN65SG2Grm/bkvz8Gg/90gyngU0/pntlOGrzjhrOnvm2JJ/MsKO0Zu3YPj0WyJ2T/J/J7WXOPJY2LuP6DONkXJrhA/zNaxatXn+PHuu0Hq21f6qqf88wlsGv5caujisuzfB6XJn+qTWcf7w9wxGKW2U4kpYM3Z2/kuStC9R+Psn0gNLfnWTm6Xk9LLidLeveST46d6q+fj9DD6RVj3JmCEp/NslfV9WzW2u/v3LH+AH/iiSvqGHQt1lH7FetH+/75pLrPG9bmXZOhlOTHpzkoIn2x2XYbj41zueWGXbefmeB2llm/f+WqV90vZe1nvmsWdNau66GQRqfNX3fnPpLc+ORvxU/mN3H2Vhr+a9prT1tves/hjKvTvLqGgYXfVB27d2w0ef9jzL0NPnTibaV9/Xz11E7y72zSrC2xDx6125kPmtN/5dJ/keS7a21L9XqZ8WuNo+VkOYeWfuL2cz61to3x32Uabt8JiVJDT1eD89wGts88+qvTfL4DAepPt+GUxKXqX9Pa+0na7gYwHur6o1tOC160len9xGr6sQkD6iqK8emgzKcnjk9tttutZPtY2+Mt2Q4BfqMBepWxqD4/gynRlyV4RSUL2X4jJll3rJmGnuZvCvDvu3FGcayuMP0d4Ml6nc77Xb8ov79Wf4z/Y+yjtdgVR2dYd/r/hn+32e3XcceSlbfV/rUgot5U5L/WUOv8wNbax+qYTDW21XV48dpbl9VR7TWPrHEPLatZ9kLrvO87eoXs9j2vp7tc5GaszL0jvrbDL1TPreOZa5nP2rL0ZNl8zwmyataa3dsrW1rrR2e4U3jd5J8pLV2+Nh+xww7U8cvWL/IoJpr1rbWdmb4UvD7NfvqRhtZ9h5d93H9r8kwJsmswZRWq39Qjd2waxiw6V4ZBpBbqDZD17fHt7UHwTw/yQE1cXWJqvp/MpxX+Zxxnttaa7dPcmjtOsr6arWfSPIjNV6NZ+w2e0aGrvELLX+1rqOrGY+iviTJC1prLcPpZU+sqvtNTPNzVfW9C9Zvtv+SYdDe62fcd36GcVueMtG2cu74iUn+48r/LcmdMoyhdIsFaj+Q4UPye5OkhitPHJAbB6PbE07M/O1sYeNOxvMyZ/DY3tpw+s5lGY7mrDXdV8ZpHl/jVaSq6rgaT9MZn/uDssrAqrPqN2DetjLtFUl+r+0+ZsyJGQbxXZnPymDKi9TuYnzdn5Shh8TS9Uuu900xn0Vqzsww6OP0AKxr1T8vwxgX25IbtvtnZ/fxAzb62GfWV9WP1Y1XQfmuJHfJcDS927LHEOe12bXn1nOT/OHEe9QBVbXb0epVandRVT+ToXfDamPVzJ3Hkuu+tGXns9b0bejh9azMGVB2jXmcleTnMhzUWfV0knU89ncmuUWNV5wcv1Q/P8Pr4is96tvQw+6nk/zv8Uv00ssf5/HcrB6I3mAMaX4kyR0m3hefmnWMOdZa+2KGHhnPrDWuTjnh7zJ8RnyhtXb9+P+4dYbTIy7otawarop3xETT0RkGPX15kjNqHAy+qg6pqp9bsP7TU9N8a4bn/Kq2ei/w1R7L0q/BGpLHF2c4TegzGULJ3a4o1YZeONfU2LO8hqsRHZf5Y5tM1r8rw3vkWTX0EPuO1tqhE9vLc7PG2JLT81jwIa67LmtvVx/J4tv7erbPuTVt6Gn++Qynb08/rnW/Jm6OhCyb58Ts3o309RkS3Vnt093jV6t/dnYfk2V6x2it2iQ3dMt/ZIajvfebmnat+rtX1Y6Jn1mnI8xd/hoWrX1Thg/z6fFoVqs/M8lfjke2L8owoNcLpqZbrfYXknxHhit1rDoWzhgoPDrJT9Rw+bpLkzwnw9HH6fm+MRNv+mvUXp2hu97vVNXHM5xj/IEZ6z5vHvOsjAtyaYa0/O1J/us432vHdX1eDZcD/GiSB2ZIrufWj6bHZFmmx82xU9vcDy1Rm9ba37fW3rTKfS1DwPkfarjc3vuTvDLDlZEemomeCK21f8vwwf9Tc2qfNT5nv5bk3Bq6Dv9RhtPW9mSyf0LmbGcLuEuNl3DOsFP1v9o4iOGCFnl/WMSpWSCUHT/gj8vw+nhUhi96l1TVR5K8LcPo/quOPTWjfhG3mHqMz86cbWXGcne01v54sm38cn+HDFdEWJnuU0m+NPkePat2wsq4KP+Y4T3zZ9rUVdAWrF/5+eElahe2nvksUtOG88HPyI1jQc2tb8OR9Gdl+Hz4WIZeCr/Vpo6wb/Sxr1F/nyTbaziN4oIkf9KGU0q6LXv0/AxXg1iZ57kZern99fi+/cGs3vt5l9rRM8Zt5BMZA4M2HMBZaPlT81j52bZE7XpMz2f/7D5O10LLba2d3RY7cr3bPNpw1a6vJDl/fK9Yqn41E/sAjx3/L/+Y5GtZbN9r4fpx+/zFJOfUxPhqSy7/JRkOfu12et+Un87wPE3+n96coTf4rFNB19Ra+3CGL7KLfC5enOG5f99U2xfbKheNWOeyvjPJK2u4/O9FGcYFe06Gg7I7k1w27ru+KbsPsrxWfZL8+dh2SYb92EU/56Yt+xr85Qyn9a+cLvWiJN9Xsw/6PSHDZ/CFGQ5e/dc2+5Ty1ZyV4cqbK6cGzdqPX+SUoZV5LGM9datuVxmC10W39/Vsn4vWnJXh9NXp53JDr4mbm2p7xYFkAADYO9QwUPrLxsAJABamJwsAAIxqGLfimxl6XQLAUvRkAQAAAOhATxYAAACADoQsAAAAAB0IWQAAAAA6ELIAAAAAdCBkAQAAAOhAyAIAAADQwf8F2ksMVQAfXTsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" } ], "source": [ - "#Bar plot of states and dispute counts:\n", - "fig1, ax1 = plt.subplots(figsize=(19, 9))\n", - "ax1.bar(disp_states, counts, align='center')" + "thresh = 0.10\n", + "col_nans = df.isna().mean(axis=0)\n", + "col_w_thresh = col_nans[col_nans >= thresh]\n", + "col_w_thresh" + ] + }, + { + "cell_type": "markdown", + "id": "d99b598e", + "metadata": {}, + "source": [ + "The above columns will now be dropped as they have too many NaNs to have any use in our dataset. \n", + "*NOTE:* Along with these, the *complaint_id* column will aso be dropped for not being relevant in our analysis" ] }, { "cell_type": "code", - "execution_count": 8, - "id": "17ec819c", + "execution_count": 28, + "id": "b92e9fc1", "metadata": {}, "outputs": [ { @@ -500,135 +373,273 @@ " \n", " \n", " \n", - " state\n", + " date_received\n", " product\n", " issue\n", - " count\n", + " company\n", + " state\n", + " zipcode\n", + " submitted_via\n", + " date_sent_to_company\n", + " company_response_to_consumer\n", + " timely_response\n", + " consumer_disputed?\n", " \n", " \n", " \n", " \n", " 0\n", - " AA\n", - " Bank account or service\n", - " Account opening, closing, or management\n", + " 2013-08-30\n", + " Mortgage\n", + " Loan modification,collection,foreclosure\n", + " U.S. Bancorp\n", + " CA\n", + " 95993\n", + " Referral\n", + " 2013-09-03\n", + " 1\n", + " 1\n", " 1\n", " \n", " \n", " 1\n", - " AA\n", - " Credit card\n", - " Identity theft / Fraud / Embezzlement\n", + " 2013-08-30\n", + " Mortgage\n", + " Loan servicing, payments, escrow account\n", + " Wells Fargo & Company\n", + " CA\n", + " 91104\n", + " Referral\n", + " 2013-09-03\n", + " 1\n", + " 1\n", " 1\n", " \n", " \n", " 2\n", - " AA\n", - " Credit card\n", - " Rewards\n", + " 2013-08-30\n", + " Credit reporting\n", + " Incorrect information on credit report\n", + " Wells Fargo & Company\n", + " NY\n", + " 11764\n", + " Postal mail\n", + " 2013-09-18\n", " 1\n", + " 1\n", + " 0\n", " \n", " \n", " 3\n", - " AA\n", - " Mortgage\n", - " Loan modification,collection,foreclosure\n", - " 2\n", - " \n", - " \n", - " 4\n", - " AA\n", - " Mortgage\n", - " Loan servicing, payments, escrow account\n", - " 2\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 4651\n", - " WY\n", - " Student loan\n", - " Can't repay my loan\n", - " 3\n", - " \n", - " \n", - " 4652\n", - " WY\n", - " Student loan\n", - " Dealing with my lender or servicer\n", - " 9\n", - " \n", - " \n", - " 4653\n", - " WY\n", + " 2013-08-30\n", " Student loan\n", - " Getting a loan\n", + " Repaying your loan\n", + " Navient Solutions, Inc.\n", + " MD\n", + " 21402\n", + " Email\n", + " 2013-08-30\n", + " 1\n", " 1\n", - " \n", - " \n", - " 4654\n", - " WY\n", - " Student loan\n", - " Problems when you are unable to pay\n", " 1\n", " \n", " \n", - " 4655\n", - " WY\n", - " Student loan\n", - " Repaying your loan\n", - " 9\n", + " 4\n", + " 2013-08-30\n", + " Debt collection\n", + " False statements or representation\n", + " Resurgent Capital Services L.P.\n", + " GA\n", + " 30106\n", + " Web\n", + " 2013-08-30\n", + " 1\n", + " 1\n", + " 1\n", " \n", " \n", "\n", - "

4656 rows × 4 columns

\n", "" ], "text/plain": [ - " state product issue \\\n", - "0 AA Bank account or service Account opening, closing, or management \n", - "1 AA Credit card Identity theft / Fraud / Embezzlement \n", - "2 AA Credit card Rewards \n", - "3 AA Mortgage Loan modification,collection,foreclosure \n", - "4 AA Mortgage Loan servicing, payments, escrow account \n", - "... ... ... ... \n", - "4651 WY Student loan Can't repay my loan \n", - "4652 WY Student loan Dealing with my lender or servicer \n", - "4653 WY Student loan Getting a loan \n", - "4654 WY Student loan Problems when you are unable to pay \n", - "4655 WY Student loan Repaying your loan \n", + " date_received product issue \\\n", + "0 2013-08-30 Mortgage Loan modification,collection,foreclosure \n", + "1 2013-08-30 Mortgage Loan servicing, payments, escrow account \n", + "2 2013-08-30 Credit reporting Incorrect information on credit report \n", + "3 2013-08-30 Student loan Repaying your loan \n", + "4 2013-08-30 Debt collection False statements or representation \n", "\n", - " count \n", - "0 1 \n", - "1 1 \n", - "2 1 \n", - "3 2 \n", - "4 2 \n", - "... ... \n", - "4651 3 \n", - "4652 9 \n", - "4653 1 \n", - "4654 1 \n", - "4655 9 \n", + " company state zipcode submitted_via \\\n", + "0 U.S. Bancorp CA 95993 Referral \n", + "1 Wells Fargo & Company CA 91104 Referral \n", + "2 Wells Fargo & Company NY 11764 Postal mail \n", + "3 Navient Solutions, Inc. MD 21402 Email \n", + "4 Resurgent Capital Services L.P. GA 30106 Web \n", + "\n", + " date_sent_to_company company_response_to_consumer timely_response \\\n", + "0 2013-09-03 1 1 \n", + "1 2013-09-03 1 1 \n", + "2 2013-09-18 1 1 \n", + "3 2013-08-30 1 1 \n", + "4 2013-08-30 1 1 \n", "\n", - "[4656 rows x 4 columns]" + " consumer_disputed? \n", + "0 1 \n", + "1 1 \n", + "2 0 \n", + "3 1 \n", + "4 1 " + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drops_l = list(col_w_thresh.index) + ['complaint_id']\n", + "df = df.drop(drops_l, axis=1)\n", + "\n", + "#Tokenizing Yes and No to 1 and 0 respectively\n", + "df = df.replace(['Yes', 'No'], [1, 0])\n", + "\n", + "df.loc[df['company_response_to_consumer'].str.contains(\"Closed\"), 'company_response_to_consumer'] = 1\n", + "df.loc[df['company_response_to_consumer'] != 1, 'company_response_to_consumer'] = 0\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "058a75dd", + "metadata": {}, + "source": [ + "### Data Analysis and Visualization\n", + "Since I will be mainly checking the count AND rate of disputed issues, the following functions will be used to get these metrics as a DataFrame:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "003c9fab", + "metadata": {}, + "outputs": [], + "source": [ + "#disp_cat = \"\"\n", + "def is_disputed(row, cat):\n", + " return df[(df['consumer_disputed?'] == 1) & (df[cat] == row[cat])]['consumer_disputed?'].sum()\n", + "\n", + "def get_count(cat, data=df):\n", + " #disp_cat = cat\n", + " df_by_cat = df[[cat, 'issue', 'consumer_disputed?']].groupby([cat]).count().reset_index()\n", + " \n", + " df_by_cat['consumer_disputed?'] = df_by_cat.apply(lambda r: is_disputed(r, cat), axis=1)\n", + " \n", + " df_by_cat['dispute_rate'] = df_by_cat.apply(lambda r: (r['consumer_disputed?'] / r['issue']) * 100, axis=1)\n", + " \n", + " return df_by_cat" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "e14ee9fa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State is CA with disputes: 17615\n" + ] + } + ], + "source": [ + "#State with most disputes using above function:\n", + "disp_st = get_count('state')\n", + "st_c = disp_st['consumer_disputed?']\n", + "m_st = disp_st['state'][pd.Series.argmax(st_c)]\n", + "m_c = disp_st['consumer_disputed?'][pd.Series.argmax(st_c)]\n", + "print(\"State is\", m_st, \"with disputes:\", m_c)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "54fb77df", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAIICAYAAADe938DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA06klEQVR4nO3dfbysZV0v/s83dhFWPoRkCNg2RVLIMPmpZXosSlFKsTQ3P0srT5hH+6VlCdY5ejqHpI4eipMPP01DOgmajySQmmRqYbpV5ElJUJQthDst9eRT4HX+uO8ls9eeWdfMrLXZy837/XrNa8265r6uue6Ze2bu+cx1X3e11gIAAAAAa/mmvd0BAAAAADY/IRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANC1ZW93YFl3vOMd29atW/d2NwAAAAD2Ge9///v/ubV20LTbvmFDpK1bt2b79u17uxsAAAAA+4yq+sSs2xzOBgAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdG3pLVBVr0jyk0k+3Vo7aix7dZIjxkVun+RfW2tHV9XWJB9OcuV423taa78y1rlvkjOTHJDk/CS/1lprVbV/krOS3DfJZ5I8rrV2zUasHHyj2XryeQvXuea04/dATwAAAGBX84xEOjPJcZMFrbXHtdaObq0dneR1SV4/cfPVK7etBEijFyc5Kcnh42WlzScl+ZfW2t2TnJ7k95dZEQAAAAD2nG6I1Fp7Z5LPTrutqirJzyY5e602qurgJLdtrV3UWmsZRh6dMN78qCSvHK+/NsmxY7sAAAAAbBLrnRPpQUluaK19dKLsrlX1war626p60Fh2SJIdE8vsGMtWbrs2SVprNyb5XJIDp91ZVZ1UVduravvOnTvX2XUAAAAA5rXeEOnE7DoK6fokd2mt3SfJryd5VVXdNsm0kUVt/LvWbbsWtvbS1toxrbVjDjrooHV0GwAAAIBFdCfWnqWqtiT56QwTYidJWmtfSfKV8fr7q+rqJPfIMPLo0Inqhya5bry+I8lhSXaMbd4uMw6fAwAAAGDvWM9IpB9P8pHW2tcPU6uqg6pqv/H692aYQPtjrbXrk3yhqh4wznf0hCRvGqudm+SJ4/XHJLlwnDcJAAAAgE2iGyJV1dlJLkpyRFXtqKonjTdty+4Taj84ySVV9aEMk2T/SmttZVTRU5L8SZKrklyd5IKx/OVJDqyqqzIcAnfyOtYHAAAAgD2gezhba+3EGeW/MKXsdUleN2P57UmOmlL+5SSP7fUDAAAAgL1nvRNrAwAAAHArIEQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQ1Q2RquoVVfXpqrpsouy5VfWpqrp4vDxi4rZTquqqqrqyqh42UX7fqrp0vO2MqqqxfP+qevVY/g9VtXWD1xEAAACAdZpnJNKZSY6bUn56a+3o8XJ+klTVvZJsS3LkWOdFVbXfuPyLk5yU5PDxstLmk5L8S2vt7klOT/L7S64LAAAAAHtIN0Rqrb0zyWfnbO9RSc5prX2ltfbxJFcluV9VHZzktq21i1prLclZSU6YqPPK8fprkxy7MkoJAAAAgM1hPXMiPa2qLhkPd7vDWHZIkmsnltkxlh0yXl9dvkud1tqNST6X5MBpd1hVJ1XV9qravnPnznV0HQAAAIBFLBsivTjJ3ZIcneT6JC8Yy6eNIGprlK9VZ/fC1l7aWjumtXbMQQcdtFCHAQAAAFjeUiFSa+2G1tpNrbWvJXlZkvuNN+1IctjEoocmuW4sP3RK+S51qmpLkttl/sPnAAAAALgFLBUijXMcrXh0kpUzt52bZNt4xrW7ZphA+72tteuTfKGqHjDOd/SEJG+aqPPE8fpjklw4zpsEAAAAwCaxpbdAVZ2d5CFJ7lhVO5I8J8lDquroDIedXZPkyUnSWru8ql6T5IokNyZ5amvtprGpp2Q409sBSS4YL0ny8iR/VlVXZRiBtG0D1gsAAACADdQNkVprJ04pfvkay5+a5NQp5duTHDWl/MtJHtvrBwAAAAB7z3rOzgYAAADArYQQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQFc3RKqqV1TVp6vqsomy/1FVH6mqS6rqDVV1+7F8a1V9qaouHi8vmahz36q6tKquqqozqqrG8v2r6tVj+T9U1daNX00AAAAA1mOekUhnJjluVdnbkhzVWrt3kn9McsrEbVe31o4eL78yUf7iJCclOXy8rLT5pCT/0lq7e5LTk/z+wmsBAAAAwB7VDZFaa+9M8tlVZW9trd04/vueJIeu1UZVHZzktq21i1prLclZSU4Yb35UkleO11+b5NiVUUoAAAAAbA4bMSfSLyW5YOL/u1bVB6vqb6vqQWPZIUl2TCyzYyxbue3aJBmDqc8lOXDaHVXVSVW1vaq279y5cwO6DgAAAMA81hUiVdVvJ7kxyZ+PRdcnuUtr7T5Jfj3Jq6rqtkmmjSxqK82scduuha29tLV2TGvtmIMOOmg9XQcAAABgAVuWrVhVT0zyk0mOHQ9RS2vtK0m+Ml5/f1VdneQeGUYeTR7ydmiS68brO5IclmRHVW1JcrusOnwOAAAAgL1rqZFIVXVckmcleWRr7YsT5QdV1X7j9e/NMIH2x1pr1yf5QlU9YJzv6AlJ3jRWOzfJE8frj0ly4UooBQAAAMDm0B2JVFVnJ3lIkjtW1Y4kz8lwNrb9k7xtnAP7PeOZ2B6c5Her6sYkNyX5ldbayqiip2Q409sBGeZQWplH6eVJ/qyqrsowAmnbhqwZAAAAABumGyK11k6cUvzyGcu+LsnrZty2PclRU8q/nOSxvX4AAAAAsPdsxNnZAAAAANjHCZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0bdnbHQDYaFtPPm/hOtecdvwe6AkAAMC+w0gkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAICubohUVa+oqk9X1WUTZd9ZVW+rqo+Of+8wcdspVXVVVV1ZVQ+bKL9vVV063nZGVdVYvn9VvXos/4eq2rrB6wgAAADAOs0zEunMJMetKjs5ydtba4cnefv4f6rqXkm2JTlyrPOiqtpvrPPiJCclOXy8rLT5pCT/0lq7e5LTk/z+sisDAAAAwJ7RDZFaa+9M8tlVxY9K8srx+iuTnDBRfk5r7SuttY8nuSrJ/arq4CS3ba1d1FprSc5aVWelrdcmOXZllBIAAAAAm8OycyLdqbV2fZKMf79rLD8kybUTy+0Yyw4Zr68u36VOa+3GJJ9LcuC0O62qk6pqe1Vt37lz55JdBwAAAGBRGz2x9rQRRG2N8rXq7F7Y2ktba8e01o456KCDluwiAAAAAItaNkS6YTxELePfT4/lO5IcNrHcoUmuG8sPnVK+S52q2pLkdtn98DkAAAAA9qJlQ6RzkzxxvP7EJG+aKN82nnHtrhkm0H7veMjbF6rqAeN8R09YVWelrcckuXCcNwkAAACATWJLb4GqOjvJQ5Lcsap2JHlOktOSvKaqnpTkk0kemySttcur6jVJrkhyY5KnttZuGpt6SoYzvR2Q5ILxkiQvT/JnVXVVhhFI2zZkzQAAAADYMN0QqbV24oybjp2x/KlJTp1Svj3JUVPKv5wxhAIAAABgc9roibUBAAAA2AcJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQtHSJV1RFVdfHE5fNV9fSqem5VfWqi/BETdU6pqquq6sqqethE+X2r6tLxtjOqqta7YgAAAABsnC3LVmytXZnk6CSpqv2SfCrJG5L8YpLTW2vPn1y+qu6VZFuSI5PcOclfV9U9Wms3JXlxkpOSvCfJ+UmOS3LBsn0DAACARWw9+byF61xz2vF7oCeweW3U4WzHJrm6tfaJNZZ5VJJzWmtfaa19PMlVSe5XVQcnuW1r7aLWWktyVpITNqhfAAAAAGyAjQqRtiU5e+L/p1XVJVX1iqq6w1h2SJJrJ5bZMZYdMl5fXb6bqjqpqrZX1fadO3duUNcBAAAA6Fn6cLYVVfUtSR6Z5JSx6MVJ/luSNv59QZJfSjJtnqO2Rvnuha29NMlLk+SYY46ZugwAALDnOfQH4NZnI0YiPTzJB1prNyRJa+2G1tpNrbWvJXlZkvuNy+1IcthEvUOTXDeWHzqlHAAAAIBNYiNCpBMzcSjbOMfRikcnuWy8fm6SbVW1f1XdNcnhSd7bWrs+yReq6gHjWdmekORNG9AvAAAAADbIug5nq6rbJPmJJE+eKP6Dqjo6wyFp16zc1lq7vKpek+SKJDcmeep4ZrYkeUqSM5MckOGsbM7MBgAAALCJrCtEaq19McmBq8p+fo3lT01y6pTy7UmOWk9fAAAAANhzNursbAAAAADsw4RIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAutYVIlXVNVV1aVVdXFXbx7LvrKq3VdVHx793mFj+lKq6qqqurKqHTZTfd2znqqo6o6pqPf0CAAAAYGNtxEikH22tHd1aO2b8/+Qkb2+tHZ7k7eP/qap7JdmW5MgkxyV5UVXtN9Z5cZKTkhw+Xo7bgH4BAAAAsEH2xOFsj0ryyvH6K5OcMFF+TmvtK621jye5Ksn9qurgJLdtrV3UWmtJzpqoAwAAAMAmsN4QqSV5a1W9v6pOGsvu1Fq7PknGv981lh+S5NqJujvGskPG66vLAQAAANgktqyz/gNba9dV1XcleVtVfWSNZafNc9TWKN+9gSGoOilJ7nKXuyzaVwAAAACWtK6RSK2168a/n07yhiT3S3LDeIhaxr+fHhffkeSwieqHJrluLD90Svm0+3tpa+2Y1toxBx100Hq6DgAAAMAClg6Rqurbquo7Vq4neWiSy5Kcm+SJ42JPTPKm8fq5SbZV1f5VddcME2i/dzzk7QtV9YDxrGxPmKgDAAAAwCawnsPZ7pTkDUPuky1JXtVa+6uqel+S11TVk5J8Msljk6S1dnlVvSbJFUluTPLU1tpNY1tPSXJmkgOSXDBeAAAAANgklg6RWmsfS/IDU8o/k+TYGXVOTXLqlPLtSY5ati8AAAAA7FnrnVgbgCm2nnzewnWuOe34PdATAACAjbGuibUBAAAAuHUQIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdG3Z2x0AAIBbm60nn7dwnWtOO34P9AQA5mckEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABA15a93QEAmGXryectXOea047fAz0BAACMRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0bdnbHQAANr+tJ5+3cJ1rTjt+D/QEYHPx/shGsj2x2RmJBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACAri17uwMAAMCt09aTz1u4zjWnHb8HegLAPIxEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0LVlb3cAAIBbj60nn7dUvWtOO36DewIALMpIJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAEDXlr3dAQCAW8Iyp5Z3WnkAgJsZiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAukysDRvIpK0AAADsq5YeiVRVh1XV31TVh6vq8qr6tbH8uVX1qaq6eLw8YqLOKVV1VVVdWVUPmyi/b1VdOt52RlXV+lYLAAAAgI20npFINyb5jdbaB6rqO5K8v6reNt52emvt+ZMLV9W9kmxLcmSSOyf566q6R2vtpiQvTnJSkvckOT/JcUkuWEffAAAAANhAS49Eaq1d31r7wHj9C0k+nOSQNao8Ksk5rbWvtNY+nuSqJPerqoOT3La1dlFrrSU5K8kJy/YLAAAAgI23IRNrV9XWJPdJ8g9j0dOq6pKqekVV3WEsOyTJtRPVdoxlh4zXV5cDAAAAsEmsO0Sqqm9P8rokT2+tfT7DoWl3S3J0kuuTvGBl0SnV2xrl0+7rpKraXlXbd+7cud6uAwAAADCndZ2draq+OUOA9OettdcnSWvthonbX5bkzeO/O5IcNlH90CTXjeWHTinfTWvtpUlemiTHHHPM1KAJAAAA2DucsXrftp6zs1WSlyf5cGvtf06UHzyx2KOTXDZePzfJtqrav6rumuTwJO9trV2f5AtV9YCxzSckedOy/QIAAABg461nJNIDk/x8kkur6uKx7NlJTqyqozMcknZNkicnSWvt8qp6TZIrMpzZ7anjmdmS5ClJzkxyQIazsjkzGwAAAMAmsnSI1Fp7d6bPZ3T+GnVOTXLqlPLtSY5ati8AAAAA7FkbcnY2AAAAAPZt65pYGwDY/ExwCQDARjASCQAAAIAuIRIAAAAAXUIkAAAAALrMiQT7GHOfAAAAsCcYiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdW/Z2BwAAAGA9tp583lL1rjnt+A3uCezbjEQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF0m1gYAuIUsM/GrSV/ZU2yPA48DwPyMRAIAAACgS4gEAAAAQJcQCQAAAIAucyIBuzAvAMB03h8BZvMeCbcOQiQAAABgU1gmkEyEkrcUh7MBAAAA0CVEAgAAAKBLiAQAAABAlzmR2BAm0gM2K+9PAACwMYxEAgAAAKBLiAQAAABAlxAJAAAAgC5zIgHAJmdeJwAANgMjkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAl4m1AWAPWmZS7MTE2AAAbD5GIgEAAADQJUQCAAAAoMvhbMCms8zhPw79AYBbH/sMALcsI5EAAAAA6DISCdhQJhEGAODWyMg4bg2ESAAAtyK+5AAAyxIiAcAafOEGpvHeAMCtkTmRAAAAAOgyEol9hl8EYVdeE2wmtkfYWOYgBGBvECIBMJUv/QBw6+AzH5iXEAmAPcZOKbAZeW8CgOWYEwkAAACALiESAAAAAF0OZwMAANhLTJIOG89hy3uOkUgAAAAAdBmJBADA3Py6C7Bv8z7PWjbNSKSqOq6qrqyqq6rq5L3dHwAAAAButilGIlXVfklemOQnkuxI8r6qOre1dsXe7dmth7QZAPhGYb8F9j1e12wmtsfZNstIpPsluaq19rHW2leTnJPkUXu5TwAAAACMNsVIpCSHJLl24v8dSe6/l/ryDWdfSEmdlQJ25TUBAMCi9oXvhmxu1Vrb231IVT02ycNaa/9x/P/nk9yvtfarq5Y7KclJ479HJLnyFu3oLe+OSf55L7exL/RhX1gHfdiY+vqwMfX1YfP0YV9Yh83Qh31hHfRhY+rrw8bU14fN04d9YR02Qx/2hXXQh42pv1FtbHbf01o7aOotrbW9fknyQ0neMvH/KUlO2dv92tuXJNv3dhv7Qh/2hXXQh31nHTZDH/aFddCHfWcdNkMf9oV10Id9Zx02Qx/2hXXQh31nHTZDH/aFddCHzbMO3+iXzTIn0vuSHF5Vd62qb0myLcm5e7lPAAAAAIw2xZxIrbUbq+ppSd6SZL8kr2itXb6XuwUAAADAaFOESEnSWjs/yfl7ux+bzEs3QRv7Qh/2hXXQh42prw8bU18fNk8f9oV12Ax92BfWQR82pr4+bEx9fdg8fdgX1mEz9GFfWAd92Jj6G9XGN6xNMbE2AAAAAJvbZpkTCQAAAIBNTIi0SVTVo6uqVdX3rSq/z1j+sEXbqKqtVfWlqrp44vKEJdq4bOL2X66qD1TVHZZtY53rcUVVvaSqZm67c9Q/q6q+eYH631RVZ1TVZVV1aVW9r6ruukD9p656Di4bb7/njPrfXVXnVNXVY3/Pr6p7jLc9o6q+XFW3W+P+p9avqiOr6sKq+seq+mhV/eeqqgXa+Zuq+uK4Dp+tqo+P1/96St2bxtsur6oPVdWvTz5nVXW/qnpnVV1ZVR+pqj+pqtvMU7+qHlJVn1v1mP74jHW4adVyW8f6b5613nPUbVX1pInl7jOWPXNKG3eqqldV1ceq6v1VdVFVPXri9j+qqk/N2p5n1a+qX6iqP1617Duq6pgZ7fyfVf9/vX5VPXda3+doo7stTqtfN78eP1hVH66q91bVE+dpY0o7c7+vTKnbqupXJ27746r6hV7d8fojxtfQXarqiPGxv3hcn5nDm2e0cWFVPWWi/P5VdUlV7Xa4+ernYNVtvW2pVdWfTfy/pap2rn4tVNWbquqiReuP29TO8Xn9aFW9pap+eMk2Jl9391qw/lyvi2XaWqDe16rq3hPLXFZVW+epP5adMG4DH6nhM+eEdTyOV1TVLy+xHneqqjfX8P57RVWdP2/9qvrFiefvq+M6XFxVp01p4wUT/z+zqp478f8Txsfu8rEPz5y3fg3va58a7/ejVfX6yW1piTZWLrdfsP7qPl9TVXdcoh9T36PnqNeq6u4Ttz9jLDum10YNn3e7vBeMz/MNVXXwPP2oqofW8LlVY/l+4+O4+r3h0Breez5awz7HH1XVt9SUz+uqOrOqHjPlsZirjar67zW8P+2/QP3P1fDe9pGqev6052JsY2W/4bKq+osa92vGx+2fq+p5s+rO0cZk+V9O2RZ3q1dVp1fV0yeWeUtV/cnE/y+oql+fox9fv7+a47O3qn67htftJWMb96+qb66q08bH97IaPvsfvkD9d9Swz7jy3vjHqx+Dse6BdfPr9Z9q19fwmu85c7RxdQ37vt85LneH8f/vmdLGbo9TDa+Jf6ub35snv6M9ZtWy76hV3/2q6ulV9aKqOqiq/r2qnrzW89Bp5/w5nsdpdf/z2PeLa43vAvNue73XxgLtrH6s56nXquqIVfX+sKp+a4E2vlpV3z9R9ltV9ZJp67KvESJtHicmeXeGM9NNKz9xyTaubq0dPXE5a8l+pKp+PsmvJnloa+1flmljTjPXI8m9k9wryQlL1v/+JIcm+dkF6j8uyZ2T3Lu19v1JHp3kX+et31p74eRzkOHMg3/eWvvw6opVVUnekOQdrbW7tdbuleTZSe400fb7xj7splP/3CSntdbukeQHkvxwkv+0QDvPSPKwiXX4zXGdpgU4XxpvOzLJTyR5RJLnjG3fKclfJHlWa+2IJPdM8ldJvmOe+qN3rdqudwuyVrWzcrlmxnKL1L00wzaxYluSD62uPD6Gb0zyztba97bW7jsue+h4+zdleB6vTfLgRetvAmtuix1Xt9bu01q7Z4Z1ekZV/eKG9q7v00l+rYYzgs6tqo5N8r+SHNda+2SSM5KcPm4j9xxvm7uNDI/jb447hd+U5I+T/KfW2o0L9GnNbWn0b0mOqqoDxv9/IsmnVrVz+yQ/mOT2tXtQ3q2f5NXj83p4ktOSvL52DcvnbWPydXfFgvXntWxb89TbkeS3l6lfVT+Q5PlJHtVa+74kj0zy/JoIpebsw6vH9+qHJPm98X13kfX43SRva639wPj+f/K89VtrfzrxeXddkh8d/1/dxleS/HRND1UenuTpGfY3jsywXX5u3vqjldfl4UleneTCqjpoyTZWLv+6YP15LdtOr96l2XVf6DFJrli1zKw23pnk0BoD0NGPJ7mstXb9PG201t6a5BNJVn54+dUk72ut/f3KMuNn3euTvHF8ru6R5NuTnDpjnXYzbxtV9dtJHpjkhNbaVxao/67W2n2S3CfJT1bVA2d0ZWW/4agkX03yK2P5Q5NcmeRnx/tay6w2Jss/m+Spc9T7+wz7eiufE3dMcuREnR9O8ndz9GPa/U1VVT+U5CeT/GBr7d4Ztplrk/y3JAcnOWps86ey635fr36SPH4su3eGbe5Nq+u31j4z8f7zkky8hjPn62yNNu6W5MUZPt8y/n1pa+0T8zw2o+eM7T4iu35He+2q5c7O7t+jto3lj03ynsz33XBWO91Ac0bd45M8eY7vAvNue73XxrLb8Dz1/mpy/cblHpPh82LeNk5N8qIaHJLkyUlOmdKffY4QaROoqm/P8KH2pOy6MVeGjfkXkjy0qr510TY2oh/jbT+bYSfyoa21f95T/ejVH79Y/X2Su6++bc76NyV5b5JDFqh/cJLrW2tfG9vYMStE691/VT04Q4A1NbxJ8qNJ/r219vUUu7V2cWvtXVV1tww7Nb+T2R8cU+tn2CH6u3GHLq21LyZ5Wnb/YtDtx4zlZ2qtfTrJSUmeNm7TT03yytbaRePtrbX22tbaDXPW39s+meRba/ilvjIEARdMWe7Hknx11WP4idbaSsjwo0kuy7BDMu357NXfa+bcFufSWvtYkl9P8v9tQNcWsTPJ25MsMgrqQUleluT41trVY/HBGUKDJElr7dJF2hi3++cn+YMMO/2XtNbevciKpL8trbggww5gxuXOXnX7zyT5yyTnZPr7d6/+17XW/ibDpJMnLdvGDOutvxFt9eq9OcmRq3/hnLP+M5P8Xmvt40ky/n1ekt9cpu/j++fVSXb7pbzTxurt+pIF68/jxgzbyDOm3HZKkme21q4b7//LrbWXLVB/F621Vyd5a5L/d9k2Zlhv/fW206v3xiSPSpKq+t4MQdzOedoY93n+Irv/aDLteV6rH89IckpVHZlhv+NZq27/sSRfbq396Xi/N411finJbTKfbhtV9RsZvrj/VGvtS8v0Yax3cWbsQ67yrty8r3pikj/KsP/wgDnXaXUbky7q9GGl3t9l/BKc4cvvZUm+UMMImv0z/Ij3wTn60bu/SQcn+eeVkG78zvCvSX45ya9OlN/QWnvNPPVX3gdWtNa+muS3ktxlDN7ntRGv19OTPGAcofIjSV6w9uJLe22GwHL/ZBjZlOEH7ZWBBb+RIeTtPS+z2tmxVqU5+tAz77bXe23M086072Tz1HtWdt3XeXCSayZCwXnaeF6S65M8IcO28dxZ3xH3NUKkzeGEJH/VWvvHJJ+tqh8cyx+Y5OPjl5V3ZPjwW7SNu9WuQ7EftEQb35Ph1/GHttb+acl1mdea9WsY1ntshl/Xlqn/rUnunyF9nrf+a5L81Pj4vaCq7rNM/8df+f80yRNba5+fUf+oJO+fcdvKTvq7khxRVd+1QP0jV5eP29W3V9VtF+zHwsag4JuSfNcyba+qnyQPWrVd321G1QMmlnnDgt1eq+5rM/wS9MNJPpDh163Vjhxvm2Xl+XxDhg/p1YdY9uovYnJdLs4wymA95tkWF/GBJN/XXWrjnZbkN6pqvzmW3T/Dr54ntNY+MlF+eoYRDhfUcKjI7Zdo4yUZRlj+ZoYd40X1tqUV5yTZNr4P3jvJP8xo5+xMD6N69Veb9rz22njcqtf2Aeupn2TqIZ5Lrs+89b6WIRR89hL1d3uvTrI9u/76OXffx+Dge5NctWA/Xpjk5TUcxvzbVXXnBevP64VJHl+7HxY77+fErPrTzHqfWauNZ0xsT3+zRB+esWp7nPY4ztPOWtaq9/kk11bVURle06+essxabXx9JML4pekRSV63SBvjqKU/zBBE/PfW2mdX1Zu2f/L5DF8q755Vn/cZRuet1mvjgRlC+oe31qYdFtyrn2Q4fCnJ4RlGac1Uw+HID09y6fgedmyGcHnWe+uabawq329s79xevTF8ubGq7pJhf+WiDK/TH8rw3njJGMis1Y8172+KtyY5rIapE15UVf8hw2P4yTX2fXv1dzMGfR/K4vsOy77OVu733zN8Vp+e5Om9x29ZrbXPZPjR+7ixaFuG1++hSb67tfbeDN9PHje9hW473TNrzarbWv+sXPNse0lWtq2Zr40529ntOZhz278kydcmgshdQvIFXj9PzzAi6aDW2tcP897XCZE2hxMz7Ixl/Htip3yRNlYfzrbWSJJZbezM8EG61iFgvTbmNav+3cadh79Lcl5rbdrIj3nqfybDB9m0X1Wn1m+t7UhyRIZfRr+W5O01HI6yyP0nwyiB/91amzV0uGdbknPGXwdfnyHEmFdl9gfGLXWKxvWOIpqsv/pwtqtn1Jk8JG3Rw67WqvuaDI//3L++V9ULa5hf5H01HEL1iAxD5z+f4UPpofPWz+LP5S6H5iX5L/P0eQ3r2Ran2SsjzMZRHu/N7qMTpvn3DKMgnzRZOP5yfc8Mv9g/JMl7atVcG3O08bUk/3+SC8adtrktsi2N73tbM2y3q+e4uVOGHf13jyH4jeMXz7nqz+reIn0YrT6c7UvrqZ8hgJlqifVZpN6rMvxavdv8eZ36096rdyubow+PGz/zzs5w6MHqL+5rttFae0uG8OllGb6kfbBWHQq27OO3qo3PJzkrS45EXLD+1PeZThunT2xPP7rO+kdnOLxvqmUfiznqrYwsPCFD0Dx3G62192X4semIDMHEe2b9yt7pxwuT7NdaO3PKbbP2T1bK37XqMZwWZvTauGq8Putztlf/QVV1SZJ/SvLmNX5QPWB83W3PsN/88gyHZv1NG0aAvy7Jozs/XExrY7L8M0m+M8nb5qy3Mppi5UvwRRP//31m693fVGNId98Mo1B3ZggsHjJP3Vn1a/Z8hQvvO6z3PWf08AyjT45aY5mN2OeePJxs28T/KyO45v2eNa2d9fRhXr1tb97XxrLb8Dz1zs7wY8iWDKM2/2LRNsaw6cIM3/NuNXabuJNbVlUdmGEY7VFV1TKksq2qTs5waMEjaziGu5IcWFXf0Vr7wjxtJHnRevsxtvHFDG+Y766qT7fW/nyJNtbbh5U5jdZVv4bJIN9RVY9srZ07T/2q+q02DKu9IMkFVXVDhp2xt89bP8Mwx61Jfr7zMFye4RDG1et27wy/fr2thiO6viXJxzLsmHXrj+W7zJUy/kL9f1ZvT512ljLe100Z5qG5PMMOwm7Hss9Z/54b1a9ltdb+qar+PcM8IL+Wm4e7Tro8w2t4pc5TazgOf3uGX3Vul+FXymQYLv/FJOfNWf8zSVZPbv+dSWYearpRFtgWF3GfJLvNEXYL+b0MI8vW/GU5Q4D8s0n+uqqe3Vr7vZUbxh2IVyR5RQ2TO84aRTGzjfG2ry3R/3m2pUnnZjh87iFJDpwof1yGberjYzu3zbDD+Dtz1p9m1vO6SBvTrLf+RrS1Zr3W2o01TOC6+tCdXv3Lc/Ovqyt+MLvPY9Prw6tba0/rrMOabYzB06uSvKqGiYkfnN1HoWzEc/GHGUYJ/elE2crnxIVL1p/mPpkdKs7bxnr7sKfaWaveXyb5H0m2t9Y+X7OPCp/VxkoIdc/0v0BObaO19rVxv2iaXT7rkqSGEdKHZTgUcx69Nm5I8vgMPwJ+pg2H2y5S/12ttZ+s4SQn766qN7RhqoDVvrR6X7WqTkzywKq6Ziw6MMMhyGvO5TirfBxB8+YMUwOcMUe9lXldvj/D4TjXZjgU6vMZPrdm6d3fTOMooXdk2N++NMM8MXeZ9h1mzvq7HXY+hg3fn+X2Hf4wS75eq+roDPt+D8iwLZzTdp8jLJm9n/bxBe7ujUn+Zw1HNRzQWvtADRM736mqHj8uc+eqOry19tEF29m6bB8W6H9v2/vFzPfaWHYbnqfe2RlGv/1thpFFn17yvpfdh/uGZSTS3veYJGe11r6ntba1tXZYhjeY30nyodbaYWP592TYeTthgTYWmYB3zTZaazszfFn5vZp9prj19mOP1x/f6E/O9EnPZtV/cI1D+WuYWO3eGSaKnLt+hmGOj2/9yXIvTLJ/TZxNp6r+nwzHCz93bHdra+3OSQ6p3c8IMav+R5P8SI1nMRuHV5+R4ZCLufsxa1jxWsZfr1+S5I9bay3DoZFPrKr7Tyzzc1X13XPW3yz+S4bJwW+acfuFGeZOespE2crcCicm+Y8rz2eSu2aY9+w2c9Z/X4YP3u9OkhrOtLN/bp58ck86MfNti3MZd2SenzkmpN4T2nBY2RUZfhHrLfvFcbnH13iGvqo6rsbDx8bn48CsMUHztDbWaZ5tadIrkvxu233uphMzTBa+0s7KRO7z1t/F+F5xUoaRLEu1sYb11t+Ituapd2aGSWFXT+a8Vv3nZ5g/Zmvy9dfHszN93o2NeBymtlFVP1Y3nxXqO5LcLcPohg3vwxhWvSa7jtB7XpI/mHiP27+qpo4cmFF/F1X1MxlGocyaO6rbxhLrcIu1s1a9Nozme1Y6E1Wv0cbZSX4uw49kax7StGT/357kNjWePXgMB16Q4fXzxY1qow0jLH86yf8eg4CF+zC28bzMDod3MQZRP5LkLhPvrU/NOuYSbK19LsMommfWGmcanvB3GT5zPttau2l8jm6f4ZCcizb6/mo4Y+nhE0VHZ5g4+eVJzqjxZBZVdXBV/dyc9T+xaplvzvA8XNtmH1kw07KvsxoS2BdnOIztkxnC2aln62vDiKrrazxyoYYzuh2X+eYTmmzjHRneZ8+uYUTgt7XWDpnYnp6Xzhy0q9uZ9/7XWzdrb3sfyvyvjWW34W69NhzJ8JkM0xtMW791vX72ZUKkve/E7D68+HUZEu5p5dMOu5jVxrOz+5xIs4ZvrtVGkq8f+vHIDL+23z+7W6uNI6pqx8Rl2uEv3T50zFv/jRl2FlbPDzWr/plJ/nIcYXBJhon5djv18xr1fyHJt2U4U9Ga81ONIcmjk/xEDacSvTzJczP8yru67Tdk1QfHGvWvyzBM83eq6soMx9i/b8Z69NqZx8ocPJdn+EXhrUn+69j2DWO/n1/D6Vo/nORBGVL9bv3R6jmRFh01deyq7fGHFqyf1trft9beuMbtLUPo+x9qOAXqe5O8MsNZ5h6WiZEirbV/y7Bj8VNz1H/W+Bj+WpLzaxhu/ocZDr28JX4F2ZY5tsWOu9VwuuQPZ9iR+19tnNB0QfO8r8zj1MwZVo87EMdleC09KsMX08uq6kNJ3pLhTCVrzh03pY153WbV+j47c2xLq+57R2vtjybLxqDiLhnO9rKy3MeTfH71e/20+hNW5iP6xwzvuz/TppyFcs42Vi67jfLr1F/Ism3NU68NcyWckZvncuvWb8Pohmdl+Mz5SIZRJL/Vpox62IjHYY027ptkew2H8FyU5E/acGjThvdh9IIMZ75Zaff8DKMb/3r8HHh/1h49v0v90TPGbeijGUOQNvwgtkwbK5etC9Zfxup2tmT6vHtz339r7Zw23wiC3dpowxkSv5jkwvH9Zel+zOjbyv7GY8fn6h+TfDnz7/vN3ca4Df9iknNrYi7FBfvwkgw/Lu52qOoUP53hcZt8/t6U4SiDWYc9d7XWPpjhS/g8n7uXZng+3rOq7HNtjRPlrOP+vj3JK2s4DfwlGeb7e26GH8d3Jrli3J9+Y3af5H2t+kny52PZZRn2qxf5/FxtmdfrL2eYEmPl0L4XJfm+mv0D6xMyfM5fnOGHwf/aZk+/MMvZGc6ovHLo2rTvGfMe0rbSzqKWrTtz28sQSs/72lh2G5633tkZDtuedrjvul8/+6pqm+qHfQAAIElqOLHDy8ZgDQD2OiORAABgk6lhPpivZRiNCwCbgpFIAAAAAHQZiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADo+r8igLOtx4lzBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig1, ax1 = plt.subplots(figsize=(20, 9))\n", + "ax1.bar(disp_st['state'], disp_st['consumer_disputed?'])" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "ab922be3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" ] }, - "execution_count": 8, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAIMCAYAAACDj2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAue0lEQVR4nO3de7xs6Xwn/s+XFvcZlxzScetExJ1uOT+SCEOENJIgIfRPXDImbWbwQwhNMhOZmdCv+RFiED9CyAyNxDUuQdDjGpyW1rpd0kHHJZ3ug4kmJEI/vz/W2tTZp2rXqtp799nn6ff79dqvvfeq+j71VNWqqlWf9axnVWstAAAAAPTnMke6AwAAAADsDsEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABAp5YGP1V1har6UFV9tKrOqarfGZc/paq+WFVnjj/32P3uAgAAADBVtda2vkJVJblya+3rVXW5JO9N8ugkJyb5emvt6bvfTQAAAABWdcyyK7QhGfr6+O/lxp+t0yIAAAAAjrhJc/xU1WWr6swkFyZ5e2vtg+NFj6yqs6rqxVV19d3qJAAAAACrW3qo1yFXrrpaktcmeVSSg0m+lGH0z39Ncmxr7d/OqTk5yclJcuUrX/nHbnKTm2y/1wAAAAAkSc4444wvtdb2zbtspeAnSarqt5P84+zcPlV1XJI3ttZusVXt/v3724EDB1a6PQAAAAAWq6ozWmv751025axe+8aRPqmqKyb5mSSfrKpjZ652nyRn70BfAQAAANghSyd3TnJskpdW1WUzBEWvaq29sar+Z1Udn+FQr/OSPHzXegkAAADAyqac1eusJCfMWf6gXekRAAAAADti0lm9AAAAADj6CH4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6dcyR7sDR6rhT3rRyzXmn3nMXegIAABxtfJ8ALilG/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqaXBT1Vdoao+VFUfrapzqup3xuXXqKq3V9W54++r7353AQAAAJhqyoiff07y0621Wyc5PsmJVfXjSU5J8o7W2o2SvGP8HwAAAIA9Ymnw0wZfH/+93PjTktwryUvH5S9Ncu/d6CAAAAAA65k0x09VXbaqzkxyYZK3t9Y+mOTarbXzk2T8fa0FtSdX1YGqOnDw4MEd6jYAAAAAy0wKflpr32mtHZ/kukluW1W3mHoDrbUXtNb2t9b279u3b81uAgAAALCqlc7q1Vr7hySnJzkxyQVVdWySjL8v3OnOAQAAALC+KWf12ldVVxv/vmKSn0nyySRvSPKQ8WoPSfL6XeojAAAAAGs4ZsJ1jk3y0qq6bIag6FWttTdW1QeSvKqqHpbkc0nut4v9BAAAAGBFS4Of1tpZSU6Ys/zLSe6yG50CAAAAYPtWmuMHAAAAgKOH4AcAAACgU4IfAAAAgE5NmdwZ9qzjTnnTyjXnnXrPXegJAAAA7D1G/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdGpp8FNV16uqd1XVJ6rqnKp69Lj8KVX1xao6c/y5x+53FwAAAICpjplwnW8neVxr7SNVddUkZ1TV28fLntlae/rudQ8AAACAdS0Nflpr5yc5f/z7a1X1iSTX2e2OAQAAALA9U0b8fFdVHZfkhCQfTHL7JI+sqgcnOZBhVND/mVNzcpKTk+T617/+dvsLsNBxp7xp5ZrzTr3nLvQEAABgb5g8uXNVXSXJq5M8prV2UZI/SHLDJMdnGBH0jHl1rbUXtNb2t9b279u3b/s9BgAAAGCSScFPVV0uQ+jzstbaa5KktXZBa+07rbWLk7wwyW13r5sAAAAArGrKWb0qyYuSfKK19nszy4+dudp9kpy9890DAAAAYF1T5vi5fZIHJflYVZ05LntykpOq6vgkLcl5SR6+C/0DAAAAYE1Tzur13iQ156I373x3AAAAANgpkyd3BgAAAODoIvgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADo1NLTucMix53yppVrzjv1nrvQEwAAAGAeI34AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4dc6Q7APThuFPetHLNeafecxd6AgAAwAYjfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATpncGWAPMUk2AACwk4z4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JSzesERts5ZnBJncgIALp1sOwGsxogfAAAAgE4Z8QMAzLXOXnV71AEA9hbBDwB0SnADAIDgBwAAjhICXQBWZY4fAAAAgE4JfgAAAAA65VAvLvUMmQZgL3PqagBgOwQ/sE2CIwAAAPYqwQ8AAHueHS0AsB5z/AAAAAB0yogfAAAAWJMRiex1RvwAAAAAdMqIHwAAALgUM2qpb4IfAHaUDQcAANg7HOoFAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHTK5M4AAABHGSdTYC+xPu5tRvwAAAAAdErwAwAAANApwQ8AAABAp8zxAwB0y5wDAMClnRE/AAAAAJ0S/AAAAAB0yqFeADvEISXsJOsTe4n1EQCOXktH/FTV9arqXVX1iao6p6oePS6/RlW9varOHX9fffe7CwAAAMBUU0b8fDvJ41prH6mqqyY5o6renuShSd7RWju1qk5JckqSJ+5eV4FF7IkFAICjk215dtvS4Ke1dn6S88e/v1ZVn0hynST3SnKn8WovTXJ6BD+TeXEDwNHBZzYAcDRbaXLnqjouyQlJPpjk2mMotBEOXWtBzclVdaCqDhw8eHCb3QUAAABgqsmTO1fVVZK8OsljWmsXVdWkutbaC5K8IEn279/f1ukkAACwNxgFB3B0mRT8VNXlMoQ+L2utvWZcfEFVHdtaO7+qjk1y4W51EgAAjjSBBwBHo6XBTw1De16U5BOttd+buegNSR6S5NTx9+t3pYfsGhsvAAAA9MD328WmjPi5fZIHJflYVZ05LntyhsDnVVX1sCSfS3K/XekhAJcoH5rsJdZHYC/y3tQPzyWXBlPO6vXeJIsm9LnLznYHAAAAgJ0yeXJngN7Z48MG6wIAAL0Q/AAAwKWEYBvg0kfwA+wJNkQBgEuK7Q7g0kTwAwAAwCVOAAeXjMsc6Q4AAAAAsDsEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABAp5zV6yhmFnx2inWJ3linAQBgYMQPAAAAQKcEPwAAAACdcqgXAAC7bi8cgrkX+gAAlzQjfgAAAAA6ZcQPAADApZBRcH1Y53lMPJeXJoIfAGBX+EIBAHDkOdQLAAAAoFNG/AAAdM7oK6BX3t9gOcEPAHuK49QB+uaLOsAlS/ADAAAAHFFC4d0j+AGAXWDjBQCAvUDwwxHlixEAAADsHmf1AgAAAOiU4AcAAACgU4IfAAAAgE6Z4wegI+bNAgAAZhnxAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqWOOdAcAAODS4LhT3rRyzXmn3nMXegLApYkRPwAAAACdMuIHAACAlRnFBkcHI34AAAAAOiX4AQAAAOiU4AcAAACgU+b4AQDYRebAAACOJCN+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU0uDn6p6cVVdWFVnzyx7SlV9sarOHH/usbvdBAAAAGBVU0b8vCTJiXOWP7O1dvz48+ad7RYAAAAA27U0+GmtvTvJVy6BvgAAAACwg7Yzx88jq+qs8VCwqy+6UlWdXFUHqurAwYMHt3FzAAAAAKxi3eDnD5LcMMnxSc5P8oxFV2ytvaC1tr+1tn/fvn1r3hwAAAAAq1or+GmtXdBa+05r7eIkL0xy253tFgAAAADbtVbwU1XHzvx7nyRnL7ouAAAAAEfGMcuuUFWnJblTku+vqi8k+e0kd6qq45O0JOclefjudREAAACAdSwNflprJ81Z/KJd6AsAAAAAO2g7Z/UCAAAAYA8T/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ1aGvxU1Yur6sKqOntm2TWq6u1Vde74++q7200AAAAAVjVlxM9Lkpy4adkpSd7RWrtRkneM/wMAAACwhywNflpr707ylU2L75XkpePfL01y753tFgAAAADbte4cP9durZ2fJOPvay26YlWdXFUHqurAwYMH17w5AAAAAFa165M7t9Ze0Frb31rbv2/fvt2+OQAAAABG6wY/F1TVsUky/r5w57oEAAAAwE5YN/h5Q5KHjH8/JMnrd6Y7AAAAAOyUKadzPy3JB5LcuKq+UFUPS3JqkrtW1blJ7jr+DwAAAMAecsyyK7TWTlpw0V12uC8AAAAA7KBdn9wZAAAAgCND8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHTqmO0UV9V5Sb6W5DtJvt1a278TnQIAAABg+7YV/Izu3Fr70g60AwAAAMAOcqgXAAAAQKe2G/y0JG+rqjOq6uR5V6iqk6vqQFUdOHjw4DZvDgAAAICpthv83L61dpskd0/yiKq64+YrtNZe0Frb31rbv2/fvm3eHAAAAABTbSv4aa393fj7wiSvTXLbnegUAAAAANu3dvBTVVeuqqtu/J3kbknO3qmOAQAAALA92zmr17WTvLaqNtp5eWvtz3ekVwAAAABs29rBT2vtM0luvYN9AQAAAGAHOZ07AAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqW0FP1V1YlV9qqr+pqpO2alOAQAAALB9awc/VXXZJM9NcvckN0tyUlXdbKc6BgAAAMD2bGfEz22T/E1r7TOttW8leUWSe+1MtwAAAADYru0EP9dJ8vmZ/78wLgMAAABgD6jW2nqFVfdL8rOttX83/v+gJLdtrT1q0/VOTnLy+O+Nk3xq/e4eFb4/yZeOcBtHul4f9k4fergPe6EPPdwHfdiZen3YmXp92Dt96OE+7IU+9HAf9GFn6vVhZ+r1Ye/0oYf7sFNt7HU3aK3tm3tJa22tnyQ/keStM/8/KcmT1m2vl58kB450G0e6Xh/2Th96uA97oQ893Ad96Oc+7IU+9HAf9KGf+7AX+tDDfdCHfu7DXuhDD/dBH/q5DzvVxtH8s51DvT6c5EZV9UNV9X1JHpDkDdtoDwAAAIAddMy6ha21b1fVI5O8Ncllk7y4tXbOjvUMAAAAgG1ZO/hJktbam5O8eYf60osX7IE2jnS9PuydPvRwH/ZCH3q4D/qwM/X6sDP1+rB3+tDDfdgLfejhPujDztTrw87U68Pe6UMP92Gn2jhqrT25MwAAAAB723bm+AEAAABgDxP8bENV3aeqWlXdZNPyE8blP7tqG1V1XFV9s6rOnPl58Ir1Z89c/mtV9ZGquvq6bUyx5H58vKqeX1UL17cJ9X9cVZdbof4yVfXsqjq7qj5WVR+uqh9aof4Rm56Ds8fLb7qg/geq6hVV9emxv2+uqh8dL3tsVf1TVf3rLW5/bn1V3byq3llVf11V51bVf6qqmtjGu6rqG2P/v1JVnx3//osF9d8ZLz+nqj5aVb8++5xV1W2r6t1V9amq+mRV/WFVXWlKfVXdqaq+uukx/Zkl/dj4OW6sf+Oix29Cbauqh81c74Rx2ePntHHtqnp5VX2mqs6oqg9U1X1mLv/9qvriovV5UX1VPbSqnrPpuqdX1f4F7Xx90//fra+qp8zr+4Q2lq6L8+rre6/Hv6qqT1TVh6rqIWu0sdL7ypz6VlWPmrnsOVX10GW149/3GF9D16+qG4+P/Znj/Vk49HdBG++sqv8ws/x2VXVWVR12+PTm52DTZcvWpVZV/3Pm/2Oq6uDm10JVvb6qPrBq/bhOHRyf13Or6q1V9ZNrtjH7urvZivWTXhfrtLVC3cVVdauZ65xdVcdNqR+X3XtcBz5Zw2fOvbfxOH68qn5tjftx7ap6Yw3vvx+vqjdPra+qX515/r413oczq+rUOW08Y+b/x1fVU2b+f/D42J0z9uHxU+treF/74ni751bVa2bXpTXa2Pi52or1m/t8XlV9/xr9mPsePaGuVdWPzFz+2HHZ/mVt1PB5d8h7wfg8X1BVx07pR1XdrYbPrRqXX3Z8HDe/N1y3hveec2vY7vj9qvq+mvN5XVUvqar7znksJrVRVf+thveny69Q/9Ua3ts+WVVPn/dcjG1sbDecXVV/UuN2zfi4famqnraodkn97PI/27weLqqtqmdW1WNmrvPWqvrDmf+fUVW/PqEv373NmvD5W1W/WcPr9qyxjdtV1eWq6tTx8T27hs/+u69Qf3oN24wb743PWfA4XLO+93r9+zr0Nbzle86ENj5dw/bvNcbrXX38/wZz2jjscarhNfGP9b335tnvaPfddN3Ta9N3v6p6TFU9r6r2VdW/VNXDt3oelrTz5gnP47za/zT2/cza4vvA1HVv2WtjhXY2P9ZT6lpV3XhT3bOq6gkrtPGtqrrlzLInVNXz592X3gh+tuekJO/NcEazectPWrONT7fWjp/5+eM1+pCqelCSRyW5W2vt/6zTxgoW3o8kt0pysyT3XrP+lkmum+SXV6i/f5IfTHKr1totk9wnyT9MrW+tPXf2OchwxrqXtdY+sbmwqirJa5Oc3lq7YWvtZkmenOTaM21/eOzDYZbUvyHJqa21H01y6yQ/meQ/TmzjsUl+dqb/vzHen7mBS5JvjpffPMldk9wjyW+P7V87yZ8keWJr7cZJbprkz5NcdUr96D2b1uu5AdRMOxs/5y243iq1H8uwTmx4QJKPbi4eH8fXJXl3a+2HW2s/Nl73uuPll8nwPH4+yR1Xrd8DtlwXl/h0a+2E1tpNM9ynx1bVr+5o75a7MMmjaziT5GRVdZck/yPJia21zyV5dpJnjuvITcfLJreR4XH8jXFD7jJJnpPkP7bWvr1Cn7Zcl0b/mOQWVXXF8f+7JvnipnauluQ2Sa5Wh4fbS+uTvHJ8Xm+U5NQkr6lDA+6pbcy+7j6+Yv1U67Y1pe4LSX5znfqqunWSpye5V2vtJkl+IcnTayZImtiHV47v13dK8tTxfXeV+/Ffkry9tXbr8TPglKn1rbU/mvm8+7skdx7/39zGPyf5xZofhNw9yWMybHPcPMN6+dWp9aON1+WNkrwyyTurat+abWz8/MOK9VOt286yuo/l0G2h+yb5+KbrLGrj3UmuW2NoOfqZJGe31s6f0kZr7W1J/jbJxs6SRyX5cGvt/RvXGT/rXpPkdeNz9aNJrpLkdxfcp8NMbaOqfjPJ7ZPcu7X2zyvUv6e1dkKSE5L8XFXdfkFXNrYbbpHkW0n+/bj8bkk+leSXx9taZFH97PKvJHnExNr3Z9jW2/ic+P4kN5+p+ckk75vQl0W3eZiq+okkP5fkNq21W2VYZz6f5L8mOTbJLcY2fz6Hbvctq0+SB47LbpVhnXv95vrW2pdn3n+en5nXcCa+zrZo44ZJ/iDD51vG3y9orf3tlMdm9Ntju/fIod/R/nTT9U7L4d+lHjAuv1+Sv8y074aL2tkyhNyi9p5JHj7h+8DUdW/Za2PddXhK3Z/P3r/xevfN8HkxtY3fTfK8GlwnycOTPGlOf7oj+FlTVV0lwwfRw3LoClgZVsCHJrlbVV1h1Ta224fxsl/OsNF3t9bal3arD1PaGL8MvT/Jj2y+bGL9d5J8KMl1Vqg/Nsn5rbWLxza+sCj8Wnb7VXXHDKHTYYHL6M5J/qW19t20uLV2ZmvtPVV1wwwbIr+VxW/2c+szbMS8b9wIS2vtG0kemcM35rfsw4Lb3FJr7cIkJyd55LhOPyLJS1trHxgvb621P22tXTCx/kj7XJIr1LBHvDJ8eX/LnOv9dJJvbXoc/7a1thEM3DnJ2Rk2IuY9n8vqj5iJ6+IkrbXPJPn1JP/PDnRtFQeTvCPJpNFGSVJVd0jywiT3bK19elx8bIYv+kmS1trHVmljXO+fnuS/Z9hQP6u19t5V7kiWr0sb3pJhoy3j9U7bdPkvJfmzJK/I/PfwZfXf1Vp7V4aJD09et40Ftlu/E20tq3tjkptv3pM4sf7xSZ7aWvtskoy/n5bkN9bp+/j++ekkh+2RXtLG5vX6rBXrp/h2hnXksXMue1KSx7fW/m68/X9qrb1whfpDtNZemeRtSf7vddtYYLv1221nWd3rktwrSarqhzOEZwentDFu8/xJDt/RMe953qofj03ypKq6eYbtjiduuvynk/xTa+2Pxtv9zljzb5NcKdMsbaOqHpfhy/bPt9a+uU4fxrozs2AbcpP35Hvbqicl+f0M2w8/PvE+zdbP+sCE29+ofV/GL64ZvrCeneRrNYxUuXyGHW9/NaEvU25zw7FJvrQRrI3fG/4hya8ledTM8gtaa6+aUr/xPrChtfatJE9Icv0xLJ9qJ16vz0zy4+NIkJ9K8oytr762P80QMl4+GUYQZdgJvTEY4HEZgtllz8uidr6wVdGEPiwzdd1b9tqY0s6872RT6p6YQ7d17pjkvJkgb0obT0tyfpIHZ1g3nrLoO2JvBD/ru3eSP2+t/XWSr1TVbcblt0/y2fELxukZPrBWbeOGdegw5TusWH+DDHug79Za+/s178cqtmyjhmGvd8mwF2ud+iskuV2GlHdq/auS/Pz4+D2jqk5Yp//j3vQ/SvKQ1tpFC+pvkeSMBZdtbFi/J8mNq+paK9TffPPycb26SlX9qxX6sJbxy/1lklxrnfY31SfJHTat1zdcUHrFmeu8dsVub1X7pxn2uPxkko9k2Iu02c3HyxbZeD5fm+GDdfPhh8vqVzF7X87MsDd/O6asi6v4SJKbLL3Wzjs1yeOq6rITrnv5DHsX791a++TM8mdmGEnwlhoOo7jaGm08P8NIxt/IsDG7qmXr0oZXJHnA+D54qyQfXNDOaZkfIC2r32ze87qsjftvem1fcTv1SeYe/rjm/Zlad3GGIO/Ja9Qf9l6d5EAO3cs4ue/jl/0fTvI3K/bjuUleVMNhvr9ZVT+4Yv1Uz03ywDr8kNGpnxOL6udZ9D6zVRuPnVmf3rVGHx67aX2c9zhOaWcrW9VdlOTzVXWLDK/pV865zlZtfHeP//hF5x5JXr1KG+PooGdlCA/+W2vtK5vq5m2fXJThi+CPZNPnfYZRcJsta+P2GYL1u7fW5h0yu6w+yXBoT5IbZRgNtVANh+rePcnHxvewu2QIhBe9ty6s37T8smNbb5hSOwYm366q62fYXvlAhtfpT2R4bzxrDFG26svS29zkbUmuV8O0As+rqn+T4TH83BbbvsvqDzOGcx/N6tsO677ONm73XzJ8Vj8zyWOWPX7raq19OcOO6hPHRQ/I8Pq9bpIfaK19KMP3k/vPb2FpO0vPyLSotrXlZ3Oasu4l2Vi3Fr42JrZz2HMwcd0/K8nFM+HhIcH2Cq+fx2QY+bOvtfbdQ6B7J/hZ30kZNqAy/j5pyfJV2th8qNeiURuL6g9m+ODb6tCoZW2sYlEbNxw/8N+X5E2ttXkjLKbUfznDh8+8vZdz61trX0hy4wx7IC9O8o4aDtVY5faTYW/8/2qtLRpWu8wDkrxi3Av3mgzBw1SVxW/yl9Tp+LY7Wme2fvOhXp9eUDN7uNaqhyRtVfuqDI//5L3cVfXcGubL+HANhxfdI8Ow8osyfJDcbWp9Vn8uDzlsLcl/ntLnLWxnXZzniIzkGkdTfCiHjwKY518yjDZ82OzCcQ/xTTPsGb9Tkr+sTXNHTGjj4iT/X5K3jBtak62yLo3ve8dlWG83z9ly7Qwb5+8dg+tvj18WJ9Uv6t4qfRhtPtTrm9upzxCazLXG/Vml7uUZ9gofNh/ckvp579WHLZvQh/uPn3mnZRiWv/nL9pZttNbemiEwemGGL1Z/VZsOk1r38dvUxkVJ/jhrjvhbsX7u+8ySNp45sz7deZv1x2c49G2udR+LCXUbI/junSEcntxGa+3DGXYQ3ThDmPCXi/ZmL+nHc5NctrX2kjmXLdo+2Vj+nk2P4bwAYlkbfzP+vehzdln9HarqrCR/n+SNW+wIveL4ujuQYdv5RRkOW3pXG0ZavzrJfbbY2TCvfnb5l5NcI8nbV6jdGLWw8cX1AzP/v//wZg5rb6vbPMwYrP1YhtGeBzOEDHeaUruovhbPv7fytsN233NGd88wyuMWW1xnJ7a5Zw+1esDM/xsjpaZ+15rXznb6MNWydW/qa2PddXhK3WkZdmAck2F05J+s2sYYEL0zw/e8S43DJqJkuaq6ZoYhpreoqpYh/WxVdUqGYfe/UMMxyZXkmlV11dba16a0keR52+nDWP+NDG9w762qC1trL1ujjW09FmMbG3P0bKu+hgkJT6+qX2itvWFKfVU9oQ1DTt+S5C1VdUGGDah3TK3PMATwuCQPWvIwnJPh8L7N9+1WGfYyvb2Go52+L8lnMmxMLa0flx8y98e4J/jrm9enLdpY23hb38kwr8o5GT7UDzs2e2L9TXeyb+torf19Vf1LhnktHp3vDQWddU6G1/BGzSNqOK78QIa9J/86w97AZBhK/o0kb5pY/+UkmydZv0aShYdi7pQV1sVVnJDksDmvLiFPzTCCa8s9uBlC319O8hdV9eTW2lM3Lhg/9F+c5MU1TDC4aLTCwjbGyy5eo/9T1qVZb8hwaNmdklxzZvn9M6xTnx3b+VcZNvJ+a2L9PIue11XamGe79TvR1pZ1rbVv1zCJ6ObDWpbVn5Pv7cXccJscPi/Lsj68srX2yCX3Ycs2xrDo5UleXsPkuHfM4aM9duK5eFaG0Th/NLNs43PinWvWz3NCFgeBU9vYbh92q52t6v4syf+b5EBr7aJafMT0ojY2gqObZvmXvrlttNYuHreL5jnksy5JahiJfL0MhylOsayNC5I8MMOOuy+34VDUVerf01r7uRpOtPHeqnptGw6j3+ybm7dVq+qkJLevqvPGRdfMcHjuvLkJD6ufXT6OUnljhkPmnz2xdmOekltmOFTl8xkOE7oow+fWIlNuc65xNM7pGba3P5Zh3pPrz/sOM7H+sEOyx4Dglllv2+FZWfP1WlXHZ9j2+/EM68Ir2uFzXiWLt9M+u8LNvS7J79Vw9MAVW2sfqWFy4WtX1QPH6/xgVd2otXbuiu0ct24fVuj/snXvVzPttbHuOjyl7rQMo8z+d4YRPBeuedvrbsMdtYz4Wc99k/xxa+0GrbXjWmvXy/Cm8FtJPtpau964/AYZNrjuvUIbUyeB3bK+tXYww5eLp9bis4tttw+7fj/G+3J+hnlt5k28taj+jjUOc69hcq9bZZiscHJ9hiGAD2zLJ2x9Z5LL18xZWKrq/8pw/OtTxnaPa639YJLr1OFnElhUf26Sn6rx7Ffj0ONnZzgcYVIfFg23XWbcS/z8JM9prbUMhw4+pKpuN3OdX6mqH5hYv1f85wwTVH9nweXvzDAX0H+YWbYxV8BJSf7dxvOZ5IcyzON1pYn1H87wYfkDSVLDGVoun+9NgLibTsq0dXGScePj6ZkwKfJuaMMhVx/PsOdp2XW/MV7vgTWe2a2qTqzx0Krx+bhmtpgkeF4b2zRlXZr14iT/pR0+F9FJGSas3mhnYzLxqfWHGN8vTs4wYmStNraw3fqdaGtK3UsyTEy6eULhreqfnmE+lOOS774+npz580jsxOMwt42q+un63hmFrprkhhlGEex4H8aA6VU5dCTc05L895n3uMtX1dw99AvqD1FVv5RhtMeiuZCWtrHGfbjE2tmqrg2j5p6YJZMlb9HGaUl+JcOOrS0P91mz/+9IcqUazzo7fqF/RobXzzd2qo02jGT8xST/a/zyvnIfxjaelsWB7iHG8Oinklx/5r31EVlzbrzW2lczjFR5fG1xdtpN3pfhM+crrbXvjM/R1TIcrvKBnb7NGs50eaOZRcdnmLz3RUmeXeMJFarq2Kr6lYn1f7vpOpfL8Dx8vi0ewb/Quq+zGlLTP8hwiNfnMgSqc8/y1oaRS+fXeIRADWcCOzHT5seZbeP0DO+zp9Uw8u7KrbXrzKxPT8uSeVU3tzP19rdbm63XvY9m+mtj3XV4aV0bjhj4coZD/+fdv229fnom+FnPSTl86O2rMyTJ85bPOyRhURtPzuFz/MzbcNqqPsl3D4n4hQx7tG+Xw23Vxo2r6gszP4sOC1najyWm1r8uwwf85vmOFtW/JMmfjXvyz8owOdxhp/ndov6hSa6c4Qw3W863NAYb90ly1xpOG3lOkqdk2Ju6ue3XZtOb/Rb1f5dhCONvVdWnMhw3/uF592NJG1NtzClzTobk/m1Jfmds/4Kx30+v4dScn0hyhwzp+dL60eY5flYdoXSXTevkT6xYn9ba+1trr9vi8pYhqP03NZzu8kNJXprh7GQ/m5kRGa21f8ywMfDzE+qfOD6Gj07y5hqGYj8rw2GJl8Tehgdkwrq4xA1rPJ17ho2v/9HGSTVXMPV9ZYrfzcSAefzQPzHDa+leGb5Mnl1VH03y1gxnuNhyPrQ5bUx1pU33+cmZsC5tuu0vtNZ+f3bZGC5cP8NZQjau99kkF21+v59XP2Njfp2/zvC++0ttztkLJ7ax8XPYaLol9StZt60pdW049v/Z+d7cZEvr2zCK4IkZPnM+mWG0xhPanNEFO/E4bNHGjyU5UMPhLR9I8odtOOxnx/swekaGM6ZstPvmDKMI/2L8HDgjW48sP6R+9NhxHTo3Y3DRhh1Z67Sx8XPcivXr2NzOMZk/j9zk22+tvaJN21N/WBttOLPeN5K8c3x/WbsfC/q2sc1xv/G5+usk/5Tp236T2xjX4V9N8oaamRtwxT48P8MOwcMO45zjFzM8brPP3+szjOZfdEjwllprf5XhS/PUz9yPZXg+/nLTsq+2LU7Yso3bvEqSl9Zwyu+zMsxf95QMO7QPJvn4uD39uhw+0fhW9UnysnHZ2Rm2q1f5/Nxsndfrr2WYLmLjsLfnJblJLd4x+uAMn/NnZtiZ9ztt8dQEi5yW4Uy8G4d1zfueMfVwr412VrVu7cJ1L0OQPPW1se46PLXutAyHNM87FHbbr59eVdtTO+MBAODoVcPJBV44hmEAcMQZ8QMAADughvlNLs4w6hUA9gQjfgAAAAA6ZcQPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ36/wE31TCzPuLNEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], + "source": [ + "fig2, ax2 = plt.subplots(figsize=(20, 9))\n", + "ax2.bar(disp_st['state'], disp_st['dispute_rate'])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "17ec819c", + "metadata": {}, + "outputs": [], "source": [ "#Getting count of issues per state with products\n", "state_issue_count = df.groupby(['state', 'product', 'issue']).size().reset_index()\n", - "state_issue_count.columns = ['state', 'product', 'issue','count']\n", - "state_issue_count" + "state_issue_count.columns = ['state', 'product', 'issue','count']" ] }, { @@ -822,6 +833,14 @@ "state_issue_count.sort_values(by = 'count', ascending = False).tail()" ] }, + { + "cell_type": "markdown", + "id": "bd01caa6", + "metadata": {}, + "source": [ + "**Analysis**: As the above console output and bar graphs show, states with higher populations such as CA, NY, TX etc tend to have more disputes over financial issues. Moreover, West Coast states have a higher tendency to dipute complaints. Laws regarding financial products and the companies headquartered in these states are areas which can be further analysed for why they yield such high issue counts" + ] + }, { "cell_type": "code", "execution_count": 21, @@ -941,14 +960,14 @@ ], "source": [ "#BAR PLOT\n", - "fig2, ax2 = plt.subplots(figsize=(16, 9))\n", + "fig3, ax3 = plt.subplots(figsize=(16, 9))\n", "#prod_u, counts = np.unique(product_issue_count['product'].values, return_counts=True)\n", - "ax2.barh(product_issue_count['product'], product_issue_count['count'])\n", + "ax3.barh(product_issue_count['product'], product_issue_count['count'])\n", " \n", "#ax2.set_title(\"Issue counts per product with (companies are bar colors)\")\n", - "ax2.set_title(\"Issue counts per product\")\n", - "ax2.set_xlabel('Issue Counts')\n", - "ax2.set_ylabel('Product')" + "ax3.set_title(\"Issue counts per product\")\n", + "ax3.set_xlabel('Issue Counts')\n", + "ax3.set_ylabel('Product')" ] }, { @@ -1103,7 +1122,7 @@ } ], "source": [ - "#@TODO Banks' products with highest issues\n", + "#Banks' products with highest issues\n", "bank_prod_count = df.groupby(['company', 'product', 'issue']).size().reset_index()\n", "bank_prod_count" ] From 572499754160d0b555a04e573caee47cf06b051e Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Fri, 30 Sep 2022 16:07:00 -0500 Subject: [PATCH 08/12] Prediction and PDF generation --- consumer_analysis.ipynb | 534 ++++++++++++++++++++++++---------------- 1 file changed, 323 insertions(+), 211 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index 35806be..ec389d6 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -1,39 +1,79 @@ { "cells": [ { - "cell_type": "code", - "execution_count": 24, - "id": "0060a11a", + "cell_type": "markdown", + "id": "6b1a83c8", "metadata": {}, - "outputs": [], "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import nltk\n", - "%matplotlib inline" + "# Analyzing Consumer Complaints from Financial Corporations/Institutions" ] }, { "cell_type": "markdown", - "id": "d2a97118", + "id": "bef4646a", "metadata": {}, "source": [ - "## Introduction\n", + "## Introduction:\n", "In this notebook I will be analyzing the counts and percentage of **disputed** customer complaints with regard to financial institutions, states and financial products along with a quick and dirty machine learning model to give a rough prediction of when the disputes will occur" ] }, { "cell_type": "markdown", - "id": "69ab7e9e", + "id": "af832702", + "metadata": {}, + "source": [ + "## Getting Required Packages:" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "id": "0060a11a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: xgboost in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (1.6.2)\n", + "Requirement already satisfied: numpy in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.21.5)\n", + "Requirement already satisfied: scipy in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.7.3)\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m22.2.2\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install xgboost\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.impute import SimpleImputer\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "import xgboost as xgb\n", + "from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n", + "from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_report\n", + "\n", + "#import nltk\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "b71085bc", "metadata": {}, "source": [ - "### Importing and Cleaning Data" + "## Importing and Cleaning Data" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 107, "id": "f92ee33a", "metadata": {}, "outputs": [ @@ -239,7 +279,7 @@ "4 511067 " ] }, - "execution_count": 25, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -251,7 +291,7 @@ }, { "cell_type": "markdown", - "id": "8f01fecb", + "id": "614bd252", "metadata": {}, "source": [ "Having a clean dataset allows for higher accuracy in visualizing, analyzing and in this case predicting on the dataset. In order to make the most efficient use of the above data, I am checking for the number of empty/NaN rows:" @@ -259,7 +299,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 108, "id": "73bf52d6", "metadata": {}, "outputs": [ @@ -287,7 +327,7 @@ "dtype: int64" ] }, - "execution_count": 26, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -299,7 +339,7 @@ }, { "cell_type": "markdown", - "id": "ab4ba910", + "id": "ed147dae", "metadata": {}, "source": [ "From the above output it is evident that the dataset if populated with many NaNs. However, removing all NaN values can cause overfitting in the prediction model and inaccuracies in the data analysis.\n", @@ -309,8 +349,8 @@ }, { "cell_type": "code", - "execution_count": 27, - "id": "9d108372", + "execution_count": 109, + "id": "99db09c6", "metadata": {}, "outputs": [ { @@ -325,7 +365,7 @@ "dtype: float64" ] }, - "execution_count": 27, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +379,7 @@ }, { "cell_type": "markdown", - "id": "d99b598e", + "id": "767768d6", "metadata": {}, "source": [ "The above columns will now be dropped as they have too many NaNs to have any use in our dataset. \n", @@ -348,8 +388,8 @@ }, { "cell_type": "code", - "execution_count": 28, - "id": "b92e9fc1", + "execution_count": 110, + "id": "a0ef79df", "metadata": {}, "outputs": [ { @@ -491,7 +531,7 @@ "4 1 " ] }, - "execution_count": 28, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } @@ -503,6 +543,7 @@ "#Tokenizing Yes and No to 1 and 0 respectively\n", "df = df.replace(['Yes', 'No'], [1, 0])\n", "\n", + "#Also tokenizing company response for easier NLP classification\n", "df.loc[df['company_response_to_consumer'].str.contains(\"Closed\"), 'company_response_to_consumer'] = 1\n", "df.loc[df['company_response_to_consumer'] != 1, 'company_response_to_consumer'] = 0\n", "df.head()" @@ -510,26 +551,26 @@ }, { "cell_type": "markdown", - "id": "058a75dd", + "id": "3bbb0b0f", "metadata": {}, "source": [ - "### Data Analysis and Visualization\n", - "Since I will be mainly checking the count AND rate of disputed issues, the following functions will be used to get these metrics as a DataFrame:" + "## Data Analysis and Visualization:\n", + "Since I will be mainly checking the count AND rate of disputed issues, the following functions will be used to get these metrics as a DataFrame:\n", + "\n", + "(*NOTE: Since the data being analysed is categorical I will mostly be using bar graphs*)" ] }, { "cell_type": "code", "execution_count": 49, - "id": "003c9fab", + "id": "3119cae1", "metadata": {}, "outputs": [], "source": [ - "#disp_cat = \"\"\n", "def is_disputed(row, cat):\n", " return df[(df['consumer_disputed?'] == 1) & (df[cat] == row[cat])]['consumer_disputed?'].sum()\n", "\n", "def get_count(cat, data=df):\n", - " #disp_cat = cat\n", " df_by_cat = df[[cat, 'issue', 'consumer_disputed?']].groupby([cat]).count().reset_index()\n", " \n", " df_by_cat['consumer_disputed?'] = df_by_cat.apply(lambda r: is_disputed(r, cat), axis=1)\n", @@ -539,10 +580,18 @@ " return df_by_cat" ] }, + { + "cell_type": "markdown", + "id": "6fc19ea8", + "metadata": {}, + "source": [ + "### Disputes according to State:" + ] + }, { "cell_type": "code", "execution_count": 58, - "id": "e14ee9fa", + "id": "d3f2083c", "metadata": {}, "outputs": [ { @@ -564,23 +613,23 @@ }, { "cell_type": "code", - "execution_count": 63, - "id": "54fb77df", + "execution_count": 79, + "id": "b747bcfe", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "Text(0.5, 1.0, 'Dispute counts per state')" ] }, - "execution_count": 63, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJEAAAIICAYAAADe938DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA06klEQVR4nO3dfbysZV0v/s83dhFWPoRkCNg2RVLIMPmpZXosSlFKsTQ3P0srT5hH+6VlCdY5ejqHpI4eipMPP01DOgmajySQmmRqYbpV5ElJUJQthDst9eRT4HX+uO8ls9eeWdfMrLXZy837/XrNa8265r6uue6Ze2bu+cx1X3e11gIAAAAAa/mmvd0BAAAAADY/IRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANC1ZW93YFl3vOMd29atW/d2NwAAAAD2Ge9///v/ubV20LTbvmFDpK1bt2b79u17uxsAAAAA+4yq+sSs2xzOBgAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdG3pLVBVr0jyk0k+3Vo7aix7dZIjxkVun+RfW2tHV9XWJB9OcuV423taa78y1rlvkjOTHJDk/CS/1lprVbV/krOS3DfJZ5I8rrV2zUasHHyj2XryeQvXuea04/dATwAAAGBX84xEOjPJcZMFrbXHtdaObq0dneR1SV4/cfPVK7etBEijFyc5Kcnh42WlzScl+ZfW2t2TnJ7k95dZEQAAAAD2nG6I1Fp7Z5LPTrutqirJzyY5e602qurgJLdtrV3UWmsZRh6dMN78qCSvHK+/NsmxY7sAAAAAbBLrnRPpQUluaK19dKLsrlX1war626p60Fh2SJIdE8vsGMtWbrs2SVprNyb5XJIDp91ZVZ1UVduravvOnTvX2XUAAAAA5rXeEOnE7DoK6fokd2mt3SfJryd5VVXdNsm0kUVt/LvWbbsWtvbS1toxrbVjDjrooHV0GwAAAIBFdCfWnqWqtiT56QwTYidJWmtfSfKV8fr7q+rqJPfIMPLo0Inqhya5bry+I8lhSXaMbd4uMw6fAwAAAGDvWM9IpB9P8pHW2tcPU6uqg6pqv/H692aYQPtjrbXrk3yhqh4wznf0hCRvGqudm+SJ4/XHJLlwnDcJAAAAgE2iGyJV1dlJLkpyRFXtqKonjTdty+4Taj84ySVV9aEMk2T/SmttZVTRU5L8SZKrklyd5IKx/OVJDqyqqzIcAnfyOtYHAAAAgD2gezhba+3EGeW/MKXsdUleN2P57UmOmlL+5SSP7fUDAAAAgL1nvRNrAwAAAHArIEQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQ1Q2RquoVVfXpqrpsouy5VfWpqrp4vDxi4rZTquqqqrqyqh42UX7fqrp0vO2MqqqxfP+qevVY/g9VtXWD1xEAAACAdZpnJNKZSY6bUn56a+3o8XJ+klTVvZJsS3LkWOdFVbXfuPyLk5yU5PDxstLmk5L8S2vt7klOT/L7S64LAAAAAHtIN0Rqrb0zyWfnbO9RSc5prX2ltfbxJFcluV9VHZzktq21i1prLclZSU6YqPPK8fprkxy7MkoJAAAAgM1hPXMiPa2qLhkPd7vDWHZIkmsnltkxlh0yXl9dvkud1tqNST6X5MBpd1hVJ1XV9qravnPnznV0HQAAAIBFLBsivTjJ3ZIcneT6JC8Yy6eNIGprlK9VZ/fC1l7aWjumtXbMQQcdtFCHAQAAAFjeUiFSa+2G1tpNrbWvJXlZkvuNN+1IctjEoocmuW4sP3RK+S51qmpLkttl/sPnAAAAALgFLBUijXMcrXh0kpUzt52bZNt4xrW7ZphA+72tteuTfKGqHjDOd/SEJG+aqPPE8fpjklw4zpsEAAAAwCaxpbdAVZ2d5CFJ7lhVO5I8J8lDquroDIedXZPkyUnSWru8ql6T5IokNyZ5amvtprGpp2Q409sBSS4YL0ny8iR/VlVXZRiBtG0D1gsAAACADdQNkVprJ04pfvkay5+a5NQp5duTHDWl/MtJHtvrBwAAAAB7z3rOzgYAAADArYQQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQFc3RKqqV1TVp6vqsomy/1FVH6mqS6rqDVV1+7F8a1V9qaouHi8vmahz36q6tKquqqozqqrG8v2r6tVj+T9U1daNX00AAAAA1mOekUhnJjluVdnbkhzVWrt3kn9McsrEbVe31o4eL78yUf7iJCclOXy8rLT5pCT/0lq7e5LTk/z+wmsBAAAAwB7VDZFaa+9M8tlVZW9trd04/vueJIeu1UZVHZzktq21i1prLclZSU4Yb35UkleO11+b5NiVUUoAAAAAbA4bMSfSLyW5YOL/u1bVB6vqb6vqQWPZIUl2TCyzYyxbue3aJBmDqc8lOXDaHVXVSVW1vaq279y5cwO6DgAAAMA81hUiVdVvJ7kxyZ+PRdcnuUtr7T5Jfj3Jq6rqtkmmjSxqK82scduuha29tLV2TGvtmIMOOmg9XQcAAABgAVuWrVhVT0zyk0mOHQ9RS2vtK0m+Ml5/f1VdneQeGUYeTR7ydmiS68brO5IclmRHVW1JcrusOnwOAAAAgL1rqZFIVXVckmcleWRr7YsT5QdV1X7j9e/NMIH2x1pr1yf5QlU9YJzv6AlJ3jRWOzfJE8frj0ly4UooBQAAAMDm0B2JVFVnJ3lIkjtW1Y4kz8lwNrb9k7xtnAP7PeOZ2B6c5Her6sYkNyX5ldbayqiip2Q409sBGeZQWplH6eVJ/qyqrsowAmnbhqwZAAAAABumGyK11k6cUvzyGcu+LsnrZty2PclRU8q/nOSxvX4AAAAAsPdsxNnZAAAAANjHCZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0bdnbHQDYaFtPPm/hOtecdvwe6AkAAMC+w0gkAAAAALqESAAAAAB0CZEAAAAA6BIiAQAAANAlRAIAAACgS4gEAAAAQJcQCQAAAICubohUVa+oqk9X1WUTZd9ZVW+rqo+Of+8wcdspVXVVVV1ZVQ+bKL9vVV063nZGVdVYvn9VvXos/4eq2rrB6wgAAADAOs0zEunMJMetKjs5ydtba4cnefv4f6rqXkm2JTlyrPOiqtpvrPPiJCclOXy8rLT5pCT/0lq7e5LTk/z+sisDAAAAwJ7RDZFaa+9M8tlVxY9K8srx+iuTnDBRfk5r7SuttY8nuSrJ/arq4CS3ba1d1FprSc5aVWelrdcmOXZllBIAAAAAm8OycyLdqbV2fZKMf79rLD8kybUTy+0Yyw4Zr68u36VOa+3GJJ9LcuC0O62qk6pqe1Vt37lz55JdBwAAAGBRGz2x9rQRRG2N8rXq7F7Y2ktba8e01o456KCDluwiAAAAAItaNkS6YTxELePfT4/lO5IcNrHcoUmuG8sPnVK+S52q2pLkdtn98DkAAAAA9qJlQ6RzkzxxvP7EJG+aKN82nnHtrhkm0H7veMjbF6rqAeN8R09YVWelrcckuXCcNwkAAACATWJLb4GqOjvJQ5Lcsap2JHlOktOSvKaqnpTkk0kemySttcur6jVJrkhyY5KnttZuGpt6SoYzvR2Q5ILxkiQvT/JnVXVVhhFI2zZkzQAAAADYMN0QqbV24oybjp2x/KlJTp1Svj3JUVPKv5wxhAIAAABgc9roibUBAAAA2AcJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQtHSJV1RFVdfHE5fNV9fSqem5VfWqi/BETdU6pqquq6sqqethE+X2r6tLxtjOqqta7YgAAAABsnC3LVmytXZnk6CSpqv2SfCrJG5L8YpLTW2vPn1y+qu6VZFuSI5PcOclfV9U9Wms3JXlxkpOSvCfJ+UmOS3LBsn0DAACARWw9+byF61xz2vF7oCeweW3U4WzHJrm6tfaJNZZ5VJJzWmtfaa19PMlVSe5XVQcnuW1r7aLWWktyVpITNqhfAAAAAGyAjQqRtiU5e+L/p1XVJVX1iqq6w1h2SJJrJ5bZMZYdMl5fXb6bqjqpqrZX1fadO3duUNcBAAAA6Fn6cLYVVfUtSR6Z5JSx6MVJ/luSNv59QZJfSjJtnqO2Rvnuha29NMlLk+SYY46ZugwAALDnOfQH4NZnI0YiPTzJB1prNyRJa+2G1tpNrbWvJXlZkvuNy+1IcthEvUOTXDeWHzqlHAAAAIBNYiNCpBMzcSjbOMfRikcnuWy8fm6SbVW1f1XdNcnhSd7bWrs+yReq6gHjWdmekORNG9AvAAAAADbIug5nq6rbJPmJJE+eKP6Dqjo6wyFp16zc1lq7vKpek+SKJDcmeep4ZrYkeUqSM5MckOGsbM7MBgAAALCJrCtEaq19McmBq8p+fo3lT01y6pTy7UmOWk9fAAAAANhzNursbAAAAADsw4RIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAutYVIlXVNVV1aVVdXFXbx7LvrKq3VdVHx793mFj+lKq6qqqurKqHTZTfd2znqqo6o6pqPf0CAAAAYGNtxEikH22tHd1aO2b8/+Qkb2+tHZ7k7eP/qap7JdmW5MgkxyV5UVXtN9Z5cZKTkhw+Xo7bgH4BAAAAsEH2xOFsj0ryyvH6K5OcMFF+TmvtK621jye5Ksn9qurgJLdtrV3UWmtJzpqoAwAAAMAmsN4QqSV5a1W9v6pOGsvu1Fq7PknGv981lh+S5NqJujvGskPG66vLAQAAANgktqyz/gNba9dV1XcleVtVfWSNZafNc9TWKN+9gSGoOilJ7nKXuyzaVwAAAACWtK6RSK2168a/n07yhiT3S3LDeIhaxr+fHhffkeSwieqHJrluLD90Svm0+3tpa+2Y1toxBx100Hq6DgAAAMAClg6Rqurbquo7Vq4neWiSy5Kcm+SJ42JPTPKm8fq5SbZV1f5VddcME2i/dzzk7QtV9YDxrGxPmKgDAAAAwCawnsPZ7pTkDUPuky1JXtVa+6uqel+S11TVk5J8Msljk6S1dnlVvSbJFUluTPLU1tpNY1tPSXJmkgOSXDBeAAAAANgklg6RWmsfS/IDU8o/k+TYGXVOTXLqlPLtSY5ati8AAAAA7FnrnVgbgCm2nnzewnWuOe34PdATAACAjbGuibUBAAAAuHUQIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdG3Z2x0AAIBbm60nn7dwnWtOO34P9AQA5mckEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABA15a93QEAmGXryectXOea047fAz0BAACMRAIAAACgS4gEAAAAQJcQCQAAAIAuIRIAAAAAXUIkAAAAALqESAAAAAB0bdnbHQAANr+tJ5+3cJ1rTjt+D/QEYHPx/shGsj2x2RmJBAAAAECXEAkAAACALiESAAAAAF1CJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAECXEAkAAACAri17uwMAAMCt09aTz1u4zjWnHb8HegLAPIxEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0LVlb3cAAIBbj60nn7dUvWtOO36DewIALMpIJAAAAAC6hEgAAAAAdAmRAAAAAOgSIgEAAADQJUQCAAAAoEuIBAAAAEDXlr3dAQCAW8Iyp5Z3WnkAgJsZiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAukysDRvIpK0AAADsq5YeiVRVh1XV31TVh6vq8qr6tbH8uVX1qaq6eLw8YqLOKVV1VVVdWVUPmyi/b1VdOt52RlXV+lYLAAAAgI20npFINyb5jdbaB6rqO5K8v6reNt52emvt+ZMLV9W9kmxLcmSSOyf566q6R2vtpiQvTnJSkvckOT/JcUkuWEffAAAAANhAS49Eaq1d31r7wHj9C0k+nOSQNao8Ksk5rbWvtNY+nuSqJPerqoOT3La1dlFrrSU5K8kJy/YLAAAAgI23IRNrV9XWJPdJ8g9j0dOq6pKqekVV3WEsOyTJtRPVdoxlh4zXV5cDAAAAsEmsO0Sqqm9P8rokT2+tfT7DoWl3S3J0kuuTvGBl0SnV2xrl0+7rpKraXlXbd+7cud6uAwAAADCndZ2draq+OUOA9OettdcnSWvthonbX5bkzeO/O5IcNlH90CTXjeWHTinfTWvtpUlemiTHHHPM1KAJAAAA2DucsXrftp6zs1WSlyf5cGvtf06UHzyx2KOTXDZePzfJtqrav6rumuTwJO9trV2f5AtV9YCxzSckedOy/QIAAABg461nJNIDk/x8kkur6uKx7NlJTqyqozMcknZNkicnSWvt8qp6TZIrMpzZ7anjmdmS5ClJzkxyQIazsjkzGwAAAMAmsnSI1Fp7d6bPZ3T+GnVOTXLqlPLtSY5ati8AAAAA7FkbcnY2AAAAAPZt65pYGwDY/ExwCQDARjASCQAAAIAuIRIAAAAAXUIkAAAAALrMiQT7GHOfAAAAsCcYiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAlxAJAAAAgC4hEgAAAABdW/Z2BwAAAGA9tp583lL1rjnt+A3uCezbjEQCAAAAoEuIBAAAAECXEAkAAACALiESAAAAAF0m1gYAuIUsM/GrSV/ZU2yPA48DwPyMRAIAAACgS4gEAAAAQJcQCQAAAIAucyIBuzAvAMB03h8BZvMeCbcOQiQAAABgU1gmkEyEkrcUh7MBAAAA0CVEAgAAAKBLiAQAAABAlzmR2BAm0gM2K+9PAACwMYxEAgAAAKBLiAQAAABAlxAJAAAAgC5zIgHAJmdeJwAANgMjkQAAAADoEiIBAAAA0CVEAgAAAKBLiAQAAABAl4m1AWAPWmZS7MTE2AAAbD5GIgEAAADQJUQCAAAAoMvhbMCms8zhPw79AYBbH/sMALcsI5EAAAAA6DISCdhQJhEGAODWyMg4bg2ESAAAtyK+5AAAyxIiAcAafOEGpvHeAMCtkTmRAAAAAOgyEol9hl8EYVdeE2wmtkfYWOYgBGBvECIBMJUv/QBw6+AzH5iXEAmAPcZOKbAZeW8CgOWYEwkAAACALiESAAAAAF0OZwMAANhLTJIOG89hy3uOkUgAAAAAdBmJBADA3Py6C7Bv8z7PWjbNSKSqOq6qrqyqq6rq5L3dHwAAAAButilGIlXVfklemOQnkuxI8r6qOre1dsXe7dmth7QZAPhGYb8F9j1e12wmtsfZNstIpPsluaq19rHW2leTnJPkUXu5TwAAAACMNsVIpCSHJLl24v8dSe6/l/ryDWdfSEmdlQJ25TUBAMCi9oXvhmxu1Vrb231IVT02ycNaa/9x/P/nk9yvtfarq5Y7KclJ479HJLnyFu3oLe+OSf55L7exL/RhX1gHfdiY+vqwMfX1YfP0YV9Yh83Qh31hHfRhY+rrw8bU14fN04d9YR02Qx/2hXXQh42pv1FtbHbf01o7aOotrbW9fknyQ0neMvH/KUlO2dv92tuXJNv3dhv7Qh/2hXXQh31nHTZDH/aFddCHfWcdNkMf9oV10Id9Zx02Qx/2hXXQh31nHTZDH/aFddCHzbMO3+iXzTIn0vuSHF5Vd62qb0myLcm5e7lPAAAAAIw2xZxIrbUbq+ppSd6SZL8kr2itXb6XuwUAAADAaFOESEnSWjs/yfl7ux+bzEs3QRv7Qh/2hXXQh42prw8bU18fNk8f9oV12Ax92BfWQR82pr4+bEx9fdg8fdgX1mEz9GFfWAd92Jj6G9XGN6xNMbE2AAAAAJvbZpkTCQAAAIBNTIi0SVTVo6uqVdX3rSq/z1j+sEXbqKqtVfWlqrp44vKEJdq4bOL2X66qD1TVHZZtY53rcUVVvaSqZm67c9Q/q6q+eYH631RVZ1TVZVV1aVW9r6ruukD9p656Di4bb7/njPrfXVXnVNXVY3/Pr6p7jLc9o6q+XFW3W+P+p9avqiOr6sKq+seq+mhV/eeqqgXa+Zuq+uK4Dp+tqo+P1/96St2bxtsur6oPVdWvTz5nVXW/qnpnVV1ZVR+pqj+pqtvMU7+qHlJVn1v1mP74jHW4adVyW8f6b5613nPUbVX1pInl7jOWPXNKG3eqqldV1ceq6v1VdVFVPXri9j+qqk/N2p5n1a+qX6iqP1617Duq6pgZ7fyfVf9/vX5VPXda3+doo7stTqtfN78eP1hVH66q91bVE+dpY0o7c7+vTKnbqupXJ27746r6hV7d8fojxtfQXarqiPGxv3hcn5nDm2e0cWFVPWWi/P5VdUlV7Xa4+ernYNVtvW2pVdWfTfy/pap2rn4tVNWbquqiReuP29TO8Xn9aFW9pap+eMk2Jl9391qw/lyvi2XaWqDe16rq3hPLXFZVW+epP5adMG4DH6nhM+eEdTyOV1TVLy+xHneqqjfX8P57RVWdP2/9qvrFiefvq+M6XFxVp01p4wUT/z+zqp478f8Txsfu8rEPz5y3fg3va58a7/ejVfX6yW1piTZWLrdfsP7qPl9TVXdcoh9T36PnqNeq6u4Ttz9jLDum10YNn3e7vBeMz/MNVXXwPP2oqofW8LlVY/l+4+O4+r3h0Breez5awz7HH1XVt9SUz+uqOrOqHjPlsZirjar67zW8P+2/QP3P1fDe9pGqev6052JsY2W/4bKq+osa92vGx+2fq+p5s+rO0cZk+V9O2RZ3q1dVp1fV0yeWeUtV/cnE/y+oql+fox9fv7+a47O3qn67htftJWMb96+qb66q08bH97IaPvsfvkD9d9Swz7jy3vjHqx+Dse6BdfPr9Z9q19fwmu85c7RxdQ37vt85LneH8f/vmdLGbo9TDa+Jf6ub35snv6M9ZtWy76hV3/2q6ulV9aKqOqiq/r2qnrzW89Bp5/w5nsdpdf/z2PeLa43vAvNue73XxgLtrH6s56nXquqIVfX+sKp+a4E2vlpV3z9R9ltV9ZJp67KvESJtHicmeXeGM9NNKz9xyTaubq0dPXE5a8l+pKp+PsmvJnloa+1flmljTjPXI8m9k9wryQlL1v/+JIcm+dkF6j8uyZ2T3Lu19v1JHp3kX+et31p74eRzkOHMg3/eWvvw6opVVUnekOQdrbW7tdbuleTZSe400fb7xj7splP/3CSntdbukeQHkvxwkv+0QDvPSPKwiXX4zXGdpgU4XxpvOzLJTyR5RJLnjG3fKclfJHlWa+2IJPdM8ldJvmOe+qN3rdqudwuyVrWzcrlmxnKL1L00wzaxYluSD62uPD6Gb0zyztba97bW7jsue+h4+zdleB6vTfLgRetvAmtuix1Xt9bu01q7Z4Z1ekZV/eKG9q7v00l+rYYzgs6tqo5N8r+SHNda+2SSM5KcPm4j9xxvm7uNDI/jb447hd+U5I+T/KfW2o0L9GnNbWn0b0mOqqoDxv9/IsmnVrVz+yQ/mOT2tXtQ3q2f5NXj83p4ktOSvL52DcvnbWPydXfFgvXntWxb89TbkeS3l6lfVT+Q5PlJHtVa+74kj0zy/JoIpebsw6vH9+qHJPm98X13kfX43SRva639wPj+f/K89VtrfzrxeXddkh8d/1/dxleS/HRND1UenuTpGfY3jsywXX5u3vqjldfl4UleneTCqjpoyTZWLv+6YP15LdtOr96l2XVf6DFJrli1zKw23pnk0BoD0NGPJ7mstXb9PG201t6a5BNJVn54+dUk72ut/f3KMuNn3euTvHF8ru6R5NuTnDpjnXYzbxtV9dtJHpjkhNbaVxao/67W2n2S3CfJT1bVA2d0ZWW/4agkX03yK2P5Q5NcmeRnx/tay6w2Jss/m+Spc9T7+wz7eiufE3dMcuREnR9O8ndz9GPa/U1VVT+U5CeT/GBr7d4Ztplrk/y3JAcnOWps86ey635fr36SPH4su3eGbe5Nq+u31j4z8f7zkky8hjPn62yNNu6W5MUZPt8y/n1pa+0T8zw2o+eM7T4iu35He+2q5c7O7t+jto3lj03ynsz33XBWO91Ac0bd45M8eY7vAvNue73XxrLb8Dz1/mpy/cblHpPh82LeNk5N8qIaHJLkyUlOmdKffY4QaROoqm/P8KH2pOy6MVeGjfkXkjy0qr510TY2oh/jbT+bYSfyoa21f95T/ejVH79Y/X2Su6++bc76NyV5b5JDFqh/cJLrW2tfG9vYMStE691/VT04Q4A1NbxJ8qNJ/r219vUUu7V2cWvtXVV1tww7Nb+T2R8cU+tn2CH6u3GHLq21LyZ5Wnb/YtDtx4zlZ2qtfTrJSUmeNm7TT03yytbaRePtrbX22tbaDXPW39s+meRba/ilvjIEARdMWe7Hknx11WP4idbaSsjwo0kuy7BDMu357NXfa+bcFufSWvtYkl9P8v9tQNcWsTPJ25MsMgrqQUleluT41trVY/HBGUKDJElr7dJF2hi3++cn+YMMO/2XtNbevciKpL8trbggww5gxuXOXnX7zyT5yyTnZPr7d6/+17XW/ibDpJMnLdvGDOutvxFt9eq9OcmRq3/hnLP+M5P8Xmvt40ky/n1ekt9cpu/j++fVSXb7pbzTxurt+pIF68/jxgzbyDOm3HZKkme21q4b7//LrbWXLVB/F621Vyd5a5L/d9k2Zlhv/fW206v3xiSPSpKq+t4MQdzOedoY93n+Irv/aDLteV6rH89IckpVHZlhv+NZq27/sSRfbq396Xi/N411finJbTKfbhtV9RsZvrj/VGvtS8v0Yax3cWbsQ67yrty8r3pikj/KsP/wgDnXaXUbky7q9GGl3t9l/BKc4cvvZUm+UMMImv0z/Ij3wTn60bu/SQcn+eeVkG78zvCvSX45ya9OlN/QWnvNPPVX3gdWtNa+muS3ktxlDN7ntRGv19OTPGAcofIjSV6w9uJLe22GwHL/ZBjZlOEH7ZWBBb+RIeTtPS+z2tmxVqU5+tAz77bXe23M086072Tz1HtWdt3XeXCSayZCwXnaeF6S65M8IcO28dxZ3xH3NUKkzeGEJH/VWvvHJJ+tqh8cyx+Y5OPjl5V3ZPjwW7SNu9WuQ7EftEQb35Ph1/GHttb+acl1mdea9WsY1ntshl/Xlqn/rUnunyF9nrf+a5L81Pj4vaCq7rNM/8df+f80yRNba5+fUf+oJO+fcdvKTvq7khxRVd+1QP0jV5eP29W3V9VtF+zHwsag4JuSfNcyba+qnyQPWrVd321G1QMmlnnDgt1eq+5rM/wS9MNJPpDh163Vjhxvm2Xl+XxDhg/p1YdY9uovYnJdLs4wymA95tkWF/GBJN/XXWrjnZbkN6pqvzmW3T/Dr54ntNY+MlF+eoYRDhfUcKjI7Zdo4yUZRlj+ZoYd40X1tqUV5yTZNr4P3jvJP8xo5+xMD6N69Veb9rz22njcqtf2Aeupn2TqIZ5Lrs+89b6WIRR89hL1d3uvTrI9u/76OXffx+Dge5NctWA/Xpjk5TUcxvzbVXXnBevP64VJHl+7HxY77+fErPrTzHqfWauNZ0xsT3+zRB+esWp7nPY4ztPOWtaq9/kk11bVURle06+essxabXx9JML4pekRSV63SBvjqKU/zBBE/PfW2mdX1Zu2f/L5DF8q755Vn/cZRuet1mvjgRlC+oe31qYdFtyrn2Q4fCnJ4RlGac1Uw+HID09y6fgedmyGcHnWe+uabawq329s79xevTF8ubGq7pJhf+WiDK/TH8rw3njJGMis1Y8172+KtyY5rIapE15UVf8hw2P4yTX2fXv1dzMGfR/K4vsOy77OVu733zN8Vp+e5Om9x29ZrbXPZPjR+7ixaFuG1++hSb67tfbeDN9PHje9hW473TNrzarbWv+sXPNse0lWtq2Zr40529ntOZhz278kydcmgshdQvIFXj9PzzAi6aDW2tcP897XCZE2hxMz7Ixl/Htip3yRNlYfzrbWSJJZbezM8EG61iFgvTbmNav+3cadh79Lcl5rbdrIj3nqfybDB9m0X1Wn1m+t7UhyRIZfRr+W5O01HI6yyP0nwyiB/91amzV0uGdbknPGXwdfnyHEmFdl9gfGLXWKxvWOIpqsv/pwtqtn1Jk8JG3Rw67WqvuaDI//3L++V9ULa5hf5H01HEL1iAxD5z+f4UPpofPWz+LP5S6H5iX5L/P0eQ3r2Ran2SsjzMZRHu/N7qMTpvn3DKMgnzRZOP5yfc8Mv9g/JMl7atVcG3O08bUk/3+SC8adtrktsi2N73tbM2y3q+e4uVOGHf13jyH4jeMXz7nqz+reIn0YrT6c7UvrqZ8hgJlqifVZpN6rMvxavdv8eZ36096rdyubow+PGz/zzs5w6MHqL+5rttFae0uG8OllGb6kfbBWHQq27OO3qo3PJzkrS45EXLD+1PeZThunT2xPP7rO+kdnOLxvqmUfiznqrYwsPCFD0Dx3G62192X4semIDMHEe2b9yt7pxwuT7NdaO3PKbbP2T1bK37XqMZwWZvTauGq8Putztlf/QVV1SZJ/SvLmNX5QPWB83W3PsN/88gyHZv1NG0aAvy7Jozs/XExrY7L8M0m+M8nb5qy3Mppi5UvwRRP//31m693fVGNId98Mo1B3ZggsHjJP3Vn1a/Z8hQvvO6z3PWf08AyjT45aY5mN2OeePJxs28T/KyO45v2eNa2d9fRhXr1tb97XxrLb8Dz1zs7wY8iWDKM2/2LRNsaw6cIM3/NuNXabuJNbVlUdmGEY7VFV1TKksq2qTs5waMEjaziGu5IcWFXf0Vr7wjxtJHnRevsxtvHFDG+Y766qT7fW/nyJNtbbh5U5jdZVv4bJIN9RVY9srZ07T/2q+q02DKu9IMkFVXVDhp2xt89bP8Mwx61Jfr7zMFye4RDG1et27wy/fr2thiO6viXJxzLsmHXrj+W7zJUy/kL9f1ZvT512ljLe100Z5qG5PMMOwm7Hss9Z/54b1a9ltdb+qar+PcM8IL+Wm4e7Tro8w2t4pc5TazgOf3uGX3Vul+FXymQYLv/FJOfNWf8zSVZPbv+dSWYearpRFtgWF3GfJLvNEXYL+b0MI8vW/GU5Q4D8s0n+uqqe3Vr7vZUbxh2IVyR5RQ2TO84aRTGzjfG2ry3R/3m2pUnnZjh87iFJDpwof1yGberjYzu3zbDD+Dtz1p9m1vO6SBvTrLf+RrS1Zr3W2o01TOC6+tCdXv3Lc/Ovqyt+MLvPY9Prw6tba0/rrMOabYzB06uSvKqGiYkfnN1HoWzEc/GHGUYJ/elE2crnxIVL1p/mPpkdKs7bxnr7sKfaWaveXyb5H0m2t9Y+X7OPCp/VxkoIdc/0v0BObaO19rVxv2iaXT7rkqSGEdKHZTgUcx69Nm5I8vgMPwJ+pg2H2y5S/12ttZ+s4SQn766qN7RhqoDVvrR6X7WqTkzywKq6Ziw6MMMhyGvO5TirfBxB8+YMUwOcMUe9lXldvj/D4TjXZjgU6vMZPrdm6d3fTOMooXdk2N++NMM8MXeZ9h1mzvq7HXY+hg3fn+X2Hf4wS75eq+roDPt+D8iwLZzTdp8jLJm9n/bxBe7ujUn+Zw1HNRzQWvtADRM736mqHj8uc+eqOry19tEF29m6bB8W6H9v2/vFzPfaWHYbnqfe2RlGv/1thpFFn17yvpfdh/uGZSTS3veYJGe11r6ntba1tXZYhjeY30nyodbaYWP592TYeTthgTYWmYB3zTZaazszfFn5vZp9prj19mOP1x/f6E/O9EnPZtV/cI1D+WuYWO3eGSaKnLt+hmGOj2/9yXIvTLJ/TZxNp6r+nwzHCz93bHdra+3OSQ6p3c8IMav+R5P8SI1nMRuHV5+R4ZCLufsxa1jxWsZfr1+S5I9bay3DoZFPrKr7Tyzzc1X13XPW3yz+S4bJwW+acfuFGeZOespE2crcCicm+Y8rz2eSu2aY9+w2c9Z/X4YP3u9OkhrOtLN/bp58ck86MfNti3MZd2SenzkmpN4T2nBY2RUZfhHrLfvFcbnH13iGvqo6rsbDx8bn48CsMUHztDbWaZ5tadIrkvxu233uphMzTBa+0s7KRO7z1t/F+F5xUoaRLEu1sYb11t+Ituapd2aGSWFXT+a8Vv3nZ5g/Zmvy9dfHszN93o2NeBymtlFVP1Y3nxXqO5LcLcPohg3vwxhWvSa7jtB7XpI/mHiP27+qpo4cmFF/F1X1MxlGocyaO6rbxhLrcIu1s1a9Nozme1Y6E1Wv0cbZSX4uw49kax7StGT/357kNjWePXgMB16Q4fXzxY1qow0jLH86yf8eg4CF+zC28bzMDod3MQZRP5LkLhPvrU/NOuYSbK19LsMommfWGmcanvB3GT5zPttau2l8jm6f4ZCcizb6/mo4Y+nhE0VHZ5g4+eVJzqjxZBZVdXBV/dyc9T+xaplvzvA8XNtmH1kw07KvsxoS2BdnOIztkxnC2aln62vDiKrrazxyoYYzuh2X+eYTmmzjHRneZ8+uYUTgt7XWDpnYnp6Xzhy0q9uZ9/7XWzdrb3sfyvyvjWW34W69NhzJ8JkM0xtMW791vX72ZUKkve/E7D68+HUZEu5p5dMOu5jVxrOz+5xIs4ZvrtVGkq8f+vHIDL+23z+7W6uNI6pqx8Rl2uEv3T50zFv/jRl2FlbPDzWr/plJ/nIcYXBJhon5djv18xr1fyHJt2U4U9Ga81ONIcmjk/xEDacSvTzJczP8yru67Tdk1QfHGvWvyzBM83eq6soMx9i/b8Z69NqZx8ocPJdn+EXhrUn+69j2DWO/n1/D6Vo/nORBGVL9bv3R6jmRFh01deyq7fGHFqyf1trft9beuMbtLUPo+x9qOAXqe5O8MsNZ5h6WiZEirbV/y7Bj8VNz1H/W+Bj+WpLzaxhu/ocZDr28JX4F2ZY5tsWOu9VwuuQPZ9iR+19tnNB0QfO8r8zj1MwZVo87EMdleC09KsMX08uq6kNJ3pLhTCVrzh03pY153WbV+j47c2xLq+57R2vtjybLxqDiLhnO9rKy3MeTfH71e/20+hNW5iP6xwzvuz/TppyFcs42Vi67jfLr1F/Ism3NU68NcyWckZvncuvWb8Pohmdl+Mz5SIZRJL/Vpox62IjHYY027ptkew2H8FyU5E/acGjThvdh9IIMZ75Zaff8DKMb/3r8HHh/1h49v0v90TPGbeijGUOQNvwgtkwbK5etC9Zfxup2tmT6vHtz339r7Zw23wiC3dpowxkSv5jkwvH9Zel+zOjbyv7GY8fn6h+TfDnz7/vN3ca4Df9iknNrYi7FBfvwkgw/Lu52qOoUP53hcZt8/t6U4SiDWYc9d7XWPpjhS/g8n7uXZng+3rOq7HNtjRPlrOP+vj3JK2s4DfwlGeb7e26GH8d3Jrli3J9+Y3af5H2t+kny52PZZRn2qxf5/FxtmdfrL2eYEmPl0L4XJfm+mv0D6xMyfM5fnOGHwf/aZk+/MMvZGc6ovHLo2rTvGfMe0rbSzqKWrTtz28sQSs/72lh2G5633tkZDtuedrjvul8/+6pqm+qHfQAAIElqOLHDy8ZgDQD2OiORAABgk6lhPpivZRiNCwCbgpFIAAAAAHQZiQQAAABAlxAJAAAAgC4hEgAAAABdQiQAAAAAuoRIAAAAAHQJkQAAAADo+r8igLOtx4lzBwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAImCAYAAAD9mCv2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABEr0lEQVR4nO3de7xt53wv/s9XohGVuKYaidguQUk1KnWpUqp1v4S6JKUUp8GhRdtToc6po0eb9lBFXX4UoaeCUsSt7ndRQiM3VBAVCeKa1CUk+f7+GGMx99rrMtfae+y19vJ+v17zteZ8xnie8R1zjTnnmN/5PM+o7g4AAAAATOEyGx0AAAAAAFuX5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwBg06qqF1TV/9zoOAAAWD/JJwBgQ1TV2VX1/aq6sKq+XVUfrqpHVtWPz0+6+5Hd/RcTx3F8Vf2fKbexq+2hMf9eVX1wDetvq6quqr2njAsAmJ7kEwCwke7R3fsluVaS45I8IcmLNzYk5lVVe210DADA5if5BABsuO7+TnefmOQBSR5SVYcl2/fwqaqrVdWbxl5S36yqDyz0khp7UT2xqs6sqm9V1Uur6nLjsh163Iw9aq5XVcckeWCSP62q/6qqN47Lr1FVr62q86vqC1X1h8vFXlX7VtUzquqLVfWdqvpgVe07LrtnVZ0xxvzeqvqFxTHMPJ7d19tV1TlV9cdV9bWqOq+qHjouWy7mJ1TVl8eeZJ+pqjssE+/x43DGd4zrvq+qrjWz/Ibjsm+O7dx/Ud3nV9Vbquq7SW6/RPu/V1WfH9v+QlU9cNzvFyS51Rjzt8d171ZV/15VF1TVl6rqKTNNvX/8++2xzq3GOg+rqk+N/+e3zcYOAGxOkk8AwKbR3R9Nck6S2yyx+I/HZQckuXqSJyXpmeUPTHKnJNdNcv0kT55jey9M8k9J/qa7r9Dd9xgTWm9M8skkByW5Q5LHVdWdlmnm6UluluRXk1wlyZ8mubSqrp/khCSPG2N+S5I3VtXPrBbX6OeTXHGM4eFJnltVV14m5hskeUySXxl7kt0pydkrtP3AJH+R5GpJThnbS1X9bJJ3JHlFkp9LcnSS51XVjWfq/k6SpyXZL8nipN7PJnl2kruMcfxqklO6+1NJHpnkpDHmK41VvpvkwUmulORuSR5VVUeOy247/r3SWOekcdmTktwnw3P6gQzPMQCwiUk+AQCbzbkZkjiL/SjJgUmu1d0/6u4PdPds8unvu/tL3f3NDMmRo9e5/V9JckB3P7W7f9jdn0/yoiRHLV5xTFQ9LMlju/vL3X1Jd3+4uy/K0Ivrzd39ju7+UYYk1b4ZEjLz+FGSp477+pYk/5XkBsuse0mSfZLcqKou291nd/fnVmj7zd39/jHOP8vQI+maSe6e5Ozufml3X9zdn0jy2iT3nan7hu7+UHdf2t0/WKLtS5McVlX7dvd53X3GckF093u7+7SxrVMzJJJ+fYW4H5Hkr7r7U919cZK/THK43k8AsLlJPgEAm81BSb65RPn/TXJWkrePw7qOXbT8SzP3v5jkGuvc/rWSXGMcKvftcYjYkzL0tlrsakkul2SpRM81xjiSJN196RjjQXPG8Y0xwbLge0musNSK3X1Whh5WT0nytap6ZVWttP8/fq66+78yPN/XyLDvt1i07w/M0Atrh7pLxPHdDEm3RyY5r6reXFU3XG79qrpFVb1nHN74nbHe1VaI+1pJnjUT2zeTVOZ/TgGADSD5BABsGlX1KxkSCTtcFa27L+zuP+7u6yS5R5I/WjSv0TVn7h+SoQdVMgztuvzMNmYTKcn2Q/eSIbnyhe6+0sxtv+6+6xIhfz3JDzIM9Vvs3AzJkoXt1hjjl8ei783Gle0TPKtZHHO6+xXd/WvjNjvJX69Q/8fPVVVdIUNPs3Mz7Pv7Fu37Fbr7UStte1Ecb+vu38rQS+3TGXqNLVfvFUlOTHLN7r5ihnmhaoX1v5TkEYvi27e7P7xSTADAxpJ8AgA2XFXtX1V3T/LKJP+vu09bYp27j5OEV5ILMgw1u2RmlUdX1cFVdZUMPZVeNZZ/MsmNq+rwGiYhf8qipr+a5Dozjz+a5IJxAu99q2qvqjpsTIxtZ+zN9JIkfztOUr5XVd2qqvZJ8uokd6uqO1TVZTPMWXVRkoVEySlJfmesc+esPNxsse1irqobVNVvjNv9QZLvL3puFrtrVf3aOP/UXyT5t+7+UpI3Jbl+Vf1uVV12vP3K7ETpK6mqq9cwyfrPjvv6XzNxfDXJwYvmvNovyTe7+wdVdfMM80ktOD/DEL7Z/80LkjxxYQ6qqrpiVd1vntgAgI0j+QQAbKQ3VtWFGXq0/FmSv03y0GXWPTTJOzMkNE5K8rzufu/M8lckeXuSz4+3/5Mk3f0fSZ461v1sduxV9eIMcyV9u6pe392XZOhZdXiSL2To3fQPGSb/XsqfJDktyccyDAP76ySX6e7PJHlQkueMbdwjyT26+4djvceOZd/OMLTt9cu0v5TtYs4w39Nx43a+kmGy8CetUP8VSf58jPdm4/bT3RcmuWOG+a3OHdv667H9eVwmQ5Lt3LHtX0/y38dl705yRpKvVNXXx7L/nuSp4zHwvzIk7DLG8r0Mc3d9aNzPW3b368Z4XllVFyQ5Pcld5owNANggtf08nQAAe56qOjvJf+vud250LJtdVR2f5JzuXvVqgAAAu4KeTwAAAABMRvIJAAAAgMkYdgcAAADAZPR8AgAAAGAykk8AAAAATGbvjQ5gd7va1a7W27Zt2+gwAAAAALaMj3/841/v7gOWWvZTl3zatm1bTj755I0OAwAAAGDLqKovLrfMsDsAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMntP1XBVvSTJ3ZN8rbsPG8teleQG4ypXSvLt7j68qrYl+VSSz4zLPtLdjxzr3CzJ8Un2TfKWJI/t7q6qfZK8PMnNknwjyQO6++yp9gc2s23HvnnNdc4+7m4TRAIAAADbm7Ln0/FJ7jxb0N0P6O7Du/vwJK9N8i8ziz+3sGwh8TR6fpJjkhw63hbafHiSb3X39ZI8M8lfT7IXAAAAAKzbZMmn7n5/km8utayqKsn9k5ywUhtVdWCS/bv7pO7uDD2djhwX3yvJy8b7r0lyh7FdAAAAADaJjZrz6TZJvtrdn50pu3ZV/XtVva+qbjOWHZTknJl1zhnLFpZ9KUm6++Ik30ly1aU2VlXHVNXJVXXy+eefvyv3AwAAAIAVbFTy6ehs3+vpvCSHdPdNk/xRkldU1f5JlurJ1OPflZZtX9j9wu4+oruPOOCAA3YibAAAAADWYrIJx5dTVXsnuU+GicKTJN19UZKLxvsfr6rPJbl+hp5OB89UPzjJueP9c5JcM8k5Y5tXzDLD/AAAAADYGBvR8+k3k3y6u388nK6qDqiqvcb718kwsfjnu/u8JBdW1S3H+ZwenOQNY7UTkzxkvH/fJO8e54UCAAAAYJOYLPlUVSckOSnJDarqnKp6+LjoqOw40fhtk5xaVZ/MMHn4I7t7oRfTo5L8Q5KzknwuyVvH8hcnuWpVnZVhqN6xU+0LAAAAAOsz2bC77j56mfLfW6LstUleu8z6Jyc5bInyHyS5385FCQAAAMCUNmrCcQAAAAB+Ckg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlMlnyqqpdU1deq6vSZsqdU1Zer6pTxdteZZU+sqrOq6jNVdaeZ8ptV1WnjsmdXVY3l+1TVq8byf6uqbVPtCwAAAADrM2XPp+OT3HmJ8md29+Hj7S1JUlU3SnJUkhuPdZ5XVXuN6z8/yTFJDh1vC20+PMm3uvt6SZ6Z5K+n2hEAAAAA1mey5FN3vz/JN+dc/V5JXtndF3X3F5KcleTmVXVgkv27+6Tu7iQvT3LkTJ2Xjfdfk+QOC72iAAAAANgcNmLOp8dU1anjsLwrj2UHJfnSzDrnjGUHjfcXl29Xp7svTvKdJFddaoNVdUxVnVxVJ59//vm7bk8AAAAAWNHuTj49P8l1kxye5LwkzxjLl+qx1CuUr1Rnx8LuF3b3Ed19xAEHHLCmgAEAAABYv92afOrur3b3Jd19aZIXJbn5uOicJNecWfXgJOeO5QcvUb5dnaraO8kVM/8wPwAAAAB2g92afBrncFpw7yQLV8I7MclR4xXsrp1hYvGPdvd5SS6sqluO8zk9OMkbZuo8ZLx/3yTvHueFAgAAAGCT2HuqhqvqhCS3S3K1qjonyZ8nuV1VHZ5heNzZSR6RJN19RlW9OsmZSS5O8ujuvmRs6lEZrpy3b5K3jrckeXGSf6yqszL0eDpqqn0BAAAAYH0mSz5199FLFL94hfWfluRpS5SfnOSwJcp/kOR+OxMjAAAAANPaiKvdAQAAAPBTQvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATGay5FNVvaSqvlZVp8+U/d+q+nRVnVpVr6uqK43l26rq+1V1ynh7wUydm1XVaVV1VlU9u6pqLN+nql41lv9bVW2bal8AAAAAWJ8pez4dn+TOi8rekeSw7r5Jkv9I8sSZZZ/r7sPH2yNnyp+f5Jgkh463hTYfnuRb3X29JM9M8te7fhcAAAAA2BmTJZ+6+/1Jvrmo7O3dffH48CNJDl6pjao6MMn+3X1Sd3eSlyc5clx8ryQvG++/JskdFnpFAQAAALA5bOScTw9L8taZx9euqn+vqvdV1W3GsoOSnDOzzjlj2cKyLyXJmND6TpKrLrWhqjqmqk6uqpPPP//8XbkPAAAAAKxgQ5JPVfVnSS5O8k9j0XlJDunumyb5oySvqKr9kyzVk6kXmllh2faF3S/s7iO6+4gDDjhg54IHAAAAYG577+4NVtVDktw9yR3GoXTp7ouSXDTe/3hVfS7J9TP0dJodmndwknPH++ckuWaSc6pq7yRXzKJhfgAAAABsrN3a86mq7pzkCUnu2d3fmyk/oKr2Gu9fJ8PE4p/v7vOSXFhVtxznc3pwkjeM1U5M8pDx/n2TvHshmQUAAADA5jBZz6eqOiHJ7ZJcrarOSfLnGa5ut0+Sd4xzg39kvLLdbZM8taouTnJJkkd290IvpkdluHLevhnmiFqYJ+rFSf6xqs7K0OPpqKn2BQAAAID1mSz51N1HL1H84mXWfW2S1y6z7OQkhy1R/oMk99uZGAEAAACY1kZe7Q4AAACALU7yCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMJlVk09V9diq2r8GL66qT1TVHXdHcAAAAADs2ebp+fSw7r4gyR2THJDkoUmOmzQqAAAAALaEeZJPNf69a5KXdvcnZ8oAAAAAYFnzJJ8+XlVvz5B8eltV7Zfk0mnDAgAAAGAr2HuOdR6e5PAkn+/u71XVVTMMvQMAAACAFc3T8+kd3f2J7v52knT3N5I8c9KoAAAAANgSlu35VFWXS3L5JFerqivnJ/M87Z/kGrshNgAAAAD2cCsNu3tEksdlSDR9PD9JPl2Q5LnThgUAAADAVrBs8qm7n5XkWVX1B939nN0YEwAAAABbxKoTjnf3c6rqV5Nsm12/u18+YVwAAAAAbAGrJp+q6h+TXDfJKUkuGYs7ieQTAAAAACtaNfmU5IgkN+runjoYAAAAALaWy8yxzulJfn7qQAAAAADYeubp+XS1JGdW1UeTXLRQ2N33nCwqAAAAALaEeZJPT5k6CAAAAAC2pnmudve+3REIAAAAAFvPPFe7uzDD1e2S5GeSXDbJd7t7/ykDAwAAAGDPN0/Pp/1mH1fVkUluPlVAAAAAAGwd81ztbjvd/fokv7HrQwEAAABgq5ln2N19Zh5eJskR+ckwPAAAAABY1jxXu7vHzP2Lk5yd5F6TRAMAAADAljLPnE8P3R2BAAAAALD1zDPs7uAkz0ly6wzD7T6Y5LHdfc7EsQHsVtuOffOa65x93N0miAQAAGDrmGfC8ZcmOTHJNZIclOSNYxkAAAAArGie5NMB3f3S7r54vB2f5ICJ4wIAAABgC5gn+fT1qnpQVe013h6U5BtTBwYAAADAnm+e5NPDktw/yVeSnJfkvmMZAAAAAKxonqvd/WeSe+6GWAAAAADYYlbt+VRVL6uqK808vnJVvWTSqAAAAADYEuYZdneT7v72woPu/laSm04WEQAAAABbxjzJp8tU1ZUXHlTVVTLHcL2qeklVfa2qTp+tW1XvqKrPjn9n231iVZ1VVZ+pqjvNlN+sqk4blz27qmos36eqXjWW/1tVbZtznwEAAADYTeZJPj0jyYer6i+q6qlJPpzkb+aod3ySOy8qOzbJu7r70CTvGh+nqm6U5KgkNx7rPK+q9hrrPD/JMUkOHW8LbT48ybe6+3pJnpnkr+eICQAAAIDdaNXkU3e/PMlvJ/lqkvOT3Ke7/3GOeu9P8s1FxfdK8rLx/suSHDlT/sruvqi7v5DkrCQ3r6oDk+zf3Sd1dyd5+aI6C229JskdFnpFAQAAALA5rDp8Lkm6+8wkZ+6C7V29u88b2zyvqn5uLD8oyUdm1jtnLPvReH9x+UKdL41tXVxV30ly1SRfX7zRqjomQ++pHHLIIbtgNwAAAACYxzzD7naHpXos9QrlK9XZsbD7hd19RHcfccABB6wzRAAAAADWancnn746DqXL+PdrY/k5Sa45s97BSc4dyw9eony7OlW1d5IrZsdhfgAAAABsoLmST1V1rar6zfH+vlW13zq3d2KSh4z3H5LkDTPlR41XsLt2honFPzoO0buwqm45zuf04EV1Ftq6b5J3j/NCAQAAALBJrDrnU1X9fob5kq6S5LoZeh+9IMkdVql3QpLbJblaVZ2T5M+THJfk1VX18CT/meR+SdLdZ1TVqzPMK3Vxkkd39yVjU4/KcOW8fZO8dbwlyYuT/GNVnZWhx9NRc+0xAAAAALvNPBOOPzrJzZP8W5J092dnJgpfVncfvcyiJZNW3f20JE9bovzkJIctUf6DjMkrAAAAADaneYbdXdTdP1x4MM6vZHgbAAAAAKuaJ/n0vqp6UpJ9q+q3kvxzkjdOGxYAAAAAW8E8yadjk5yf5LQkj0jyliRPnjIoAAAAALaGVed86u5Lk7xovAEAAADA3Oa52t0XssQcT919nUkiAgAAAGDLmOdqd0fM3L9chivMXWWacAAAAADYSlad86m7vzFz+3J3/12S35g+NAAAAAD2dPMMu/vlmYeXydATar/JIgIAAABgy5hn2N0zZu5fnOTsJPefJBoAAAAAtpR5rnZ3+90RCAAAAABbz6pzPlXVY6tq/xr8Q1V9oqruuDuCAwAAAGDPtmryKcnDuvuCJHdM8nNJHprkuEmjAgAAAGBLmCf5VOPfuyZ5aXd/cqYMAAAAAJY1T/Lp41X19gzJp7dV1X5JLp02LAAAAAC2gnmudvfwJIcn+Xx3f6+qrpJh6B0AAAAArGienk+3SvKZ7v52VT0oyZOTfGfasAAAAADYCuZJPj0/yfeq6peS/GmSLyZ5+aRRAQAAALAlzJN8uri7O8m9kjyru5+VZL9pwwIAAABgK5hnzqcLq+qJSR6U5LZVtVeSy04bFgAAAABbwTw9nx6Q5KIkD+/uryQ5KMn/nTQqAAAAALaEVXs+jQmnv515/J8x5xMAAAAAc1g2+VRVH+zuX6uqC5P07KIk3d37Tx4dAAAAAHu0ZZNP3f1r41+TiwMAAACwLvPM+QQAAAAA6yL5BAAAAMBkJJ8AAAAAmIzkEwAAAACTWelqd4uvcrcdV7sDAAAAYDUrXe1uvySpqqcm+UqSf0xSSR6YxBXwAAAAAFjVPMPu7tTdz+vuC7v7gu5+fpLfnjowAAAAAPZ88ySfLqmqB1bVXlV1map6YJJLpg4MAAAAgD3fPMmn30ly/yRfHW/3G8sAAAAAYEXLzvm0oLvPTnKv6UMBAAAAYKtZtedTVV2/qt5VVaePj29SVU+ePjQAAAAA9nTzDLt7UZInJvlRknT3qUmOmjIoAAAAALaGeZJPl+/ujy4qu3iKYAAAAADYWuZJPn29qq6bpJOkqu6b5LxJowIAAABgS1h1wvEkj07ywiQ3rKovJ/lCkgdOGhUAAAAAW8I8yafu7t+sqp9NcpnuvrCqrj11YAAAAADs+eYZdvfaJOnu73b3hWPZa6YLCQAAAICtYtmeT1V1wyQ3TnLFqrrPzKL9k1xu6sAAAAAA2POtNOzuBknunuRKSe4xU35hkt+fMCYAAAAAtohlk0/d/YYkb6iqW3X3SbsxJgAAAAC2iHkmHD+mqnbo6dTdD5sgHgAAAAC2kHmST2+auX+5JPdOcu404QAAAACwlayafOru184+rqoTkrxzsogAAAAA2DIus446hyY5ZFcHAgAAAMDWs2rPp6q6MEknqfHvV5I8YeK4AAAAANgC5hl2t9/uCAQAAACArWeeCcdTVfdJ8msZej59oLtfP2VQAAAAAGwNq875VFXPS/LIJKclOT3JI6vquVMHBgAAAMCeb56eT7+e5LDu7iSpqpdlSEQBAAAAwIrmudrdZ7L91e2umeTUacIBAAAAYCuZp+fTVZN8qqo+Oj7+lSQnVdWJSdLd95wqOAAAAAD2bPMkn/7X5FEAAAAAsCXNk3w6Ocn3u/vSqrp+khsmeWt3/2ja0AAAAADY080z59P7k1yuqg5K8q4kD01y/JRBAQAAALA1zJN8qu7+XpL7JHlOd987yY3Xu8GqukFVnTJzu6CqHldVT6mqL8+U33WmzhOr6qyq+kxV3Wmm/GZVddq47NlVVeuNCwAAAIBdb55hd1VVt0rywCQPH8v2Wu8Gu/szSQ4fG94ryZeTvC5Dj6pndvfTF238RkmOypDwukaSd1bV9bv7kiTPT3JMko8keUuSOyd563pjAwAAgLXYduyb11zn7OPuNkEksHnN0/PpcUmemOR13X1GVV0nyXt20fbvkORz3f3FFda5V5JXdvdF3f2FJGcluXlVHZhk/+4+qbs7ycuTHLmL4gIAAABgF1i151N3vy/J+2Yefz7JH+6i7R+V5ISZx4+pqgdnmOT8j7v7W0kOytCzacE5Y9mPxvuLy3dQVcdk6CGVQw45ZBeFDgAAAMBqlk0+VdXfdffjquqNSXrx8u6+585suKp+Jsk9M/SqSoYhdH8xbusvkjwjycOSLDWPU69QvmNh9wuTvDBJjjjiiCXXAQAApmeIEsBPn5V6Pv3j+PfpK6yzM+6S5BPd/dUkWfibJFX1oiRvGh+ek+SaM/UOTnLuWH7wEuUAAAAAbBLLJp+6++Pj3/dV1QHj/fN34baPzsyQu6o6sLvPGx/eO8np4/0Tk7yiqv42w4Tjhyb5aHdfUlUXVtUtk/xbkgcnec4ujA8AAACAnbTSsLtK8udJHpNhiNtlquriJM/p7qfuzEar6vJJfivJI2aK/6aqDs8wdO7shWXjJOevTnJmkouTPHq80l2SPCrJ8Un2zXCVO1e6AwAAANhEVhp297gkt07yK+NV5jJe6e75VfX47n7mejfa3d9LctVFZb+7wvpPS/K0JcpPTnLYeuMAAAAAYFqXWWHZg5McvZB4Sn58pbsHjcsAAAAAYEUrJZ8u291fX1w4zvt02elCAgAAAGCrWCn59MN1LgMAAACAJCvP+fRLVXXBEuWV5HITxQMAAADAFrJs8qm799qdgQAAAACw9aw07A4AAAAAdorkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMZkOST1V1dlWdVlWnVNXJY9lVquodVfXZ8e+VZ9Z/YlWdVVWfqao7zZTfbGznrKp6dlXVRuwPAAAAAEvbyJ5Pt+/uw7v7iPHxsUne1d2HJnnX+DhVdaMkRyW5cZI7J3leVe011nl+kmOSHDre7rwb4wcAAABgFZtp2N29krxsvP+yJEfOlL+yuy/q7i8kOSvJzavqwCT7d/dJ3d1JXj5TBwAAAIBNYKOST53k7VX18ao6Ziy7eneflyTj358byw9K8qWZuueMZQeN9xeXAwAAALBJ7L1B2711d59bVT+X5B1V9ekV1l1qHqdeoXzHBoYE1zFJcsghh6w1VgAAAADWaUN6PnX3uePfryV5XZKbJ/nqOJQu49+vjaufk+SaM9UPTnLuWH7wEuVLbe+F3X1Edx9xwAEH7MpdAQAAAGAFuz35VFU/W1X7LdxPcsckpyc5MclDxtUekuQN4/0TkxxVVftU1bUzTCz+0XFo3oVVdcvxKncPnqkDAAAAwCawEcPurp7kdUO+KHsneUV3/2tVfSzJq6vq4Un+M8n9kqS7z6iqVyc5M8nFSR7d3ZeMbT0qyfFJ9k3y1vEGAAAAwCax25NP3f35JL+0RPk3ktxhmTpPS/K0JcpPTnLYro4RAAAAgF1joyYcB2AJ245985rrnH3c3SaIBAAAYNfYkAnHAQAAAPjpIPkEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADCZvTc6AAAAYD7bjn3zmuucfdzdJogEAOan5xMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGT23ugAAGBX23bsm9dc5+zj7jZBJAAAgJ5PAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmMzeGx0AALB1bTv2zWuuc/Zxd5sgEoDNxfsju5Ljic1OzycAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZPbe6AAAAADWYtuxb15znbOPu9sEkQAwDz2fAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGT23ugAAABgNduOffO66p193N12cSQAwFrp+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJ7L3RAQAAbGbbjn3zmuucfdzdJogEAGDPpOcTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyZhwHDYBk9kCAACwVe32nk9Vdc2qek9Vfaqqzqiqx47lT6mqL1fVKePtrjN1nlhVZ1XVZ6rqTjPlN6uq08Zlz66q2t37AwAAAMDyNqLn08VJ/ri7P1FV+yX5eFW9Y1z2zO5++uzKVXWjJEcluXGSayR5Z1Vdv7svSfL8JMck+UiStyS5c5K37qb9AAAAAGAVu73nU3ef192fGO9fmORTSQ5aocq9kryyuy/q7i8kOSvJzavqwCT7d/dJ3d1JXp7kyGmjBwAAAGAtNnTC8araluSmSf5tLHpMVZ1aVS+pqiuPZQcl+dJMtXPGsoPG+4vLAQAAANgkNiz5VFVXSPLaJI/r7gsyDKG7bpLDk5yX5BkLqy5RvVcoX2pbx1TVyVV18vnnn7+zoQMAAAAwpw252l1VXTZD4umfuvtfkqS7vzqz/EVJ3jQ+PCfJNWeqH5zk3LH84CXKd9DdL0zywiQ54ogjlkxQAQAAABvDFcC3to242l0leXGST3X3386UHziz2r2TnD7ePzHJUVW1T1VdO8mhST7a3eclubCqbjm2+eAkb9gtOwEAAADAXDai59Otk/xuktOq6pSx7ElJjq6qwzMMnTs7ySOSpLvPqKpXJzkzw5XyHj1e6S5JHpXk+CT7ZrjKnSvdAQAAAGwiuz351N0fzNLzNb1lhTpPS/K0JcpPTnLYrosOAAAAgF1pQ692BwAAAMDWtiETjgMAm5+JPwEA2BX0fAIAAABgMpJPAAAAAExG8gkAAACAyZjzCUhibhcAAACmoecTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMZu+NDgAAAAA2wrZj37yuemcfd7ddHAlsbXo+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIwJxwEANrn1TIhrMlym4ngceB4A5qfnEwAAAACTkXwCAAAAYDKSTwAAAABMxpxPwC5h3gOApXl/BFie90j46SD5BAAAAOzR1pPITCQzdxfD7gAAAACYjOQTAAAAAJORfAIAAABgMuZ8YkOZYBDYrLw/AQDArqHnEwAAAACTkXwCAAAAYDKSTwAAAABMxpxPALBFmbcKAIDNQM8nAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAkzHhOABsQuuZLDwxYTgAAJuPnk8AAAAATEbyCQAAAIDJGHYHbBnrGaZkiBIA/PRxzgCwe+n5BAAAAMBk9HwCNgWTKwMA8NNITzx+Gkg+AQCwKl+OAID1knwCgAn4og4sxXsDAD+NzPkEAAAAwGT0fOKnnl8gYXteE2wmjkfYtcyxCMBGkHwCYJeSLACAnw4+84F5ST4BsOk4mQU2I+9NALA+5nwCAAAAYDKSTwAAAABMxrA7AACAPYzJ42HXM7x6Ono+AQAAADAZPZ8AAJicX5MBtjbv86xkj+/5VFV3rqrPVNVZVXXsRscDAAAAwE/s0T2fqmqvJM9N8ltJzknysao6sbvP3NjIfnrIbgMAewrnLbD1eF2zmTgel7en93y6eZKzuvvz3f3DJK9Mcq8NjgkAAACA0R7d8ynJQUm+NPP4nCS32KBY9jhbISvrKh+wPa8JAADWait8N2Rzq+7e6BjWrarul+RO3f3fxse/m+Tm3f0Hi9Y7Jskx48MbJPnMbg1097takq9vcBtbIYatsA9i2DX1xbBr6oth88SwFfZhM8SwFfZBDLumvhh2TX0xbJ4YtsI+bIYYtsI+iGHX1N9VbWx21+ruA5Zc0t177C3JrZK8bebxE5M8caPj2uhbkpM3uo2tEMNW2AcxbJ192AwxbIV9EMPW2YfNEMNW2AcxbJ192AwxbIV9EMPW2YfNEMNW2AcxbJ592NNve/qcTx9LcmhVXbuqfibJUUlO3OCYAAAAABjt0XM+dffFVfWYJG9LsleSl3T3GRscFgAAAACjPTr5lCTd/ZYkb9noODaZF26CNrZCDFthH8Swa+qLYdfUF8PmiWEr7MNmiGEr7IMYdk19Meya+mLYPDFshX3YDDFshX0Qw66pv6va2GPt0ROOAwAAALC57elzPgEAAACwiUk+7eGq6t5V1VV1w0XlNx3L77TWNqpqW1V9v6pOmbk9eB1tnD6z/Per6hNVdeX1trGT+3FmVb2gqpY95ueo//Kquuwa6l+mqp5dVadX1WlV9bGquvYa6j960f/g9HH5LyxT/+er6pVV9bkx3rdU1fXHZY+vqh9U1RVX2P6S9avqxlX17qr6j6r6bFX9z6qqNbTznqr63rgP36yqL4z337lE3UvGZWdU1Ser6o9m/2dVdfOqen9VfaaqPl1V/1BVl5+nflXdrqq+s+g5/c1l9uGSRettG+u/abn9nqNuV9XDZ9a76Vj2J0u0cfWqekVVfb6qPl5VJ1XVvWeWP6uqvrzc8bxc/ar6var6+0Xrvreqjlimnf9a9PjH9avqKUvFPkcbqx6LS9Wvn7we/72qPlVVH62qh8zTxhLtzP2+skTdrqo/mFn291X1e6vVHe/fdXwNHVJVNxif+1PG/Vm2G/Yybby7qh41U36Lqjq1qnYYTr/4f7Bo2WrHUlfVP8483ruqzl/8WqiqN1TVSWutPx5T54//189W1duq6lfX2cbs6+5Ga6w/1+tiPW2tod6lVXWTmXVOr6pt89Qfy44cj4FP1/CZc+ROPI9nVtXvr2M/rl5Vb6rh/ffMqnrLvPWr6qEz/78fjvtwSlUdt0Qbz5h5/CdV9ZSZxw8en7szxhj+ZN76NbyvfXnc7mer6l9mj6V1tLFwu9Ia6y+O+eyquto64ljyPXqOel1V15tZ/vix7IjV2qjh826794Lx//zVqjpwnjiq6o41fG7VWL7X+Dwufm84uIb3ns/WcM7xrKr6mVri87qqjq+q+y7xXMzVRlX9nxren/ZZQ/3v1PDe9umqevpS/4uxjYXzhtOr6p9rPK8Zn7evV9VfLVd3jjZmy9+4xLG4Q72qemZVPW5mnbdV1T/MPH5GVf3RHHH8eHs1x2dvVf1ZDa/bU8c2blFVl62q48bn9/QaPvvvsob6763hnHHhvfHvFz8HY92r1k9er1+p7V/DK77nzNHG52o4973KuN6Vx8fXWqKNHZ6nGl4T362fvDfPfke776J131uLvvtV1eOq6nlVdUBV/aiqHrHS/2GVdt4yx/9xqbr/c4z9lFrhu8C8x95qr401tLP4uZ6nXlfVDRbV+7uq+tM1tPHDqvrFmbI/raoXLLUvW43k057v6CQfzHClv6XKj15nG5/r7sNnbi9fZxypqt9N8gdJ7tjd31pPG3Nadj+S3CTJjZIcuc76v5jk4CT3X0P9ByS5RpKbdPcvJrl3km/PW7+7nzv7P8hwJcd/6u5PLa5YVZXkdUne293X7e4bJXlSkqvPtP2xMYYdrFL/xCTHdff1k/xSkl9N8t/X0M7jk9xpZh/+x7hPSyV+vj8uu3GS30py1yR/PrZ99ST/nOQJ3X2DJL+Q5F+T7DdP/dEHFh3XOyTAFrWzcDt7mfXWUve0DMfEgqOSfHJx5fE5fH2S93f3dbr7ZuO6B4/LL5Ph//ilJLdda/1NYMVjcRWf6+6bdvcvZNinx1fVQ3dpdKv7WpLH1nCF1blV1R2SPCfJnbv7P5M8O8kzx2PkF8Zlc7eR4Xn8H+PJ5GWS/H2S/97dF68hphWPpdF3kxxWVfuOj38ryZcXtXOlJL+c5Eq1Y4J91fpJXjX+Xw9NclySf6ntk+zztjH7ujtzjfXntd625ql3TpI/W0/9qvqlJE9Pcq/uvmGSeyZ5es0ks+aM4VXje/Xtkvzl+L67lv14apJ3dPcvje//x85bv7tfOvN5d26S24+PF7dxUZL71NLJmLskeVyG840bZzguvzNv/dHC6/LQJK9K8u6qOmCdbSzcvr3G+vNabzur1Tst258L3TfJmYvWWa6N9yc5uMbE6eg3k5ze3efN00Z3vz3JF5Ms/GDzB0k+1t0fXlhn/Kz7lySvH/9X109yhSRPW2afdjBvG1X1Z0luneTI7r5oDfU/0N03TXLTJHevqlsvE8rCecNhSX6Y5JFj+R2TfCbJ/cdtrWS5NmbLv5nk0XPU+3CGc72Fz4mrJbnxTJ1fTfKhOeJYantLqqpbJbl7kl/u7ptkOGa+lOQvkhyY5LCxzXtk+/O+1eonyQPHsptkOObesLh+d39j5v3nBZl5DWfO19kKbVw3yfMzfL5l/PvC7v7iPM/N6M/Hdu+a7b+jvWbReidkx+9RR43l90vykcz33XC5dlZNhC5T925JHjHHd4F5j73VXhvrPYbnqfevs/s3rnffDJ8X87bxtCTPq8FBSR6R5IlLxLPlSD7twarqChk+DB+e7V8EleFF8HtJ7lhVl1trG7sijnHZ/TOcfN6xu78+VRyr1R+/kH04yfUWL5uz/iVJPprkoDXUPzDJed196djGOcsl31bbflXdNkPia8mkT5LbJ/lRd/84a97dp3T3B6rquhlOhp6c5T9wlqyf4UTqQ+OJYLr7e0kekx2/UKwaxzLrL6u7v5bkmCSPGY/pRyd5WXefNC7v7n5Nd391zvob7T+TXK6GngGVIYHw1iXW+40kP1z0HH6xuxeSE7dPcnqGE5ml/p+r1d8wcx6Lc+nuzyf5oyR/uAtCW4vzk7wryVp6Xd0myYuS3K27PzcWH5gh2ZAk6e7T1tLGeNw/PcnfZPiycGp3f3AtO5LVj6UFb81w4phxvRMWLf/tJG9M8sos/f69Wv0f6+73ZJiM85j1trGMna2/K9pard6bktx48S+qc9b/kyR/2d1fSJLx718l+R/riX18//xckh1+mV+ljcXH9alrrD+PizMcI49fYtkTk/xJd587bv8H3f2iNdTfTne/Ksnbk/zOettYxs7W39l2Vqv3+iT3SpKquk6GBN7587QxnvP8c3b8sWWp//NKcTw+yROr6sYZzjuesGj5byT5QXe/dNzuJWOdhyW5fOazahtV9ccZvvDfo7u/v54YxnqnZJlzyEU+kJ+cqx6d5FkZzh9uOec+LW5j1kmrxLBQ70MZvzxn+NJ8epILa+ixs0+GH//+fY44VtverAOTfH0huTd+Z/h2kt9P8gcz5V/t7lfPU3/hfWBBd/8wyZ8mOWRM2M9rV7xen5nklmOPmF9L8oyVV1+312RIdO6TDD2pMvwQvtAh4Y8zJIdX+78s1845K1WaI4bVzHvsrfbamKedpb6TzVPvCdn+XOe2Sc6eSSbO08ZfJTkvyYMzHBtPWe474lYj+bRnOzLJv3b3fyT5ZlX98lh+6yRfGL/kvDfDh+Za27hubd9l/DbraONaGX6Nv2N3f2Wd+zKvFevX0P34Dhl+zVtP/csluUWGbPe89V+d5B7j8/eMqrrpeuIfexW8NMlDuvuCZeofluTjyyxbOLn/QJIbVNXPraH+jReXj8fVFapq/zXGsWZjguEySX5uPW0vqp8kt1l0XF93mar7zqzzujWGvVLd12T45elXk3wiw69pi914XLachf/n6zJ8uC8eCrpa/bWY3ZdTMvRq2BnzHItr8YkkN1x1rV3vuCR/XFV7zbHuPhl+ZT2yuz89U/7MDD0q3lrDkJYrraONF2To0fk/MpxQr9Vqx9KCVyY5anwfvEmSf1umnROydBJrtfqLLfV/Xa2NByx6be+7M/WTLDkUdZ37M2+9SzMkE5+0jvo7vFcnOTnb/9o6d+xjwuE6Sc5aYxzPTfLiGoZb/1lVXWON9ef13CQPrB2H7877ObFc/aUs9z6zUhuPnzme3rOOGB6/6Hhc6nmcp52VrFTvgiRfqqrDMrymX7XEOiu18eOeD+OXrbsmee1a2hh7Sf1dhgTG/+nuby6qt9T5yQUZvoxeL4s+7zP0BlxstTZunSG5f5fuXmr48mr1kwzDrJIcmqFX2LJqGDZ9lySnje9hd8iQlF7uvXXFNhaV7zW2d+Jq9cakzcVVdUiG85WTMrxOb5XhvfHUMZGzUhwrbm8Jb09yzRqmeHheVf16hufwP1c4912t/g7GBOEns/Zzh/W+zha2+6MMn9XPTPK41Z6/9erub2T4sfzOY9FRGV6/Byf5+e7+aIbvJw9YuoVV21n1SmXL1e1e/Spn8xx7SRaOrWVfG3O2s8P/YM5j/9Qkl84kMLdLrq/h9fO4DD2gDujuHw9H3+okn/ZsR2c4icv49+hVytfSxuJhdyv1XFmujfMzfACvNFRttTbmtVz9644nHR9K8ubuXqqnyTz1v5HhA3CpX3GXrN/d5yS5QYZfYi9N8q4ahs2sZfvJ0Cvh/3X3cl2cV3NUkleOv0b+S4bkx7wqy3/Q7K5LZe5sr6XZ+ouH3X1umTqzQ+fWOjxspbqvzvD8z/1rf1U9t4b5Uz5Ww1Cvu2bo4n9Bhg+zO85bP2v/X243hDDJ/5on5hXszLG4lA3p0Tb2KvloduwNsZQfZeh1+fDZwvGX8l/I0EPgdkk+UovmEpmjjUuT/H9J3jqe7M1tLcfS+L63LcNxu3gOn6tn+ILwwTF5fvH4hXWu+suFt5YYRouH3X1/Z+pnSNwsaR37s5Z6r8jw6/gO8wOuUn+p9+odyuaI4QHjZ94JGYZILP7Cv2Ib3f22DEmrF2X4cvfvtWjI2nqfv0VtXJDk5Vlnz8c11l/yfWaVNp45czzdfifrH55hGOKS1vtczFFvoSfjkRkS1HO30d0fy/Aj1Q0yJDQ+styv+qvE8dwke3X38UssW+78ZKH8A4uew6WSIKu1cdZ4f7nP2dXq36aqTk3ylSRvWuGH2H3H193JGc6bX5xhCNl7euhx/tok917lB4+l2pgt/0aSqyR5x5z1FnpvLHx5Pmnm8YezvNW2t6QxuXezDL1ez8+Q6LjdPHWXq1/Lz8e45nOHnX3PGd0lQ2+Xw1ZYZ1ecc88Oeztq5vFCj7F5v2ct1c7OxDCv1Y69eV8b6z2G56l3QoYfUfbO0Ev0n9faxpikeneG73k/NXaYmJQ9Q1VdNUN338OqqjNkgbuqjs0wBOKeNYxRryRXrar9uvvCedpI8rydjWNs43sZ3mg/WFVf6+5/WkcbOxvDwpxNO1W/hkky31tV9+zuE+epX1V/2kP337cmeWtVfTXDSdy75q2foTvmtiS/u8rTcEaGoZaL9+0mGX5te0cNI89+JsnnM5zQrVp/LN9uLpjxF/H/Wnw8rdLOuozbuiTDPDtnZDix2GGs/pz1f2FXxbVe3f2VqvpRhnlOHpufdMuddUaG1/BCnUfXMM/AyRl+Rbpihl9Fk6Fb//eSvHnO+t9IsnjS/6skWXZI7K6yhmNxLW6aZIc50HaTv8zQk23FX7IzJJ7vn+SdVfWk7v7LhQXjicdLkrykhkkvl+u1sWwb47JL1xH/PMfSrBMzDPO7XZKrzpQ/IMMx9YWxnf0znGg+ec76S1nu/7qWNpays/V3RVsr1uvui2uY2HbxEKPV6p+Rn/yau+CXs+M8PavF8Krufswq+7BiG2PC6hVJXlHDhM23zY69XnbF/+LvMvRKeulM2cLnxLvXWX8pN83yych529jZGKZqZ6V6b0zyf5Oc3N0X1PKj15drYyF59QtZ/Yvnkm1096XjedFStvusS5IaemRfM8OQ0Xms1sZXkzwww4+H3+hhWPBa6n+gu+9ew8VfPlhVr+thSoPFvr/4XLWqjk5y66o6eyy6aoah0ivOVblc+dhj500ZpjB49hz1Fuat+cUMw4a+lGHI1gUZPreWs9r2ljX2SnpvhvPt0zLMg3PIUt9h5qy/w/D4MUnxi1nfucPfZZ2v16o6PMO53y0zHAuv7B3nQEuWP0/7who29/okf1vDKIp9u/sTNUx4ffWqeuC4zjWq6tDu/uwa29m23hjWEP9qx95DM99rY73H8Dz1TsjQ2+59GXoyfW2d217vOdweS8+nPdd9k7y8u6/V3du6+5oZ3pienOST3X3NsfxaGU76jlxDG2uZmHjFNrr7/Axfcv6ylr/y3s7GMXn98QPi2Cw9Gdxy9W9b45CDGiacu0mGCTTnrp+hO+YDe/VJhN+dZJ+auTpRVf1KhvHQTxnb3dbd10hyUO14hY3l6n82ya/VeFW4sRv4szMMDZk7juW6P69k/LX8BUn+vrs7wxDOh1TVLWbWeVBV/fyc9TeL/5Vh0vRLlln+7gxzQz1qpmxh7oijk/y3hf9nkmtnmNft8nPW/1iGD+yfT5Iarly0T34yKeeUjs58x+JcxhOgp2eOibqn0MPwtzMz/AK32rrfG9d7YI1XPKyqO9c4zG38f1w1K0xcvVQbO2meY2nWS5I8tXecm+roDJOoL7SzMMH9vPW3M75XHJOh58y62ljBztbfFW3NU+/4DJPlLp7keqX6T88wP8625Mevjydl6XlFdsXzsGQbVfUb9ZOrbO2X5LoZelPs8hjGJNers32PwL9K8jcz73H7VNWSPRWWqb+dqvrtDL1elpsba9U21rEPu62dler10HvwCVllAu8V2jghyYMy/Li24tCrdcb/riSXr/FqzGNS4RkZXj/f21Vt9NCj8z5J/t+YQFhzDGMbf5Xlk8rbGRNYv5bkkJn31kdnJ+ZK7O7vZOi18ye1wpWbZ3wow2fON7v7kvF/dKUMQ4dO2tXbq+EKsIfOFB2eYULpFyd5do0X+aiqA6vqQXPW/+KidS6b4f/wpV5+JMOy1vs6qyFz+/wMw+3+M0NSd8mrH/bQg+u8GkdK1HCFvDtnvvmSZtt4b4b32RNq6IH4s9190Mzx9FdZZY7dxe3Mu/2drZuVj71PZv7XxnqP4VXr9TBy4hsZpmFYav926vWzlUk+7bmOzo7doF+bIaO+VPlSw0OWa+NJ2XHOp+W6ma7URpIfD1G5Z4Zf92+RHa3Uxg2q6pyZ21LDdFaNYRXz1n99hpOMxfNfLVf/+CRvHHs0nJphwsIdLsG9Qv3fS/KzGa78tOL8W2Ny5d5JfquGS7qekeQpGX5VXtz267LoA2eF+udm6E765Kr6TIY5BD62zH6s1s48FuYYOiPDLxhvT/K/x7a/Osb99Boum/upJLfJ8CvCqvVHi+d8WmsvrTssOh5vtcb66e4Pd/frV1jeGZLFv17DpWg/muRlGa7ad6fM9Ezp7u9mOCG5xxz1nzA+h49N8pYausX/XYYhorvjV5ejMsexuIrr1nDZ6k9lOAF8To8Tva7RPO8r83ha5kxyjyced87wWrpXhi+0p1fVJ5O8LcOVX1acG2+JNuZ1+UX7+6TMcSwt2vY53f2s2bIxwXFIhqvnLKz3hSQXLH6vX6r+jIX5lv4jw/vub/cSV/Wcs42F2w69ClepvybrbWueej3MBfHs/GSuulXr99Cb4gkZPnM+naHXyp/2Er0sdsXzsEIbN0tycg1DjU5K8g89DMHa5TGMnpHhSkIL7b4lQ2/Kd46fAx/Pyr38t6s/evx4DH02Y/Kkhx/S1tPGwm3bGuuvx+J29s7S8wrOvf3ufmXP12NhhzZ6uOLk95K8e3x/WXccy8S2cL5xv/F/9R9JfpD5z/3mbmM8hh+a5MSamStyjTG8IMOPkjsMqV3CfTI8b7P/vzdkGNWw3PDsVXX3v2f48j7P5+5pGf4fH1lU9p1e4QJCO7G9KyR5WVWdOb5/3CjD+eOTMwyjO3M8n359dpz8fqX6SfJPY9npGc6r1/L5udh6Xq+/n2HqjoUhiM9LcsNa/ofZB2f4nD8lww+K/7uXnyZiOSdkuEL1whC7pb5nzDv0bqGdtVpv3WWPvQzJ7HlfG+s9huetd0KG4eVLDUve6dfPVlW9qToEAAAAO6OGC168aEzIAcCG0/MJAAC2iBrmu7k0Q+9fANgU9HwCAAAAYDJ6PgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAB2o6r6s6o6o6pOrapTquoWVfW4qrr8HHXnWg8AYDMx4TgAwG5SVbdK8rdJbtfdF1XV1ZL8TJIPJzmiu7++Sv2z51kPAGAz0fMJAGD3OTDJ17v7oiQZk0j3TXKNJO+pqvckSVU9v6pOHntI/e+x7A+XWO+OVXVSVX2iqv65qq6wETsFALASPZ8AAHaTMTn0wSSXT/LOJK/q7vct7tFUVVfp7m9W1V5J3pXkD7v71Nn1xl5T/5LkLt393ap6QpJ9uvupG7BrAADL2nujAwAA+GnR3f9VVTdLcpskt0/yqqo6dolV719Vx2Q4VzswyY2SnLponVuO5R+qqmQYvnfSVLEDAKyX5BMAwG7U3ZckeW+S91bVaUkeMru8qq6d5E+S/Ep3f6uqjk9yuSWaqiTv6O6jp40YAGDnmPMJAGA3qaobVNWhM0WHJ/likguT7DeW7Z/ku0m+U1VXT3KXmfVn1/tIkltX1fXGti9fVdefMHwAgHXR8wkAYPe5QpLnVNWVklyc5KwkxyQ5Oslbq+q87r59Vf17kjOSfD7Jh2bqv3DRer+X5ISq2mdc/uQk/7F7dgUAYD4mHAcAAABgMobdAQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMn8/2yC3EqhfiJaAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -593,28 +642,31 @@ ], "source": [ "fig1, ax1 = plt.subplots(figsize=(20, 9))\n", - "ax1.bar(disp_st['state'], disp_st['consumer_disputed?'])" + "ax1.bar(disp_st['state'], disp_st['consumer_disputed?'])\n", + "ax1.set_xlabel(\"State\")\n", + "ax1.set_ylabel(\"Disputed issue counts\")\n", + "ax1.set_title(\"Dispute counts per state\")" ] }, { "cell_type": "code", - "execution_count": 65, - "id": "ab922be3", + "execution_count": 81, + "id": "2d58c8fc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "Text(0.5, 1.0, 'Dispute rates per state')" ] }, - "execution_count": 65, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAIMCAYAAACDj2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAue0lEQVR4nO3de7xs6Xwn/s+XFvcZlxzScetExJ1uOT+SCEOENJIgIfRPXDImbWbwQwhNMhOZmdCv+RFiED9CyAyNxDUuQdDjGpyW1rpd0kHHJZ3ug4kmJEI/vz/W2tTZp2rXqtp799nn6ff79dqvvfeq+j71VNWqqlWf9axnVWstAAAAAPTnMke6AwAAAADsDsEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABAp5YGP1V1har6UFV9tKrOqarfGZc/paq+WFVnjj/32P3uAgAAADBVtda2vkJVJblya+3rVXW5JO9N8ugkJyb5emvt6bvfTQAAAABWdcyyK7QhGfr6+O/lxp+t0yIAAAAAjrhJc/xU1WWr6swkFyZ5e2vtg+NFj6yqs6rqxVV19d3qJAAAAACrW3qo1yFXrrpaktcmeVSSg0m+lGH0z39Ncmxr7d/OqTk5yclJcuUrX/nHbnKTm2y/1wAAAAAkSc4444wvtdb2zbtspeAnSarqt5P84+zcPlV1XJI3ttZusVXt/v3724EDB1a6PQAAAAAWq6ozWmv751025axe+8aRPqmqKyb5mSSfrKpjZ652nyRn70BfAQAAANghSyd3TnJskpdW1WUzBEWvaq29sar+Z1Udn+FQr/OSPHzXegkAAADAyqac1eusJCfMWf6gXekRAAAAADti0lm9AAAAADj6CH4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6dcyR7sDR6rhT3rRyzXmn3nMXegIAABxtfJ8ALilG/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqaXBT1Vdoao+VFUfrapzqup3xuXXqKq3V9W54++r7353AQAAAJhqyoiff07y0621Wyc5PsmJVfXjSU5J8o7W2o2SvGP8HwAAAIA9Ymnw0wZfH/+93PjTktwryUvH5S9Ncu/d6CAAAAAA65k0x09VXbaqzkxyYZK3t9Y+mOTarbXzk2T8fa0FtSdX1YGqOnDw4MEd6jYAAAAAy0wKflpr32mtHZ/kukluW1W3mHoDrbUXtNb2t9b279u3b81uAgAAALCqlc7q1Vr7hySnJzkxyQVVdWySjL8v3OnOAQAAALC+KWf12ldVVxv/vmKSn0nyySRvSPKQ8WoPSfL6XeojAAAAAGs4ZsJ1jk3y0qq6bIag6FWttTdW1QeSvKqqHpbkc0nut4v9BAAAAGBFS4Of1tpZSU6Ys/zLSe6yG50CAAAAYPtWmuMHAAAAgKOH4AcAAACgU4IfAAAAgE5NmdwZ9qzjTnnTyjXnnXrPXegJAAAA7D1G/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdGpp8FNV16uqd1XVJ6rqnKp69Lj8KVX1xao6c/y5x+53FwAAAICpjplwnW8neVxr7SNVddUkZ1TV28fLntlae/rudQ8AAACAdS0Nflpr5yc5f/z7a1X1iSTX2e2OAQAAALA9U0b8fFdVHZfkhCQfTHL7JI+sqgcnOZBhVND/mVNzcpKTk+T617/+dvsLsNBxp7xp5ZrzTr3nLvQEAABgb5g8uXNVXSXJq5M8prV2UZI/SHLDJMdnGBH0jHl1rbUXtNb2t9b279u3b/s9BgAAAGCSScFPVV0uQ+jzstbaa5KktXZBa+07rbWLk7wwyW13r5sAAAAArGrKWb0qyYuSfKK19nszy4+dudp9kpy9890DAAAAYF1T5vi5fZIHJflYVZ05LntykpOq6vgkLcl5SR6+C/0DAAAAYE1Tzur13iQ156I373x3AAAAANgpkyd3BgAAAODoIvgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADo1NLTucMix53yppVrzjv1nrvQEwAAAGAeI34AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATgl+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU4IfAAAAgE4dc6Q7APThuFPetHLNeafecxd6AgAAwAYjfgAAAAA6JfgBAAAA6JTgBwAAAKBTgh8AAACATpncGWAPMUk2AACwk4z4AQAAAOiU4AcAAACgU4IfAAAAgE4JfgAAAAA6JfgBAAAA6JSzesERts5ZnBJncgIALp1sOwGsxogfAAAAgE4Z8QMAzLXOXnV71AEA9hbBDwB0SnADAIDgBwAAjhICXQBWZY4fAAAAgE4JfgAAAAA65VAvLvUMmQZgL3PqagBgOwQ/sE2CIwAAAPYqwQ8AAHueHS0AsB5z/AAAAAB0yogfAAAAWJMRiex1RvwAAAAAdMqIHwAAALgUM2qpb4IfAHaUDQcAANg7HOoFAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHTK5M4AAABHGSdTYC+xPu5tRvwAAAAAdErwAwAAANApwQ8AAABAp8zxAwB0y5wDAMClnRE/AAAAAJ0S/AAAAAB0yqFeADvEISXsJOsTe4n1EQCOXktH/FTV9arqXVX1iao6p6oePS6/RlW9varOHX9fffe7CwAAAMBUU0b8fDvJ41prH6mqqyY5o6renuShSd7RWju1qk5JckqSJ+5eV4FF7IkFAICjk215dtvS4Ke1dn6S88e/v1ZVn0hynST3SnKn8WovTXJ6BD+TeXEDwNHBZzYAcDRbaXLnqjouyQlJPpjk2mMotBEOXWtBzclVdaCqDhw8eHCb3QUAAABgqsmTO1fVVZK8OsljWmsXVdWkutbaC5K8IEn279/f1ukkAACwNxgFB3B0mRT8VNXlMoQ+L2utvWZcfEFVHdtaO7+qjk1y4W51EgAAjjSBBwBHo6XBTw1De16U5BOttd+buegNSR6S5NTx9+t3pYfsGhsvAAAA9MD328WmjPi5fZIHJflYVZ05LntyhsDnVVX1sCSfS3K/XekhAJcoH5rsJdZHYC/y3tQPzyWXBlPO6vXeJIsm9LnLznYHAAAAgJ0yeXJngN7Z48MG6wIAAL0Q/AAAwKWEYBvg0kfwA+wJNkQBgEuK7Q7g0kTwAwAAwCVOAAeXjMsc6Q4AAAAAsDsEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABAp5zV6yhmFnx2inWJ3linAQBgYMQPAAAAQKcEPwAAAACdcqgXAAC7bi8cgrkX+gAAlzQjfgAAAAA6ZcQPAADApZBRcH1Y53lMPJeXJoIfAGBX+EIBAHDkOdQLAAAAoFNG/AAAdM7oK6BX3t9gOcEPAHuK49QB+uaLOsAlS/ADAAAAHFFC4d0j+AGAXWDjBQCAvUDwwxHlixEAAADsHmf1AgAAAOiU4AcAAACgU4IfAAAAgE6Z4wegI+bNAgAAZhnxAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqWOOdAcAAODS4LhT3rRyzXmn3nMXegLApYkRPwAAAACdMuIHAACAlRnFBkcHI34AAAAAOiX4AQAAAOiU4AcAAACgU+b4AQDYRebAAACOJCN+AAAAADol+AEAAADolOAHAAAAoFOCHwAAAIBOCX4AAAAAOiX4AQAAAOiU4AcAAACgU0uDn6p6cVVdWFVnzyx7SlV9sarOHH/usbvdBAAAAGBVU0b8vCTJiXOWP7O1dvz48+ad7RYAAAAA27U0+GmtvTvJVy6BvgAAAACwg7Yzx88jq+qs8VCwqy+6UlWdXFUHqurAwYMHt3FzAAAAAKxi3eDnD5LcMMnxSc5P8oxFV2ytvaC1tr+1tn/fvn1r3hwAAAAAq1or+GmtXdBa+05r7eIkL0xy253tFgAAAADbtVbwU1XHzvx7nyRnL7ouAAAAAEfGMcuuUFWnJblTku+vqi8k+e0kd6qq45O0JOclefjudREAAACAdSwNflprJ81Z/KJd6AsAAAAAO2g7Z/UCAAAAYA8T/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ1aGvxU1Yur6sKqOntm2TWq6u1Vde74++q7200AAAAAVjVlxM9Lkpy4adkpSd7RWrtRkneM/wMAAACwhywNflpr707ylU2L75XkpePfL01y753tFgAAAADbte4cP9durZ2fJOPvay26YlWdXFUHqurAwYMH17w5AAAAAFa165M7t9Ze0Frb31rbv2/fvt2+OQAAAABG6wY/F1TVsUky/r5w57oEAAAAwE5YN/h5Q5KHjH8/JMnrd6Y7AAAAAOyUKadzPy3JB5LcuKq+UFUPS3JqkrtW1blJ7jr+DwAAAMAecsyyK7TWTlpw0V12uC8AAAAA7KBdn9wZAAAAgCND8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHTqmO0UV9V5Sb6W5DtJvt1a278TnQIAAABg+7YV/Izu3Fr70g60AwAAAMAOcqgXAAAAQKe2G/y0JG+rqjOq6uR5V6iqk6vqQFUdOHjw4DZvDgAAAICpthv83L61dpskd0/yiKq64+YrtNZe0Frb31rbv2/fvm3eHAAAAABTbSv4aa393fj7wiSvTXLbnegUAAAAANu3dvBTVVeuqqtu/J3kbknO3qmOAQAAALA92zmr17WTvLaqNtp5eWvtz3ekVwAAAABs29rBT2vtM0luvYN9AQAAAGAHOZ07AAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQKcEPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ0S/AAAAAB0SvADAAAA0CnBDwAAAECnBD8AAAAAnRL8AAAAAHRK8AMAAADQqW0FP1V1YlV9qqr+pqpO2alOAQAAALB9awc/VXXZJM9NcvckN0tyUlXdbKc6BgAAAMD2bGfEz22T/E1r7TOttW8leUWSe+1MtwAAAADYru0EP9dJ8vmZ/78wLgMAAABgD6jW2nqFVfdL8rOttX83/v+gJLdtrT1q0/VOTnLy+O+Nk3xq/e4eFb4/yZeOcBtHul4f9k4fergPe6EPPdwHfdiZen3YmXp92Dt96OE+7IU+9HAf9GFn6vVhZ+r1Ye/0oYf7sFNt7HU3aK3tm3tJa22tnyQ/keStM/8/KcmT1m2vl58kB450G0e6Xh/2Th96uA97oQ893Ad96Oc+7IU+9HAf9KGf+7AX+tDDfdCHfu7DXuhDD/dBH/q5DzvVxtH8s51DvT6c5EZV9UNV9X1JHpDkDdtoDwAAAIAddMy6ha21b1fVI5O8Ncllk7y4tXbOjvUMAAAAgG1ZO/hJktbam5O8eYf60osX7IE2jnS9PuydPvRwH/ZCH3q4D/qwM/X6sDP1+rB3+tDDfdgLfejhPujDztTrw87U68Pe6UMP92Gn2jhqrT25MwAAAAB723bm+AEAAABgDxP8bENV3aeqWlXdZNPyE8blP7tqG1V1XFV9s6rOnPl58Ir1Z89c/mtV9ZGquvq6bUyx5H58vKqeX1UL17cJ9X9cVZdbof4yVfXsqjq7qj5WVR+uqh9aof4Rm56Ds8fLb7qg/geq6hVV9emxv2+uqh8dL3tsVf1TVf3rLW5/bn1V3byq3llVf11V51bVf6qqmtjGu6rqG2P/v1JVnx3//osF9d8ZLz+nqj5aVb8++5xV1W2r6t1V9amq+mRV/WFVXWlKfVXdqaq+uukx/Zkl/dj4OW6sf+Oix29Cbauqh81c74Rx2ePntHHtqnp5VX2mqs6oqg9U1X1mLv/9qvriovV5UX1VPbSqnrPpuqdX1f4F7Xx90//fra+qp8zr+4Q2lq6L8+rre6/Hv6qqT1TVh6rqIWu0sdL7ypz6VlWPmrnsOVX10GW149/3GF9D16+qG4+P/Znj/Vk49HdBG++sqv8ws/x2VXVWVR12+PTm52DTZcvWpVZV/3Pm/2Oq6uDm10JVvb6qPrBq/bhOHRyf13Or6q1V9ZNrtjH7urvZivWTXhfrtLVC3cVVdauZ65xdVcdNqR+X3XtcBz5Zw2fOvbfxOH68qn5tjftx7ap6Yw3vvx+vqjdPra+qX515/r413oczq+rUOW08Y+b/x1fVU2b+f/D42J0z9uHxU+treF/74ni751bVa2bXpTXa2Pi52or1m/t8XlV9/xr9mPsePaGuVdWPzFz+2HHZ/mVt1PB5d8h7wfg8X1BVx07pR1XdrYbPrRqXX3Z8HDe/N1y3hveec2vY7vj9qvq+mvN5XVUvqar7znksJrVRVf+thveny69Q/9Ua3ts+WVVPn/dcjG1sbDecXVV/UuN2zfi4famqnraodkn97PI/27weLqqtqmdW1WNmrvPWqvrDmf+fUVW/PqEv373NmvD5W1W/WcPr9qyxjdtV1eWq6tTx8T27hs/+u69Qf3oN24wb743PWfA4XLO+93r9+zr0Nbzle86ENj5dw/bvNcbrXX38/wZz2jjscarhNfGP9b335tnvaPfddN3Ta9N3v6p6TFU9r6r2VdW/VNXDt3oelrTz5gnP47za/zT2/cza4vvA1HVv2WtjhXY2P9ZT6lpV3XhT3bOq6gkrtPGtqrrlzLInVNXz592X3gh+tuekJO/NcEazectPWrONT7fWjp/5+eM1+pCqelCSRyW5W2vt/6zTxgoW3o8kt0pysyT3XrP+lkmum+SXV6i/f5IfTHKr1totk9wnyT9MrW+tPXf2OchwxrqXtdY+sbmwqirJa5Oc3lq7YWvtZkmenOTaM21/eOzDYZbUvyHJqa21H01y6yQ/meQ/TmzjsUl+dqb/vzHen7mBS5JvjpffPMldk9wjyW+P7V87yZ8keWJr7cZJbprkz5NcdUr96D2b1uu5AdRMOxs/5y243iq1H8uwTmx4QJKPbi4eH8fXJXl3a+2HW2s/Nl73uuPll8nwPH4+yR1Xrd8DtlwXl/h0a+2E1tpNM9ynx1bVr+5o75a7MMmjaziT5GRVdZck/yPJia21zyV5dpJnjuvITcfLJreR4XH8jXFD7jJJnpPkP7bWvr1Cn7Zcl0b/mOQWVXXF8f+7JvnipnauluQ2Sa5Wh4fbS+uTvHJ8Xm+U5NQkr6lDA+6pbcy+7j6+Yv1U67Y1pe4LSX5znfqqunWSpye5V2vtJkl+IcnTayZImtiHV47v13dK8tTxfXeV+/Ffkry9tXbr8TPglKn1rbU/mvm8+7skdx7/39zGPyf5xZofhNw9yWMybHPcPMN6+dWp9aON1+WNkrwyyTurat+abWz8/MOK9VOt286yuo/l0G2h+yb5+KbrLGrj3UmuW2NoOfqZJGe31s6f0kZr7W1J/jbJxs6SRyX5cGvt/RvXGT/rXpPkdeNz9aNJrpLkdxfcp8NMbaOqfjPJ7ZPcu7X2zyvUv6e1dkKSE5L8XFXdfkFXNrYbbpHkW0n+/bj8bkk+leSXx9taZFH97PKvJHnExNr3Z9jW2/ic+P4kN5+p+ckk75vQl0W3eZiq+okkP5fkNq21W2VYZz6f5L8mOTbJLcY2fz6Hbvctq0+SB47LbpVhnXv95vrW2pdn3n+en5nXcCa+zrZo44ZJ/iDD51vG3y9orf3tlMdm9Ntju/fIod/R/nTT9U7L4d+lHjAuv1+Sv8y074aL2tkyhNyi9p5JHj7h+8DUdW/Za2PddXhK3Z/P3r/xevfN8HkxtY3fTfK8GlwnycOTPGlOf7oj+FlTVV0lwwfRw3LoClgZVsCHJrlbVV1h1Ta224fxsl/OsNF3t9bal3arD1PaGL8MvT/Jj2y+bGL9d5J8KMl1Vqg/Nsn5rbWLxza+sCj8Wnb7VXXHDKHTYYHL6M5J/qW19t20uLV2ZmvtPVV1wwwbIr+VxW/2c+szbMS8b9wIS2vtG0kemcM35rfsw4Lb3FJr7cIkJyd55LhOPyLJS1trHxgvb621P22tXTCx/kj7XJIr1LBHvDJ8eX/LnOv9dJJvbXoc/7a1thEM3DnJ2Rk2IuY9n8vqj5iJ6+IkrbXPJPn1JP/PDnRtFQeTvCPJpNFGSVJVd0jywiT3bK19elx8bIYv+kmS1trHVmljXO+fnuS/Z9hQP6u19t5V7kiWr0sb3pJhoy3j9U7bdPkvJfmzJK/I/PfwZfXf1Vp7V4aJD09et40Ftlu/E20tq3tjkptv3pM4sf7xSZ7aWvtskoy/n5bkN9bp+/j++ekkh+2RXtLG5vX6rBXrp/h2hnXksXMue1KSx7fW/m68/X9qrb1whfpDtNZemeRtSf7vddtYYLv1221nWd3rktwrSarqhzOEZwentDFu8/xJDt/RMe953qofj03ypKq6eYbtjiduuvynk/xTa+2Pxtv9zljzb5NcKdMsbaOqHpfhy/bPt9a+uU4fxrozs2AbcpP35Hvbqicl+f0M2w8/PvE+zdbP+sCE29+ofV/GL64ZvrCeneRrNYxUuXyGHW9/NaEvU25zw7FJvrQRrI3fG/4hya8ledTM8gtaa6+aUr/xPrChtfatJE9Icv0xLJ9qJ16vz0zy4+NIkJ9K8oytr762P80QMl4+GUYQZdgJvTEY4HEZgtllz8uidr6wVdGEPiwzdd1b9tqY0s6872RT6p6YQ7d17pjkvJkgb0obT0tyfpIHZ1g3nrLoO2JvBD/ru3eSP2+t/XWSr1TVbcblt0/y2fELxukZPrBWbeOGdegw5TusWH+DDHug79Za+/s178cqtmyjhmGvd8mwF2ud+iskuV2GlHdq/auS/Pz4+D2jqk5Yp//j3vQ/SvKQ1tpFC+pvkeSMBZdtbFi/J8mNq+paK9TffPPycb26SlX9qxX6sJbxy/1lklxrnfY31SfJHTat1zdcUHrFmeu8dsVub1X7pxn2uPxkko9k2Iu02c3HyxbZeD5fm+GDdfPhh8vqVzF7X87MsDd/O6asi6v4SJKbLL3Wzjs1yeOq6rITrnv5DHsX791a++TM8mdmGEnwlhoOo7jaGm08P8NIxt/IsDG7qmXr0oZXJHnA+D54qyQfXNDOaZkfIC2r32ze87qsjftvem1fcTv1SeYe/rjm/Zlad3GGIO/Ja9Qf9l6d5EAO3cs4ue/jl/0fTvI3K/bjuUleVMNhvr9ZVT+4Yv1Uz03ywDr8kNGpnxOL6udZ9D6zVRuPnVmf3rVGHx67aX2c9zhOaWcrW9VdlOTzVXWLDK/pV865zlZtfHeP//hF5x5JXr1KG+PooGdlCA/+W2vtK5vq5m2fXJThi+CPZNPnfYZRcJsta+P2GYL1u7fW5h0yu6w+yXBoT5IbZRgNtVANh+rePcnHxvewu2QIhBe9ty6s37T8smNbb5hSOwYm366q62fYXvlAhtfpT2R4bzxrDFG26svS29zkbUmuV8O0As+rqn+T4TH83BbbvsvqDzOGcx/N6tsO677ONm73XzJ8Vj8zyWOWPX7raq19OcOO6hPHRQ/I8Pq9bpIfaK19KMP3k/vPb2FpO0vPyLSotrXlZ3Oasu4l2Vi3Fr42JrZz2HMwcd0/K8nFM+HhIcH2Cq+fx2QY+bOvtfbdQ6B7J/hZ30kZNqAy/j5pyfJV2th8qNeiURuL6g9m+ODb6tCoZW2sYlEbNxw/8N+X5E2ttXkjLKbUfznDh8+8vZdz61trX0hy4wx7IC9O8o4aDtVY5faTYW/8/2qtLRpWu8wDkrxi3Av3mgzBw1SVxW/yl9Tp+LY7Wme2fvOhXp9eUDN7uNaqhyRtVfuqDI//5L3cVfXcGubL+HANhxfdI8Ow8osyfJDcbWp9Vn8uDzlsLcl/ntLnLWxnXZzniIzkGkdTfCiHjwKY518yjDZ82OzCcQ/xTTPsGb9Tkr+sTXNHTGjj4iT/X5K3jBtak62yLo3ve8dlWG83z9ly7Qwb5+8dg+tvj18WJ9Uv6t4qfRhtPtTrm9upzxCazLXG/Vml7uUZ9gofNh/ckvp579WHLZvQh/uPn3mnZRiWv/nL9pZttNbemiEwemGGL1Z/VZsOk1r38dvUxkVJ/jhrjvhbsX7u+8ySNp45sz7deZv1x2c49G2udR+LCXUbI/junSEcntxGa+3DGXYQ3ThDmPCXi/ZmL+nHc5NctrX2kjmXLdo+2Vj+nk2P4bwAYlkbfzP+vehzdln9HarqrCR/n+SNW+wIveL4ujuQYdv5RRkOW3pXG0ZavzrJfbbY2TCvfnb5l5NcI8nbV6jdGLWw8cX1AzP/v//wZg5rb6vbPMwYrP1YhtGeBzOEDHeaUruovhbPv7fytsN233NGd88wyuMWW1xnJ7a5Zw+1esDM/xsjpaZ+15rXznb6MNWydW/qa2PddXhK3WkZdmAck2F05J+s2sYYEL0zw/e8S43DJqJkuaq6ZoYhpreoqpYh/WxVdUqGYfe/UMMxyZXkmlV11dba16a0keR52+nDWP+NDG9w762qC1trL1ujjW09FmMbG3P0bKu+hgkJT6+qX2itvWFKfVU9oQ1DTt+S5C1VdUGGDah3TK3PMATwuCQPWvIwnJPh8L7N9+1WGfYyvb2Go52+L8lnMmxMLa0flx8y98e4J/jrm9enLdpY23hb38kwr8o5GT7UDzs2e2L9TXeyb+torf19Vf1LhnktHp3vDQWddU6G1/BGzSNqOK78QIa9J/86w97AZBhK/o0kb5pY/+UkmydZv0aShYdi7pQV1sVVnJDksDmvLiFPzTCCa8s9uBlC319O8hdV9eTW2lM3Lhg/9F+c5MU1TDC4aLTCwjbGyy5eo/9T1qVZb8hwaNmdklxzZvn9M6xTnx3b+VcZNvJ+a2L9PIue11XamGe79TvR1pZ1rbVv1zCJ6ObDWpbVn5Pv7cXccJscPi/Lsj68srX2yCX3Ycs2xrDo5UleXsPkuHfM4aM9duK5eFaG0Th/NLNs43PinWvWz3NCFgeBU9vYbh92q52t6v4syf+b5EBr7aJafMT0ojY2gqObZvmXvrlttNYuHreL5jnksy5JahiJfL0MhylOsayNC5I8MMOOuy+34VDUVerf01r7uRpOtPHeqnptGw6j3+ybm7dVq+qkJLevqvPGRdfMcHjuvLkJD6ufXT6OUnljhkPmnz2xdmOekltmOFTl8xkOE7oow+fWIlNuc65xNM7pGba3P5Zh3pPrz/sOM7H+sEOyx4Dglllv2+FZWfP1WlXHZ9j2+/EM68Ir2uFzXiWLt9M+u8LNvS7J79Vw9MAVW2sfqWFy4WtX1QPH6/xgVd2otXbuiu0ct24fVuj/snXvVzPttbHuOjyl7rQMo8z+d4YRPBeuedvrbsMdtYz4Wc99k/xxa+0GrbXjWmvXy/Cm8FtJPtpau964/AYZNrjuvUIbUyeB3bK+tXYww5eLp9bis4tttw+7fj/G+3J+hnlt5k28taj+jjUOc69hcq9bZZiscHJ9hiGAD2zLJ2x9Z5LL18xZWKrq/8pw/OtTxnaPa639YJLr1OFnElhUf26Sn6rx7Ffj0ONnZzgcYVIfFg23XWbcS/z8JM9prbUMhw4+pKpuN3OdX6mqH5hYv1f85wwTVH9nweXvzDAX0H+YWbYxV8BJSf7dxvOZ5IcyzON1pYn1H87wYfkDSVLDGVoun+9NgLibTsq0dXGScePj6ZkwKfJuaMMhVx/PsOdp2XW/MV7vgTWe2a2qTqzx0Krx+bhmtpgkeF4b2zRlXZr14iT/pR0+F9FJGSas3mhnYzLxqfWHGN8vTs4wYmStNraw3fqdaGtK3UsyTEy6eULhreqfnmE+lOOS774+npz580jsxOMwt42q+un63hmFrprkhhlGEex4H8aA6VU5dCTc05L895n3uMtX1dw99AvqD1FVv5RhtMeiuZCWtrHGfbjE2tmqrg2j5p6YJZMlb9HGaUl+JcOOrS0P91mz/+9IcqUazzo7fqF/RobXzzd2qo02jGT8xST/a/zyvnIfxjaelsWB7iHG8Oinklx/5r31EVlzbrzW2lczjFR5fG1xdtpN3pfhM+crrbXvjM/R1TIcrvKBnb7NGs50eaOZRcdnmLz3RUmeXeMJFarq2Kr6lYn1f7vpOpfL8Dx8vi0ewb/Quq+zGlLTP8hwiNfnMgSqc8/y1oaRS+fXeIRADWcCOzHT5seZbeP0DO+zp9Uw8u7KrbXrzKxPT8uSeVU3tzP19rdbm63XvY9m+mtj3XV4aV0bjhj4coZD/+fdv229fnom+FnPSTl86O2rMyTJ85bPOyRhURtPzuFz/MzbcNqqPsl3D4n4hQx7tG+Xw23Vxo2r6gszP4sOC1najyWm1r8uwwf85vmOFtW/JMmfjXvyz8owOdxhp/ndov6hSa6c4Qw3W863NAYb90ly1xpOG3lOkqdk2Ju6ue3XZtOb/Rb1f5dhCONvVdWnMhw3/uF592NJG1NtzClzTobk/m1Jfmds/4Kx30+v4dScn0hyhwzp+dL60eY5flYdoXSXTevkT6xYn9ba+1trr9vi8pYhqP03NZzu8kNJXprh7GQ/m5kRGa21f8ywMfDzE+qfOD6Gj07y5hqGYj8rw2GJl8Tehgdkwrq4xA1rPJ17ho2v/9HGSTVXMPV9ZYrfzcSAefzQPzHDa+leGb5Mnl1VH03y1gxnuNhyPrQ5bUx1pU33+cmZsC5tuu0vtNZ+f3bZGC5cP8NZQjau99kkF21+v59XP2Njfp2/zvC++0ttztkLJ7ax8XPYaLol9StZt60pdW049v/Z+d7cZEvr2zCK4IkZPnM+mWG0xhPanNEFO/E4bNHGjyU5UMPhLR9I8odtOOxnx/swekaGM6ZstPvmDKMI/2L8HDgjW48sP6R+9NhxHTo3Y3DRhh1Z67Sx8XPcivXr2NzOMZk/j9zk22+tvaJN21N/WBttOLPeN5K8c3x/WbsfC/q2sc1xv/G5+usk/5Tp236T2xjX4V9N8oaamRtwxT48P8MOwcMO45zjFzM8brPP3+szjOZfdEjwllprf5XhS/PUz9yPZXg+/nLTsq+2LU7Yso3bvEqSl9Zwyu+zMsxf95QMO7QPJvn4uD39uhw+0fhW9UnysnHZ2Rm2q1f5/Nxsndfrr2WYLmLjsLfnJblJLd4x+uAMn/NnZtiZ9ztt8dQEi5yW4Uy8G4d1zfueMfVwr412VrVu7cJ1L0OQPPW1se46PLXutAyHNM87FHbbr59eVdtTO+MBAODoVcPJBV44hmEAcMQZ8QMAADughvlNLs4w6hUA9gQjfgAAAAA6ZcQPAAAAQKcEPwAAAACdEvwAAAAAdErwAwAAANApwQ8AAABApwQ/AAAAAJ36/wE31TCzPuLNEgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAImCAYAAAAxAREdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFmklEQVR4nO3dd7h0Z1U3/u9KiIQSesSAhAhSBKRoEBBBEEWqFGl5QRCRoC+goCIBeTX6quT3ShGQIog0pSnSQzMQmhQThBCaCAQIAgkgJBQhZf3+2PvIzHlO2ec8z5w5efL5XNdc58yeve69ZmbPzJ41933v6u4AAAAAwIoDlp0AAAAAALuLghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAFioqnpWVf2fZecBAMB0CkYAwLZV1WlV9Z2qOruqvl5V/1JVv1FV/3OM0d2/0d3/d8F5PL+q/nSR21i1vSOqqqvqIju1zUWrqmOr6u+2sP6tqur0ReYEACyPghEAsLfu3N2HJLlqkuOSPDrJc5eb0t6pqgOXncPeqoFjPQBgWxxEAAD7RHd/o7tfk+TeSR5QVddL5nv/VNUVqup1Y2+kr1XVO1eKGmNvpcdU1Uer6r+q6nlVdfB4269W1btmtzf28PnRqjo6yX2T/H5VfbOqXjvefqWqekVVnVlVn6mq31ov9zHHZ1bV8VX1rSS3rqo7VtW/VdVZVfX5qjp2JuQd49+vj9u82djOr1XVx8b831RVVx2XV1U9uarOqKpvVNUpK4/PGrmcWFWPr6r3j+u+uqouN3P7TceeXF+vqg9V1a1Wxf5ZVb07ybeTXG2N9h9dVV8Ye4V9oqpuU1W3S/LYJPce78+HxnUfON6fs6vq01X1kHH5JZK8IcmVxvW/OT7eB1TVMVX1qar6alW9fDZ3AOCCQ8EIANinuvv9SU5Pcos1bv7d8bZDk1wxQ5GiZ26/b5JfTHL1JNdM8rgJ23t2kr9P8v+6+5LdfeexCPXaJB9KcuUkt0nyiKr6xQ2a+l9J/izJIUneleRbSe6f5DJJ7pjkN6vqruO6txz/Xmbc5nvG2x6b5O7j/XtnkpeM6912jLnm2N69k3x1g1zun+TXklwpyblJnpokVXXlJK9P8qdJLpfk95K8oqoOnYn9lSRHj/fjs7ONVtW1kjwsyY3HXmG/mOS07n5jkj9P8rLx/txgDDkjyZ2SXCrJA5M8uap+oru/leT2Sf5zXP+S3f2fSX4ryV2T/OyY+38lefoG9xMA2KUUjACARfjPDAWN1c5JcliSq3b3Od39zu6eLRj9VXd/vru/lqF4c9Q2t3/jJId295909/e6+9NJnpPkPhvEvLq7393d53f3f3f3id394fH6KRmKPz+7QfxDkjy+uz/W3edmKMDccOxldE6GAs61k9S4zhc3aOtF3X3qWJj5P0nuNQ6Tu1+S47v7+DGvtyQ5KckdZmKf390f6e5zu/ucVe2el+SiSa5TVQd192nd/an1kuju13f3p3rw9iRvztqFwNnH4A+6+/Tu/m6SY5PcY3+a6wkALiwUjACARbhykq+tsfwvkvxHkjePQ5yOWXX752f+/2yGXirbcdUMw6W+vnLJ0PvnihvEzG47VXWTqnrbOKTtG0l+I8kVNtnmU2a297UkleTK3f3WJH+VobfNl6vq2VV1qYm5fDbJQeO2r5rknqvu189kKMKteT9mdfd/JHlEhkLOGVX10qpa9zGuqttX1XvH4YNfz1CY2uwxeOVMbh/LUKTa6HEHAHYhBSMAYJ+qqhtnKBi9a/Vt3X12d/9ud18tyZ2T/E5V3WZmlavM/H94hp5KyTA87OIz2/ih1U2vuv75JJ/p7svMXA7p7jtkfavbeHGS1yS5SndfOsmzMhSA1lp3ZZsPWbXNi3X3v4z3/and/ZNJrpthaNqjNshl9eNwTpKvjNt40aptXKK7j9vgfszfye4Xd/fPZCjudJL/b624qrpoklckeUKSK3b3ZZIcP+ExuP2q/A7u7i9slBMAsPsoGAEA+0RVXaqq7pTkpUn+rrs/vMY6dxonqq4kZ2XofXLezCoPraofHidKfmySl43LP5TkulV1wxomwj52VdNfzvwEz+9PctY4wfPFqurAqrreWMya6pAkX+vu/66qn8owx9GKM5Ocv2qbz0rymKq67nhfL11V9xz/v/HYY+mgDMWv/151v1e7X1Vdp6ounuRPkvxjd5+X5O+S3LmqfnG8TwfXcHr7H55yh6rqWlX1c2Mx6L+TfGcmjy8nOaK+f2a1H8gwfO3MJOdW1e0zzMWUmfUvX1WXXvUY/NnMZN+HVtVdpuQGAOwuCkYAwN56bVWdnaF3yR8keVKGCZLXco0k/5zkm0nek+QZ3X3izO0vzjBPzqfHy58mSXf/e4bCyT8n+WT27L303Azz8ny9ql41FlfunOSGST6ToXfO3yS5dKb730n+ZLxvf5jk5Ss3dPe3M8yx9O5xmzft7ldm6K3z0qo6K8mpGSaGToZJo5+TYRLoz2aY8PoJG2z7RUmen+RLSQ7OMJl0uvvzSe6SoZh2ZobH/FGZfkx30STHZXg8vpTkB8e2kuQfxr9fraoPdPfZ43ZfPub9vzL0uFp5DD6eYV6nT4+PwZWSPGVc583j4/beJDeZmBsAsIvU/DyTAADLUVWnJfn17v7nZeeyTFV1YoYeWn+z7FwAgAsvPYwAAAAAmLOwgtE4pv79VfWhqvpIVf3xuPzYqvpCVX1wvGw0+SQAAAAAO2xhQ9LGySwv0d3fHCd4fFeS305yuyTf7O6Nxu0DAAAAsCQXWVTDPVSivjlePWi8mDAJAAAAYJdb6BxG4+leP5jkjCRv6e73jTc9rKpOqaq/rarLLjIHAAAAALZmR86SVlWXSfLKJA/PcArYr2TobfR/kxzW3b+2RszRSY5Okktc4hI/ee1rX3vheQIAAABcWJx88slf6e5D17ptRwpGSVJVf5TkW7NzF1XVEUle193X2yj2yCOP7JNOOmnBGQIAAABceFTVyd195Fq3LfIsaYeOPYtSVRdL8vNJPl5Vh82sdrckpy4qBwAAAAC2bmGTXic5LMkLqurADIWpl3f366rqRVV1wwxD0k5L8pAF5gAAAADAFi3yLGmnJLnRGst/ZVHbBAAAAGDvLfQsaQAAAABc8CgYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAw5yLLTuDC5ohjXr/lmNOOu+MCMgEAAC5ofJ8AdooeRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGDOwgpGVXVwVb2/qj5UVR+pqj8el1+uqt5SVZ8c/152UTkAAAAAsHWL7GH03SQ/1903SHLDJLerqpsmOSbJCd19jSQnjNcBAAAA2CUWVjDqwTfHqweNl05ylyQvGJe/IMldF5UDAAAAAFu30DmMqurAqvpgkjOSvKW735fkit39xSQZ//7gOrFHV9VJVXXSmWeeucg0AQAAAJix0IJRd5/X3TdM8sNJfqqqrreF2Gd395HdfeShhx66sBwBAAAAmLcjZ0nr7q8nOTHJ7ZJ8uaoOS5Lx7xk7kQMAAAAA0yzyLGmHVtVlxv8vluTnk3w8yWuSPGBc7QFJXr2oHAAAAADYuosssO3Dkrygqg7MUJh6eXe/rqrek+TlVfWgJJ9Lcs8F5gAAAADAFi2sYNTdpyS50RrLv5rkNovaLgAAAAB7Z0fmMAIAAADggkPBCAAAAIA5CkYAAAAAzFnkpNewax1xzOu3HHPacXdcQCYAAACw++hhBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkX2ejGqjo4yZ2S3CLJlZJ8J8mpSV7f3R9ZfHoAAAAA7LR1C0ZVdWySOyc5Mcn7kpyR5OAk10xy3FhM+t3uPmXxaQIAAACwUzbqYfSv3X3sOrc9qap+MMnh+z4lAAAAAJZp3TmMuvv1SVJV91x9W1Xds7vP6O6TFpkcAAAAADtvyqTXj5m4DAAAAID9wEZzGN0+yR2SXLmqnjpz06WSnLvoxAAAAABYjo3mMPrPJCcl+aUkJ88sPzvJIxeZFAAAAADLs27BqLs/lORDVfXi7j5nB3MCAAAAYIk26mG04qeq6tgkVx3XryTd3VdbZGIAAAAALMeUgtFzMwxBOznJeYtNBwAAAIBlm1Iw+kZ3v2HhmQAAAACwK0wpGL2tqv4iyT8l+e7Kwu7+wMKyAgAAAGBpphSMbjL+PXJmWSf5uX2fDgAAAADLtmnBqLtvvZ2Gq+oqSV6Y5IeSnJ/k2d39lHEC7QcnOXNc9bHdffx2tgEAAADAvrdpwaiq/nCt5d39J5uEnpvkd7v7A1V1SJKTq+ot421P7u4nbC1VAAAAAHbClCFp35r5/+Akd0rysc2CuvuLSb44/n92VX0syZW3kyQAAAAAO2fKkLQnzl6vqickec1WNlJVRyS5UZL3Jbl5kodV1f2TnJShF9J/rRFzdJKjk+Twww/fyuYAtuSIY16/5ZjTjrvjAjIBAADYHQ7YRszFk1xt6spVdckkr0jyiO4+K8kzk1w9yQ0z9EB64lpx3f3s7j6yu4889NBDt5EmAAAAANsxZQ6jD2c4K1qSHJjk0CSbzV+0EntQhmLR33f3PyVJd3955vbnJHndFnMGAAAAYIGmzGF0p5n/z03y5e4+d7Ogqqokz03yse5+0szyw8b5jZLkbklO3UK+AAAAACzYlDmMPltVN0hyi3HRO5KcMqHtmyf5lSQfrqoPjssem+Soqrphhl5LpyV5yNZSBgAAAGCRpgxJ++0kD07yT+Oiv6+qZ3f30zaK6+53Jak1bjp+y1kCAAAAsGOmDEl7UJKbdPe3kqSq/r8k70myYcEIAAAAgAumKWdJqyTnzVw/L2v3HAIAAABgPzClh9Hzkryvql45Xr9rhsmsAQAAANgPTZn0+klVdWKSn8nQs+iB3f1vi04MAAAAgOWYMun1TZN8pLs/MF4/pKpu0t3vW3h2AAAAAOy4KXMYPTPJN2euf2tcBgAAAMB+aMocRtXdvXKlu8+vqilxsKYjjnn9lmNOO+6OC8gEAAAAWMuUHkafrqrfqqqDxstvJ/n0ohMDAAAAYDmmFIx+I8lPJ/lCktOT3CTJ0YtMCgAAAIDlmXKWtDOS3GcHcgEAAABgF5jSwwgAAACACxEFIwAAAADmKBgBAAAAMGfTglFVXbGqnltVbxivX6eqHrT41AAAAABYhik9jJ6f5E1JrjRe//ckj1hQPgAAAAAs2ZSC0RW6++VJzk+S7j43yXkLzQoAAACApZlSMPpWVV0+SSdJVd00yTcWmhUAAAAAS3ORCev8TpLXJLl6Vb07yaFJ7rHQrAAAAABYmk0LRt39gar62STXSlJJPtHd5yw8MwAAAACWYtOCUVXdf9Win6iqdPcLF5QTAAAAAEs0ZUjajWf+PzjJbZJ8IImCEQAAAMB+aMqQtIfPXq+qSyd50cIyAgAAAGCpppwlbbVvJ7nGvk4EAAAAgN1hyhxGr03S49UDklwnycsXmRRw4XHEMa/fcsxpx91xAZkAAACwYsocRk+Y+f/cJJ/t7tMXlA8AAAAASzalYHRSku909/lVdc0MZ0n7cnefs+DcAAAAAFiCKXMYvSPJwVV15SQnJHlgkucvMikAAAAAlmdKwai6+9tJ7p7kad19twzzGAEAAACwH5oyJK2q6mZJ7pvkQVuIA2CHmDwcAADYl6b0MHpEksckeWV3f6SqrpbkbQvNCgAAAICl2bSnUHe/Pcnbk6SqDkjyle7+rUUnBgAAAMBybNrDqKpeXFWXqqpLJPlokk9U1aMWnxoAAAAAyzBlSNp1uvusJHdNcnySw5P8yiKTAgAAAGB5phSMDqqqgzIUjF7d3eck6YVmBQAAAMDSTDnb2V8nOS3Jh5K8o6qumuSsRSYFbG47Z8VKnBkLALhwcuwEsDVTJr1+apKnziz6bFXdenEpAQAAALBM6xaMqup+3f13VfU766zypAXlBABcgG3nV3y/4AMA7C4b9TC6xPj3kJ1IBADYHRR8AABYt2DU3X89/v3jnUsHAADY1xSCAdiqKWdJAwAAAOBCRMEIAAAAgDkbTXp9syTv7e7ewXzgAkPXbgB2M6cQBwD2xkaTXj8gydOr6t+TvDHJG7v7SzuTFuz/FJwAAADYrTaa9Po3kqSqrp3k9kmeX1WXTvK2DAWkd3f3eTuSJQAAbIMfaABgezadw6i7P97dT+7u2yX5uSTvSnLPJO9bdHIAAAAA7LyNhqTtobu/k+T48QIAAABsgx6Q7HbOkgYAAADAnC31MAIAAABI9JLa321aMKqq/6+7H73ZMgDYGw44AABg95gyJO0X1lh2+32dCAAAAAC7w7o9jKrqN5P87yRXq6pTZm46JMm7F50YAAAAAMux0ZC0Fyd5Q5LHJzlmZvnZ3f21hWYFAAAAwNKsWzDq7m8k+UaSo6rqwCRXHNe/ZFVdsrs/t0M5AgAAALCDpkx6/bAkxyb5cpLzx8Wd5PqLSwsAAIB9zUkm2E3sj7vbpgWjJI9Icq3u/uqCcwEAAABgF5hylrTPZxiaBgAAAMCFwJQeRp9OcmJVvT7Jd1cWdveTFpYVAAAAAEszpWD0ufHyA+MFAGC/Zk4FAODCbtOCUXf/8U4kAgAAAMDuMOUsaW/LcFa0Od39cwvJCAAAAIClmjIk7fdm/j84yS8nOXcx6QBc+Bj6wr5kf2I3sT8CwAXXlCFpJ69a9O6qevtmcVV1lSQvTPJDSc5P8uzufkpVXS7Jy5IckeS0JPfq7v/aYt4AAAAALMiUIWmXm7l6QJKfzFAE2sy5SX63uz9QVYckObmq3pLkV5Oc0N3HVdUxSY5J8ugtZw7sNb/8AgDABZNjeRZtypC0kzPMYVQZikCfSfKgzYK6+4tJvjj+f3ZVfSzJlZPcJcmtxtVekOTEKBhN5k0BAC4YfGYDABdkU4ak/cjebqSqjkhyoyTvS3LFsZiU7v5iVf3gOjFHJzk6SQ4//PC9TQEAAACAiaYMSTsoyW8mueW46MQkf93d50zZQFVdMskrkjyiu8+qqkmJdfezkzw7SY488sg9ztIGAABccOh1B3DBMmVI2jOTHJTkGeP1XxmX/fpmgWOx6RVJ/r67/2lc/OWqOmzsXXRYkjO2njYAAFwwKJQAcEE0pWB04+6+wcz1t1bVhzYLqqEr0XOTfKy7nzRz02uSPCDJcePfV28hX3YBBz0AAADsD3y/Xd+UgtF5VXX17v5UklTV1ZKcNyHu5hl6I324qj44LntshkLRy6vqQUk+l+SeW84agF3Hhy27if0R2I28N+0/PJdcGEwpGD0qyduq6tMZzpR21SQP3Cyou981rr+W20zOEAAAAIAdNeUsaSdU1TWSXCtDAejj3f3dhWcGcAHhFyZW2BcAANhfTDlL2kMzTFp9ynj9slX1oO5+xiahAADAfkBBHODCZ8qQtAd399NXrnT3f1XVg/P9s6YBLI0DWABgpzjuAC5MphSMDqiq6u5Okqo6MMkPLDYtAAAA2JPCHeyMKQWjN2U4q9mzknSS30jyxoVmBQAAAMDSTCkYPTrJ0Ul+M8Ok129O8jeLTAoAAACA5ZlylrTzkzxrvAAAAACwnztg2QkAAAAAsLsoGAEAAAAwZ8ocRuxnnFWAfcW+xP7GPg0AAIN1C0ZV9doMZ0VbU3f/0kIyAgAAAGCpNuph9ITx792T/FCSvxuvH5XktAXmBAAAAMASrVsw6u63J0lV/d/uvuXMTa+tqncsPDMAAC70dsNQ0d2QAwDstCmTXh9aVVdbuVJVP5Lk0MWlBAAAAMAyTZn0+pFJTqyqT4/Xj0jykIVlBAAAwK6l193+YTvPY+K5vDDZtGDU3W+sqmskufa46OPd/d3FpgUAXFj5IgIAsHybDkmrqosneVSSh3X3h5IcXlV3WnhmAAAAACzFlCFpz0tycpKbjddPT/IPSV63qKQAAFg+vb2A/ZX3N9jclILR1bv73lV1VJJ093eqqhacFwBsiXH4APs3X/ABdtaUgtH3qupiSTpJqurqScxhBAAAACyVYvLiTCkYHZvkjUmuUlV/n+TmSR64yKQA4MLKQQ8AALvBlLOkvbmqTk5y0ySV5Le7+ysLzww24AsVAAAALM6Us6Sd0N1f7e7Xd/fruvsrVXXCTiQHAAAAwM5bt4dRVR2c5OJJrlBVl83QuyhJLpXkSjuQGwAAAABLsNGQtIckeUSG4tAHZpafleTpC8wJAAAAgCVat2DU3U9J8pSqenh3P20HcwJgh5kXDAAAmDXlLGnfqKr7r17Y3S9cQD4AAAAALNmUgtGNZ/4/OMltMgxRUzACAAAA2A9tWjDq7ofPXq+qSyd50cIyAgAAAGCpDthGzLeTXGNfJwIAAADA7rBpD6Oqem2SHq8emOTHkrx8kUkBAAAAsDxT5jB6wsz/5yb5bHefvqB8AAAAAFiyTYekdffbk3wiyaWTXC5D0QgAAACA/dSmBaOq+vUk709y9yT3SPLeqvq1RScGAAAAwHJMGZL2qCQ36u6vJklVXT7JvyT520UmBgAAAMByTDlL2ulJzp65fnaSzy8mHQAAAACWbUoPoy8keV9VvTrD2dLukuT9VfU7SdLdT1pgfgAAAADssCkFo0+NlxWvHv8esu/TAQAAAGDZNi0Ydfcfr/xfVQckuWR3n7XQrAAAAABYmilnSXtxVV2qqi6R5KNJPlFVj1p8agAAAAAsw5RJr68z9ii6a5Ljkxye5FcWmRQAAAAAyzOlYHRQVR2UoWD06u4+J8Pk1wAAAADsh6YUjP46yWlJLpHkHVV11STmMAIAAADYT02Z9PqpSZ46s+izVXXrxaUEAAAAwDKtWzCqqvt1999V1e+ss8qTFpQTAAAAAEu0UQ+jS4x/D9mJRAAAAADYHdYtGHX3X49//3jn0gEAAABg2TYakvbU9W5Lku7+rX2fDgAAMOuIY16/5ZjTjrvjAjIB4MJko7OknTxeDk7yE0k+OV5umOS8hWcGAAAAwFJsNCTtBUlSVb+a5Nbdfc54/VlJ3rwj2QEAALBf0WsOLhg26mG04kqZn/j6kuMyAAAAAPZDG50lbcVxSf6tqt42Xv/ZJMcuLCMAAAAAlmrTglF3P6+q3pDkJuOiY7r7S4tNCwAAAIBl2egsaUd092lJMhaIXr3q9kpy5e4+faEZAgBcCJnjAwBYpo16GP1FVR2QoVB0cpIzM5wx7UeT3DrJbZL8URIFIwAAAID9yEZnSbtnVV0nyX2T/FqSw5J8O8nHkhyf5M+6+793JEsAAAAAdsyGcxh190eT/MEO5QIAAADALnDAZitU1cWr6nFV9ezx+jWq6k6LTw0AAACAZdi0YJTkeUm+l+Snx+unJ/nThWUEAAAAwFJNKRhdvbv/X5JzkqS7v5OkFpoVAAAAAEszpWD0vaq6WJJOkqq6epLvLjQrAAAAAJZmSsHo2CRvTHKVqvr7JCckefRmQVX1t1V1RlWdOrPs2Kr6QlV9cLzcYbuJAwAAALAYG54lLUm6+81VdXKSm2YYivbb3f2VCW0/P8lfJXnhquVP7u4nbDVRAAAAAHbGlLOkndDdX+3u13f367r7K1V1wmZx3f2OJF/bJ1kCAAAAsGPWLRhV1cFVdbkkV6iqy1bV5cbLEUmutBfbfFhVnTIOWbvsBts/uqpOqqqTzjzzzL3YHAAAAABbsVEPo4ckOTnJtce/K5dXJ3n6Nrf3zCRXT3LDJF9M8sT1VuzuZ3f3kd195KGHHrrNzQEAAACwVevOYdTdT0nylKp6eHc/bV9srLu/vPJ/VT0nyev2RbsAAAAA7DtTJr1+WlVdL8l1khw8s3z1ZNabqqrDuvuL49W7JTl1o/UBAAAA2HmbFoyq6o+S3CpDwej4JLdP8q7sefaz1XEvGeOuUFWnJ/mjJLeqqhsm6SSnZRj2BgAAAMAusmnBKMk9ktwgyb919wOr6opJ/mazoO4+ao3Fz91ifgAAAADssI0mvV7xne4+P8m5VXWpJGckudpi0wIAAABgWab0MDqpqi6T5DkZzpL2zSTvX2RSAAAAACzPhgWjqqokj+/uryd5VlW9McmluvuUnUgOAAAAgJ234ZC07u4kr5q5fppiEQAAAMD+bcocRu+tqhsvPBMAAAAAdoUpcxjdOslDquqzSb6VpDJ0Prr+QjMDAAAAYCmmFIxuv/AsAAAAANg1Ni0YdfdndyIRAAAAAHaHKXMYAQAAAHAhomAEAAAAwJxJBaOqumpV/fz4/8Wq6pDFpgUAAADAsmxaMKqqByf5xyR/PS764SSvWmBOAAAAACzRlB5GD01y8yRnJUl3fzLJDy4yKQAAAACWZ0rB6Lvd/b2VK1V1kSS9uJQAAAAAWKYpBaO3V9Vjk1ysqn4hyT8kee1i0wIAAABgWaYUjI5JcmaSDyd5SJLjkzxukUkBAAAAsDwX2WyF7j4/yXPGCwAAAAD7uU0LRlX1mawxZ1F3X20hGQEAAACwVJsWjJIcOfP/wUnumeRyi0kHAAAAgGXbdA6j7v7qzOUL3f2XSX5u8akBAAAAsAxThqT9xMzVAzL0ODpkYRkBAAAAsFRThqQ9ceb/c5OcluReC8kGAAAAgKWbcpa0W+9EIgAAAADsDpvOYVRVv11Vl6rB31TVB6rqtjuRHAAAAAA7b9OCUZJf6+6zktw2yQ8meWCS4xaaFQAAAABLM6VgVOPfOyR5Xnd/aGYZAAAAAPuZKQWjk6vqzRkKRm+qqkOSnL/YtAAAAABYlilnSXtQkhsm+XR3f7uqLpdhWBoAAAAA+6EpPYxuluQT3f31qrpfkscl+cZi0wIAAABgWaYUjJ6Z5NtVdYMkv5/ks0leuNCsAAAAAFiaKQWjc7u7k9wlyVO6+ylJDllsWgAAAAAsy5Q5jM6uqsckuV+SW1bVgUkOWmxaAAAAACzLlB5G907y3SQP6u4vJblykr9YaFYAAAAALM2mPYzGItGTZq5/LuYwAgAAANhvrVswqqp3dffPVNXZSXr2piTd3ZdaeHYAAAAA7Lh1C0bd/TPjXxNcAwAAAFyITJnDCAAAAIALEQUjAAAAAOYoGAEAAAAwR8EIAAAAgDkbnSVt9dnR5jhLGgAAAMD+aaOzpB2SJFX1J0m+lORFSSrJfZM4cxoAAADAfmrKkLRf7O5ndPfZ3X1Wdz8zyS8vOjEAAAAAlmNKwei8qrpvVR1YVQdU1X2TnLfoxAAAAABYjikFo/+V5F5Jvjxe7jkuAwAAAGA/tO4cRiu6+7Qkd1l8KgAAAADsBpv2MKqqa1bVCVV16nj9+lX1uMWnBgAAAMAyTBmS9pwkj0lyTpJ09ylJ7rPIpAAAAABYnikFo4t39/tXLTt3EckAAAAAsHxTCkZfqaqrJ+kkqap7JPniQrMCAAAAYGk2nfQ6yUOTPDvJtavqC0k+k+S+C80KAAAAgKWZUjDq7v75qrpEkgO6++yq+pFFJwYAAADAckwZkvaKJOnub3X32eOyf1xcSgAAAAAs07o9jKrq2kmum+TSVXX3mZsuleTgRScGAAAAwHJsNCTtWknulOQySe48s/zsJA9eYE4AAAAALNG6BaPufnWSV1fVzbr7PTuYEwAAAABLNGXS66Orao8eRd39awvIBwAAAIAlm1Iwet3M/wcnuVuS/1xMOgAAAAAs26YFo+5+xez1qnpJkn9eWEYAAAAALNUB24i5RpLD93UiAAAAAOwOm/Ywqqqzk3SSGv9+KcmjF5wXAAAAAEsyZUjaIdtpuKr+NsmdkpzR3dcbl10uycuSHJHktCT36u7/2k77AAAAACzGpCFpVXX3qnpSVT2xqu46se3nJ7ndqmXHJDmhu6+R5ITxOgAAAAC7yKYFo6p6RpLfSPLhJKcm+Y2qevpmcd39jiRfW7X4LkleMP7/giR33UqyAAAAACzepkPSkvxskut1dydJVb0gQ/FoO67Y3V9Mku7+YlX94HorVtXRSY5OksMPN8c2AAAAwE6ZMiTtE5k/K9pVkpyymHS+r7uf3d1HdveRhx566KI3BwAAAMBoSg+jyyf5WFW9f7x+4yTvqarXJEl3/9IWtvflqjps7F10WJIztpYuAAAAAIs2pWD0h/twe69J8oAkx41/X70P2wYAAABgH5hSMDopyXe6+/yqumaSayd5Q3efs1FQVb0kya2SXKGqTk/yRxkKRS+vqgcl+VySe+5N8gAAAADse1MKRu9IcouqumySEzIUkO6d5L4bBXX3UevcdJstZQgAAADAjpoy6XV197eT3D3J07r7bkmuu9i0AAAAAFiWSQWjqrpZhh5Frx+XHbi4lAAAAABYpikFo0ckeUySV3b3R6rqaknettCsAAAAAFiaTecw6u63J3n7zPVPJ/mtRSYFAAAAwPKsWzCqqr/s7kdU1WuT9Orbu/uXFpoZAAAAAEuxUQ+jF41/n7ATiQAAAACwO6xbMOruk8e/b6+qQ8f/z9ypxAAAAABYjnUnva7BsVX1lSQfT/LvVXVmVf3hzqUHAAAAwE7b6Cxpj0hy8yQ37u7Ld/dlk9wkyc2r6pE7kRwAAAAAO2+jgtH9kxzV3Z9ZWTCeIe1+420AAAAA7Ic2Khgd1N1fWb1wnMfooMWlBAAAAMAybVQw+t42bwMAAADgAmzds6QluUFVnbXG8kpy8ILyAQAAAGDJ1i0YdfeBO5kIAAAAALvDRkPSAAAAALgQUjACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAw5yLL2GhVnZbk7CTnJTm3u49cRh4AAAAA7GkpBaPRrbv7K0vcPgAAAABrMCQNAAAAgDnLKhh1kjdX1clVdfRaK1TV0VV1UlWddOaZZ+5wegAAAAAXXssqGN28u38iye2TPLSqbrl6he5+dncf2d1HHnrooTufIQAAAMCF1FIKRt39n+PfM5K8MslPLSMPAAAAAPa04wWjqrpEVR2y8n+S2yY5dafzAAAAAGBtyzhL2hWTvLKqVrb/4u5+4xLyAAAAAGANO14w6u5PJ7nBTm8XAAAAgGmWNek1AAAAALuUghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMCcpRSMqup2VfWJqvqPqjpmGTkAAAAAsLYdLxhV1YFJnp7k9kmuk+SoqrrOTucBAAAAwNqW0cPop5L8R3d/uru/l+SlSe6yhDwAAAAAWMMyCkZXTvL5meunj8sAAAAA2AWqu3d2g1X3TPKL3f3r4/VfSfJT3f3wVesdneTo8eq1knxiRxPdeVdI8pUlt7HseDnsnhz2h/uwG3LYH+6DHPZNvBz2Tbwcdk8O+8N92A057A/3QQ77Jl4O+yZeDrsnh/3hPuyrNna7q3b3oWve0t07eklysyRvmrn+mCSP2ek8dtslyUnLbmPZ8XLYPTnsD/dhN+SwP9wHOew/92E35LA/3Ac57D/3YTfksD/cBznsP/dhN+SwP9wHOew/92FftXFBvixjSNq/JrlGVf1IVf1Akvskec0S8gAAAABgDRfZ6Q1297lV9bAkb0pyYJK/7e6P7HQeAAAAAKxtxwtGSdLdxyc5fhnb3sWevQvaWHa8HHZPDvvDfdgNOewP90EO+yZeDvsmXg67J4f94T7shhz2h/sgh30TL4d9Ey+H3ZPD/nAf9lUbF1g7Puk1AAAAALvbMuYwAgAAAGAXUzBagqq6W1V1VV171fIbjct/cattVNURVfWdqvrgzOX+W4w/deb2B1fVB6rqstttY4pN7sdHq+pZVbXufjoh/oVVddAW4g+oqqdW1alV9eGq+teq+pEtxD901XNw6nj7j60T/0NV9dKq+tSY7/FVdc3xtkdW1X9X1aU32P6a8VV13ap6a1X9e1V9sqr+T1XVxDbeVlXfHvP/WlV9Zvz/n9eJP2+8/SNV9aGq+p3Z56yqfqqq3lFVn6iqj1fV31TVxafEV9Wtquobqx7Tn98kj5XLEWP869Z7/CbEdlU9aGa9G43Lfm+NNq5YVS+uqk9X1clV9Z6qutvM7U+pqi+stz+vF19Vv1pVf7Vq3ROr6sh12vnmquv/E19Vx66V+4Q2Nt0X14qv778e/62qPlZV76+qB2yjjS29r6wR31X18Jnb/qqqfnWz2PH/O4yvocOr6lrjY//B8f6s20V5nTbeWlW/ObP8JlV1SlXtMTx89XOw6rbN9qWuqhfNXL9IVZ25+rVQVa+uqvdsNX7cp84cn9dPVtWbquqnt9nG7OvuOluMn/S62E5bW4g7v6quP7POqVV1xJT4cdldx33g4zV85tx1Lx7Hj1bVg7dxP65YVa+r4f33o1V1/NT4qnrgzPP3vfE+fLCqjlujjSfOXP+9qjp25vr9x8fuI2MOvzc1vob3tS+M2/1kVf3T7L60jTZWLpfZYvzqnE+rqitsI48136MnxHVV/ejM7Y8clx25WRs1fN7NvReMz/OXq+qwKXlU1W1r+NyqcfmB4+O4+r3hh2t47/lkDccdT6mqH6g1Pq+r6vlVdY81HotJbVTVn9bw/nTRLcR/o4b3to9X1RPWei7GNlaOG06tqn+o8bhmfNy+UlWPXy92k/jZ5a9dvR+uF1tVT66qR8ys86aq+puZ60+sqt+ZkMv/bLMmfP5W1R/U8Lo9ZWzjJlV1UFUdNz6+p9bw2X/7LcSfWMMx48p741+t8zhcvr7/ev1Szb+GN3zPmdDGp2o4/r3cuN5lx+tXXaONPR6nGl4T36rvvzfPfke7x6p1T6xV3/2q6hFV9YyqOrSqzqmqh2z0PGzSzvETnse1Yv/PmPsHa4PvA1P3vc1eG1toZ/VjPSWuq+paq+L+sqp+fwttfK+qfnxm2e9X1bPWui/7GwWj5TgqybsynCFureVHbbONT3X3DWcuL9xGDqmqX0ny8CS37e7/2k4bW7Du/Uhy/STXSXLXbcb/eJIfTnKvLcTfO8mVkly/u388yd2SfH1qfHc/ffY5yHAGwL/v7o+tDqyqSvLKJCd299W7+zpJHpvkijNt/+uYwx42iX9NkuO6+5pJbpDkp5P874ltPDLJL87k/6jx/qxZqEnynfH26yb5hSR3SPJHY/tXTPIPSR7d3ddK8mNJ3pjkkCnxo3eu2q/XLFzNtLNyOW2d9bYS++EM+8SK+yT50Org8XF8VZJ3dPfVuvsnx3V/eLz9gAzP4+eT3HKr8bvAhvviJj7V3Tfq7h/LcJ8eWVUP3KfZbe6MJL9dw5k5J6uq2yR5WpLbdffnkjw1yZPHfeTHxtsmt5HhcXzUeAB4QJK/SvK/u/vcLeS04b40+laS61XVxcbrv5DkC6vauUySn0hymdqzKL5pfJKXjc/rNZIcl+Sfar4wPrWN2dfdR7cYP9V225oSd3qSP9hOfFXdIMkTktylu6+d5JeSPKFmClATc3jZ+H59qyR/Pr7vbuV+/EmSt3T3DcbPgGOmxnf382Y+7/4zya3H66vb+G6Su9faBZTbJ3lEhmOO62bYL78xNX608rq8RpKXJXlrVR26zTZWLl/fYvxU221ns7gPZ/5Y6B5JPrpqnfXaeEeSH66x2Dn6+SSndvcXp7TR3W9O8tkkKz+yPDzJv3b3v6ysM37W/VOSV43P1TWTXDLJn61zn/YwtY2q+oMkN09y1+7+7hbi39ndN0pyoyR3qqqbr5PKynHD9ZJ8L8lvjMtvm+QTSe41bms968XPLv9akodOjP2XDMd6K58TV0hy3ZmYn07y7gm5rLfNPVTVzZLcKclPdPf1M+wzn0/yf5McluR6Y5t3zvxx32bxSXLfcdn1M+xzr14d391fnXn/eVZmXsOZ+DrboI2rJ3lmhs+3jH+f3d2fnfLYjP5obPcOmf+O9o+r1ntJ9vwudZ9x+T2TvDfTvhuu186GxcsNYu+Y5CETvg9M3fc2e21sdx+eEvfG2fs3rnePDJ8XU9v4syTPqMGVkzwkyWPWyGe/o2C0w6rqkhk+wB6U+R23Muy4v5rktlV18Fbb2NscxtvuleFg8bbd/ZVF5TCljfFL1L8k+dHVt02MPy/J+5NceQvxhyX5YnefP7Zx+npFs822X1W3zFCs2qNQM7p1knO6+3+q0939we5+Z1VdPcMBzOOy/ofEmvEZDn7ePR68pbu/neRh2fNLwIY5rLPNDXX3GUmOTvKwcZ9+aJIXdPd7xtu7u/+xu788MX7ZPpfk4Bp+ga8MX/rfsMZ6P5fke6sex89290pB4dZJTs1w8LHW87lZ/NJM3Bcn6e5PJ/mdJL+1D1LbijOTnJBkUu+mJKmqWyR5TpI7dvenxsWHZSgQJEm6+8NbaWPc75+Q5P9lOMA/pbvftZU7ks33pRVvyHCwl3G9l6y6/ZeTvDbJS7P2e/hm8f+ju9+WYULIo7fbxjr2Nn5ftLVZ3OuSXHf1L5cT438vyZ9392eSZPz7+CSP2k7u4/vnp5Ls8Qv4Jm2s3q9P2WL8FOdm2EceucZtj0nye939n+P2/7u7n7OF+Dnd/bIkb07yv7bbxjr2Nn5v29ks7lVJ7pIkVXW1DEW3M6e0MR7z/EP2/IFkred5ozwemeQxVXXdDMcdj151+88l+e/uft643fPGmF9LcvFMs2kbVfW7Gb6k37m7v7OdHMa4D2adY8hV3pnvH6seleQpGY4fbjrxPs3Gz3rPhO2vxL474xfeDF90T01ydg09Yy6a4Qe7f5uQy5RtrjgsyVdWCnLj94avJ3lwkofPLP9yd798SvzK+8CK7v5ekt9PcvhYZJ9qX7xen5zkpmPPk59J8sSNV9+2f8xQnLxoMvRYyvDj9Uongt/NUNDd7HlZr53TNwqakMNmpu57m702prSz1neyKXGPzvyxzi2TnDZTAJzSxuOTfDHJ/TPsG8eu9x1xf6NgtPPumuSN3f3vSb5WVT8xLr95ks+MX0xOzPBBt9U2rl7z3alvscX4q2b4xfu23f2lbd6PrdiwjRq6594mw69m24k/OMlNMlSVp8a/PMmdx8fviVV1o+3kP/56/7wkD+jus9aJv16Sk9e5beWA/J1JrlVVP7iF+OuuXj7uV5esqkttIYdtGYsCByT5we20vyo+SW6xar+++jqhF5tZ55VbTHuj2H/M8AvPTyf5QIZfrVa77njbelaez1dm+EBePUxys/itmL0vH8zQe2BvTNkXt+IDSa696Vr73nFJfreqDpyw7kUz/Jp51+7++MzyJ2foufCGGoZ7XGYbbTwrQ8/JR2U4CN6qzfalFS9Ncp/xffD6Sd63TjsvydqFp83iV1vred2sjXuvem1fbG/ik6w5THOb92dq3PkZCoCP3Ub8Hu/VSU7K/K+ak3MfiwRXS/IfW8zj6UmeW8Nw5D+oqittMX6qpye5b+05tHXq58R68WtZ731mozYeObM/vW0bOTxy1f641uM4pZ2NbBR3VpLPV9X1MrymX7bGOhu18T89DMYvSHdI8oqttDH2RvrLDEWHP+3ur62KW+v45KwMXyB/NKs+7zP0ulttszZunqEgf/vuXmto72bxSYYhSEmukaH31bpqGFJ8+yQfHt/DbpOhkLzee+u68auWHzi29ZopsWOh5dyqOjzD8cp7MrxOb5bhvfGUsfiyUS6bbnOVNye5Sg3THzyjqn42w2P4uQ2OfTeL38NY1PtQtn7ssN3X2cp2z8nwWf3kJI/Y7PHbru7+aoYfuG83LrpPhtfvDyf5oe5+f4bvJ/deu4VN29n0DFfrxXZvfnasKftekpV9a93XxsR29ngOJu77pyQ5f6boOFcQ38Lr5xEZehod2t3/M1R7f6dgtPOOynDglfHvUZss30obq4ekrddLZL34MzN8YG40hGuzNrZivTauPh4ovDvJ67t7rR4dU+K/muFDa61fS9eM7+7Tk1wrwy+e5yc5oYYhJVvZfjL8+v933b1e99/N3CfJS8df/f4pQ8Fiqsr6Hw47dVrEve0dNBu/ekjap9aJmR1WttWhUxvFvjzD4z/5V/WqenoN84H8aw3DoO6Qofv7WRk+gG47NT5bfy7nhtcl+cMpOW9gb/bFtSyl59jYe+P92bPXwVrOydC78UGzC8dfpH8swy/xt0ry3lo1N8aENs5P8tdJ3jAeoE22lX1pfN87IsN+u3pOmitmOKh/11jwPnf8kjkpfr30tpLDaPWQtO/sTXyGYsuatnF/thL34gy/Qu8x390m8Wu9V++xbEIO9x4/816SYfjA6i/pG7bR3W/KUGh6ToYvZP9Wq4ZzbffxW9XGWUlemG32MNxi/JrvM5u08eSZ/enWexl/wwxD9Na03cdiQtxKj8G7ZigqT26ju/81ww9L18pQhHjver+eb5LH05Mc2N3PX+O29Y5PVpa/c9VjuFbhYrM2/mP8f73P2c3ib1FVpyT5UpLXbfAD6sXG191JGY6dn5theNXbeujZ/Yokd9vgR4q14meXfzXJ5ZK8ZQuxK70kVr7wvmfm+r/s2cwe7W20zT2MBbmfzNC79MwMxYlbTYldL77Wn19wy8cOe/ueM7p9hl4l19tgnX1xzD07JOw+M9dXemZN/a61Vjt7k8NUm+17U18b292Hp8S9JMMPHxfJ0BvzH7baxlhYemuG73kXGntMtMniVNXlM3SFvV5VdYZqa1fVMRmGB/xSDWOuK8nlq+qQ7j57ShtJnrE3OYzx387wxviuqjqju/9+G23s1WMxtrEyB9FexdcwUeOJVfVL3f2aKfFV9fs9dI19Q5I3VNWXMxx4nTA1PkNXxSOS/MomD8NHMgxDXH3frp/hV6231DAq6weSfDrDQdim8ePyublNxl+ev7l6f9qgjW0bt3VehnljPpLhYGCPsecT439sX+a2Hd39pao6J8O8Hb+d73dZnfWRDK/hlZiH1jBu/qQMv9ZcOsOvj8nQ5f3bSV4/Mf6rSVZPPn+5JOsOGd1XtrAvbsWNkuwxp9cO+fMMPcY2/MU4Q7H4Xkn+uaoe291/vnLDeLDwt0n+toaJF9frHbFuG+Nt528j/yn70qzXZBgCd6skl59Zfu8M+9RnxnYuleHg8HET49ey3vO6lTbWsrfx+6KtDeO6+9waJlddPfxms/iP5Pu/mq74iew578xmObysux+2yX3YsI2xyPTiJC+uYdLgW2bP3iX74rn4ywy9f543s2zlc+Kt24xfy42yfgFxaht7m8Oi2tko7rVJ/iLJSd19Vq0/snu9NlYKTj+Wzb8srtlGd58/HhetZe6zLklq6Pl8lQzDKafYrI0vJ7lvhh/8vtrDkNmtxL+zu+9UwwlI3lVVr+xhuP9q31l9rFpVRyW5eVWdNi66fIZhxGvNvbhH/OzysVfM6zIM7X/qxNiVeVh+PMOQms9nGM50VobPrfVM2eaaxt4/J2Y43v5whnldDl/rO8zE+D2Gjo+FhR/P9o4d/jLbfL1W1Q0zHPvdNMO+8NLec06vZP3jtM9sYXOvSvKkGkYrXKy7P1DDpMtXrKr7jutcqaqu0d2f3GI7R2w3hy3kv9m+98BMe21sdx+eEveSDL3a3p6hx9AZ29z2do/hLrD0MNpZ90jywu6+ancf0d1XyfBm8rgkH+ruq4zLr5rhQO2uW2hj6uS4G8Z395kZvpT8ea1/tra9zWHh92O8L1/MMG/PWhOSrRd/yxq749cw6dn1M0ziODk+Q1fF+/bmE9m+NclFa+asNlV14wzje48d2z2iu6+U5Mq155kZ1ov/ZJKfqfFsYmMX6admGDYxKYf1ugVvZvxV+llJ/qq7O8MQxwdU1U1m1rlfVf3QxPjd4g8zTNx93jq3vzXDXEe/ObNsZS6Eo5L8+srzmeRHMsxTdvGJ8f+a4UP2h5KkhjPeXDTfnxhykY7KtH1xkvGg5QmZMFn0IvQwNOyjGX7p2mzdb4/r3bfGM+VV1e1qHAI2Ph+XzwaTJ6/Vxl6asi/N+tskf9J7zrV0VIaJvFfaWZlkfWr8nPH94ugMPVS21cYG9jZ+X7Q1Je75GSZsXT3R8kbxT8gw38sRyf+8Ph6btefJ2BePw5ptVNXP1ffP0HRIkqtn6LWwz3MYC1Mvz3zPu8cn+X8z73EXrao1ewSsEz+nqn45Q++S9eZ62rSNbdyHHWtno7geeuk9OptMIr1BGy9Jcr8MP4htOCxpm/mfkOTiNZ7FdywEPDHD6+fb+6qNHnpO3j3J341f+recw9jG47N+IXjOWHT6mSSHz7y3PjTbnPuvu7+RoWfM79UGZ/td5d0ZPnO+1t3njc/RZTIMq3nPvt5mDWcOvcbMohtmmNT4uUmeWuOJJqrqsKq638T4z65a56AMz8Pne/0RA+va7uushmrrMzMMRftchkLsmmfN66Gn1BdrHJFQw5nVbpdp8//MtnFihvfZl9TQ0+8S3X3lmf3p8dlk3tjV7Uzd/t7GZuN970OZ/trY7j68aVwPIxS+mmGKgrXu3169fvZnCkY766js2UX4FRkq12stX2voxHptPDZ7zmG01gHXRvFJ/mfoxi9l+AX9JtnTRm1cq6pOn7msN3xl0zw2MTX+VRkODFbP57Re/POTvHbsOXBKhknz9jjd8gbxv5rkEhnOGLThfFJjQeRuSX6hhtN3fiTJsRl+vV3d9iuz6kNig/j/zNDV8nFV9YkM4+L/da37sUkbU63MmfORDL8UvDnJH4/tf3nM+wk1nCL1Y0lukaFav2n8aPUcRlvtEXWbVfvkzbYYn+7+l+5+1Qa3d4YC78/WcNrR9yd5QYazvf1iZnqAdPe3MhxE3HlC/KPHx/C3kxxfQ5fxv8wwfHInft24Tybsi5u4eg2nKP5YhoO2p/U42egWTH1fmeLPMrEwPR4s3C7Da+kuGb6EnlpVH0rypgxnDNlwvrc12pjq4qvu82MzYV9ate3Tu/sps8vGosThGc66srLeZ5Kctfr9fq34GSvzB/17hvfdX+41zgY5sY2Vyx699zaJ35LttjUlroe5DZ6a78+9tml8D70WHp3hM+fjGXqH/H6v0ZthXzwOG7Txk0lOqmEYznuS/E0Pw5P2eQ6jJ2Y4A81Ku8dn6LX4z+PnwMnZuAf8XPzokeM+9MmMBY8efgDbThsrlyO2GL8dq9u5SNaeJ2/y9rv7pT2tZ8AebfRwpsJvJ3nr+P6y7TzWyW3lmOOe43P170n+O9OP/Sa3Me7DD0zympqZ+3CLOTwrww+Jeww3XcPdMzxus8/fqzOMHlhv6PKGuvvfMnzZnvqZ++EMz8d7Vy37Rm9wIpu92OYlk7yghlOvn5Jhfr5jM/wQfmaSj47H06/KnhOwbxSfJH8/Ljs1w3H1Vj4/V9vO6/XBGaa1WBme94wk1671f1C9f4bP+Q9m+BHwj3v9KRTW85IMZzZeGX621veMqcPSVtrZqu3GrrvvZShAT31tbHcfnhr3kgxDr9casrvXr5/9VfWu+hEfAAAufGo46cJzxiIaACydHkYAALBENczfcn6GXrYAsCvoYQQAAADAHD2MAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAbKCq/qCqPlJVp4ynXL9JVT2iqi4+IXbSegAAu41JrwEA1lFVN0vypCS36u7vVtUVkvxAkn9JcmR3f2WT+NOmrAcAsNvoYQQAsL7Dknylu7+bJGPh5x5JrpTkbVX1tiSpqmdW1UljT6Q/Hpf91hrr3baq3lNVH6iqf6iqSy7jTgEAbEYPIwCAdYwFnXcluXiSf07ysu5+++qeQ1V1ue7+WlUdmOSEJL/V3afMrjf2TvqnJLfv7m9V1aOTXLS7/2QJdw0AYEMXWXYCAAC7VXd/s6p+Msktktw6ycuq6pg1Vr1XVR2d4djqsCTXSXLKqnVuOi5/d1Ulw9C29ywqdwCAvaFgBACwge4+L8mJSU6sqg8necDs7VX1I0l+L8mNu/u/qur5SQ5eo6lK8pbuPmqxGQMA7D1zGAEArKOqrlVV15hZdMMkn01ydpJDxmWXSvKtJN+oqismuf3M+rPrvTfJzavqR8e2L15V11xg+gAA26aHEQDA+i6Z5GlVdZkk5yb5jyRHJzkqyRuq6ovdfeuq+rckH0ny6STvnol/9qr1fjXJS6rqouPtj0vy7ztzVwAApjPpNQAAAABzDEkDAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMz5/wHQ0+/TMVapmQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -627,24 +679,27 @@ ], "source": [ "fig2, ax2 = plt.subplots(figsize=(20, 9))\n", - "ax2.bar(disp_st['state'], disp_st['dispute_rate'])" + "ax2.bar(disp_st['state'], disp_st['dispute_rate'])\n", + "ax2.set_xlabel(\"State\")\n", + "ax2.set_ylabel(\"Disputed issue rate(disputed count / issue count)\")\n", + "ax2.set_title(\"Dispute rates per state\")" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 75, "id": "17ec819c", "metadata": {}, "outputs": [], "source": [ "#Getting count of issues per state with products\n", - "state_issue_count = df.groupby(['state', 'product', 'issue']).size().reset_index()\n", - "state_issue_count.columns = ['state', 'product', 'issue','count']" + "state_issue_count = df[['state', 'product', 'issue']].groupby(['state', 'product', 'issue']).size().reset_index()\n", + "state_issue_count.columns = ['state', 'product', 'issue', 'count']" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 76, "id": "15c92542", "metadata": {}, "outputs": [ @@ -724,7 +779,7 @@ "485 CA Credit reporting Incorrect information on credit report 8585" ] }, - "execution_count": 9, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -736,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 77, "id": "63fa2a3a", "metadata": {}, "outputs": [ @@ -823,7 +878,7 @@ "0 1 " ] }, - "execution_count": 10, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -835,10 +890,31 @@ }, { "cell_type": "markdown", - "id": "bd01caa6", + "id": "74c173a9", + "metadata": {}, + "source": [ + "### **Analysis**: \n", + "As the above console output and bar graphs show, states with higher populations such as CA, NY, TX etc tend to have more disputes over financial issues. Moreover, West Coast states have a higher tendency to dipute complaints. Finally, Mortgage modifications and Credit reporting issues have caused the most disputed among the states \n", + "\n", + "Laws and operations regarding financial products and the companies headquartered in these states are areas which can be further analysed for why they yield such high issue counts for the a certain range of products." + ] + }, + { + "cell_type": "markdown", + "id": "47764af9", + "metadata": {}, + "source": [ + "### Disputes according to Product:" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "790fcd51", "metadata": {}, + "outputs": [], "source": [ - "**Analysis**: As the above console output and bar graphs show, states with higher populations such as CA, NY, TX etc tend to have more disputes over financial issues. Moreover, West Coast states have a higher tendency to dipute complaints. Laws regarding financial products and the companies headquartered in these states are areas which can be further analysed for why they yield such high issue counts" + "disp_prod = get_count('product')" ] }, { @@ -931,7 +1007,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 88, "id": "cd258ff1", "metadata": {}, "outputs": [ @@ -941,13 +1017,13 @@ "Text(0, 0.5, 'Product')" ] }, - "execution_count": 23, + "execution_count": 88, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBkAAAImCAYAAAAWg1KwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABF+ElEQVR4nO3deZRdVZ3+//dDQgcQiCKIEYcgBmkmowQQR0Ck1djthKKNCk6oraL9/amNaCuOHRtt0UbRiIoDAg5g06ISBQFFBRIICeCASmzFARGMgoAQP78/7i68lFWVSjiVm6q8X2tl1bn7nLP359w6i8V9ap99U1VIkiRJkiTdVRsNugBJkiRJkjQ1GDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiTpTpJUkgcNug5J0uRjyCBJkkaUZEWSAwZdx6AkOTfJiwddx2SV5Ogknxl0HZKkdcuQQZIkaT2Vnrv0/2tJpndVjyRJq2PIIEmSVivJg5Kcl2RlkuuSnNrak+R9Sa5t+5Yl2bXtu9NMgCSHJfl23+udknw9yfVJfpjkWWOMv1WSTyT5ZZIbknypb99Lkvy49XNGkvu09tlt2v/0vmPvqGmoniTvaX1eneSJbd87gUcDxyW5MclxY13rCPWem+Q/klzUjv2fJFv17X94ku8k+X2Sy5LsO+zcdya5APgT8MAR+l+R5A1Jrmy1fyLJJm3fvkl+keTfkvwa+ESSGUmObe/fL9v2jL7+XpfkV23fC0e4lrF+j7v0/R5/k+SoJE8AjgIObu/fZaP9biVJU4shgyRJGo+3A4uAewD3Bf67tR8IPAbYEbg7cDDwu9V1luRuwNeBzwL3Ap4DfCjJLqOc8mlgM2CXdvz7Wj/7A/8BPAuYBfwMOGUNrmtv4IfA1sB/Ah9Lkqp6I/At4JVVtXlVvXItrvX5wAuB+wC3Ax9oNW8HnAm8A9gKeC3wxSTb9J37POBwYIt2TSM5BPgHYIdW05v69t279f2A1s8bgYcDc4GHAHsNHd8CgdcCjwfmAON+RCbJFsA3gK+163wQcHZVfQ14F3Bqe/8eMt4+JUmTmyGDJEkaj9vofWC9T1XdUlXf7mvfAtgJSFV9v6p+NY7+ngysqKpPVNXtVXUJ8EXgoOEHJpkFPBF4WVXdUFW3VdV5bfchwMer6pKquhV4A7BPktnjvK6fVdVHq2oV8El6QcW2oxy7ptf66aq6vKpuAv4deFaSacBzga9U1Veq6i9V9XVgMfCkvnNPrKor2ntz2yj9H1dVP6+q64F30gtqhvwFeEtV3VpVN9N7n95WVddW1W+Bt9ILMqAX0Hyir9ajx7im4Z4M/Lqq3tvuiz9W1YVrcL4kaYoxZJAkSePxeiDARUmuGJpSX1XnAMcBHwR+k2Rhki3H0d8DgL3b4wK/T/J7eh+E7z3CsfcDrq+qG0bYdx/6/tJfVTfSm12w3Tiv69d95/6pbW4+0oFrca0/79v+GbAxvRkTDwCeOezaH0Uv4Bjp3PH2f5++17+tqlv6Xt/pfRp2/H1G6Gu87gf8ZA2OlyRNcYYMkiRptarq11X1kqq6D/BSeo82PKjt+0BV7UHvUYYdgde1026i94jDkP4A4efAeVV1975/m1fVy0cY/ufAVknuPsK+X9L70A7c8RjGPYFr2viMUcPq1N80jH6tI7lf3/b96c2EuI7e9Xx62LXfraoWjDX2OPr/5Rjn3+l9Gnb8r0boq9/qfo87jFLfeK5BkjTFGDJIkqTVSvLMJPdtL2+g9wFyVZI9k+ydZGN6H0ZvAVa145YCT0+yWQskXtTX5ZeBHZM8L8nG7d+eSf5++NjtkYSv0gs27tGOfUzb/VngBUnmtoUM3wVcWFUr2mMB1wDPTTKtzb4Y7QPxSH5D36KLq7nWkTw3yc5JNgPeBnyhPZbxGeAfk/xDq2uTtljjfcfoaySvSHLftqDkUcCpYxx7MvCmJNsk2Rp4c6sD4HPAYX21vmXYuUsZ+/d47ySvaYtLbpFk77bvN8Ds3MVvx5AkTS7+R1+SJI3HnsCFSW4EzgBeXVVXA1sCH6UXPPyM3qMK72nnvA/4M70Pm58EThrqrKr+SG8hxWfT+4v6r4F3A3d848Ewz6M3E+AHwLXAa1o/Z9Nb7+CL9P4iv0Prc8hL6M02+B292QffWYNrfj9wUPv2hg+s5lpH8mngxHZtmwBHtJp/DjyFXjDwW3qzAV7Hmv9/2WfpLcb50/bvHWMc+w566z4sA5YDlwwdX1VfBY4FzgF+3H72W93v8fHAP7brvArYr+3+fPv5uySXrOG1SZImqVQ5k02SJKlLSc4FPlNVJ0xQ/yuAF1fVNyaif0mS1pYzGSRJkiRJUicMGSRJkiRJUid8XEKSJEmSJHXCmQySJEmSJKkThgySJEmSJKkT0wddgKaWrbfeumbPnj3oMiRJkiRJE2DJkiXXVdU2o+03ZFCnZs+ezeLFiwddhiRJkiRpAiT52Vj7fVxCkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUsvyalcw+8sxBl9GZFQvmD7oESZIkSZo0nMkgSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YchwFyR5Y5IrkixLsjTJ3q39NUk2W4v+brwLtRyW5D6j7DsxyUFr27ckSZIkSeNhyLCWkuwDPBl4WFXtDhwA/Lztfg2wxiHDXXQYMGLIIEmSJEnSumDIsPZmAddV1a0AVXVdVf0yyRH0Pux/M8k34c4zFJIclOTEtr19ku8muTjJ2/s7T/K61r4syVtb2+wk30/y0TaDYlGSTdsshXnASW1GxaajFZ3kcUkuTbI8yceTzGjtb27jXZ5kYZK09nOTvDvJRUl+lOTR3b2FkiRJkqSpxJBh7S0C7tc+eH8oyWMBquoDwC+B/apqv9X08X7g+KraE/j1UGOSA4E5wF7AXGCPJI9pu+cAH6yqXYDfA8+oqi8Ai4FDqmpuVd080mBJNgFOBA6uqt2A6cDL2+7jqmrPqtoV2JTeLI0h06tqL3ozNN4yQr+HJ1mcZPGqP61czSVLkiRJkqYqQ4a1VFU3AnsAhwO/BU5NctgadvNI4OS2/em+9gPbv0uBS4Cd6IULAFdX1dK2vQSYvQbjPbid/6P2+pPAUHixX5ILkywH9gd26TvvtLHGq6qFVTWvquZN22zmGpQjSZIkSZpKpg+6gMmsqlYB5wLntg/nh9KbKfA3h/ZtbzLGviEB/qOqPnKnxmQ2cGtf0yp6sw7GKyM29mY4fAiYV1U/T3L0sDqHxlyF94wkSZIkaRTOZFhLSR6cZE5f01zgZ237j8AWfft+k+Tvk2wEPK2v/QLg2W37kL72s4AXJtm8jbVdknutpqThY47kB8DsJA9qr58HnMdfA4Xr2ph+E4UkSZIkaY35V+m1tznw30nuDtwO/JjeoxMAC4GvJvlVW5fhSODL9L594vJ2LsCrgc8meTXwxaGOq2pRkr8HvtvWX7wReC69mQSjORH4cJKbgX1GWpehqm5J8gLg80mmAxcDH66qW5N8FFgOrGjtkiRJkiStkVSNNFtfWjszZs2pWYceO+gyOrNiwfxBlyBJkiRJ640kS6pq3mj7fVxCkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUstt2M1m8YP6gy5AkSZIkDYAzGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUiemD7oATS3Lr1nJ7CPPHHX/igXz12E1kiRJkqR1yZkMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMkiRJkiSpE4YMd1GSVUmWJrk8yeeTbDbB452QZOcR2g9LctwEj71vki9P5BiSJEmSpMnLkOGuu7mq5lbVrsCfgZf170wyrcvBqurFVXVll32OpuvaJUmSJElTmyFDt74FPKj9xf+bST4LLE8yLckxSS5OsizJS+GOmQHnJzk9yZVJPpxko7bv+CSLk1yR5K1DAyQ5N8m8tv2CJD9Kch7wyJEKSrJ5kk8kWd7GfsZq+l+R5M1Jvg08M8kTkvygvX76BL1vkiRJkqQpYPqgC5gqkkwHngh8rTXtBexaVVcnORxYWVV7JpkBXJBkUd9xOwM/a+c+HfgC8Maqur7NJjg7ye5VtaxvvFnAW4E9gJXAN4FLRyjt39vYu7Xz7tHax+r/lqp6VJJNgKuA/YEfA6eOcu2HA4cDTNtym3G/Z5IkSZKkqcWZDHfdpkmWAouB/wM+1tovqqqr2/aBwPPbcRcC9wTm9B3306paBZwMPKq1PyvJJfSCg13oBRH99gbOrarfVtWfGSUAAA4APjj0oqpuGEf/Q33tBFxdVVdVVQGfGWmAqlpYVfOqat60zWaOUoYkSZIkaapzJsNdd3NVze1vSAJwU38T8KqqOmvYcfsCNay/SrI98Fpgz6q6IcmJwCYjjD383JFk+HHj6L+/9vGMIUmSJEmSMxnWkbOAlyfZGCDJjknu1vbtlWT7thbDwcC3gS3pfdBfmWRbeo9hDHchsG+Se7Z+nznK2IuAVw69aI9LjKd/gB8A2yfZob1+zvguV5IkSZK0IXImw7pxAjAbuCS9aQ6/BZ7a9n0XWADsBpwPnF5Vf0lyKXAF8FPgguEdVtWvkhzdzv8VcAkw0rdBvAP4YJLLgVXAW6vqtNX138a4pa23cGaS6+gFILuu8dVLkiRJkjYI6T1qr0Foj0u8tqqePOBSOjNj1pyadeixo+5fsWD+uitGkiRJktSpJEuqat5o+31cQpIkSZIkdcLHJQaoqs4Fzh1wGZIkSZIkdcKZDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqROGDJIkSZIkqRPTB12AppbdtpvJ4gXzB12GJEmSJGkAnMkgSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6YcggSZIkSZI6MX3QBWhqWX7NSmYfeeZan79iwfwOq5EkSZIkrUvOZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZOhIklVJlia5PMnnk2zWQZ83dlRbJ/1IkiRJkjQWQ4bu3FxVc6tqV+DPwMsGXZAkSZIkSeuSIcPE+BbwoCT/mOTCJJcm+UaSbZNslOSqJNsAtNc/TrJ1ku2TfDfJxUnePtRZks2TnJ3kkiTLkzyltb89yav7jntnkiNGKyo9x7TZFsuTHLya/mcn+X6Sjya5IsmiJJtO0HsmSZIkSZrkDBk6lmQ68ERgOfBt4OFV9VDgFOD1VfUX4DPAIe2UA4DLquo64P3A8VW1J/Drvm5vAZ5WVQ8D9gPemyTAx4BD27gbAc8GThqjvKcDc4GHtHGPSTJrjP4B5gAfrKpdgN8Dz1ib90WSJEmSNPUZMnRn0yRLgcXA/9ELAO4LnJVkOfA6YJd27MeB57ftFwKfaNuPBE5u25/u6zvAu5IsA74BbAdsW1UrgN8leShwIHBpVf1ujBofBZxcVauq6jfAecCeo/Xfzrm6qpa27SXA7OGdJjk8yeIki1f9aeUYw0uSJEmSprLpgy5gCrm5qub2NyT5b+C/quqMJPsCRwNU1c+T/CbJ/sDe/HVWA0CN0PchwDbAHlV1W5IVwCZt3wnAYcC96YUXY8ko7WP1f2vfcauAv3lcoqoWAgsBZsyaM1L9kiRJkqQNgDMZJtZM4Jq2feiwfSfQe2zic1W1qrVdQO+RB7hz8DATuLYFAPsBD+jbdzrwBHozEs5aTT3nAwcnmdbWhHgMcNFq+pckSZIkaVwMGSbW0cDnk3wLuG7YvjOAzfnroxIArwZekeRieh/8h5wEzEuymF748IOhHVX1Z+Cb3DmsGM3pwDLgMuAcemtE/Hqs/iVJkiRJGq9UObt9EJLMA95XVY++i/1sBFwCPLOqruqkuLtgxqw5NevQY9f6/BUL5ndXjCRJkiSpU0mWVNW80fY7k2EAkhwJfBF4w13sZ2fgx8DZ60PAIEmSJEnasLnw4wBU1QJgQQf9XAk88K5XJEmSJEnSXedMBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1Inpgy5AU8tu281k8YL5gy5DkiRJkjQAzmSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGSQJEmSJEmdMGRQp5Zfs5LZR5456DIkSZIkSQNgyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjoxkJAhyX2T/E+Sq5L8JMn7k/xd2zc3yZP6jj06yWs7HHunJEuTXJpkhyTf6arvcYx9QpKdV3PMuUnmraN6/inJketiLEmSJEnS1LfOQ4YkAU4DvlRVc4Adgc2Bd7ZD5gJPGvnstRpv2rCmpwL/U1UPraqfVNUjuhprdarqxVV15boaDyDJ9DHqOaOqFqzLeiRJkiRJU9cgZjLsD9xSVZ8AqKpVwL8CL0yyJfA24OA22+Dgds7O7S/8P01yxFBHSZ6b5KJ27EeGAoUkNyZ5W5ILgX36jn8S8BrgxUm+OXRs+7lvG+MLSX6Q5KQWiJDkzUkuTnJ5koV97ecmeXer4UdJHt3apyV5T5LlSZYleVXf8fPa9vFJFie5IslbV/emJVmQ5MrW33ta2zZJvthquzjJI1v70a3ORcCnklyYZJe+vs5NskeSw5Ic19q2TXJ6ksvav0eM9R5LkiRJkjTcIEKGXYAl/Q1V9Qfg/4DZwJuBU6tqblWd2g7ZCfgHYC/gLUk2TvL3wMHAI6tqLrAKOKQdfzfg8qrau6q+3TfOV4APA++rqv1GqO2h9EKInYEHAo9s7cdV1Z5VtSuwKfDkvnOmV9Ve7by3tLbDge2Bh1bV7sBJI4z1xqqaB+wOPDbJ7iMcA0CSrYCnAbu0/t7Rdr2/XcuewDOAE/pO2wN4SlX9M3AK8KzW1yzgPlV1p98B8AHgvKp6CPAw4IrVvMeSJEmSJN3JqFPpJ1CAWoN2gDOr6lbg1iTXAtsCj6P3QfriNrFgU+Dadvwq4ItrUdtFVfULgCRL6YUe3wb2S/J6YDNgK+AK4H/bOae1n0va8QAHAB+uqtsBqur6EcZ6VpLD6f0OZtELNpaNUtcfgFuAE5KcCXy5b5yd2/UDbJlki7Z9RlXd3LY/B3ydXgjyLODzI4yxP/D8Vu8qYGWS5zH6e3yHdh2HA0zbcptRLkGSJEmSNNUNImS4gt5f3e/QHpO4H/ATeh9qh7u1b3sVvboDfLKq3jDC8be0D8pr6m/GSbIJ8CFgXlX9PMnRwCYjnDNUF4wdmJBke+C1wJ5VdUOSE4f1eSdVdXuSvegFK88GXkkvFNgI2KcvTBjqH+CmvvOvSfK7NlviYOClo401vFRGf4/761sILASYMWvOqNctSZIkSZraBvG4xNnAZkmeD3cszPhe4MSq+hPwR2CLMc7v7+egJPdq/WyV5AETUO/Qh//rkmwOHDSOcxYBLxtadLE97tBvS3ohwMok2wJPHKuzNu7M9rjHa+gtjjk0ziv7jps7/Nw+pwCvb/0sH2H/2cDLWz/TWvCzrt5jSZIkSdIUsM5DhqoqeusLPDPJVcCP6D0KcFQ75Jv0HgHoX/hxpH6uBN4ELEqyjN7jALMmoN7fAx8FlgNfAi4ex2kn0FtjYlmSy4B/HtbnZcCl9GZ1fBy4YDX9bQF8uV3nefQWygQ4ApjXFoO8EnjZGH18gd4siM+Nsv/V9B4LWU7v0Y9d1tV7LEmSJEmaGtL7zC91Y8asOTXr0GNZsWD+oEuRJEmSJHUsyZL2JQYjGsTjEpIkSZIkaQoyZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZJAkSZIkSZ0wZFCndttuJisWzB90GZIkSZKkATBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tSy/ZiWzjzxz0GVIkiRJ0qSyYsH8QZfQCWcySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgyDFCSSvLpvtfTk/w2yZfXsJ+5SZ7UfYWSJEmSJI2fIcNg3QTsmmTT9vrxwDVr0kGS6cBcwJBBkiRJkjRQhgyD91Vgftt+DnDy0I4kWyX5UpJlSb6XZPfWfnSShUkWAZ8C3gYcnGRpkoOTbJPk60kuSfKRJD9LsnU790tJliS5IsnhfWO9KMmPkpyb5KNJjmvt2yT5YpKL279Hrpu3RZIkSZI02RgyDN4pwLOTbALsDlzYt++twKVVtTtwFL1AYcgewFOq6p+BNwOnVtXcqjoVeAtwTlU9DDgduH/feS+sqj2AecARSe6Z5D7AvwMPpzebYqe+498PvK+q9gSeAZww/AKSHJ5kcZLFq/60cu3fCUmSJEnSpDZ90AVs6KpqWZLZ9GYxfGXY7kfR+2BPVZ3TAoGZbd8ZVXXzKN0+CnhaO+9rSW7o23dEkqe17fsBc4B7A+dV1fUAST4P7NiOOQDYOcnQ+Vsm2aKq/th3DQuBhQAzZs2pcV+8JEmSJGlKMWRYP5wBvAfYF7hnX3tGOHboQ/xNY/Q30nkk2ZdeaLBPVf0pybnAJqMd32zUjh8t0JAkSZIkCfBxifXFx4G3VdXyYe3nA4fAHQHBdVX1hxHO/yOwRd/rbwPPaucdCNyjtc8EbmgBw070Ho8AuAh4bJJ7tIUkn9HX1yLglUMvksxd04uTJEmSJG0YDBnWA1X1i6p6/wi7jgbmJVkGLAAOHaWLb9J7pGFpkoPpreVwYJJLgCcCv6IXRHwNmN76ezvwvTb+NcC76K0H8Q3gSmBocYUjhmpIciXwsrt6vZIkSZKkqSlVPkI/1SSZAayqqtuT7AMcX1VzV3PO5lV1Y5vJcDrw8ao6fU3HnjFrTs069Ni1KVuSJEmSNlgrFsxf/UHrgSRLqmreaPtdk2Fquj/wuSQbAX8GXjKOc45OcgC9NRoWAV+auPIkSZIkSVORIcMUVFVXAQ9dw3NeO0HlSJIkSZI2EK7JIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOmHIIEmSJEmSOjF90AVoatltu5ksXjB/0GVIkiRJkgbAmQySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkThgySJEmSJKkT08dzUJJ3V9W/ra5NWn7NSmYfeeYanbNiwfwJqkaSJEmStC6NdybD40doe2KXhUiSJEmSpMltzJkMSV4O/AuwQ5Jlfbu2AL4zkYVJkiRJkqTJZXWPS3wW+CrwH8CRfe1/rKrrJ6wqSZIkSZI06Yz5uERVrayqFcD7geur6mdV9TPgtiR7r4sCJUmSJEnS5DDeNRmOB27se31Ta5MkSZIkSQLGHzKkqmroRVX9hXF+M4UkSZIkSdowjDdk+GmSI5Js3P69GvjpRBYmSZIkSZIml/GGDC8DHgFcA/wC2Bs4fKKKkiRJkiRJk8+4HnmoqmuBZ09wLZIkSZIkaRIbV8iQ5BNADW+vqhd2XpEkSZIkSZqUxrt445f7tjcBngb8svtyJEmSJEnSZDXexyW+2P86ycnANyakIkmSJEmSNCmNd+HH4eYA9++ykHUpSSX5dN/r6Ul+m+TLY503gfUctY7GOSbJFUmOWRfjSZIkSZI2LONdk+GP9NZkSPv5a+DfJrCuiXYTsGuSTavqZuDx9L45Y1COAt41vDFJgFTVXzoa56XANlV163gOTjK9qm7vaGxJkiRJ0hQ3rpkMVbVFVW3Z93PH4Y9QTEJfBea37ecAJw/tSLJVki8lWZbke0l2b+1HJ/l4knOT/DTJEX3nPDfJRUmWJvlIkmlJXpTkfX3HvCTJf/UXkWQBsGk776Qks5N8P8mHgEuA+yU5PsniNgvhrX3nrkjy1iSXJFmeZKfW/tjW39IklybZIskZwN2AC5McnGSbJF9McnH798i+a1yYZBHwqSS79F3XsiRzOv0tSJIkSZKmjDFnMiR52Fj7q+qSbstZp04B3twekdgd+Djw6LbvrcClVfXUJPsDnwLmtn07AfsBWwA/THI88CDgYOCRVXVbCwgOaWMsS/L6qroNeAG92QR3qKojk7yyquYCJJkNPBh4QVX9S2t7Y1Vdn2QacHaS3atqWeviuqp6WJJ/AV4LvLj9fEVVXZBkc+CWqvqnJDf2jfNZ4H1V9e0k9wfOAv6+9bkH8KiqujnJfwPvr6qTkvwdMG34G5nkcOBwgGlbbjPuX4AkSZIkaWpZ3eMS720/NwHmAZfRe2Rid+BC4FETV9rEqqpl7QP9c4CvDNv9KOAZ7bhzktwzycy278z2uMGtSa4FtgUeR++D+cW9JxzYFLi2qm5Kcg7w5CTfBzauquXjKO9nVfW9vtfPah/kpwOzgJ2BoZDhtPZzCfD0tn0B8F9JTgJOq6pfjDDGAcDOrV6ALZNs0bbPaI+RAHwXeGOS+7a+rhreUVUtBBYCzJg152++6lSSJEmStGEYM2Soqv0AkpwCHD70ATnJrvT+Wj7ZnQG8B9gXuGdfe0Y4dujDc/96BqvovYcBPllVbxjhvBPorbnwA+AT46zrpjsKSban917vWVU3JDmRXugzZKieoVqoqgVJzgSeBHwvyQFV9YNhY2wE7NMXJgyNd6fxq+qzSS6k92jJWUleXFXnjPM6JEmSJEkbkPF+u8RO/X+Br6rL+evjA5PZx4G3jTC74Hx6jzuQZF96jyT8YYx+zgYOSnKvds5WSR4AUFUXAvcD/pm+dR+GuS3JxqPs25Leh/6VSbYFnri6i0qyQ1Utr6p3A4vpPeIx3CLglX3nzB2lrwcCP62qD9ALZXZf3fiSJEmSpA3TeEOG7yc5Icm+bVHBjwLfn8jC1oWq+kVVvX+EXUcD85IsAxYAh66mnyuBNwGL2jlfp/dYw5DPARdU1Q2jdLGQ3toNJ43Q92XApcAV9EKRC8a8qJ7XJLk8yWXAzfQWuRzuCNo1JrkSeNkofR0MXJ5kKb2w4lPjGF+SJEmStAFK1eofoU+yCfBy4DGt6Xzg+Kq6ZQJrmzLa4pLvq6qzB13LRJsxa07NOvTYNTpnxYL5qz9IkiRJkjRwSZZU1bzR9q9u4UcAquqWJB8EvkFvbYIftm9L0BiS3B24CLhsQwgYJEmSJEkbtnGFDG1dgk8CK+gtcni/JIdW1fkTVtkUUFW/B3YcdB2SJEmSJK0L4woZ6H2V5YFV9UOAJDvSW8Rwj4kqTJIkSZIkTS7jXfhx46GAAaCqfgSM9m0IkiRJkiRpAzTemQxLknwM+HR7fQiwZGJKkiRJkiRJk9F4Q4aXAa+g97WHofftEh+aqKIkSZIkSdLks9qQIclGwJKq2hX4r4kvSZIkSZIkTUarXZOhqv4CXJbk/uugHkmSJEmSNEmN93GJWcAVSS4CbhpqrKp/mpCqJEmSJEnSpDPekOGtE1qFJEmSJEma9MYMGZJsQm/RxwcBy4GPVdXt66IwSZIkSZI0uaxuJsMngduAbwFPBHYGXj3RRWny2m27mSxeMH/QZUiSJEmSBmB1IcPOVbUbQJKPARdNfEmSJEmSJGkyWt23S9w2tOFjEpIkSZIkaSyrm8nwkCR/aNsBNm2vA1RVbTmh1UmSJEmSpEljzJChqqatq0IkSZIkSdLktrrHJSRJkiRJksbFkEGSJEmSJHXCkEGSJEmSJHVidQs/Smtk+TUrmX3kmYMuQ5K0llYsmD/oEiRJ0iTmTAZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQ4Y+SVYlWZrkiiSXJfl/ScZ8j5Lsm+TLo+w7qqO6DktyXNs+Oslr16KPuyf5l77X90nyhS7qkyRJkiQJDBmGu7mq5lbVLsDjgScBb7kL/XUSMnTk7sAdIUNV/bKqDhpcOZIkSZKkqcaQYRRVdS1wOPDK9ExLckySi5MsS/LSvsO3THJ6kiuTfDjJRkkWAJu2mREnDe8/yROSXNJmTJzd2rZK8qXW//eS7D5WjUl2SPK1JEuSfCvJTq1921bPZe3fI4AFwA6tnmOSzE5yeTt+kySfSLI8yaVJ9mvthyU5rY1xVZL/7OK9lSRJkiRNTdMHXcD6rKp+2h6XuBfwFGBlVe2ZZAZwQZJF7dC9gJ2BnwFfA55eVUcmeWVVzR3eb5JtgI8Cj6mqq5Ns1Xa9Fbi0qp6aZH/gU8DfnN9nIfCyqroqyd7Ah4D9gQ8A51XV05JMAzYHjgR2Haonyey+fl7Rrne3FlQsSrJj2zcXeChwK/DDJP9dVT8fdj2H0wtkmLblNmOUK0mSJEmaygwZVi/t54HA7kmGHjGYCcwB/gxcVFU/BUhyMvAoYKz1Dh4OnF9VVwNU1fWt/VHAM1rbOUnumWTmiEUlmwOPAD6fDJXIjPZzf+D5rZ9VwMok9xijnkcB/92O/0GSnwFDIcPZVbWyjXkl8ADgTiFDVS2kF3gwY9acGmMcSZIkSdIUZsgwhiQPBFYB19ILG15VVWcNO2ZfYPgH69V90M4ox2SEttH62gj4/UgzJdbCSOMOubVvexXeM5IkSZKkUbgmwyjaIw0fBo6rqgLOAl6eZOO2f8ckd2uH75Vk+/ZoxcHAt1v7bUPHD/Nd4LFJtm99DT0ucT5wSGvbF7iuqv4wUn2t/eokz2zHJ8lD2u6zgZe39mlJtgT+CGwxyuX2j7sjcH/gh6O9N5IkSZIkjcSQ4c6GFmq8AvgGsIjeOgkAJwBXApe0BRM/wl//qv9degsrXg5cDZze2hcCy4Yv/FhVv6W3hsFpSS4DTm27jgbmJVnW+jt0NfUeAryo9XEFvXUjAF4N7JdkObAE2KWqfkdvHYnLkxwzrJ8PAdPa8acCh1XVrUiSJEmStAbS+yO91I0Zs+bUrEOPHXQZkqS1tGLB/EGXIEmS1mNJllTVvNH2O5NBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1YvqgC9DUstt2M1m8YP6gy5AkSZIkDYAzGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUicMGSRJkiRJUiemD7oATS3Lr1nJ7CPPHHQZkiRJ640VC+YPugRJWmecySBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjphyCBJkiRJkjqxQYcMSe6d5JQkP0lyZZKvJNnxLvR3YpKD2vYJSXZu20d1VfPaSvLUoXra67clOWCQNUmSJEmSppYNNmRIEuB04Nyq2qGqdgaOArYddty0tem/ql5cVVe2l+MKGdZ2rHH0Ox14KnBHyFBVb66qb0zEeJIkSZKkDdMGGzIA+wG3VdWHhxqqamlVfSvJvkm+meSzwPIk05Ick+TiJMuSvBR6QUWS49osiDOBew31leTcJPOSLAA2TbI0yUnDi0hyY5tVcCGwT5LnJrmoHf+RoeChHffeJJckOTvJNq19bpLvtbpOT3KPvvHfleQ84N+AfwKOaf3uMGzWxYokb219L0+yU2vfJsnXW/tHkvwsydYT8cuQJEmSJE1+G3LIsCuwZIz9ewFvbDMcXgSsrKo9gT2BlyTZHnga8GBgN+AlwCOGd1JVRwI3V9XcqjpkhHHuBlxeVXsDvwMOBh5ZVXOBVcAhfcddUlUPA84D3tLaPwX8W1XtDizvawe4e1U9tqreCZwBvK7V8ZMR6riu9X088NrW9hbgnNZ+OnD/Md4vSZIkSdIGbvqgC1iPXVRVV7ftA4Hdh/7yD8wE5gCPAU6uqlXAL5OcsxbjrAK+2LYfB+wBXNx7moNNgWvbvr8Ap7btzwCnJZlJL0g4r7V/Evh8X9+nMn6ntZ9LgKe37UfRC1Koqq8luWGkE5McDhwOMG3LbdZgSEmSJEnSVLIhhwxXAAeNsf+mvu0Ar6qqs/oPSPIkoO5iHbe0kGJonE9W1RvGcd54xr1p9Yfc4db2cxV/vS8ynhOraiGwEGDGrDl39f2QJEmSJE1SG/LjEucAM5K8ZKghyZ5JHjvCsWcBL0+ycTtuxyR3A84Hnt3WbJhFb52Hkdw2dO5qnA0clORebZytkjyg7duIv4Yi/wx8u6pWAjckeXRrfx69RylG8kdgi3HU0O/bwLNaLQcC91jD8yVJkiRJG5ANNmSoqqL3KMDj21dYXgEcDfxyhMNPAK4ELklyOfARen/tPx24it5aCMcz+gf8hcCykRZ+HFbTlcCbgEVJlgFfB2a13TcBuyRZAuwPvK21H0pvQcdlwNy+9uFOAV6X5NIkO4xVR5+3AgcmuQR4IvAremGFJEmSJEl/I73P2lrfJbmxqjZfx2POAFZV1e1J9gGObwtSjmrGrDk169Bj10V5kiRJk8KKBfMHXYIkdSbJkqqaN9r+DXlNBq3e/YHPJdkI+DO9b9CQJEmSJGlEhgyTxLqexdDGvAp46LoeV5IkSZI0OW2wazJIkiRJkqRuGTJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROTB90AZpadttuJosXzB90GZIkSZKkAXAmgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6oQhgyRJkiRJ6sT0QRegqWX5NSuZfeSZgy5jg7ZiwfxBlyBJkiRpA+VMBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDBkmSJEmS1AlDhgmU5N5JTknykyRXJvlKkh3vQn8nJjmobZ+QZOe2fVRXNa9m/HOTzFsXY0mSJEmSJh9DhgmSJMDpwLlVtUNV7QwcBWw77Lhpa9N/Vb24qq5sLzsPGZJM77pPSZIkSdLUZsgwcfYDbquqDw81VNXSqvpWkn2TfDPJZ4HlSaYlOSbJxUmWJXkp9IKKJMe1WRBnAvca6mtoVkGSBcCmSZYmOWl4EUmekOSSJJclObu17ZXkO0kubT8f3NoPS/L5JP8LLEqyaZuJsSzJqcCmE/mGSZIkSZImN/9aPXF2BZaMsX8vYNequjrJ4cDKqtozyQzggiSLgIcCDwZ2ozcD4krg4/2dVNWRSV5ZVXOHD5BkG+CjwGPaOFu1XT9obbcnOQB4F/CMtm8fYPequj7J/wP+VFW7J9kduGRt3ghJkiRJ0obBkGFwLqqqq9v2gcDuQ+stADOBOcBjgJOrahXwyyTnrOEYDwfOHxqnqq7v6/+TSeYABWzcd87X+457DPCBdu6yJMtGGqSFJIcDTNtymzUsUZIkSZI0Vfi4xMS5AthjjP039W0HeFVVzW3/tq+qRW1f3YUaMsr5bwe+WVW7Av8IbDJKXeMav6oWVtW8qpo3bbOZa12sJEmSJGlyM2SYOOcAM5K8ZKghyZ5JHjvCsWcBL0+ycTtuxyR3A84Hnt3WbJhFb52Hkdw2dO4w3wUem2T71u/Q4xIzgWva9mFjXMP5wCHt3F2B3cc4VpIkSZK0gTNkmCBVVcDTgMe3r7C8Ajga+OUIh59Ab72FS5JcDnyE3qMspwNXAcuB44HzRhluIbBs+MKPVfVbeo8xnJbkMuDUtus/gf9IcgEw1rdbHA9s3h6TeD1w0ZgXLUmSJEnaoKX3WVjqxoxZc2rWoccOuowN2ooF8wddgiRJkqQpKsmSqpo32n5nMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE4YMkiSJEmSpE5MH3QBmlp2224mixfMH3QZkiRJkqQBcCaDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqxPRBF6CpZfk1K5l95JmDLmNKWrFg/qBLkCRJkqQxOZNBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpBBkiRJkiR1wpABSHLvJKck+UmSK5N8JcmOg67rrkgyO8nlg65DkiRJkrTh2OBDhiQBTgfOraodqmpn4Chg28FWtmaSTB90DZIkSZKkDdsGHzIA+wG3VdWHhxqqamlVfSs9xyS5PMnyJAcDJNk3yblJvpDkB0lOamEFSRa02RDLkryntZ2Y5KCh/pPc2NfPeUk+l+RH7dxDklzUxtuhHbdNki8mubj9e2RrPzrJwiSLgE+N52KTPC7Jpa3/jyeZ0drf3Pq+vPU5dD3nJnl3q+lHSR59199ySZIkSdJUZMgAuwJLRtn3dGAu8BDgAOCYJLPavocCrwF2Bh4IPDLJVsDTgF2qanfgHeMY/yHAq4HdgOcBO1bVXsAJwKvaMe8H3ldVewLPaPuG7AE8par+eXUDJdkEOBE4uKp2A6YDL2+7j6uqPatqV2BT4Ml9p05vNb0GeMsI/R6eZHGSxav+tHIclyxJkiRJmooMGcb2KODkqlpVVb8BzgP2bPsuqqpfVNVfgKXAbOAPwC3ACUmeDvxpHGNcXFW/qqpbgZ8Ai1r78tYn9AKO45IsBc4AtkyyRdt3RlXdPM7reTBwdVX9qL3+JPCYtr1fkguTLAf2B3bpO++09nNJX013qKqFVTWvquZN22zmOEuRJEmSJE01PscPVwAHjbIvY5x3a9/2Knp/7b89yV7A44BnA6+k94H9dlqg0x5D+LtR+vlL3+u/8Nffz0bAPsPDhPZEw01j1Diu62kzHD4EzKuqnyc5GthkhBpX4T0jSZIkSRqFMxngHGBGkpcMNSTZM8ljgfOBg5NMS7INvb/6XzRaR0k2B2ZW1VfoPVowt+1aQe+xBoCnABuvYY2L6AUWQ+PMHf3QMf0AmJ3kQe318+jNzhgKFK5r1zBa6CJJkiRJ0qg2+L9KV1UleRpwbJIj6T3usIJeSHA+sA9wGVDA66vq10l2GqW7LYD/aTMDAvxra/9oa78IOJs1m30AcATwwSTL6P3OzgdeNo7zHpzkF32v/xV4AfD59m0UFwMfrqpbk3yU3iMaK1q7JEmSJElrJFU16Bo0hcyYNadmHXrsoMuYklYsmD/oEiRJkiRt4JIsqap5o+33cQlJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktSJ6YMuQFPLbtvNZPGC+YMuQ5IkSZI0AM5kkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tSy/ZiWzjzxz0GVIGsOKBfMHXYIkSZKmKGcySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkThgySJIkSZKkTkxYyJBkVZKlSS5LckmSR9yFvs5NMq/L+iZakqMGXcPqJJmX5AODrkOSJEmSNDVM5EyGm6tqblU9BHgD8B8TONb66C6FDEmmdVFEkumj7auqxVV1RBfjSJIkSZK0rh6X2BK4ASDJ5knObrMblid5SmufneT7ST6a5Ioki5Js2t9Jko2SfDLJO4YPkOTNSS5OcnmShUnS2h+U5Bt9Myp2aO2vb+NflmRBa5ub5HtJliU5Pck9WvsdMymSbJ1kRds+LMlpSb6W5Kok/9naFwCbtpkcJ41Q63Pa2JcneXdf+41J3pbkQmCfYecckeTKVtspre1uST7ervvSvvfysCSfT/K/wKIkpyZ5Ul9fJyZ5RpJ9k3y57/fyiVbXsiTPaO0HJvlue+8+n2Tzcf7OJUmSJEkbmIkMGYY+ZP8AOAF4e2u/BXhaVT0M2A9471AgAMwBPlhVuwC/B57R19904CTgR1X1phHGO66q9qyqXYFNgSe39pNanw8BHgH8KskTgacCe7f2/2zHfgr4t6raHVgOvGUc1zkXOBjYDTg4yf2q6kj+OpPjkP6Dk9wHeDewfzt3zyRPbbvvBlxeVXtX1beHjXMk8NBW28ta2xuBc6pqT3rv5TFJ7tb27QMcWlX7A6e0Gknyd8DjgK8M6//fgZVVtVsb45wkWwNvAg5ov6/FwP8b/gYkOTzJ4iSLV/1p5TjeMkmSJEnSVLQuHpfYCXgC8KkWJgR4V5JlwDeA7YBt2zlXV9XStr0EmN3X30fofQB/5yjj7ZfkwiTL6X2A3yXJFsB2VXU6QFXdUlV/Ag4APtG2qarrk8wE7l5V57X+Pgk8ZhzXeXZVrayqW4ArgQes5vg9gXOr6rdVdTu9EGRonFXAF0c5bxlwUpLnAre3tgOBI5MsBc4FNgHu3/Z9vaqub9tfBfZPMgN4InB+Vd08rP8DgA8OvaiqG4CHAzsDF7QxDh3p+qpqYVXNq6p50zabuZrLlyRJkiRNVaM+r9+lqvpu+6v4NsCT2s89quq29ujBJu3QW/tOW0VvRsKQ79ALEt7bPtDfIckmwIeAeVX18yRHtz7DyALUGlzC7fw1kNlk2L7hNa/uPR2tJoBbqmrVKPvm0wsj/gn49yS7tL6eUVU/vNMAyd7ATUOvq+qWJOcC/0BvRsPJo9Q1/D0JvbDiOWPULEmSJEkSsI7WZEiyEzAN+B0wE7i2BQz7sfq//A/5GL0p/p8fYTHDoQ/+17U1Aw4CqKo/AL8YehwhyYwkmwGLgBe2bZJsVVUrgRuSPLr19TxgaFbDCmCPtn3QOOu9LcnGI7RfCDy2re0wDXhO3zgjSrIRcL+q+ibweuDuwObAWcCr+tafeOgY3ZwCvAB4dDtvuEXAK/vGvAfwPeCRSR7U2jZLsuNYtUqSJEmSNlzrYk2GpcCp9NYHWEXv8YB5SRYDhwA/GG+HVfVfwCXAp9sH76H23wMfpbeOwpeAi/tOex5wRHs84zvAvavqa8AZwOJW32vbsYfSW9dgGb31Et7W2t8DvDzJd4Ctx1nuQmDZ8IUfq+pX9L5t45vAZcAlVfU/q+lrGvCZ9ijIpcD72jW/Hdi4jXM5f133YiSL6M2E+EZV/XmE/e8A7tEWo7wM2K+qfgscBpzc3pPvATutplZJkiRJ0gYqVWvy1IA0thmz5tSsQ48ddBmSxrBiwfxBlyBJkqRJKsmSqpo32v519RWWkiRJkiRpijNkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnTBkkCRJkiRJnZg+6AI0tey23UwWL5g/6DIkSZIkSQPgTAZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktQJQwZJkiRJktSJVNWga9AUkuSPwA8HXYe0FrYGrht0EdJa8N7VZOW9q8nKe1eTVVf37gOqapvRdk7vYACp3w+rat6gi5DWVJLF3ruajLx3NVl572qy8t7VZLWu7l0fl5AkSZIkSZ0wZJAkSZIkSZ0wZFDXFg66AGktee9qsvLe1WTlvavJyntXk9U6uXdd+FGSJEmSJHXCmQySJEmSJKkThgzqTJInJPlhkh8nOXLQ9WjDk+R+Sb6Z5PtJrkjy6ta+VZKvJ7mq/bxH3zlvaPfsD5P8Q1/7HkmWt30fSJLWPiPJqa39wiSz1/mFaspKMi3JpUm+3F5772q9l+TuSb6Q5Aftv7/7eO9qMkjyr+3/Fy5PcnKSTbx3tT5K8vEk1ya5vK9tndyrSQ5tY1yV5NDx1GvIoE4kmQZ8EHgisDPwnCQ7D7YqbYBuB/6/qvp74OHAK9p9eCRwdlXNAc5ur2n7ng3sAjwB+FC7lwGOBw4H5rR/T2jtLwJuqKoHAe8D3r0uLkwbjFcD3+977b2ryeD9wNeqaifgIfTuYe9drdeSbAccAcyrql2BafTuTe9drY9O5K/31ZAJv1eTbAW8Bdgb2At4S3+YMRpDBnVlL+DHVfXTqvozcArwlAHXpA1MVf2qqi5p23+k9z+629G7Fz/ZDvsk8NS2/RTglKq6taquBn4M7JVkFrBlVX23egvXfGrYOUN9fQF43FAKLN0VSe4LzAdO6Gv23tV6LcmWwGOAjwFU1Z+r6vd472pymA5smmQ6sBnwS7x3tR6qqvOB64c1r4t79R+Ar1fV9VV1A/B1/jbs+BuGDOrKdsDP+17/orVJA9GmeT0UuBDYtqp+Bb0gArhXO2y0+3a7tj28/U7nVNXtwErgnhNyEdrQHAu8HvhLX5v3rtZ3DwR+C3wivUd9TkhyN7x3tZ6rqmuA9wD/B/wKWFlVi/De1eSxLu7VtfqMZ8igroyUyvrVJRqIJJsDXwReU1V/GOvQEdpqjPaxzpHWWpInA9dW1ZLxnjJCm/euBmE68DDg+Kp6KHATbcruKLx3tV5oU76fAmwP3Ae4W5LnjnXKCG3eu1ofdXmvrtU9bMigrvwCuF/f6/vSm3ImrVNJNqYXMJxUVae15t+0KWK0n9e29tHu21+07eHtdzqnTa+cyd9OX5PW1COBf0qygt7jZvsn+Qzeu1r//QL4RVVd2F5/gV7o4L2r9d0BwNVV9duqug04DXgE3ruaPNbFvbpWn/EMGdSVi4E5SbZP8nf0Fhs5Y8A1aQPTnh37GPD9qvqvvl1nAEOr4R4K/E9f+7Pbirrb01sA56I25eyPSR7e+nz+sHOG+joIOKc91yattap6Q1Xdt6pm0/vv5zlV9Vy8d7Weq6pfAz9P8uDW9DjgSrx3tf77P+DhSTZr99zj6K3l5L2ryWJd3KtnAQcmuUeb/XNgaxvT9Lt+bVLv2Z0kr6R3000DPl5VVwy4LG14Hgk8D1ieZGlrOwpYAHwuyYvo/U/FMwGq6ookn6P3P8S3A6+oqlXtvJfTW8l3U+Cr7R/0QoxPJ/kxvYT32RN8Tdqwee9qMngVcFL7I8NPgRfQ+0OW967WW1V1YZIvAJfQuxcvBRYCm+O9q/VMkpOBfYGtk/yC3jc+TPj/I1TV9UneTu8PygBvq6rVzsaJYZokSZIkSeqCj0tIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkiRJkqROGDJIkqRJL8mNAxjz3klOSfKTJFcm+UqSHTseY98kj+iyT0mSJpIhgyRJ0hpKEuB04Nyq2qGqdgaOArbteKh9AUMGSdKkYcggSZKmjCSzkpyfZGmSy5M8Osm0JCe218uT/Gs79twk89r21klWtO1pSY5JcnGSZUleOsJQ+wG3VdWHhxqqamlVfSs9x/SNd3Drd98kX+6r9bgkh7XtFUnemuSSds5OSWYDLwP+tV3Po5M8s/V7WZLzJ+RNlCTpLpg+6AIkSZI69M/AWVX1ziTTgM2AucB2VbUrQJK7r6aPFwErq2rPJDOAC5Isqqqr+47ZFVgyyvlPb2M+BNgauHicgcB1VfWwJP8CvLaqXpzkw8CNVfWeVvty4B+q6ppxXIckSeucMxkkSdJUcjHwgiRHA7tV1R+BnwIPTPLfSZ4A/GE1fRwIPD/JUuBC4J7AnDWo4VHAyVW1qqp+A5wH7DmO805rP5cAs0c55gLgxCQvAaatQU2SJK0ThgySJGnKqKrzgccA1wCfTvL8qrqB3qyCc4FXACe0w2/nr/8vtElfNwFeVVVz27/tq2rRsKGuAPYYpYyM0t4/3vAxAW5tP1cxymzTqnoZ8CbgfsDSJPccZSxJkgbCkEGSJE0ZSR4AXFtVHwU+BjwsydbARlX1ReDfgYe1w1fw16DgoL5uzgJenmTj1ueOSe42bKhzgBltRsHQ2HsmeSxwPnBwW9thG3qhx0XAz4Cdk8xIMhN43Dgu6Y/AFn1j7FBVF1bVm4Hr6IUNkiStN1yTQZIkTSX7Aq9LchtwI/B8YDvgE0mG/rjyhvbzPcDnkjyPXmgw5AR6jytc0r5F4rfAU/sHqapK8jTg2CRHArfQCy1eQy9k2Ae4DCjg9VX1a4AknwOWAVcBl47jev4X+EKSpwCvorcI5Bx6syXObmNIkrTeSFUNugZJkiRJkjQF+LiEJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqhCGDJEmSJEnqxP8PQid5I8MfzawAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBgAAAImCAYAAAD5QTmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABH5UlEQVR4nO3debhdVX3/8feHhAYQiCKoEYcgBimTUQKIOABaq8bWARSVKjghVkV/rVXUVsGhjcUqWhQFVFARcEIpqEQZFRFIICSAKAqxggNSMAICQvz+/jjrwuF6p7DvzSU379fz3Cf7rLX3Wt997j0PnM9Ze59UFZIkSZIkSV2sM9kFSJIkSZKkNZ8BgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmaIpJ8Ksm/TXYdI0mye5JrR+i/JcljVmdNmnyj/V1IktYMBgySJK0BkixPcluSm5P8PskPkxyY5O7/llfVgVX1/gmu49gkH5io8atqw6q6eqLGv79LUkkeO9l1rKmSnJ3ktZNdhyStrQwYJElac/xdVW0EPBpYALwD+MzklqSpJsn0+8MYkqQ1jwGDJElrmKpaUVWnAPsA+yXZDu69uiDJpklObasdbkzy/YHVDm01xDuTXJHkpiSfS7Je69s/yQ/65xv4VD3JAcC+wNvbpQz/0/ofnuRrSX6X5JokB/Udu36r66YkVwA7jXRu/Z/gJ3luq/HmJNcledsYzu1eKwAGr7hI8rwkS/pWgewwQi3bJvlum+O3Sd7V2mckOTzJr9rP4UlmjPb89dXziSSntfO6IMmWre/cdsil7fndZ6RzHea5OyjJ1UluSHJY/75JXp3kx+13cXqSRw869o1JrgKuGmLs2W2fA9o5/zrJP/f1H5Lkq0m+mOQPwP7t7+KUVvfPkryub/8R/y7G8Ht8fvs9/iHJz5M8O8kHgacCR7Tn74jhfreSpIlhuixJ0hqqqi5M77r1pwKXDer+Z+BaYLP2+ElA9fXvC/wtcCvwP8C/tp+R5jsqyZOBa6vqXwHaG9j/Ab4JvAx4BPC9JD+pqtOB9wJbtp8HAN9ehVP8DPCSqvp+kgcBW4zx3IaU5InAZ4G/AxYB/wCckuRxVXXHoH03Ar4HfLjtvy6wTet+d5tzbpv3m/Seu7He/+JlwLOBi4HjgA8CL62qpyUp4PFV9bNWx3+s4rm+EJgHbNjq/wlwTJIXAO9q53IVcDBwAvDkvmNfAOwC3DbC+HsAc4DHAGcmubSqvtf6ng+8GHglMAP4DnA58HBga+C7Sa6uqjPo8HeRZGfg88DewBnALGCjqvpOkt2AL1bVMWMdT5I0flzBIEnSmu1XwCZDtN9J743Xo6vqzqr6flX1vzE9oqp+WVU30nuD+7L7OP9OwGZV9b6q+lO7f8LRwEtb/0uAD1bVjVX1S+DjqzD2ncA2STauqpuq6uIxnttwXgd8uqouqKqVVXUccAe9N+2DPQ/4TVX9V1XdXlU3V9UFrW9f4H1VdX1V/Q44FHjFKpzX16vqwqq6CzieXlAxnFU91w+15/p/gcO55/f6euA/qurHbd5/B+b2r2Jo/TdW1UgBw6FVdWtVLQM+x73/bs6vqm9U1Z+BTYGnAO9oz98S4BjueZ66/F28BvhsVX23qv5cVddV1ZWrcLwkaYIYMEiStGbbHLhxiPbDgJ8BC9uS+YMH9f+yb/sX9D5lvi8eDTy8LeH/fZLf0/uk/KGt/+FDzDVWewHPBX6R5Jwku7b20c5tpFr/eVCtj2Toc38k8PNhxnk49z6PVX3+ftO3/Ud6qw2Gs6rnOtzv9dHAx/rO+0Yg9P5+hjp2Vccf3Pdw4MaqunnQ/pv39d/Xv4uRfjeSpElkwCBJ0hoqyU703rD9YHBf+8T9n6vqMfSWxf9Tkmf07fLIvu1H0VsJAb1LJjbom+Nhg4ce9PiXwDVV9cC+n42q6rmt/9dDzDUmVXVRVT0feAjwDeDLYzi3P/bXD/TX/0t6n5r317pBVZ0wxPS/pLd8fyi/oveGvf+cxvr8rZIx/B4HG+73+kvg9YPOff2q+mH/dGMoabjxBx//K2CTdqlJ//7Xte3R/i5G+z0O97sZyzlIkiaIAYMkSWuYJBsneR5wIr3rzZcNsc/z0rsxY4A/ACvbz4A3JnlEkk3orTg4qbVfCmybZG56N348ZNDQv6V3/f2AC4E/JHlHu3HftCTbtfADeqHAO5M8KMkjgDeP8Rz/Ksm+SWZW1Z195zDauS0BXt7qeDbw9L5hjwYOTLJLeh6QZP6gN8EDTgUeluSt6d3UcaMku7S+E4B/TbJZkk2B9wBfHOPzN5p7Pb9j+D0O9i/tuX4k8Bbu+b1+it7vYds27swkL17F2gD+LckGbZxX9Y1/L+2yhx8C/5FkvfRupvkaepeEwOh/F0sY/vf4GeBVSZ6RZJ0kmyfZuvUN/vuUJK1GBgySJK05/ifJzfQ+wX038BF6b/KGMofeTf5uAc4HPllVZ/f1fwlYCFzdfj4AUFU/Bd7Xjr2Kv1wd8Rl690X4fZJvVNVKep+szwWuAW6gd639zLb/ofSWv1/T5vvCKpzvK4Dl6X0rwYH0bso42rm9pdXze3r3SvjGwGBVtYjefRiOAG6id+nB/kNN3Jb2/00b6zf0nos9WvcH6N0kcimwjN7NGsf6/I3mEOC49vy+ZJRzHco3gcX03qCfRvsa06o6GfgQcGJ7Pi8DnrOKtQGcQ+95OwP4cFUtHGHflwGz6a1mOBl4b1V9t/WN9ncx0u/xQnp/9x8FVrSaBlaUfAzYO71vp1iV+zpIksZBxnZPJEmSNFUkWQ68tu/u/5oC2jdQzBn4BopxHns2vTBg3XaTSEmS/oIrGCRJkiRJUmcGDJIkSZIkqTMvkZAkSZIkSZ25gkGSJEmSJHVmwCBJkiRJkjqbPtkFaGrZdNNNa/bs2ZNdhiRJkiRpAixevPiGqtpsqD4DBo2r2bNns2jRoskuQ5IkSZI0AZL8Yrg+L5GQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSps+mTXYCmlmXXrWD2wadNdhmr1fIF8ye7BEmSJEmadK5gkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzA4YOkrw7yeVJliZZkmSX1v7WJBvch/Fu6VDL/kkePkzfsUn2vq9jS5IkSZI0GgOG+yjJrsDzgCdW1Q7AM4Fftu63AqscMHS0PzBkwCBJkiRJ0kQzYLjvZgE3VNUdAFV1Q1X9KslB9N7on5XkLLj3yoQkeyc5tm1vkeT8JBcleX//4En+pbUvTXJoa5ud5MdJjm4rJxYmWb+tTpgHHN9WUqw/XNFJnpHkkiTLknw2yYzW/p4232VJjkqS1n52kg8luTDJT5M8dfyeQkmSJEnSVGHAcN8tBB7Z3nR/MsnTAarq48CvgD2qao9RxvgYcGRV7QT8ZqAxybOAOcDOwFxgxyRPa91zgE9U1bbA74G9quqrwCJg36qaW1W3DTVZkvWAY4F9qmp7YDrwhtZ9RFXtVFXbAevTW50xYHpV7UxvZcZ7hxj3gCSLkixa+ccVo5yyJEmSJGkqMmC4j6rqFmBH4ADgd8BJSfZfxWF2A05o21/oa39W+7kEuBjYml6wAHBNVS1p24uB2asw3+Pa8T9tj48DBoKLPZJckGQZsCewbd9xXx9pvqo6qqrmVdW8aRvMXIVyJEmSJElTxfTJLmBNVlUrgbOBs9sb8/3orRD4i137ttcboW9AgP+oqk/fqzGZDdzR17SS3mqDscqQjb2VDZ8E5lXVL5McMqjOgTlX4t+MJEmSJGkIrmC4j5I8Lsmcvqa5wC/a9s3ARn19v03y10nWAV7Y134e8NK2vW9f++nAq5Ns2ObaPMlDRilp8JxDuRKYneSx7fErgHO4J0y4oc3pN05IkiRJklaJn0bfdxsC/53kgcBdwM/oXS4BcBTw7SS/bvdhOBg4ld63TFzWjgV4C/ClJG8BvjYwcFUtTPLXwPntXou3AP9AbwXBcI4FPpXkNmDXoe7DUFW3J3kV8JUk04GLgE9V1R1JjgaWActbuyRJkiRJY5aqoVboS/fNjFlzatZ+h092GavV8gXzJ7sESZIkSVotkiyuqnlD9XmJhCRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mz7ZBWhq2X7zmSxaMH+yy5AkSZIkrWauYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdTZ9sgvQ1LLsuhXMPvi0IfuWL5i/mquRJEmSJK0urmCQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDho6SrEyyJMllSb6SZIMJnu+YJNsM0b5/kiMmeO7dk5w6kXNIkiRJktZMBgzd3VZVc6tqO+BPwIH9nUmmjedkVfXaqrpiPMccznjXLkmSJEmaugwYxtf3gce2T/rPSvIlYFmSaUkOS3JRkqVJXg93rwg4N8nJSa5I8qkk67S+I5MsSnJ5kkMHJkhydpJ5bftVSX6a5Bxgt6EKSrJhks8lWdbm3muU8ZcneU+SHwAvTvLsJFe2xy+aoOdNkiRJkrSGmz7ZBUwVSaYDzwG+05p2BrarqmuSHACsqKqdkswAzkuysG+/bYBftGNfBHwVeHdV3dhWEZyRZIeqWto33yzgUGBHYAVwFnDJEKX9W5t7+3bcg1r7SOPfXlVPSbIecBWwJ/Az4KRhzv0A4ACAaRtvNubnTJIkSZI0dbiCobv1kywBFgH/C3ymtV9YVde07WcBr2z7XQA8GJjTt9/VVbUSOAF4Smt/SZKL6YUG29ILIfrtApxdVb+rqj8xzJt/4JnAJwYeVNVNYxh/YKytgWuq6qqqKuCLQ01QVUdV1byqmjdtg5nDlCFJkiRJmspcwdDdbVU1t78hCcCt/U3Am6vq9EH77Q7UoPEqyRbA24CdquqmJMcC6w0x9+Bjh5LB+41h/P7axzKHJEmSJGkt5wqG1eN04A1J1gVIslWSB7S+nZNs0e69sA/wA2Bjem/yVyR5KL1LLwa7ANg9yYPbuC8eZu6FwJsGHrRLJMYyPsCVwBZJtmyPXza205UkSZIkrW1cwbB6HAPMBi5Ob3nD74AXtL7zgQXA9sC5wMlV9ecklwCXA1cD5w0esKp+neSQdvyvgYuBob714QPAJ5JcBqwEDq2qr482fpvj9nZ/hdOS3EAv/Nhulc9ekiRJkjTlpXdpvSZDu0TibVX1vEkuZdzMmDWnZu13+JB9yxfMX73FSJIkSZLGVZLFVTVvqD4vkZAkSZIkSZ15icQkqqqzgbMnuQxJkiRJkjpzBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6mz6ZBegqWX7zWeyaMH8yS5DkiRJkrSauYJBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPLsutWMPvg08a8//IF8yewGkmSJEnS6uIKBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2AYJ0lWJlmS5LIkX0mywTiMecs41TYu40iSJEmSNBwDhvFzW1XNrartgD8BB052QZIkSZIkrS4GDBPj+8Bjk/xdkguSXJLke0kemmSdJFcl2QygPf5Zkk2TbJHk/CQXJXn/wGBJNkxyRpKLkyxL8vzW/v4kb+nb74NJDhquqPQc1lZZLEuyzyjjz07y4yRHJ7k8ycIk60/QcyZJkiRJWoMZMIyzJNOB5wDLgB8AT6qqJwAnAm+vqj8DXwT2bYc8E7i0qm4APgYcWVU7Ab/pG/Z24IVV9URgD+C/kgT4DLBfm3cd4KXA8SOU9yJgLvD4Nu9hSWaNMD7AHOATVbUt8Htgr/vyvEiSJEmSpjYDhvGzfpIlwCLgf+m9+X8EcHqSZcC/ANu2fT8LvLJtvxr4XNveDTihbX+hb+wA/55kKfA9YHPgoVW1HPi/JE8AngVcUlX/N0KNTwFOqKqVVfVb4Bxgp+HGb8dcU1VL2vZiYPbgQZMckGRRkkUr/7hihOklSZIkSVPV9MkuYAq5rarm9jck+W/gI1V1SpLdgUMAquqXSX6bZE9gF+5ZzQBQQ4y9L7AZsGNV3ZlkObBe6zsG2B94GL3gYiQZpn2k8e/o228l8BeXSFTVUcBRADNmzRmqfkmSJEnSFOcKhok1E7iube83qO8YepdKfLmqVra28+hd5gD3Dh1mAte3N/97AI/u6zsZeDa9lQinj1LPucA+Saa1e0A8DbhwlPElSZIkSRqVAcPEOgT4SpLvAzcM6jsF2JB7Lo8AeAvwxiQX0XvTP+B4YF6SRfSChysHOqrqT8BZ3DuoGM7JwFLgUuBMeveE+M1I40uSJEmSNBapckX7ZEgyD/hoVT214zjrABcDL66qq8aluA5mzJpTs/Y7fMz7L18wf+KKkSRJkiSNqySLq2reUH2uYJgESQ4Gvga8s+M42wA/A864P4QLkiRJkqS1lzd5nARVtQBYMA7jXAE8pntFkiRJkiR14woGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPL9pvPZNGC+ZNdhiRJkiRpNXMFgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGjatl161g9sGnMfvg0ya7FEmSJEnSamTAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnkxIwJHlEkm8muSrJz5N8LMlftb65SZ7bt+8hSd42jnNvnWRJkkuSbJnkh+M19hjmPibJNqPsc3aSeaupnr9PcvDqmEuSJEmSNLWt9oAhSYCvA9+oqjnAVsCGwAfbLnOB5w599H2ab9qgphcA36yqJ1TVz6vqyeM112iq6rVVdcXqmg8gyfQR6jmlqhasznokSZIkSVPTZKxg2BO4vao+B1BVK4H/B7w6ycbA+4B92iqDfdox27RP9q9OctDAQEn+IcmFbd9PD4QJSW5J8r4kFwC79u3/XOCtwGuTnDWwb/t39zbHV5NcmeT4FoaQ5D1JLkpyWZKj+trPTvKhVsNPkzy1tU9L8uEky5IsTfLmvv3nte0jkyxKcnmSQ0d70pIsSHJFG+/DrW2zJF9rtV2UZLfWfkircyHw+SQXJNm2b6yzk+yYZP8kR7S2hyY5Ocml7efJIz3HkiRJkiT1m4yAYVtgcX9DVf0B+F9gNvAe4KSqmltVJ7Vdtgb+FtgZeG+SdZP8NbAPsFtVzQVWAvu2/R8AXFZVu1TVD/rm+RbwKeCjVbXHELU9gV4AsQ3wGGC31n5EVe1UVdsB6wPP6ztmelXt3I57b2s7ANgCeEJV7QAcP8Rc766qecAOwNOT7DDEPgAk2QR4IbBtG+8Dretj7Vx2AvYCjuk7bEfg+VX1cuBE4CVtrFnAw6vqXr8D4OPAOVX1eOCJwOWjPMeSJEmSJN1t2OXzEyhArUI7wGlVdQdwR5LrgYcCz6D3JvqitqBgfeD6tv9K4Gv3obYLq+pagCRL6AUePwD2SPJ2YANgE+By4H/aMV9v/y5u+wM8E/hUVd0FUFU3DjHXS5IcQO93MIteqLF0mLr+ANwOHJPkNODUvnm2aecPsHGSjdr2KVV1W9v+MvBdegHIS4CvDDHHnsArW70rgRVJXsHwz/Hd2nkcADBt482GOQVJkiRJ0lQ2GQHD5fQ+bb9buzTikcDP6b2hHeyOvu2V9OoOcFxVvXOI/W9vb5JX1V/Mk2Q94JPAvKr6ZZJDgPWGOGagLhg5LCHJFsDbgJ2q6qYkxw4a816q6q4kO9MLVV4KvIleILAOsGtfkDAwPsCtfcdfl+T/2iqJfYDXDzfX4FIZ/jnur+8o4CiAGbPmDHvekiRJkqSpazIukTgD2CDJK+HumzD+F3BsVf0RuBnYaITj+8fZO8lD2jibJHn0BNQ78Mb/hiQbAnuP4ZiFwIEDN1hslzj025heALAiyUOB54w0WJt3ZrvE4630boQ5MM+b+vabO/jYPicCb2/jLBui/wzgDW2caS30WV3PsSRJkiRpDbfaA4aqKnr3E3hxkquAn9Jb/v+utstZ9Jb999/kcahxrgD+FViYZCm9SwBmTUC9vweOBpYB3wAuGsNhx9C7p8TSJJcCLx805qXAJfRWc3wWOG+U8TYCTm3neQ69m2ICHATMazd+vAI4cIQxvkpv9cOXh+l/C71LQZbRu9xj29X1HEuSJEmS1nzpvd+XxseMWXNq1n6HA7B8wfzJLUaSJEmSNK6SLG5fWPAXJuMSCUmSJEmSNMUYMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9MnuwBNLdtvPpNFC+ZPdhmSJEmSpNXMFQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmfTJ7sATS3LrlvB7INPm+wyJEmSJGmNsnzB/MkuoTNXMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQHDJEpSSb7Q93h6kt8lOXUVx5mb5LnjX6EkSZIkSWNjwDC5bgW2S7J+e/w3wHWrMkCS6cBcwIBBkiRJkjRpDBgm37eB+W37ZcAJAx1JNknyjSRLk/woyQ6t/ZAkRyVZCHweeB+wT5IlSfZJslmS7ya5OMmnk/wiyabt2G8kWZzk8iQH9M31miQ/TXJ2kqOTHNHaN0vytSQXtZ/dVs/TIkmSJElakxgwTL4TgZcmWQ/YAbigr+9Q4JKq2gF4F70wYcCOwPOr6uXAe4CTqmpuVZ0EvBc4s6qeCJwMPKrvuFdX1Y7APOCgJA9O8nDg34An0VtFsXXf/h8DPlpVOwF7AccMPoEkByRZlGTRyj+uuO/PhCRJkiRpjTV9sgtY21XV0iSz6a1e+Nag7qfQe1NPVZ3ZwoCZre+UqrptmGGfArywHfedJDf19R2U5IVt+5HAHOBhwDlVdSNAkq8AW7V9nglsk2Tg+I2TbFRVN/edw1HAUQAzZs2pMZ+8JEmSJGnKMGC4fzgF+DCwO/DgvvYMse/AG/hbRxhvqONIsju9wGDXqvpjkrOB9Ybbv1mn7T9cmCFJkiRJkpdI3E98FnhfVS0b1H4usC/cHQ7cUFV/GOL4m4GN+h7/AHhJO+5ZwINa+0zgphYubE3vkgiAC4GnJ3lQu2nkXn1jLQTeNPAgydxVPTlJkiRJ0tRnwHA/UFXXVtXHhug6BJiXZCmwANhvmCHOoncZw5Ik+9C7d8OzklwMPAf4Nb0Q4jvA9Dbe+4EftfmvA/6d3v0fvgdcAQzcTOGggRqSXAEc2PV8JUmSJElTT6q8ZH6qSTIDWFlVdyXZFTiyquaOcsyGVXVLW8FwMvDZqjp5VeeeMWtOzdrv8PtStiRJkiSttZYvmD/6TvcDSRZX1byh+rwHw9T0KODLSdYB/gS8bgzHHJLkmfTuybAQ+MbElSdJkiRJmmoMGKagqroKeMIqHvO2CSpHkiRJkrQW8B4MkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJn0ye7AE0t228+k0UL5k92GZIkSZKk1cwVDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9PHslOSD1XVO0Zrk5Zdt4LZB582pn2XL5g/wdVIkiRJklaXsa5g+Jsh2p4znoVIkiRJkqQ114grGJK8AfhHYMskS/u6NgJ+OJGFSZIkSZKkNcdol0h8Cfg28B/AwX3tN1fVjRNWlSRJkiRJWqOMeIlEVa2oquXAx4Abq+oXVfUL4M4ku6yOAiVJkiRJ0v3fWO/BcCRwS9/jW1ubJEmSJEnSmAOGVFUNPKiqPzPGb6CQJEmSJElT31gDhquTHJRk3fbzFuDqiSxMkiRJkiStOcYaMBwIPBm4DrgW2AU4YKKKkiRJkiRJa5YxXeZQVdcDL53gWiRJkiRJ0hpqTAFDks8BNbi9ql497hVJkiRJkqQ1zlhv1Hhq3/Z6wAuBX41/OZIkSZIkaU001kskvtb/OMkJwPcmpCJJkiRJkrTGGetNHgebAzxqPAtZnZJUki/0PZ6e5HdJTh3puAms512raZ7Dklye5LDVMZ8kSZIkae0x1nsw3EzvHgxp//4GeMcE1jXRbgW2S7J+Vd0G/A29b8iYLO8C/n1wY5IAqao/j9M8rwc2q6o7xrJzkulVddc4zS1JkiRJmsLGtIKhqjaqqo37/t1q8GUTa6BvA/Pb9suAEwY6kmyS5BtJlib5UZIdWvshST6b5OwkVyc5qO+Yf0hyYZIlST6dZFqS1yT5aN8+r0vykf4ikiwA1m/HHZ9kdpIfJ/kkcDHwyCRHJlnUVh8c2nfs8iSHJrk4ybIkW7f2p7fxliS5JMlGSU4BHgBckGSfJJsl+VqSi9rPbn3neFSShcDnk2zbd15Lk8wZ19+CJEmSJGlKGHEFQ5InjtRfVRePbzmr1YnAe9plETsAnwWe2voOBS6pqhck2RP4PDC39W0N7AFsBPwkyZHAY4F9gN2q6s4WDuzb5lia5O1VdSfwKnqrCO5WVQcneVNVzQVIMht4HPCqqvrH1vbuqroxyTTgjCQ7VNXSNsQNVfXEJP8IvA14bfv3jVV1XpINgdur6u+T3NI3z5eAj1bVD5I8Cjgd+Os25o7AU6rqtiT/DXysqo5P8lfAtMFPZJIDgAMApm282Zh/AZIkSZKkqWO0SyT+q/27HjAPuJTeZRI7ABcAT5m40iZWVS1tb+ZfBnxrUPdTgL3afmcmeXCSma3vtHaJwR1JrgceCjyD3pvyi3pXNbA+cH1V3ZrkTOB5SX4MrFtVy8ZQ3i+q6kd9j1/S3sRPB2YB2wADAcPX27+LgRe17fOAjyQ5Hvh6VV07xBzPBLZp9QJsnGSjtn1Ku3QE4Hzg3Uke0ca6avBAVXUUcBTAjFlz/uLrTCVJkiRJU9+IAUNV7QGQ5ETggIE3x0m2o/cp+ZruFODDwO7Ag/vaM8S+A2+c++9fsJLecxjguKp65xDHHUPvHgtXAp8bY1233l1IsgW953qnqropybH0Ap8BA/UM1EJVLUhyGvBc4EdJnllVVw6aYx1g174gYWC+e81fVV9KcgG9y0lOT/LaqjpzjOchSZIkSVpLjPVbJLbu/+S9qi7jnksG1mSfBd43xKqCc+ld4kCS3eldhvCHEcY5A9g7yUPaMZskeTRAVV0APBJ4OX33eRjkziTrDtO3Mb03/CuSPBR4zmgnlWTLqlpWVR8CFtG7rGOwhcCb+o6ZO8xYjwGurqqP0wtkdhhtfkmSJEnS2mesAcOPkxyTZPd2A8GjgR9PZGGrQ1VdW1UfG6LrEGBekqXAAmC/Uca5AvhXYGE75rv0LmUY8GXgvKq6aZghjqJ3r4bjhxj7UuAS4HJ6gch5I55Uz1uTXJbkUuA2eje0HOwg2jkmuQI4cJix9gEuS7KEXlDx+THML0mSJElay6Rq9Evmk6wHvAF4Wms6Fziyqm6fwNqmjHYjyY9W1RmTXctEmzFrTs3a7/Ax7bt8wfzRd5IkSZIk3W8kWVxV84bqG+0mjwBU1e1JPgF8j969CH7SvhVBI0jyQOBC4NK1IVyQJEmSJK29xhQwtPsQHAcsp3dDw0cm2a+qzp2wyqaAqvo9sNVk1yFJkiRJ0kQbU8BA7+sqn1VVPwFIshW9GxbuOFGFSZIkSZKkNcdYb/K47kC4AFBVPwWG+9YDSZIkSZK0lhnrCobFST4DfKE93hdYPDElSZIkSZKkNc1YA4YDgTfS+2rD0PsWiU9OVFGSJEmSJGnNMmrAkGQdYHFVbQd8ZOJLkiRJkiRJa5pR78FQVX8GLk3yqNVQjyRJkiRJWgON9RKJWcDlSS4Ebh1orKq/n5CqJEmSJEnSGmWsAcOhE1qFJEmSJElao40YMCRZj94NHh8LLAM+U1V3rY7CJEmSJEnSmmO0FQzHAXcC3weeA2wDvGWii9Kaa/vNZ7JowfzJLkOSJEmStJqNFjBsU1XbAyT5DHDhxJckSZIkSZLWNKN9i8SdAxteGiFJkiRJkoYz2gqGxyf5Q9sOsH57HKCqauMJrU6SJEmSJK0RRgwYqmra6ipEkiRJkiStuUa7REKSJEmSJGlUBgySJEmSJKkzAwZJkiRJktTZaDd5lFbJsutWMPvg0ya7DEnSIMsXzJ/sEiRJ0hTnCgZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNg6JNkZZIlSS5PcmmSf0oy4nOUZPckpw7T965xqmv/JEe07UOSvO0+jPHAJP/Y9/jhSb46HvVJkiRJkmTAcG+3VdXcqtoW+BvgucB7O4w3LgHDOHkgcHfAUFW/qqq9J68cSZIkSdJUYsAwjKq6HjgAeFN6piU5LMlFSZYmeX3f7hsnOTnJFUk+lWSdJAuA9duKiOMHj5/k2UkubislzmhtmyT5Rhv/R0l2GKnGJFsm+U6SxUm+n2Tr1v7QVs+l7efJwAJgy1bPYUlmJ7ms7b9eks8lWZbkkiR7tPb9k3y9zXFVkv8cj+dWkiRJkjT1TJ/sAu7PqurqdonEQ4DnAyuqaqckM4Dzkixsu+4MbAP8AvgO8KKqOjjJm6pq7uBxk2wGHA08raquSbJJ6zoUuKSqXpBkT+DzwF8c3+co4MCquirJLsAngT2BjwPnVNULk0wDNgQOBrYbqCfJ7L5x3tjOd/sWUixMslXrmws8AbgD+EmS/66qXw46nwPohTFM23izEcqVJEmSJE1VBgyjS/v3WcAOSQYuK5gJzAH+BFxYVVcDJDkBeAow0v0NngScW1XXAFTVja39KcBere3MJA9OMnPIopINgScDX0kGSmRG+3dP4JVtnJXAiiQPGqGepwD/3fa/MskvgIGA4YyqWtHmvAJ4NHCvgKGqjqIXdjBj1pwaYR5JkiRJ0hRlwDCCJI8BVgLX0wsa3lxVpw/aZ3dg8Jvq0d5kZ5h9MkTbcGOtA/x+qBUS98FQ8w64o297Jf7NSJIkSZKG4D0YhtEuY/gUcERVFXA68IYk67b+rZI8oO2+c5It2uUU+wA/aO13Duw/yPnA05Ns0cYauETiXGDf1rY7cENV/WGo+lr7NUle3PZPkse37jOAN7T2aUk2Bm4GNhrmdPvn3Qp4FPCT4Z4bSZIkSZIGM2C4t4GbMl4OfA9YSO++CADHAFcAF7ebI36aez7NP5/eTRQvA64BTm7tRwFLB9/ksap+R++eBV9PcilwUus6BJiXZGkbb79R6t0XeE0b43J694kAeAuwR5JlwGJg26r6P3r3jbgsyWGDxvkkMK3tfxKwf1XdgSRJkiRJY5Teh/PS+Jgxa07N2u/wyS5DkjTI8gXzJ7sESZI0BSRZXFXzhupzBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOps+2QVoatl+85ksWjB/ssuQJEmSJK1mrmCQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2fbIL0NSy7LoVzD74tMkuQ5KGtHzB/MkuQZIkacpyBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJna3VAUOShyU5McnPk1yR5FtJtuow3rFJ9m7bxyTZpm2/a7xqvq+SvGCgnvb4fUmeOZk1SZIkSZKmjrU2YEgS4GTg7Krasqq2Ad4FPHTQftPuy/hV9dqquqI9HFPAcF/nGsO404EXAHcHDFX1nqr63kTMJ0mSJEla+6y1AQOwB3BnVX1qoKGqllTV95PsnuSsJF8CliWZluSwJBclWZrk9dALKZIc0VY/nAY8ZGCsJGcnmZdkAbB+kiVJjh9cRJJb2mqCC4Bdk/xDkgvb/p8eCB3afv+V5OIkZyTZrLXPTfKjVtfJSR7UN/+/JzkHeAfw98BhbdwtB622WJ7k0Db2siRbt/bNkny3tX86yS+SbDoRvwxJkiRJ0pptbQ4YtgMWj9C/M/DutrLhNcCKqtoJ2Al4XZItgBcCjwO2B14HPHnwIFV1MHBbVc2tqn2HmOcBwGVVtQvwf8A+wG5VNRdYCezbt9/FVfVE4Bzgva3988A7qmoHYFlfO8ADq+rpVfVB4BTgX1odPx+ijhva2EcCb2tt7wXObO0nA48a4fmSJEmSJK3Fpk92AfdjF1bVNW37WcAOA5/4AzOBOcDTgBOqaiXwqyRn3od5VgJfa9vPAHYELupdwcH6wPWt78/ASW37i8DXk8ykFyKc09qPA77SN/ZJjN3X27+LgRe17afQC1Goqu8kuWmoA5McABwAMG3jzVZhSkmSJEnSVLE2BwyXA3uP0H9r33aAN1fV6f07JHkuUB3ruL0FFAPzHFdV7xzDcWOZ99bRd7nbHe3fldzzd5GxHFhVRwFHAcyYNafr8yFJkiRJWgOtzZdInAnMSPK6gYYkOyV5+hD7ng68Icm6bb+tkjwAOBd4abtHwyx693UYyp0Dx47iDGDvJA9p82yS5NGtbx3uCUReDvygqlYANyV5amt/Bb3LJ4ZyM7DRGGro9wPgJa2WZwEPWsXjJUmSJElribU2YKiqorf8/2/a11ReDhwC/GqI3Y8BrgAuTnIZ8Gl6n/KfDFxF794HRzL8m/ujgKVD3eRxUE1XAP8KLEyyFPguMKt13wpsm2QxsCfwvta+H72bNy4F5va1D3Yi8C9JLkmy5Uh19DkUeFaSi4HnAL+mF1RIkiRJknQv6b3P1v1dkluqasPVPOcMYGVV3ZVkV+DIdvPJYc2YNadm7Xf46ihPklbZ8gXzJ7sESZKkNVqSxVU1b6i+tfkeDBrdo4AvJ1kH+BO9b8qQJEmSJOkvGDCsIVb36oU251XAE1b3vJIkSZKkNc9aew8GSZIkSZI0fgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTOpk92AZpatt98JosWzJ/sMiRJkiRJq5krGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnU2f7AI0tSy7bgWzDz5tssuQtAZavmD+ZJcgSZKkDlzBIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgwTKMnDkpyY5OdJrkjyrSRbdRjv2CR7t+1jkmzTtt81XjWPMv/ZSeatjrkkSZIkSWsWA4YJkiTAycDZVbVlVW0DvAt46KD9pt2X8avqtVV1RXs47gFDkunjPaYkSZIkaeoyYJg4ewB3VtWnBhqqaklVfT/J7knOSvIlYFmSaUkOS3JRkqVJXg+9kCLJEW31w2nAQwbGGlhNkGQBsH6SJUmOH1xEkmcnuTjJpUnOaG07J/lhkkvav49r7fsn+UqS/wEWJlm/rcBYmuQkYP2JfMIkSZIkSWsuP6WeONsBi0fo3xnYrqquSXIAsKKqdkoyAzgvyULgCcDjgO3prXy4Avhs/yBVdXCSN1XV3METJNkMOBp4Wptnk9Z1ZWu7K8kzgX8H9mp9uwI7VNWNSf4J+GNV7ZBkB+Di+/JESJIkSZKmPgOGyXNhVV3Ttp8F7DBwfwVgJjAHeBpwQlWtBH6V5MxVnONJwLkD81TVjX3jH5dkDlDAun3HfLdvv6cBH2/HLk2ydKhJWkByAMC0jTdbxRIlSZIkSVOBl0hMnMuBHUfov7VvO8Cbq2pu+9miqha2vupQQ4Y5/v3AWVW1HfB3wHrD1DWm+avqqKqaV1Xzpm0w8z4XK0mSJElacxkwTJwzgRlJXjfQkGSnJE8fYt/TgTckWbftt1WSBwDnAi9t92iYRe++DkO5c+DYQc4Hnp5kizbuwCUSM4Hr2vb+I5zDucC+7djtgB1G2FeSJEmStBYzYJggVVXAC4G/aV9TeTlwCPCrIXY/ht79FS5OchnwaXqXr5wMXAUsA44EzhlmuqOApYNv8lhVv6N36cLXk1wKnNS6/hP4jyTnASN9i8WRwIbt0oi3AxeOeNKSJEmSpLVWeu+DpfExY9acmrXf4ZNdhqQ10PIF8ye7BEmSJI0iyeKqmjdUnysYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPL9pvPZNGC+ZNdhiRJkiRpNXMFgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSps+mTXYCmlmXXrWD2wadNdhlrleUL5k92CZIkSZLkCgZJkiRJktSdAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwAEkeluTEJD9PckWSbyXZarLr6iLJ7CSXTXYdkiRJkqS1w1ofMCQJcDJwdlVtWVXbAO8CHjq5la2aJNMnuwZJkiRJ0tprrQ8YgD2AO6vqUwMNVbWkqr6fnsOSXJZkWZJ9AJLsnuTsJF9NcmWS41tQQZIFbRXE0iQfbm3HJtl7YPwkt/SNc06SLyf5aTt23yQXtvm2bPttluRrSS5qP7u19kOSHJVkIfD5sZxskmckuaSN/9kkM1r7e9rYl7UxB87n7CQfajX9NMlTuz/lkiRJkqSpxoABtgMWD9P3ImAu8HjgmcBhSWa1vicAbwW2AR4D7JZkE+CFwLZVtQPwgTHM/3jgLcD2wCuArapqZ+AY4M1tn48BH62qnYC9Wt+AHYHnV9XLR5soyXrAscA+VbU9MB14Q+s+oqp2qqrtgPWB5/UdOr3V9FbgvUOMe0CSRUkWrfzjijGcsiRJkiRpqjFgGNlTgBOqamVV/RY4B9ip9V1YVddW1Z+BJcBs4A/A7cAxSV4E/HEMc1xUVb+uqjuAnwMLW/uyNib0wo0jkiwBTgE2TrJR6zulqm4b4/k8Drimqn7aHh8HPK1t75HkgiTLgD2BbfuO+3r7d3FfTXerqqOqal5VzZu2wcwxliJJkiRJmkq8bh8uB/Yepi8jHHdH3/ZKep/y35VkZ+AZwEuBN9F7s34XLcxplx781TDj/Lnv8Z+55/ezDrDr4CChXcVw6wg1jul82sqGTwLzquqXSQ4B1huixpX4NyNJkiRJGoIrGOBMYEaS1w00JNkpydOBc4F9kkxLshm9T/svHG6gJBsCM6vqW/QuJ5jbupbTu5QB4PnAuqtY40J6YcXAPHOH33VEVwKzkzy2PX4FvVUZA2HCDe0chgtcJEmSJEka0lr/aXRVVZIXAocnOZjeJQ7L6QUE5wK7ApcCBby9qn6TZOthhtsI+GZbERDg/7X2o1v7hcAZrNqqA4CDgE8kWUrvd3YucOAYjntckmv7Hv8/4FXAV9q3TlwEfKqq7khyNL3LMpa3dkmSJEmSxixVNdk1aAqZMWtOzdrv8MkuY62yfMH8yS5BkiRJ0loiyeKqmjdUn5dISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJn0ye7AE0t228+k0UL5k92GZIkSZKk1cwVDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9MnuwBNLcuuW8Hsg0+b7DIkdbB8wfzJLkGSJElrIFcwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZhAUMSVYmWZLk0iQXJ3lyh7HOTjJvPOubaEneNdk1jCbJvCQfn+w6JEmSJElrvolcwXBbVc2tqscD7wT+YwLnuj/qFDAkmTYeRSSZPlxfVS2qqoPGYx5JkiRJ0tptdV0isTFwE0CSDZOc0VY1LEvy/NY+O8mPkxyd5PIkC5Os3z9IknWSHJfkA4MnSPKeJBcluSzJUUnS2h+b5Ht9Kym2bO1vb/NfmmRBa5ub5EdJliY5OcmDWvvdKyiSbJpkedveP8nXk3wnyVVJ/rO1LwDWbys4jh+i1pe1uS9L8qG+9luSvC/JBcCug445KMkVrbYTW9sDkny2nfclfc/l/km+kuR/gIVJTkry3L6xjk2yV5Ldk5za93v5XKtraZK9WvuzkpzfnruvJNlwjL9zSZIkSdJaZCIDhoE32FcCxwDvb+23Ay+sqicCewD/NRAGAHOAT1TVtsDvgb36xpsOHA/8tKr+dYj5jqiqnapqO2B94Hmt/fg25uOBJwO/TvIc4AXALq39P9u+nwfeUVU7AMuA947hPOcC+wDbA/skeWRVHcw9Kzj27d85ycOBDwF7tmN3SvKC1v0A4LKq2qWqfjBonoOBJ7TaDmxt7wbOrKqd6D2XhyV5QOvbFdivqvYETmw1kuSvgGcA3xo0/r8BK6pq+zbHmUk2Bf4VeGb7fS0C/mnwE5DkgCSLkixa+ccVY3jKJEmSJElTzeq4RGJr4NnA51uQEODfkywFvgdsDjy0HXNNVS1p24uB2X3jfZrem+8PDjPfHkkuSLKM3pv3bZNsBGxeVScDVNXtVfVH4JnA59o2VXVjkpnAA6vqnDbeccDTxnCeZ1TViqq6HbgCePQo++8EnF1Vv6uqu+gFIAPzrAS+NsxxS4Hjk/wDcFdrexZwcJIlwNnAesCjWt93q+rGtv1tYM8kM4DnAOdW1W2Dxn8m8ImBB1V1E/AkYBvgvDbHfkOdX1UdVVXzqmretA1mjnL6kiRJkqSpaNjr88dTVZ3fPg3fDHhu+3fHqrqzXW6wXtv1jr7DVtJbiTDgh/RChP9qb+bvlmQ94JPAvKr6ZZJD2phhaAFqFU7hLu4JY9Yb1De45tGe0+FqAri9qlYO0zefXhDx98C/Jdm2jbVXVf3kXhMkuwC3DjyuqtuTnA38Lb2VDCcMU9fg5yT0goqXjVCzJEmSJEmr5x4MSbYGpgH/B8wErm/hwh6M/on/gM/QW9b/lSFuXDjwpv+Gdo+AvQGq6g/AtQOXICSZkWQDYCHw6rZNkk2qagVwU5KntrFeAQysZlgO7Ni29x5jvXcmWXeI9guAp7d7OUwDXtY3z5CSrAM8sqrOAt4OPBDYEDgdeHPf/SaeMMIwJwKvAp7ajhtsIfCmvjkfBPwI2C3JY1vbBkm2GqlWSZIkSdLaaXXcg2EJcBK9+wGspHdJwLwki4B9gSvHOmBVfQS4GPhCe9M90P574Gh69034BnBR32GvAA5ql2T8EHhYVX0HOAVY1Op7W9t3P3r3MVhK7/4I72vtHwbekOSHwKZjLPcoYOngmzxW1a/pfavGWcClwMVV9c1RxpoGfLFd/nEJ8NF2zu8H1m3zXMY997kYykJ6KyC+V1V/GqL/A8CD2o0nLwX2qKrfAfsDJ7Tn5EfA1qPUKkmSJElaC6VqVa4UkEY2Y9acmrXf4ZNdhqQOli+YP9klSJIk6X4qyeKqmjdU3+r6mkpJkiRJkjSFGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmfTJ7sATS3bbz6TRQvmT3YZkiRJkqTVzBUMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOktVTXYNmkKS3Az8ZLLrkO5HNgVumOwipPsJXw/SvfmakO7h62HN8eiq2myojumruxJNeT+pqnmTXYR0f5Fkka8JqcfXg3Rvviake/h6mBq8REKSJEmSJHVmwCBJkiRJkjozYNB4O2qyC5DuZ3xNSPfw9SDdm68J6R6+HqYAb/IoSZIkSZI6cwWDJEmSJEnqzIBB4ybJs5P8JMnPkhw82fVI4yXJZ5Ncn+SyvrZNknw3yVXt3wf19b2zvQ5+kuRv+9p3TLKs9X08SVr7jCQntfYLksxerScorYIkj0xyVpIfJ7k8yVtau68JrZWSrJfkwiSXttfEoa3d14TWWkmmJbkkyantsa+HtYQBg8ZFkmnAJ4DnANsAL0uyzeRWJY2bY4FnD2o7GDijquYAZ7THtL/7lwLbtmM+2V4fAEcCBwBz2s/AmK8BbqqqxwIfBT40YWcidXcX8M9V9dfAk4A3tr97XxNaW90B7FlVjwfmAs9O8iR8TWjt9hbgx32PfT2sJQwYNF52Bn5WVVdX1Z+AE4HnT3JN0rioqnOBGwc1Px84rm0fB7ygr/3Eqrqjqq4BfgbsnGQWsHFVnV+9m998ftAxA2N9FXjGQEov3d9U1a+r6uK2fTO9/4HcHF8TWktVzy3t4brtp/A1obVUkkcA84Fj+pp9PawlDBg0XjYHftn3+NrWJk1VD62qX0PvDRfwkNY+3Gth87Y9uP1ex1TVXcAK4METVrk0Ttqy1CcAF+BrQmuxthx8CXA98N2q8jWhtdnhwNuBP/e1+XpYSxgwaLwMlRr6FSVaGw33WhjpNeLrR2ucJBsCXwPeWlV/GGnXIdp8TWhKqaqVVTUXeAS9T1+3G2F3XxOaspI8D7i+qhaP9ZAh2nw9rMEMGDRergUe2ff4EcCvJqkWaXX4bVu+R/v3+tY+3Gvh2rY9uP1exySZDszkLy/JkO43kqxLL1w4vqq+3pp9TWitV1W/B86md624rwmtjXYD/j7JcnqXTO+Z5Iv4elhrGDBovFwEzEmyRZK/onezllMmuSZpIp0C7Ne29wO+2df+0naH4y3o3ZTowrYc8OYkT2rXCb5y0DEDY+0NnNmuN5Tud9rf72eAH1fVR/q6fE1orZRksyQPbNvrA88ErsTXhNZCVfXOqnpEVc2m937gzKr6B3w9rDWmT3YBmhqq6q4kbwJOB6YBn62qyye5LGlcJDkB2B3YNMm1wHuBBcCXk7wG+F/gxQBVdXmSLwNX0Lvb/huramUb6g30vpFifeDb7Qd6b9a+kORn9BL4l66G05Luq92AVwDL2jXnAO/C14TWXrOA49qd79cBvlxVpyY5H18T0gD/G7GWiGGPJEmSJEnqykskJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZJWiyQrkyxJcnmSS5P8U5J1Wt+8JB8f5/lekGSb+3DcLcO0/7B7VfcvSd6aZIPJrkOSNDX4NZWSJGm1SHJLVW3Yth8CfAk4r6reO0HzHQucWlVfXcXj7q5zqkuyHJhXVTdMdi2SpDWfKxgkSdJqV1XXAwcAb0rP7klOBUjy9LbSYUmSS5Js1PrPTXJykiuSfKpv9cPdKw6S7J3k2CRPBv4eOKyNs2X7+U6SxUm+n2TrdswWSc5PclGS9w9X88A8SWa1WpYkuSzJU5NMa/NelmRZkv/X9j07yby2vWl7Q0/b/7A259Ikrx9mzle2/kuTfKG1PTrJGa39jCSPau3HJtl7iHp3b3V8NcmVSY5vz/lBwMOBs5KcNdw5SJI0VtMnuwBJkrR2qqqrW0jwkEFdbwPeWFXnJdkQuL217wxsA/wC+A7wImDI1QlV9cMkp9C3giHJGcCBVXVVkl2ATwJ7Ah8Djqyqzyd54xhKfzlwelV9MMk0YANgLrB5VW3X5nrgKGO8BlhRVTslmQGcl2RhVV0zsEOSbYF3A7tV1Q1JNmldRwCfr6rjkrwa+DjwglHmewKwLfAr4Lw25seT/BOwRxt/x1U8B0mS7sUVDJIkaTJliLbzgI+0T9gfWFV3tfYLq+rqqloJnAA8ZcyT9IKKJwNfSbIE+DQwq3Xv1sYD+MIYhrsIeFWSQ4Dtq+pm4GrgMUn+O8mzgT+MMsazgFe2Wi4AHgzMGbTPnsBXBy5fqKobW/uu9C4vGah3LM/DhVV1bVX9GVgCzB5in1U9B0mS7sWAQZIkTYokjwFWAtf3t1fVAuC1wPrAjwYuZQAG3ziqhmhfb5jp1gF+X1Vz+37+eoixRlVV5wJPA64DvpDklVV1E/B44GzgjcAxbfe7uOf/t/prC/Dmvlq2qKqFg6bKGOsa2OfuuZIE+Ku+fe7o217JEKtYRzgHSZLGxIBBkiStdkk2Az4FHFGD7jidZMuqWlZVHwIWAQMBw87tfgnrAPsAP2jtv03y1639hX1D3QxsBFBVfwCuSfLiNkeSPL7tdx7w0ra97xhqfzRwfVUdDXwGeGKSTYF1quprwL8BT2y7Lwd2bNt79w1zOvCGJOu2MbdK8oBBU50BvCTJg9s+A5dI/HBQvQPPQ/9czwfWHe1c6HuORjgHSZLGxIBBkiStLuu3GyNeDnwPWAgcOsR+b203GrwUuA34dms/H1gAXAZcA5zc2g8GTgXOBH7dN86JwL+kd6PILem9GX9NG/dyem/CAd4CvDHJRcDMMZzH7sCSJJcAe9G7h8PmwNntkodjgXe2fT9ML0j4IbBp3xjHAFcAFye5jN4lG/daVVBVlwMfBM5pNX+kdR1E7xKNpcArWv0ARwNPT3IhsAtw6xjO5Sjg20nOGuEcJEkaE7+mUpIk3e8l2R14W1U9b5JLkSRJw3AFgyRJkiRJ6swVDJIkSZIkqTNXMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdfb/AQcdVOQlgU8zAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -959,193 +1035,229 @@ } ], "source": [ - "#BAR PLOT\n", "fig3, ax3 = plt.subplots(figsize=(16, 9))\n", - "#prod_u, counts = np.unique(product_issue_count['product'].values, return_counts=True)\n", - "ax3.barh(product_issue_count['product'], product_issue_count['count'])\n", - " \n", - "#ax2.set_title(\"Issue counts per product with (companies are bar colors)\")\n", - "ax3.set_title(\"Issue counts per product\")\n", - "ax3.set_xlabel('Issue Counts')\n", + "ax3.barh(disp_prod['product'], disp_prod['consumer_disputed?']) \n", + "\n", + "ax3.set_title(\"Disputed issue counts per product\")\n", + "ax3.set_xlabel('Disputed issue counts')\n", "ax3.set_ylabel('Product')" ] }, { "cell_type": "code", - "execution_count": 24, - "id": "97e58ef5", + "execution_count": 95, + "id": "e5597801", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
companyproductissue0
0(Former)Shapiro, Swertfeger & Hasty, LLPDebt collectionDisclosure verification of debt2
1(Former)Shapiro, Swertfeger & Hasty, LLPMortgageLoan modification,collection,foreclosure1
2(Former)Shapiro, Swertfeger & Hasty, LLPMortgageLoan servicing, payments, escrow account1
31st 2nd Mortgage Company Of NJ, Inc.MortgageApplication, originator, mortgage broker1
41st Alliance LendingDebt collectionCont'd attempts collect debt not owed1
...............
18372iQuantified Management Services, LLCDebt collectionCont'd attempts collect debt not owed1
18373iServe TrustMortgageCredit decision / Underwriting1
18374iServe TrustMortgageLoan modification,collection,foreclosure4
18375iServe TrustMortgageLoan servicing, payments, escrow account1
18376iServe TrustMortgageOther1
\n", - "

18377 rows × 4 columns

\n", - "
" - ], "text/plain": [ - " company product \\\n", - "0 (Former)Shapiro, Swertfeger & Hasty, LLP Debt collection \n", - "1 (Former)Shapiro, Swertfeger & Hasty, LLP Mortgage \n", - "2 (Former)Shapiro, Swertfeger & Hasty, LLP Mortgage \n", - "3 1st 2nd Mortgage Company Of NJ, Inc. Mortgage \n", - "4 1st Alliance Lending Debt collection \n", - "... ... ... \n", - "18372 iQuantified Management Services, LLC Debt collection \n", - "18373 iServe Trust Mortgage \n", - "18374 iServe Trust Mortgage \n", - "18375 iServe Trust Mortgage \n", - "18376 iServe Trust Mortgage \n", - "\n", - " issue 0 \n", - "0 Disclosure verification of debt 2 \n", - "1 Loan modification,collection,foreclosure 1 \n", - "2 Loan servicing, payments, escrow account 1 \n", - "3 Application, originator, mortgage broker 1 \n", - "4 Cont'd attempts collect debt not owed 1 \n", - "... ... .. \n", - "18372 Cont'd attempts collect debt not owed 1 \n", - "18373 Credit decision / Underwriting 1 \n", - "18374 Loan modification,collection,foreclosure 4 \n", - "18375 Loan servicing, payments, escrow account 1 \n", - "18376 Other 1 \n", - "\n", - "[18377 rows x 4 columns]" + "Text(0.5, 0, 'Disputed issue rate')" ] }, - "execution_count": 24, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBgAAAImCAYAAAD5QTmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHpUlEQVR4nO3deZhdVZm28fshQQaBOIAYcQhiEJmMEnAWUJpWYzuBoqINbStiq+jXbSvO4NAdG+dW0YiK2giKgtKiEmVUVCCBkAAOqMQWHBDFCAgI8f3+OKvwUNYUdlUOqdy/66qr9ll777XefaqM7KfWXidVhSRJkiRJUhcbDLoASZIkSZK07jNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEnTWJKPJnnzoOsYS5K9klw5xv7rkzxwbdakqZXk4CTfGXQdkqTJZcAgSdI6KsnKJDcmuS7JH5J8N8mhSW77//eqOrSq3j7FdRyb5B1T1X9VbVZVP5uq/qdSkiOS/M+g65iu2v8G9hl0HZKkHgMGSZLWbf9QVZsDDwAWAq8DPjHYktYPSWYOuobJMBnXkWTGZNQiSVq3GTBIkjQNVNWqqjoFOAA4KMnOcPvZBUm2TPLVNtvh90m+PTTbof0l+PVJLktybZJPJdm47fub6exJKsmDkhwCHAi8tj3K8L9t/32SfCnJb5NckeSwvnM3aXVdm+QyYPexrm1orLb9lFbjdUmuSvKaCVzbbecPf0/a66cmWdY3C2TXcWp5eZLLgctb2weS/CLJH5MsTfK41v4k4A3AAe29ubi1z0ryiSS/atfwjqEb9Paenp1kVZJrknx+lDrmtFoOSfLL1te/9e3fIMnhSX6a5HdJvpDkHsPO/eck/wecMUL/eyW5MskbWh0rkxw47D08OsnXktwA7J3kIUnOau/jpUme1nf8PZOc0t6j84HtRriWmX1tZyV5cd/rlyT5Qfu5X5bk4Uk+C9wf+N/2/r52tJ+bJGntmBbJuyRJ6qmq89Nbz+BxwCXDdv8bcCWwVXv9SKD69h8I/D1wA/C/wJva11jjLUryaODKqnoT9G5u2/lfAZ4H3Bf4VpIfVdVpwFvp3WBuB9wV+PoaXOIngOdU1beT3B3YdoLXNqIkDwc+CfwDsAR4AXBKkgdX1c2jnPYM4BHAje31BcDbgFXAq4ATk8ypqm8k+Q/gQVX1gr7zPw38BngQvev/KvAL4GPA24HFwN7AXYD541zC3sBc4IHAGUkurqpvAYe1OvcEfgt8EPgwvZ/HkD2BhwB/GaXvewNbAtvQez+/lmRJVf2o7X8+8BTgqe06LqL3Xu4LPBb4SpL57fgPAzcBs+n9zE4Drhjn2gBI8mzgiHY9S+j93txSVS9sYc6L2zVLkgbMGQySJE0/vwTuMUL7LfRu8B5QVbdU1berqv8m/ENV9Yuq+j3wTm5/M7omdge2qqq3VdWf2/oJHwee2/Y/B3hnVf2+qn5B7+Z3om4BdkyyRVVdW1UXTvDaRvMS4GNVdV5Vra6qTwM307uhHs1/ttpvBKiq/6mq31XVrVX1HmAj4MEjnZhka+DJwKur6oaquhp4H399b26h97jLfarqpqoabyHEI1s/K4BP8def2UuBN1bVlS0oOQLYP7d/HOKIdu6NjO7NVXVzVZ0NnErvZzfkK1V1blX9BZgHbAYsbD/zM+gFJ89rszP2A97SxruEXsgyUS8G/quqLqien1TVz9fgfEnSWmLAIEnS9LMN8PsR2o8CfgIsTvKzJIcP2/+Lvu2fA/e5g+M/ALhPmyr/hyR/oPeowNZt/31GGGui9qP3V/Oft0cJHtXax7u2sWr9t2G13o+xr72/dpL8W5u+v6qdP4veX/5HG29D4Fd9430MuFfb/1ogwPntMYMXjVP/aD+zBwAn943xA2A1f/0Z/M11jODaqrphlP6Hn38f4BctbOg/fht6s0pmjlDrRN0P+OkaHC9JGhADBkmSppEku9O7qfubv3xX1XVV9W9V9UB6jwT8a5In9h1yv77t+9ObCQG9RyY27Rvj3sO7Hvb6F8AVVXW3vq/Nq+opbf+vRhhrQtpfsZ9O74b8y8AXJnBtf+qvn97U//5a3zms1k2r6vixyhjaaFP0X0fvL/t3r6q70XtUIsOP7RvvZmDLvvG2qKqd2nX8uqpeUlX3oTcL4SPpWz9iBKP9zH4BPHnYdW1cVVeNdB2juHuSu47S//DzfwncL32fYNKOv4reIxq3jlDrkKEQY6yf0XaMbCKzVCRJa4kBgyRJ00CSLZI8FTgB+J82ZX74MU9tiwgG+CO9v2iv7jvk5Unu2xYDfAMwtMDgxcBOSealt/DjEcO6/g29NQCGnA/8Mcnr0lvQcUaSnVv4Ab1Q4PVJ7p7kvsArJ3iNd0lyYJJZVXVL3zWMd23LgOe3Op5Eb+2BIR8HDk3yiPTcNcmCJJtPpCZgc3o3z78FZiZ5C7DFsPdmztCNd1X9it4aC+9pP7MNkmyXZM92Hc9u7wnAtfRuoPt/RsO9OcmmSXYC/om//sw+CrwzyQNav1slefoEr6nfke19fxy9tRZOHOW48+gFBa9NsmGSvegFPSdU1WrgJOCIVuuOwEFDJ1bVb+kFES9oP6MXcftA4RjgNUl2az+jBw1dF3/7uydJGiADBkmS1m3/m+Q6en/lfSPwXno3miOZC3wLuB74HvCRqjqrb//n6N38/qx9vQOgqn5MbxHDb9H75IThsyM+QW9dhD8k+XK7ofwHes/lXwFcQ+8mcVY7/kh6U+SvaON9dg2u94XAyiR/BA6ltyjjeNf2qlbPH+gtZPnloc6qagm9dRg+RO+G/ifAwWtQz2n0Fqn8cbumm7j9owBDN+S/SzK0XsQ/0lvA8bI25hfprR8BvfUrzktyPXAK8KqqGmsxxLNbzacD766qxa39A+38xe334/v0FqZcE79u9f0SOA44tKp+ONKBVfVn4Gn01pe4BvgI8I99x7+C3hoNvwaOpbdeRL+XAP8O/A7YCfhuX98n0lsT5HPAdfR+fkNrjPwn8Kb2u/eaNbw+SdIky8TWP5IkSdNZkpW4Gv86I8kcegHNhlV16xT0vxe9mTD3HedQSZJu4wwGSZIkSZLUmQGDJEmSJEnqzEckJEmSJElSZ85gkCRJkiRJnRkwSJIkSZKkzmYOugBNL1tuuWXNmTNn0GVIkiRJkqbA0qVLr6mqrUbaZ8CgSTVnzhyWLFky6DIkSZIkSVMgyc9H2+cjEpIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2c9AFaHpZcdUq5hx+6qDLkCRJku7UVi5cMOgSpEnnDAZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNg6CDJG5NcmmR5kmVJHtHaX51k0zvQ3/Udajk4yX1G2Xdskv3vaN+SJEmSJI3HgOEOSvIo4KnAw6tqV2Af4Bdt96uBNQ4YOjoYGDFgkCRJkiRpqhkw3HGzgWuq6maAqrqmqn6Z5DB6N/pnJjkTbj8zIcn+SY5t29sm+V6SC5K8vb/zJP/e2pcnObK1zUnygyQfbzMnFifZpM1OmA8c12ZSbDJa0UmemOSiJCuSfDLJRq39LW28S5IsSpLWflaSdyU5P8mPkzxu8t5CSZIkSdJ0YcBwxy0G7tduuj+SZE+Aqvog8Etg76rae5w+PgAcXVW7A78eakyyLzAX2AOYB+yW5PFt91zgw1W1E/AHYL+q+iKwBDiwquZV1Y0jDZZkY+BY4ICq2gWYCbys7f5QVe1eVTsDm9CbnTFkZlXtQW9mxltH6PeQJEuSLFn9p1XjXLIkSZIkaToyYLiDqup6YDfgEOC3wOeTHLyG3TwGOL5tf7avfd/2dRFwIbADvWAB4IqqWta2lwJz1mC8B7fzf9xefxoYCi72TnJekhXAE4Cd+s47aazxqmpRVc2vqvkzNp21BuVIkiRJkqaLmYMuYF1WVauBs4Cz2o35QfRmCPzNoX3bG4+xb0iA/6yqj92uMZkD3NzXtJrebIOJyoiNvZkNHwHmV9UvkhwxrM6hMVfj74wkSZIkaQTOYLiDkjw4ydy+pnnAz9v2dcDmfft+k+QhSTYAntnXfi7w3LZ9YF/7acCLkmzWxtomyb3GKWn4mCP5ITAnyYPa6xcCZ/PXMOGaNqafOCFJkiRJWiP+NfqO2wz47yR3A24FfkLvcQmARcDXk/yqrcNwOPBVep8ycUk7F+BVwOeSvAr40lDHVbU4yUOA77W1Fq8HXkBvBsFojgU+muRG4FEjrcNQVTcl+SfgxCQzgQuAj1bVzUk+DqwAVrZ2SZIkSZImLFUjzdCX7piNZs+t2Qe9f9BlSJIkSXdqKxcuGHQJ0h2SZGlVzR9pn49ISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKmzmYMuQNPLLtvMYsnCBYMuQ5IkSZK0ljmDQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cxBF6DpZcVVq5hz+KmDLkOSpPXayoULBl2CJGk95AwGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYOgoyeoky5JckuTEJJtO8XjHJNlxhPaDk3xoisfeK8lXp3IMSZIkSdK6yYChuxural5V7Qz8GTi0f2eSGZM5WFW9uKoum8w+RzPZtUuSJEmSpi8Dhsn1beBB7S/9Zyb5HLAiyYwkRyW5IMnyJC+F22YEnJPk5CSXJflokg3avqOTLElyaZIjhwZIclaS+W37n5L8OMnZwGNGKijJZkk+lWRFG3u/cfpfmeQtSb4DPDvJk5L8sL1+1hS9b5IkSZKkddzMQRcwXSSZCTwZ+EZr2gPYuaquSHIIsKqqdk+yEXBuksV9x+0I/Lyd+yzgi8Abq+r3bRbB6Ul2rarlfePNBo4EdgNWAWcCF41Q2pvb2Lu08+7e2sfq/6aqemySjYHLgScAPwE+P8q1HwIcAjBji60m/J5JkiRJkqYPZzB0t0mSZcAS4P+AT7T286vqira9L/CP7bjzgHsCc/uO+1lVrQaOBx7b2p+T5EJ6ocFO9EKIfo8Azqqq31bVnxnl5h/YB/jw0IuqunYC/Q/1tQNwRVVdXlUF/M9IA1TVoqqaX1XzZ2w6a5QyJEmSJEnTmTMYuruxqub1NyQBuKG/CXhlVZ027Li9gBrWXyXZFngNsHtVXZvkWGDjEcYefu5IMvy4CfTfX/tExpAkSZIkreecwbB2nAa8LMmGAEm2T3LXtm+PJNu2tRcOAL4DbEHvJn9Vkq3pPXox3HnAXknu2fp99ihjLwZeMfSiPSIxkf4Bfghsm2S79vp5E7tcSZIkSdL6xhkMa8cxwBzgwvSmN/wWeEbb9z1gIbALcA5wclX9JclFwKXAz4Bzh3dYVb9KckQ7/1fAhcBIn/rwDuDDSS4BVgNHVtVJ4/Xfxripra9wapJr6IUfO6/x1UuSJEmSpr30Hq3XILRHJF5TVU8dcCmTZqPZc2v2Qe8fdBmSJK3XVi5cMOgSJEnTVJKlVTV/pH0+IiFJkiRJkjrzEYkBqqqzgLMGXIYkSZIkSZ05g0GSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdTZz0AVoetllm1ksWbhg0GVIkiRJktYyZzBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjqbOegCNL2suGoVcw4/ddBlSJIkTamVCxcMugRJutNxBoMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwTJIkq5MsS3JJkhOTbDoJfV4/SbVNSj+SJEmSJI3GgGHy3FhV86pqZ+DPwKGDLkiSJEmSpLXFgGFqfBt4UJJ/SHJekouSfCvJ1kk2SHJ5kq0A2uufJNkyybZJvpfkgiRvH+osyWZJTk9yYZIVSZ7e2t+e5FV9x70zyWGjFZWeo9osixVJDhin/zlJfpDk40kuTbI4ySZT9J5JkiRJktZhBgyTLMlM4MnACuA7wCOr6mHACcBrq+ovwP8AB7ZT9gEurqprgA8AR1fV7sCv+7q9CXhmVT0c2Bt4T5IAnwAOauNuADwXOG6M8p4FzAMe2sY9KsnsMfoHmAt8uKp2Av4A7HdH3hdJkiRJ0vRmwDB5NkmyDFgC/B+9m//7AqclWQH8O7BTO/aTwD+27RcBn2rbjwGOb9uf7es7wH8kWQ58C9gG2LqqVgK/S/IwYF/goqr63Rg1PhY4vqpWV9VvgLOB3Ufrv51zRVUta9tLgTnDO01ySJIlSZas/tOqMYaXJEmSJE1XMwddwDRyY1XN629I8t/Ae6vqlCR7AUcAVNUvkvwmyROAR/DX2QwANULfBwJbAbtV1S1JVgIbt33HAAcD96YXXIwlo7SP1f/NfcetBv7mEYmqWgQsAtho9tyR6pckSZIkTXPOYJhas4Cr2vZBw/YdQ+9RiS9U1erWdi69xxzg9qHDLODqdvO/N/CAvn0nA0+iNxPhtHHqOQc4IMmMtgbE44Hzx+lfkiRJkqRxGTBMrSOAE5N8G7hm2L5TgM346+MRAK8CXp7kAno3/UOOA+YnWUIvePjh0I6q+jNwJrcPKkZzMrAcuBg4g96aEL8eq39JkiRJkiYiVc5oH4Qk84H3VdXjOvazAXAh8OyqunxSiutgo9lza/ZB7x90GZIkSVNq5cIFgy5BkgYiydKqmj/SPmcwDECSw4EvAa/v2M+OwE+A0+8M4YIkSZIkaf3lIo8DUFULgYWT0M9lwAO7VyRJkiRJUjfOYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXnbZZhZLFi4YdBmSJEmSpLXMGQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM5mDroATS8rrlrFnMNPHXQZkiRJ0rSzcuGCQZcgjckZDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1NpCAIcl9k3wlyeVJfprkA0nu0vbNS/KUvmOPSPKaSRx7hyTLklyUZLsk352svicw9jFJdhznmLOSzF9L9TwtyeFrYyxJkiRJ0vS21gOGJAFOAr5cVXOB7YHNgHe2Q+YBTxn57Ds03oxhTc8AvlJVD6uqn1bVoydrrPFU1Yur6rK1NR5Akplj1HNKVS1cm/VIkiRJkqanQcxgeAJwU1V9CqCqVgP/D3hRki2AtwEHtFkGB7Rzdmx/2f9ZksOGOkrygiTnt2M/NhQmJLk+yduSnAc8qu/4pwCvBl6c5MyhY9v3vdoYX0zywyTHtTCEJG9JckGSS5Is6ms/K8m7Wg0/TvK41j4jybuTrEiyPMkr+46f37aPTrIkyaVJjhzvTUuyMMllrb93t7atknyp1XZBkse09iNanYuBzyQ5L8lOfX2dlWS3JAcn+VBr2zrJyUkubl+PHus9liRJkiSp3yAChp2Apf0NVfVH4P+AOcBbgM9X1byq+nw7ZAfg74E9gLcm2TDJQ4ADgMdU1TxgNXBgO/6uwCVV9Yiq+k7fOF8DPgq8r6r2HqG2h9ELIHYEHgg8prV/qKp2r6qdgU2Ap/adM7Oq9mjnvbW1HQJsCzysqnYFjhthrDdW1XxgV2DPJLuOcAwASe4BPBPYqfX3jrbrA+1adgf2A47pO2034OlV9XzgBOA5ra/ZwH2q6nY/A+CDwNlV9VDg4cCl47zHkiRJkiTdZtTp81MoQK1BO8CpVXUzcHOSq4GtgSfSu4m+oE0o2AS4uh2/GvjSHajt/Kq6EiDJMnqBx3eAvZO8FtgUuAdwKfC/7ZyT2vel7XiAfYCPVtWtAFX1+xHGek6SQ+j9DGbTCzWWj1LXH4GbgGOSnAp8tW+cHdv1A2yRZPO2fUpV3di2vwB8k14A8hzgxBHGeALwj63e1cCqJC9k9Pf4Nu06DgGYscVWo1yCJEmSJGk6G0TAcCm9v7bfpj0acT/gp/RuaIe7uW97Nb26A3y6ql4/wvE3tZvkNfU34yTZGPgIML+qfpHkCGDjEc4ZqgvGDktIsi3wGmD3qro2ybHD+rydqro1yR70QpXnAq+gFwhsADyqL0gY6h/ghr7zr0ryuzZL4gDgpaONNbxURn+P++tbBCwC2Gj23FGvW5IkSZI0fQ3iEYnTgU2T/CPctgjje4Bjq+pPwHXA5mOc39/P/knu1fq5R5IHTEG9Qzf+1yTZDNh/AucsBg4dWmCxPeLQbwt6AcCqJFsDTx6rszburPaIx6vpLYQ5NM4r+o6bN/zcPicAr239rBhh/+nAy1o/M1ros7beY0mSJEnSOm6tBwxVVfTWE3h2ksuBH9Ob/v+GdsiZ9Kb99y/yOFI/lwFvAhYnWU7vEYDZU1DvH4CPAyuALwMXTOC0Y+itKbE8ycXA84f1eTFwEb3ZHJ8Ezh2nv82Br7brPJveopgAhwHz28KPlwGHjtHHF+nNfvjCKPtfRe9RkBX0HvfYaW29x5IkSZKkdV969/vS5Nho9tyafdD7B12GJEmSNO2sXLhg0CVIJFnaPrDgbwziEQlJkiRJkjTNGDBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmczB12AppddtpnFkoULBl2GJEmSJGktcwaDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZzEEXoOllxVWrmHP4qYMuQ5IkSZLWKSsXLhh0CZ05g0GSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYBihJJfls3+uZSX6b5Ktr2M+8JE+Z/AolSZIkSZoYA4bBugHYOckm7fXfAVetSQdJZgLzAAMGSZIkSdLAGDAM3teBBW37ecDxQzuS3CPJl5MsT/L9JLu29iOSLEqyGPgM8DbggCTLkhyQZKsk30xyYZKPJfl5ki3buV9OsjTJpUkO6Rvrn5P8OMlZST6e5EOtfaskX0pyQft6zNp5WyRJkiRJ6xIDhsE7AXhuko2BXYHz+vYdCVxUVbsCb6AXJgzZDXh6VT0feAvw+aqaV1WfB94KnFFVDwdOBu7fd96Lqmo3YD5wWJJ7JrkP8GbgkfRmUezQd/wHgPdV1e7AfsAxwy8gySFJliRZsvpPq+74OyFJkiRJWmfNHHQB67uqWp5kDr3ZC18btvux9G7qqaozWhgwq+07papuHKXbxwLPbOd9I8m1ffsOS/LMtn0/YC5wb+Dsqvo9QJITge3bMfsAOyYZOn+LJJtX1XV917AIWASw0ey5NeGLlyRJkiRNGwYMdw6nAO8G9gLu2deeEY4duoG/YYz+RjqPJHvRCwweVVV/SnIWsPFoxzcbtONHCzMkSZIkSfIRiTuJTwJvq6oVw9rPAQ6E28KBa6rqjyOcfx2wed/r7wDPaeftC9y9tc8Crm3hwg70HokAOB/YM8nd26KR+/X1tRh4xdCLJPPW9OIkSZIkSdOfAcOdQFVdWVUfGGHXEcD8JMuBhcBBo3RxJr3HGJYlOYDe2g37JrkQeDLwK3ohxDeAma2/twPfb+NfBfwHvfUfvgVcBgwtpnDYUA1JLgMO7Xq9kiRJkqTpJ1U+Mj/dJNkIWF1VtyZ5FHB0Vc0b55zNqur6NoPhZOCTVXXymo690ey5Nfug99+RsiVJkiRpvbVy4YLxD7oTSLK0quaPtM81GKan+wNfSLIB8GfgJRM454gk+9Bbk2Ex8OWpK0+SJEmSNN0YMExDVXU58LA1POc1U1SOJEmSJGk94BoMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnMwddgKaXXbaZxZKFCwZdhiRJkiRpLXMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cyJHJTkXVX1uvHapBVXrWLO4acOugxJknQnsXLhgkGXIElaSyY6g+HvRmh78mQWIkmSJEmS1l1jzmBI8jLgX4Dtkizv27U58N2pLEySJEmSJK07xntE4nPA14H/BA7va7+uqn4/ZVVJkiRJkqR1ypiPSFTVqqpaCXwA+H1V/byqfg7ckuQRa6NASZIkSZJ05zfRNRiOBq7ve31Da5MkSZIkSZpwwJCqqqEXVfUXJvgJFJIkSZIkafqbaMDwsySHJdmwfb0K+NlUFiZJkiRJktYdEw0YDgUeDVwFXAk8AjhkqoqSJEmSJEnrlgk95lBVVwPPneJaJEmSJEnSOmpCAUOSTwE1vL2qXjTpFUmSJEmSpHXORBdq/Grf9sbAM4FfTn45kiRJkiRpXTTRRyS+1P86yfHAt6akIkmSJEmStM6Z6CKPw80F7j+ZhaxNSSrJZ/tez0zy2yRfHeu8KaznDWtpnKOSXJrkqLUxniRJkiRp/THRNRiuo7cGQ9r3XwOvm8K6ptoNwM5JNqmqG4G/o/cJGYPyBuA/hjcmCZCq+sskjfNSYKuqunkiByeZWVW3TtLYkiRJkqRpbEIzGKpq86raou/79sMfm1gHfR1Y0LafBxw/tCPJPZJ8OcnyJN9PsmtrPyLJJ5OcleRnSQ7rO+cFSc5PsizJx5LMSPLPSd7Xd8xLkry3v4gkC4FN2nnHJZmT5AdJPgJcCNwvydFJlrTZB0f2nbsyyZFJLkyyIskOrX3P1t+yJBcl2TzJKcBdgfOSHJBkqyRfSnJB+3pM3zUuSrIY+EySnfqua3mSuZP6U5AkSZIkTQtjzmBI8vCx9lfVhZNbzlp1AvCW9ljErsAngce1fUcCF1XVM5I8AfgMMK/t2wHYG9gc+FGSo4EHAQcAj6mqW1o4cGAbY3mS11bVLcA/0ZtFcJuqOjzJK6pqHkCSOcCDgX+qqn9pbW+sqt8nmQGcnmTXqlreurimqh6e5F+A1wAvbt9fXlXnJtkMuKmqnpbk+r5xPge8r6q+k+T+wGnAQ1qfuwGPraobk/w38IGqOi7JXYAZw9/IJIcAhwDM2GKrCf8AJEmSJEnTx3iPSLynfd8YmA9cTO8xiV2B84DHTl1pU6uqlreb+ecBXxu2+7HAfu24M5LcM8mstu/U9ojBzUmuBrYGnkjvpvyC3lMNbAJcXVU3JDkDeGqSHwAbVtWKCZT386r6ft/r57Sb+JnAbGBHYChgOKl9Xwo8q22fC7w3yXHASVV15Qhj7APs2OoF2CLJ5m37lPboCMD3gDcmuW/r6/LhHVXVImARwEaz5/7Nx5lKkiRJkqa/MQOGqtobIMkJwCFDN8dJdqb3V/J13SnAu4G9gHv2tWeEY4dunPvXL1hN7z0M8Omqev0I5x1Db42FHwKfmmBdN9xWSLItvfd696q6Nsmx9AKfIUP1DNVCVS1McirwFOD7Sfapqh8OG2MD4FF9QcLQeLcbv6o+l+Q8eo+TnJbkxVV1xgSvQ5IkSZK0npjop0js0P+X96q6hL8+MrAu+yTwthFmFZxD7xEHkuxF7zGEP47Rz+nA/knu1c65R5IHAFTVecD9gOfTt87DMLck2XCUfVvQu+FflWRr4MnjXVSS7apqRVW9C1hC77GO4RYDr+g7Z94ofT0Q+FlVfZBeILPreONLkiRJktY/Ew0YfpDkmCR7tQUEPw78YCoLWxuq6sqq+sAIu44A5idZDiwEDhqnn8uANwGL2znfpPcow5AvAOdW1bWjdLGI3loNx43Q98XARcCl9AKRc8e8qJ5XJ7kkycXAjfQWtBzuMNo1JrkMOHSUvg4ALkmyjF5Q8ZkJjC9JkiRJWs+kavxH5pNsDLwMeHxrOgc4uqpumsLapo22kOT7qur0Qdcy1TaaPbdmH/T+QZchSZLuJFYuXDD+QZKkdUaSpVU1f6R94y3yCEBV3ZTkw8C36K1F8KP2qQgaQ5K7AecDF68P4YIkSZIkaf01oYChrUPwaWAlvQUN75fkoKo6Z8oqmwaq6g/A9oOuQ5IkSZKkqTahgIHex1XuW1U/AkiyPb0FC3ebqsIkSZIkSdK6Y6KLPG44FC4AVNWPgdE+9UCSJEmSJK1nJjqDYWmSTwCfba8PBJZOTUmSJEmSJGldM9GA4VDg5fQ+2jD0PkXiI1NVlCRJkiRJWreMGzAk2QBYWlU7A++d+pIkSZIkSdK6Ztw1GKrqL8DFSe6/FuqRJEmSJEnroIk+IjEbuDTJ+cANQ41V9bQpqUqSJEmSJK1TJhowHDmlVUiSJEmSpHXamAFDko3pLfD4IGAF8ImqunVtFCZJkiRJktYd481g+DRwC/Bt4MnAjsCrproorbt22WYWSxYuGHQZkiRJkqS1bLyAYceq2gUgySeA86e+JEmSJEmStK4Z71Mkbhna8NEISZIkSZI0mvFmMDw0yR/bdoBN2usAVVVbTGl1kiRJkiRpnTBmwFBVM9ZWIZIkSZIkad013iMSkiRJkiRJ4zJgkCRJkiRJnRkwSJIkSZKkzsZb5FFaIyuuWsWcw08ddBmSJEmaJlYuXDDoEiRNkDMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgKFPktVJliW5NMnFSf41yZjvUZK9knx1lH1vmKS6Dk7yobZ9RJLX3IE+7pbkX/pe3yfJFyejPkmSJEmSDBhu78aqmldVOwF/BzwFeGuH/iYlYJgkdwNuCxiq6pdVtf/gypEkSZIkTScGDKOoqquBQ4BXpGdGkqOSXJBkeZKX9h2+RZKTk1yW5KNJNkiyENikzYg4bnj/SZ6U5MI2U+L01naPJF9u/X8/ya5j1ZhkuyTfSLI0ybeT7NDat271XNy+Hg0sBLZr9RyVZE6SS9rxGyf5VJIVSS5KsndrPzjJSW2My5P812S8t5IkSZKk6WfmoAu4M6uqn7VHJO4FPB1YVVW7J9kIODfJ4nboHsCOwM+BbwDPqqrDk7yiquYN7zfJVsDHgcdX1RVJ7tF2HQlcVFXPSPIE4DPA35zfZxFwaFVdnuQRwEeAJwAfBM6uqmcmmQFsBhwO7DxUT5I5ff28vF3vLi2kWJxk+7ZvHvAw4GbgR0n+u6p+Mex6DqEXxjBji63GKFeSJEmSNF0ZMIwv7fu+wK5Jhh4rmAXMBf4MnF9VPwNIcjzwWGCs9Q0eCZxTVVcAVNXvW/tjgf1a2xlJ7plk1ohFJZsBjwZOTIZKZKP2/QnAP7Z+VgOrktx9jHoeC/x3O/6HSX4ODAUMp1fVqjbmZcADgNsFDFW1iF7YwUaz59YY40iSJEmSpikDhjEkeSCwGriaXtDwyqo6bdgxewHDb6rHu8nOKMdkhLbR+toA+MNIMyTugJHGHXJz3/Zq/J2RJEmSJI3ANRhG0R5j+Cjwoaoq4DTgZUk2bPu3T3LXdvgeSbZtj1McAHyntd8ydPww3wP2TLJt62voEYlzgANb217ANVX1x5Hqa+1XJHl2Oz5JHtp2nw68rLXPSLIFcB2w+SiX2z/u9sD9gR+N9t5IkiRJkjScAcPtDS3KeCnwLWAxvXURAI4BLgMubIsjfoy//jX/e/QWUbwEuAI4ubUvApYPX+Sxqn5Lb82Ck5JcDHy+7ToCmJ9keevvoHHqPRD459bHpfTWiQB4FbB3khXAUmCnqvodvXUjLkly1LB+PgLMaMd/Hji4qm5GkiRJkqQJSu+P89Lk2Gj23Jp90PsHXYYkSZKmiZULFwy6BEl9kiytqvkj7XMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mznoAjS97LLNLJYsXDDoMiRJkiRJa5kzGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXlZctYo5h5866DIkSZKmnZULFwy6BEkakzMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSepsvQ4Yktw7yQlJfprksiRfS7J9h/6OTbJ/2z4myY5t+w2TVfMdleQZQ/W0129Lss8ga5IkSZIkTR/rbcCQJMDJwFlVtV1V7Qi8Adh62HEz7kj/VfXiqrqsvZxQwHBHx5pAvzOBZwC3BQxV9Zaq+tZUjCdJkiRJWv+stwEDsDdwS1V9dKihqpZV1beT7JXkzCSfA1YkmZHkqCQXJFme5KXQCymSfKjNfjgVuNdQX0nOSjI/yUJgkyTLkhw3vIgk17fZBOcBj0rygiTnt+M/NhQ6tOPek+TCJKcn2aq1z0vy/VbXyUnu3jf+fyQ5G3gd8DTgqNbvdsNmW6xMcmTre0WSHVr7Vkm+2do/luTnSbacih+GJEmSJGndtj4HDDsDS8fYvwfwxjaz4Z+BVVW1O7A78JIk2wLPBB4M7AK8BHj08E6q6nDgxqqaV1UHjjDOXYFLquoRwO+AA4DHVNU8YDVwYN9xF1bVw4Gzgbe29s8Ar6uqXYEVfe0Ad6uqPavqncApwL+3On46Qh3XtL6PBl7T2t4KnNHaTwbuP8b7JUmSJElaj80cdAF3YudX1RVte19g16G/+AOzgLnA44Hjq2o18MskZ9yBcVYDX2rbTwR2Ay7oPcHBJsDVbd9fgM+37f8BTkoyi16IcHZr/zRwYl/fn2fiTmrflwLPatuPpReiUFXfSHLtSCcmOQQ4BGDGFlutwZCSJEmSpOlifQ4YLgX2H2P/DX3bAV5ZVaf1H5DkKUB1rOOmFlAMjfPpqnr9BM6byLg3jH/IbW5u31fz19+LTOTEqloELALYaPbcru+HJEmSJGkdtD4/InEGsFGSlww1JNk9yZ4jHHsa8LIkG7bjtk9yV+Ac4LltjYbZ9NZ1GMktQ+eO43Rg/yT3auPcI8kD2r4N+Gsg8nzgO1W1Crg2yeNa+wvpPT4xkuuAzSdQQ7/vAM9ptewL3H0Nz5ckSZIkrSfW24Chqore9P+/ax9TeSlwBPDLEQ4/BrgMuDDJJcDH6P2V/2TgcnprHxzN6Df3i4DlIy3yOKymy4A3AYuTLAe+Ccxuu28AdkqyFHgC8LbWfhC9xRuXA/P62oc7Afj3JBcl2W6sOvocCeyb5ELgycCv6AUVkiRJkiTdTnr32bqzS3J9VW22lsfcCFhdVbcmeRRwdFt8clQbzZ5bsw96/9ooT5Ikab2ycuGCQZcgSSRZWlXzR9q3Pq/BoPHdH/hCkg2AP9P7pAxJkiRJkv6GAcM6Ym3PXmhjXg48bG2PK0mSJEla96y3azBIkiRJkqTJY8AgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2c9AFaHrZZZtZLFm4YNBlSJIkSZLWMmcwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mznoAjS9rLhqFXMOP3XQZUiSJEmaRCsXLhh0CVoHOINBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGKZQknsnOSHJT5NcluRrSbbv0N+xSfZv28ck2bFtv2Gyah5n/LOSzF8bY0mSJEmS1i0GDFMkSYCTgbOqaruq2hF4A7D1sONm3JH+q+rFVXVZeznpAUOSmZPdpyRJkiRp+jJgmDp7A7dU1UeHGqpqWVV9O8leSc5M8jlgRZIZSY5KckGS5UleCr2QIsmH2uyHU4F7DfU1NJsgyUJgkyTLkhw3vIgkT0pyYZKLk5ze2vZI8t0kF7XvD27tByc5Mcn/AouTbNJmYCxP8nlgk6l8wyRJkiRJ6y7/Sj11dgaWjrF/D2DnqroiySHAqqraPclGwLlJFgMPAx4M7EJv5sNlwCf7O6mqw5O8oqrmDR8gyVbAx4HHt3Hu0Xb9sLXdmmQf4D+A/dq+RwG7VtXvk/wr8Keq2jXJrsCFd+SNkCRJkiRNfwYMg3N+VV3RtvcFdh1aXwGYBcwFHg8cX1WrgV8mOWMNx3gkcM7QOFX1+77+P51kLlDAhn3nfLPvuMcDH2znLk+yfKRBWkByCMCMLbZawxIlSZIkSdOBj0hMnUuB3cbYf0PfdoBXVtW89rVtVS1u+6pDDRnl/LcDZ1bVzsA/ABuPUteExq+qRVU1v6rmz9h01h0uVpIkSZK07jJgmDpnABsleclQQ5Ldk+w5wrGnAS9LsmE7bvskdwXOAZ7b1miYTW9dh5HcMnTuMN8D9kyybet36BGJWcBVbfvgMa7hHODAdu7OwK5jHCtJkiRJWo8ZMEyRqirgmcDftY+pvBQ4AvjlCIcfQ299hQuTXAJ8jN7jKycDlwMrgKOBs0cZbhGwfPgij1X1W3qPLpyU5GLg823XfwH/meRcYKxPsTga2Kw9GvFa4PwxL1qSJEmStN5K7z5YmhwbzZ5bsw96/6DLkCRJkjSJVi5cMOgSdCeRZGlVzR9pnzMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZzEEXoOlll21msWThgkGXIUmSJElay5zBIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqbOagC9D0suKqVcw5/NRBlyFJkiRJa2TlwgWDLmGd5wwGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMABJ7p3khCQ/TXJZkq8l2X7QdXWRZE6SSwZdhyRJkiRp/bDeBwxJApwMnFVV21XVjsAbgK0HW9maSTJz0DVIkiRJktZf633AAOwN3FJVHx1qqKplVfXt9ByV5JIkK5IcAJBkryRnJflikh8mOa4FFSRZ2GZBLE/y7tZ2bJL9h/pPcn1fP2cn+UKSH7dzD0xyfhtvu3bcVkm+lOSC9vWY1n5EkkVJFgOfmcjFJnlikota/59MslFrf0vr+5LW59D1nJXkXa2mHyd5XPe3XJIkSZI03RgwwM7A0lH2PQuYBzwU2Ac4Ksnstu9hwKuBHYEHAo9Jcg/gmcBOVbUr8I4JjP9Q4FXALsALge2rag/gGOCV7ZgPAO+rqt2B/dq+IbsBT6+q5483UJKNgWOBA6pqF2Am8LK2+0NVtXtV7QxsAjy179SZraZXA28dod9DkixJsmT1n1ZN4JIlSZIkSdONAcPYHgscX1Wrq+o3wNnA7m3f+VV1ZVX9BVgGzAH+CNwEHJPkWcCfJjDGBVX1q6q6GfgpsLi1r2h9Qi/c+FCSZcApwBZJNm/7TqmqGyd4PQ8GrqiqH7fXnwYe37b3TnJekhXAE4Cd+s47qX1f2lfTbapqUVXNr6r5MzadNcFSJEmSJEnTic/tw6XA/qPsyxjn3dy3vZreX/lvTbIH8ETgucAr6N2s30oLc9qjB3cZpZ+/9L3+C3/9+WwAPGp4kNCeYrhhjBondD1tZsNHgPlV9YskRwAbj1DjavydkSRJkiSNwBkMcAawUZKXDDUk2T3JnsA5wAFJZiTZit5f+88fraMkmwGzqupr9B4nmNd2raT3KAPA04EN17DGxfTCiqFx5o1+6Jh+CMxJ8qD2+oX0ZmUMhQnXtGsYLXCRJEmSJGlE6/1fo6uqkjwTeH+Sw+k94rCSXkBwDvAo4GKggNdW1a+T7DBKd5sDX2kzAgL8v9b+8dZ+PnA6azbrAOAw4MNJltP7mZ0DHDqB8x6c5Mq+1/8P+CfgxPapExcAH62qm5N8nN5jGStbuyRJkiRJE5aqGnQNmkY2mj23Zh/0/kGXIUmSJElrZOXCBYMuYZ2QZGlVzR9pn49ISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnMwddgKaXXbaZxZKFCwZdhiRJkiRpLXMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cxBF6DpZcVVq5hz+KmDLkOSJElaZ6xcuGDQJUiTwhkMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2ZQFDktVJliW5OMmFSR7doa+zksyfzPqmWpI3DLqG8SSZn+SDg65DkiRJkrTum8oZDDdW1byqeijweuA/p3CsO6NOAUOSGZNRRJKZo+2rqiVVddhkjCNJkiRJWr+trUcktgCuBUiyWZLT26yGFUme3trnJPlBko8nuTTJ4iSb9HeSZIMkn07yjuEDJHlLkguSXJJkUZK09gcl+VbfTIrtWvtr2/gXJ1nY2uYl+X6S5UlOTnL31n7bDIokWyZZ2bYPTnJSkm8kuTzJf7X2hcAmbQbHcSPU+rw29iVJ3tXXfn2StyU5D3jUsHMOS3JZq+2E1nbXJJ9s131R33t5cJITk/wvsDjJ55M8pa+vY5Psl2SvJF/t+7l8qtW1PMl+rX3fJN9r792JSTab4M9ckiRJkrQemcqAYegG+4fAMcDbW/tNwDOr6uHA3sB7hsIAYC7w4araCfgDsF9ffzOB44AfV9WbRhjvQ1W1e1XtDGwCPLW1H9f6fCjwaOBXSZ4MPAN4RGv/r3bsZ4DXVdWuwArgrRO4znnAAcAuwAFJ7ldVh/PXGRwH9h+c5D7Au4AntHN3T/KMtvuuwCVV9Yiq+s6wcQ4HHtZqO7S1vRE4o6p2p/deHpXkrm3fo4CDquoJwAmtRpLcBXgi8LVh/b8ZWFVVu7QxzkiyJfAmYJ/281oC/OvwNyDJIUmWJFmy+k+rJvCWSZIkSZKmm7XxiMQOwJOAz7QgIcB/JFkOfAvYBti6nXNFVS1r20uBOX39fYzezfc7Rxlv7yTnJVlB7+Z9pySbA9tU1ckAVXVTVf0J2Af4VNumqn6fZBZwt6o6u/X3aeDxE7jO06tqVVXdBFwGPGCc43cHzqqq31bVrfQCkKFxVgNfGuW85cBxSV4A3Nra9gUOT7IMOAvYGLh/2/fNqvp92/468IQkGwFPBs6pqhuH9b8P8OGhF1V1LfBIYEfg3DbGQSNdX1Utqqr5VTV/xqazxrl8SZIkSdJ0NOrz+ZOpqr7X/hq+FfCU9n23qrqlPW6wcTv05r7TVtObiTDku/RChPe0m/nbJNkY+Agwv6p+keSI1mcYWYBag0u4lb+GMRsP2ze85vHe09FqAripqlaPsm8BvSDiacCbk+zU+tqvqn50uwGSRwA3DL2uqpuSnAX8Pb2ZDMePUtfw9yT0gornjVGzJEmSJElrZw2GJDsAM4DfAbOAq1u4sDfj/8V/yCfoTes/cYSFC4du+q9pawTsD1BVfwSuHHoEIclGSTYFFgMvatskuUdVrQKuTfK41tcLgaHZDCuB3dr2/hOs95YkG47Qfh6wZ1vLYQbwvL5xRpRkA+B+VXUm8FrgbsBmwGnAK/vWm3jYGN2cAPwT8Lh23nCLgVf0jXl34PvAY5I8qLVtmmT7sWqVJEmSJK2f1sYaDMuAz9NbD2A1vUcC5idZAhwI/HCiHVbVe4ELgc+2m+6h9j8AH6e3bsKXgQv6TnshcFh7JOO7wL2r6hvAKcCSVt9r2rEH0VvHYDm99RHe1trfDbwsyXeBLSdY7iJg+fBFHqvqV/Q+VeNM4GLgwqr6yjh9zQD+pz3+cRHwvnbNbwc2bONcwl/XuRjJYnozIL5VVX8eYf87gLu3hScvBvauqt8CBwPHt/fk+8AO49QqSZIkSVoPpWpNnhSQxrbR7Lk1+6D3D7oMSZIkaZ2xcuGCQZcgTViSpVU1f6R9a+tjKiVJkiRJ0jRmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXnbZZhZLFi4YdBmSJEmSpLXMGQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6S1UNugZNI0muA3406DqkKbIlcM2gi5CmgL/bmq783dZ05e+2BukBVbXVSDtmru1KNO39qKrmD7oIaSokWeLvt6Yjf7c1Xfm7renK323dWfmIhCRJkiRJ6syAQZIkSZIkdWbAoMm2aNAFSFPI329NV/5ua7ryd1vTlb/bulNykUdJkiRJktSZMxgkSZIkSVJnBgyaNEmelORHSX6S5PBB1yNNliQrk6xIsizJkkHXI3WR5JNJrk5ySV/bPZJ8M8nl7fvdB1mjdEeM8rt9RJKr2r/fy5I8ZZA1SndEkvslOTPJD5JcmuRVrd1/u3WnY8CgSZFkBvBh4MnAjsDzkuw42KqkSbV3Vc3zI6E0DRwLPGlY2+HA6VU1Fzi9vZbWNcfyt7/bAO9r/37Pq6qvreWapMlwK/BvVfUQ4JHAy9t/Z/tvt+50DBg0WfYAflJVP6uqPwMnAE8fcE2SpGGq6hzg98Oanw58um1/GnjG2qxJmgyj/G5L67yq+lVVXdi2rwN+AGyD/3brTsiAQZNlG+AXfa+vbG3SdFDA4iRLkxwy6GKkKbB1Vf0Kev8hC9xrwPVIk+kVSZa3RyicQq51WpI5wMOA8/Dfbt0JGTBosmSENj+iRNPFY6rq4fQeAXp5kscPuiBJ0oQcDWwHzAN+BbxnoNVIHSTZDPgS8Oqq+uOg65FGYsCgyXIlcL++1/cFfjmgWqRJVVW/bN+vBk6m90iQNJ38JslsgPb96gHXI02KqvpNVa2uqr8AH8d/v7WOSrIhvXDhuKo6qTX7b7fudAwYNFkuAOYm2TbJXYDnAqcMuCapsyR3TbL50DawL3DJ2GdJ65xTgIPa9kHAVwZYizRphm6+mmfiv99aByUJ8AngB1X13r5d/tutO51UOYtdk6N99NP7gRnAJ6vqnYOtSOouyQPpzVoAmAl8zt9trcuSHA/sBWwJ/AZ4K/Bl4AvA/YH/A55dVS6Wp3XKKL/be9F7PKKAlcBLh55Zl9YVSR4LfBtYAfylNb+B3joM/tutOxUDBkmSJEmS1JmPSEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkDVSS1UmWJbk0ycVJ/jXJBm3f/CQfnOTxnpFkxztw3vWjtH+3e1VTI8mrk2w66DokSesHP6ZSkiQNVJLrq2qztn0v4HPAuVX11ika71jgq1X1xTU877Y67yyShN5/z/1llP0rgflVdc1aLUyStF5yBoMkSbrTqKqrgUOAV6RnryRfBUiyZ5vpsCzJRUk2b/vPSXJyksuSfLRv9sNtMw6S7J/k2CSPBp4GHNX62a59fSPJ0iTfTrJDO2fbJN9LckGSt49W89A4SWa3WpYluSTJ45LMaONekmRFkv/Xjj0ryfy2vWULAmjHH9XGXJ7kpSOMNyfJD5J8BLgQuF+So5MsabNAjmzHHQbcBzgzyZmtbd92TRcmOTHJnSowkSSt2wwYJEnSnUpV/Yzef6Pca9iu1wAvr6p5wOOAG1v7HsC/AbsA2wHPGqPv7wKnAP9eVfOq6qfAIuCVVbVbG+Mj7fAPAEdX1e7ArydQ+vOB01p9DwWWAfOAbapq56raBfjUOH38M7Cqjbk78JIk245w3IOBz1TVw6rq58Abq2o+sCuwZ5Jdq+qDwC+Bvatq7yRbAm8C9qmqhwNLgH+dwHVJkjQhMwddgCRJ0ggyQtu5wHuTHAecVFVX9p4Q4PwWSpDkeOCxwIQef2h/wX80cGLrC2Cj9v0xwH5t+7PAu8bp7gLgk0k2BL5cVcuS/Ax4YJL/Bk4FFo/Tx77Arkn2b69nAXOBK4Yd9/Oq+n7f6+ckOYTef9vNBnYElg8755Gt/dx2rXcBvjdOPZIkTZgBgyRJulNJ8kBgNXA18JCh9qpamORU4CnA95PsM7RrWBc1QvvGowy3AfCHNutgJBNerKqqzknyeGAB8NkkR1XVZ5I8FPh74OXAc4AXAbfy15mk/bWF3myK08YZ7obbTujNcHgNsHtVXdvWmBjpegN8s6qeN9FrkiRpTfiIhCRJutNIshXwUeBDNWwl6iTbVdWKqnoXven9O7Rde7T1EjYADgC+09p/k+Qhrf2ZfV1dB2wOUFV/BK5I8uw2RlogAL0ZE89t2wdOoPYHAFdX1ceBTwAPb48lbFBVXwLeDDy8Hb4S2K1t79/XzWnAy9osCJJsn+Su4wy9Bb3AYVWSrYEnj3StwPeBxyR5UOt70yTbj3ddkiRNlAGDJEkatE3awoiXAt+i9xjBkSMc9+q2WOLF9NZf+Hpr/x6wELiE3qMEJ7f2w4GvAmcAv+rr5wTg39tCkdvRCw/+ufV7KfD0dtyrgJcnuYDeowrj2QtYluQieo9WfADYBjgryTLgWOD17dh30wsSvgts2dfHMcBlwIVJLgE+xjgzTqvqYuCiVvsn6QUjQxYBX09yZlX9FjgYOD7JcnqBww5IkjRJ/JhKSZK0zkqyF/CaqnrqgEuRJGm95wwGSZIkSZLUmTMYJEmSJElSZ85gkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnq7P8DMOvBEWbEP7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "#Banks' products with highest issues\n", - "bank_prod_count = df.groupby(['company', 'product', 'issue']).size().reset_index()\n", - "bank_prod_count" + "fig4, ax4 = plt.subplots(figsize=(16, 9))\n", + "ax4.barh(disp_prod['product'], disp_prod['dispute_rate']) \n", + "\n", + "ax4.set_title(\"Disputed issue rates per product\")\n", + "ax4.set_ylabel('Product')\n", + "ax4.set_xlabel('Disputed issue rate')" + ] + }, + { + "cell_type": "markdown", + "id": "733a9626", + "metadata": {}, + "source": [ + "### Analysis:\n", + "Using the same visualization it can be concluded that loan and credit related issues like *Mortgages, Credit Reporting, Student loans* etc are more likely to be disputed, meaning our company should be wary and prepared to efficiently face complicated customer service with such products" + ] + }, + { + "cell_type": "markdown", + "id": "07ff8ba7", + "metadata": {}, + "source": [ + "### Disputes according to submission medium:" ] }, { "cell_type": "code", - "execution_count": 134, - "id": "5aa0caf7", + "execution_count": 97, + "id": "0d2034ae", "metadata": {}, "outputs": [], "source": [ - "#@TODO Common words in complaints" + "disp_med = get_count('submitted_via')" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "id": "c6d9b268", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 17.200000000000003, 'Disputed issue count')" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAIICAYAAABTptJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmIUlEQVR4nO3df7Tn9V0f+OdLJhKSCIFkwqFDtsMKaoEaIiNLYu1qsQZNV9izcBxXDe2ypc2yatz2dElPW21P6YHuNnRpCz00sZA0BhDNhppGZaHRGBEy+SUhCc0oGEYojEKQasAOvvaP73tOvnNzmbkDA3feN4/HOd/z/Xxf3/f7M+/P3M+59z6/7/fnc6u7AwAAALP4uvUeAAAAABwMQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R7Ac/XqV7+6t27dut7DAAAA4AXw8Y9//Pe7e/Nq700bZLdu3ZodO3as9zAAAAB4AVTV7z7be5YWAwAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVNYUZKvqJ6vq3qr6TFW9r6peWlXHVdVtVfWF8XzsUvu3V9XOqrqvqt60VD+zqu4Z711dVTXqR1bVTaN+V1VtPeRHCgAAwIZwwCBbVVuS/HiSbd19epIjkmxPclmS27v7lCS3j9epqlPH+6clOTfJNVV1xNjdtUkuSXLKeJw76hcneby7T05yVZIrD8nRAQAAsOGsdWnxpiRHVdWmJC9L8lCS85LcMN6/Icn5Y/u8JDd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwLIDBtnu/r0k/3eSLyZ5OMkT3f0rSY7v7odHm4eTvGZ02ZLkwaVd7Bq1LWN7ZX2fPt29J8kTSV61cixVdUlV7aiqHbt3717rMQIAALCBrGVp8bFZzJielOTPJHl5Vf3I/rqsUuv91PfXZ99C93Xdva27t23evHn/AwcAAGBDWsvS4u9Jcn937+7u/5rkF5K8MckjY7lwxvOjo/2uJK9d6n9iFkuRd43tlfV9+ozly8ckeey5HBAAAAAb26Y1tPlikrOr6mVJvpzknCQ7kvxRkouSXDGePzDa35rkZ6vqHVnM4J6S5O7ufqaqnqyqs5PcleQtSf7FUp+LktyZ5IIkd4zraAEAgMPQ1ss+uN5D4Hl44Io3r/cQnpcDBtnuvquqbknyiSR7knwyyXVJXpHk5qq6OIuwe+Fof29V3Zzks6P9pd39zNjdW5Ncn+SoJB8ajyR5V5L3VNXOLGZitx+SowMAAGDDWcuMbLr7p5L81Iry01nMzq7W/vIkl69S35Hk9FXqT2UEYQAAANiftf75HQAAADgsCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpHDDIVtU3V9Wnlh5/WFVvq6rjquq2qvrCeD52qc/bq2pnVd1XVW9aqp9ZVfeM966uqhr1I6vqplG/q6q2viBHCwAAwPQOGGS7+77uPqO7z0hyZpI/TvL+JJclub27T0ly+3idqjo1yfYkpyU5N8k1VXXE2N21SS5Jcsp4nDvqFyd5vLtPTnJVkisPydEBAACw4Rzs0uJzkvx2d/9ukvOS3DDqNyQ5f2yfl+TG7n66u+9PsjPJWVV1QpKju/vO7u4k717RZ+++bklyzt7ZWgAAAFh2sEF2e5L3je3ju/vhJBnPrxn1LUkeXOqza9S2jO2V9X36dPeeJE8kedVBjg0AAICvAWsOslX19Ul+IMnPHajpKrXeT31/fVaO4ZKq2lFVO3bv3n2AYQAAALARHcyM7Pcl+UR3PzJePzKWC2c8Pzrqu5K8dqnfiUkeGvUTV6nv06eqNiU5JsljKwfQ3dd197bu3rZ58+aDGDoAAAAbxcEE2R/KV5YVJ8mtSS4a2xcl+cBSffu4E/FJWdzU6e6x/PjJqjp7XP/6lhV99u7rgiR3jOtoAQAAYB+b1tKoql6W5C8n+RtL5SuS3FxVFyf5YpILk6S7762qm5N8NsmeJJd29zOjz1uTXJ/kqCQfGo8keVeS91TVzixmYrc/j2MCAABgA1tTkO3uP86Kmy919x9kcRfj1dpfnuTyVeo7kpy+Sv2pjCAMAAAA+3Owdy0GAACAdSXIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMJU1BdmqemVV3VJVn6+qz1XVG6rquKq6raq+MJ6PXWr/9qraWVX3VdWblupnVtU9472rq6pG/ciqumnU76qqrYf8SAEAANgQ1joj+/8k+aXu/pYkr0vyuSSXJbm9u09Jcvt4nao6Ncn2JKclOTfJNVV1xNjPtUkuSXLKeJw76hcneby7T05yVZIrn+dxAQAAsEEdMMhW1dFJ/mKSdyVJd/9Jd38pyXlJbhjNbkhy/tg+L8mN3f10d9+fZGeSs6rqhCRHd/ed3d1J3r2iz9593ZLknL2ztQAAALBsLTOy/22S3Un+bVV9sqreWVUvT3J8dz+cJOP5NaP9liQPLvXfNWpbxvbK+j59untPkieSvGrlQKrqkqraUVU7du/evcZDBAAAYCNZS5DdlOTbklzb3a9P8kcZy4ifxWozqb2f+v767Fvovq67t3X3ts2bN+9/1AAAAGxIawmyu5Ls6u67xutbsgi2j4zlwhnPjy61f+1S/xOTPDTqJ65S36dPVW1KckySxw72YAAAANj4Dhhku/s/J3mwqr55lM5J8tkktya5aNQuSvKBsX1rku3jTsQnZXFTp7vH8uMnq+rscf3rW1b02buvC5LcMa6jBQAAgH1sWmO7H0vy3qr6+iS/k+SvZRGCb66qi5N8McmFSdLd91bVzVmE3T1JLu3uZ8Z+3prk+iRHJfnQeCSLG0m9p6p2ZjETu/15HhcAAAAb1JqCbHd/Ksm2Vd4651naX57k8lXqO5Kcvkr9qYwgDAAAAPuz1r8jCwAAAIcFQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICprCnIVtUDVXVPVX2qqnaM2nFVdVtVfWE8H7vU/u1VtbOq7quqNy3Vzxz72VlVV1dVjfqRVXXTqN9VVVsP8XECAACwQRzMjOx3d/cZ3b1tvL4sye3dfUqS28frVNWpSbYnOS3JuUmuqaojRp9rk1yS5JTxOHfUL07yeHefnOSqJFc+90MCAABgI3s+S4vPS3LD2L4hyflL9Ru7++nuvj/JziRnVdUJSY7u7ju7u5O8e0Wfvfu6Jck5e2drAQAAYNlag2wn+ZWq+nhVXTJqx3f3w0kynl8z6luSPLjUd9eobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGsmmN7b6jux+qqtckua2qPr+ftqvNpPZ+6vvrs2+h+7ok1yXJtm3bvup9AAAANr41zch290Pj+dEk709yVpJHxnLhjOdHR/NdSV671P3EJA+N+omr1PfpU1WbkhyT5LGDPxwAAAA2ugMG2ap6eVV9w97tJN+b5DNJbk1y0Wh2UZIPjO1bk2wfdyI+KYubOt09lh8/WVVnj+tf37Kiz959XZDkjnEdLQAAAOxjLUuLj0/y/nHvpU1Jfra7f6mqPpbk5qq6OMkXk1yYJN19b1XdnOSzSfYkubS7nxn7emuS65McleRD45Ek70rynqramcVM7PZDcGwAAABsQAcMst39O0let0r9D5Kc8yx9Lk9y+Sr1HUlOX6X+VEYQBgAAgP15Pn9+BwAAAF50giwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqaw6yVXVEVX2yqn5xvD6uqm6rqi+M52OX2r69qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrITxGAAAANpCDmZH9iSSfW3p9WZLbu/uUJLeP16mqU5NsT3JaknOTXFNVR4w+1ya5JMkp43HuqF+c5PHuPjnJVUmufE5HAwAAwIa3piBbVScmeXOSdy6Vz0tyw9i+Icn5S/Ubu/vp7r4/yc4kZ1XVCUmO7u47u7uTvHtFn737uiXJOXtnawEAAGDZWmdk/3mSv5PkT5dqx3f3w0kynl8z6luSPLjUbteobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGcsAgW1V/Jcmj3f3xNe5ztZnU3k99f332LXRf193bunvb5s2b1zgcAAAANpJNa2jzHUl+oKq+P8lLkxxdVf8uySNVdUJ3PzyWDT862u9K8tql/icmeWjUT1ylvtxnV1VtSnJMksee4zEBAACwgR1wRra7397dJ3b31ixu4nRHd/9IkluTXDSaXZTkA2P71iTbx52IT8ripk53j+XHT1bV2eP617es6LN3XxeMf+OrZmQBAABgLTOyz+aKJDdX1cVJvpjkwiTp7nur6uYkn02yJ8ml3f3M6PPWJNcnOSrJh8YjSd6V5D1VtTOLmdjtz2NcAAAAbGAHFWS7+8NJPjy2/yDJOc/S7vIkl69S35Hk9FXqT2UEYQAAANifg/k7sgAAALDuBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmcsAgW1Uvraq7q+rTVXVvVf3DUT+uqm6rqi+M52OX+ry9qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrC3CsAAAAbABrmZF9Oslf6u7XJTkjyblVdXaSy5Lc3t2nJLl9vE5VnZpke5LTkpyb5JqqOmLs69oklyQ5ZTzOHfWLkzze3ScnuSrJlc//0AAAANiIDhhke+G/jJcvGY9Ocl6SG0b9hiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMvWdI1sVR1RVZ9K8miS27r7riTHd/fDSTKeXzOab0ny4FL3XaO2ZWyvrO/Tp7v3JHkiyatWGcclVbWjqnbs3r17TQcIAADAxrKmINvdz3T3GUlOzGJ29fT9NF9tJrX3U99fn5XjuK67t3X3ts2bNx9g1AAAAGxEB3XX4u7+UpIPZ3Ft6yNjuXDG86Oj2a4kr13qdmKSh0b9xFXq+/Spqk1Jjkny2MGMDQAAgK8Na7lr8eaqeuXYPirJ9yT5fJJbk1w0ml2U5ANj+9Yk28ediE/K4qZOd4/lx09W1dnj+te3rOizd18XJLljXEcLAAAA+9i0hjYnJLlh3Hn465Lc3N2/WFV3Jrm5qi5O8sUkFyZJd99bVTcn+WySPUku7e5nxr7emuT6JEcl+dB4JMm7krynqnZmMRO7/VAcHAAAABvPAYNsd/9WktevUv+DJOc8S5/Lk1y+Sn1Hkq+6vra7n8oIwgAAALA/B3WNLAAAAKw3QRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVAwbZqnptVf3HqvpcVd1bVT8x6sdV1W1V9YXxfOxSn7dX1c6quq+q3rRUP7Oq7hnvXV1VNepHVtVNo35XVW19AY4VAACADWAtM7J7kvyt7v5zSc5OcmlVnZrksiS3d/cpSW4frzPe257ktCTnJrmmqo4Y+7o2ySVJThmPc0f94iSPd/fJSa5KcuUhODYAAAA2oAMG2e5+uLs/MbafTPK5JFuSnJfkhtHshiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMsO6hrZseT39UnuSnJ8dz+cLMJukteMZluSPLjUbdeobRnbK+v79OnuPUmeSPKqgxkbAAAAXxvWHGSr6hVJfj7J27r7D/fXdJVa76e+vz4rx3BJVe2oqh27d+8+0JABAADYgNYUZKvqJVmE2Pd29y+M8iNjuXDG86OjvivJa5e6n5jkoVE/cZX6Pn2qalOSY5I8tnIc3X1dd2/r7m2bN29ey9ABAADYYNZy1+JK8q4kn+vudyy9dWuSi8b2RUk+sFTfPu5EfFIWN3W6eyw/frKqzh77fMuKPnv3dUGSO8Z1tAAAALCPTWto8x1JfjTJPVX1qVH7u0muSHJzVV2c5ItJLkyS7r63qm5O8tks7nh8aXc/M/q9Ncn1SY5K8qHxSBZB+T1VtTOLmdjtz++wAAAA2KgOGGS7+9ez+jWsSXLOs/S5PMnlq9R3JDl9lfpTGUEYAAAA9ueg7loMAAAA602QBQAAYCpruUYWAICvAVsv++B6D4Hn4YEr3rzeQ4AXjRlZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYygGDbFX9TFU9WlWfWaodV1W3VdUXxvOxS++9vap2VtV9VfWmpfqZVXXPeO/qqqpRP7Kqbhr1u6pq6yE+RgAAADaQtczIXp/k3BW1y5Lc3t2nJLl9vE5VnZpke5LTRp9rquqI0efaJJckOWU89u7z4iSPd/fJSa5KcuVzPRgAAAA2vgMG2e7+tSSPrSifl+SGsX1DkvOX6jd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwErP9RrZ47v74SQZz68Z9S1JHlxqt2vUtoztlfV9+nT3niRPJHnVav9oVV1SVTuqasfu3buf49ABAACY2aG+2dNqM6m9n/r++nx1sfu67t7W3ds2b978HIcIAADAzJ5rkH1kLBfOeH501Hclee1SuxOTPDTqJ65S36dPVW1Kcky+eikzAAAAJHnuQfbWJBeN7YuSfGCpvn3cifikLG7qdPdYfvxkVZ09rn99y4o+e/d1QZI7xnW0AAAA8FU2HahBVb0vyXcleXVV7UryU0muSHJzVV2c5ItJLkyS7r63qm5O8tkke5Jc2t3PjF29NYs7IB+V5EPjkSTvSvKeqtqZxUzs9kNyZAAAAGxIBwyy3f1Dz/LWOc/S/vIkl69S35Hk9FXqT2UEYQAAADiQQ32zJwAAAHhBCbIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R4AAAdv62UfXO8h8Bw9cMWb13sIADA9M7IAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVf0cWADYwf3N4bv7uMMDqzMgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFPZtN4DABa2XvbB9R4Cz8MDV7x5vYcAAPA1w4wsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVwybIVtW5VXVfVe2sqsvWezwAAAAcng6LIFtVRyT5V0m+L8mpSX6oqk5d31EBAABwODosgmySs5Ls7O7f6e4/SXJjkvPWeUwAAAAchjat9wCGLUkeXHq9K8l/t05jOWS2XvbB9R4Cz8MDV7x5vYcAAACsorp7vceQqrowyZu6+38dr380yVnd/WMr2l2S5JLx8puT3PeiDpSVXp3k99d7EEzD+cLBcL6wVs4VDobzhYPhfFl/f7a7N6/2xuEyI7sryWuXXp+Y5KGVjbr7uiTXvViDYv+qakd3b1vvcTAH5wsHw/nCWjlXOBjOFw6G8+XwdrhcI/uxJKdU1UlV9fVJtie5dZ3HBAAAwGHosJiR7e49VfW/J/nlJEck+ZnuvnedhwUAAMBh6LAIsknS3f8hyX9Y73FwUCzz5mA4XzgYzhfWyrnCwXC+cDCcL4exw+JmTwAAALBWh8s1sgAAALAmgixJkqp6pqo+tfS47BDt9zfG89aq+syh2CeHp1XOoa3rPSbW19I58Zmq+rmqepnvBV87Vvv6H2T/rVX1P6+x3SE/p6rqB/b+LKyqn66qv32o/w3WbsX59O+r6pUHaL+5qu6qqk9W1Xe+AONxTkysqq6qqrctvf7lqnrn0ut/VlX/x7P0/XBVuZPxYUCQZa8vd/cZS48rDsVOu/uNh2I/TGHlOfTAeg+Idbf3nDg9yZ8k+ZvrPSBeVM/36781yQGD7Aulu289VD8LOSSWz6fHklx6gPbnJPl8d7++uz+yln+gqo7Y32s2lN9I8sYkqaqvy+LvxZ629P4bk3x0HcbFQRBk2a+qeqCq/klV3VlVO6rq28anVr9dVX9ztHlFVd1eVZ+oqnuq6ryl/v9l/UbPenq286Kqvr2qfquqXlpVL6+qe6vq9PUeLy+4jyQ5eWwfUVX/Znztf6WqjkqSqjqjqn5znB/vr6pjR/3DVXVlVd1dVf9p7+xKVR1RVf9XVX1s9Pkb63NorMFHkpxcVcdV1f87vl6/WVXfmiRV9d8vreb4ZFV9Q5IrknznqP3kmHn9yPie8omq2u8HpVX1XVX1q1V18zhvrqiqHx7n0T1V9Y2j3f+wNHP3/1XV8aP+V6vqX77A/y88N3cm2ZIkVfWNVfVLVfXxcX58S1WdkeSfJvn+cf4cVVXfO36X+cRYIfCK0f+BqvoHVfXrSS5c5fVfH99jPl1VP18HubKAw9ZHM4JsFgH2M0merKpjq+rIJH8uScb3kI+P331PWOr/I1X1G7VYIXDWizt09hJk2euo2ndZ6A8uvfdgd78hi19Erk9yQZKzk/yj8f5TSf7H7v62JN+d5J9VVb2IY+fwsHwOvT/Pcl5098ey+DvR/ziLXzT+XXdbarqBVdWmJN+X5J5ROiXJv+ru05J8Kcn/NOrvTvJ/dve3jrY/tbSbTd19VpK3LdUvTvJEd397km9P8ter6qQX8FB4DlZ8/f9hkk+Or/HfzeJrniR/O8ml3X1Gku9M8uUklyX5yJiFuyrJo0n+8vie8oNJrl7DP/+6JD+R5M8n+dEk3zTOo3cm+bHR5teTnN3dr09yY5K/8/yOmBdSLWZJz8ni50iyuKvsj3X3mVmcR9d096eS/IMkN41z6uVJ/l6S7xnnz44ky8tGn+ruv9DdN67y+he6+9u7+3VJPpfF9x0m190PJdlTVf9NFoH2ziR3JXlDkm1ZfK2vSnLBOLd+JsnlS7t4+Vh1+L+N91gHh82f32HdfXl8s1/N3h8W9yR5RXc/mcWnVk/V4hqVP0ryT6rqLyb50yw+JT0+yX9+YYfMYWafc6iqXpJnPy/+UZKPZRF2f/zFHyovkqOq6lNj+yNJ3pXkzyS5f/yimSQfT7K1qo5J8sru/tVRvyHJzy3t6xeW24/t703yrVV1wXh9TBYh+f5Dexg8R6t9/e/K+OCiu++oqleNr/1Hk7yjqt6bRXDYtcrnoS9J8i/HbNszSb5pDWP4WHc/nCRV9dtJfmXU78niA7YkOTHJTWO25evj/Dlc7T2ftmbxfeC2Mav6xiQ/t3S+HLlK37OTnJrko6Pd12cRXPa6aUX75denV9U/TvLKJK9I8svP5yA4rOydlX1jkndk8XvKG5M8keT3svgZc9s4Z45I8vBS3/clSXf/WlUdXVWv7O4vvXhDJxFkWZunx/OfLm3vfb0pyQ8n2ZzkzO7+r1X1QJKXvqgj5HC0v/PiuCx+IXjJqP3RuoyQF9pXfUA2fiFY/j7yTJKj1rCvvX2eyVd+dlUWMzF+sTw8rfb1X221Tnf3FVX1wSTfn+Q3q+p7Vmn3k0keyWKW9euy+CDsQFb+zFr+ebb3PPoXSd7R3bdW1Xcl+ek17JcX35e7+4zxwccvZnGN7PVJvrSfD+L3qiS3dfcPPcv7K38GLb++Psn53f3pqvqrSb7r4IbNYWzvdbJ/PoulxQ8m+VtJ/jDJHUm2jBWJq1n590v9PdN1YGkxh8IxSR4dYeW7k/zZ9R4Qh4X9nRfXJfn7Sd6b5Mr1GByHl+5+Isnj9ZW7i/5okl/dT5dkMTPy1jH7n6r6pqp6+Qs4TJ6/X8viQ66M0Pj73f2HVfWN3X1Pd1+ZxbLPb0nyZJJvWOp7TJKHu/tPszg/DtWNeI7JYvYlSS46RPvkBTK+V/x4FsuIv5zk/qq6MFl8UFJVr1ul228m+Y6qOnm0e1lVrWVGP1mcgw+P7zM//LwPgMPJR5P8lSSPdfcz3f1YFjPvb8hiVn5zVb0hWawyq6rlm0H94Kj/hSwucXniRR05SczI8hXLS8CS5Je6e61/gue9Sf59Ve1I8qkknz/EY2NOq54XVfWWJHu6+2fHtU6/UVV/qbvvWL+hcpi4KMm/HjdT+Z0kf+0A7d+ZxTLDT4yZvt1Jzn8hB8jz9tNJ/m1V/VaSP85XguPbxgdezyT5bJIPZTFruqeqPp3FrNg1SX5+hJb/mEO3kuOns1ia+ntZBB7XWR/muvuT47zYnkW4vLaq/l4Wq3xuTPLpFe13j9nU940b+SSLa2b/0xr+ub+fxZL4381iSfo37L85E7kni7sV/+yK2iu6+9Fx2crVYxXApiT/PMm9o93jtfgTk0cn+V9evCGzrLrNhAMAADAPS4sBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABT+f8BJeOZKz7AJjwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig5, ax5 = plt.subplots(figsize=(16, 9))\n", + "ax5.bar(disp_med['submitted_via'], disp_med['consumer_disputed?'])\n", + "\n", + "ax4.set_title(\"Disputed issue counts per submission medium\")\n", + "ax4.set_xlabel('Medium')\n", + "ax4.set_xlabel('Disputed issue count')" ] }, { "cell_type": "code", - "execution_count": null, - "id": "61231007", + "execution_count": 103, + "id": "c1ec299a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Disputed issue rate')" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAImCAYAAABXZwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqiklEQVR4nO3debytdV0v8M9XIEEGRUFzPjmWkmKBOZZe0xzTSlPDIjPRe70qXbuFpoamXRrUzDFMc8jUzDQcUssSh5zAATQtS46JooCKoKICfu8f6zmx2OxzzjrD2vt32O/367Vfez3z91nrt4fP+v2eZ1V3BwAAAEZzpfUuAAAAAFYjsAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQZWVS+uqqesdx3bUlV3qaozt7H8m1V1o7WsiZ2zvddyJ/b3qaq6yy5s//dVdfTuqmctrHwOd/U5ANjo9l7vAgA2qqranORaSS5OckmSf03yyiQndvf3k6S7H70Gdbw8yZnd/eRl7L+7D1jGftdCVR2f5Cbd/bD1rmVP1N233MXt77W7alkvu/ocAGx0elgB1tf9uvvAJDdMckKS307y0vUtaWOoqivEm7ZXlPMAgNUIrAAD6O5vdPdJSR6c5OiqOiyZ9X5W1TOmx4dU1Vuq6ryq+lpVvbeqrjQt21xVT6yqf62qr1fVX1TVvtOyX62q980fr6q6qm5SVcckOSrJb01Dd988Lb9OVb2hqs6pqjOq6nFz2+431fX1qvrXJEdu69y2HGt6fO+pxguq6otV9ZsLnNt/b7/yOZmm71tVH5+2/ZequtV2anlMVX02yWenec+tqi9U1flVdWpV3Xmaf88kT0ry4Om5+cQ0/6pV9dKqOms6h2dU1V7TsptU1clV9Y2qOreqXreVOjZNtRxTVV+a9vWEueVXqqrjquo/q+qrVfXXVXX1Fds+oqr+K8k/rbL/nX4+p3lPmurfXFVHrVj3hdNQ3W9W1fur6ger6k+m9vCZqrrN3Pqbq+qnp8e3rapTpuf5K1X17Gn+vlX1l9N5nldVH6mqa03L3l1Vvz73nDy5qj5fVWdX1Sur6qornpOjq+q/ptp/ZxvtYEfPY6d/HlY8Byvb7srhw5ur6v9W1WlV9a2pnV1rqvOCqvrHqjp4a+cFcEUksAIMpLs/nOTMJHdeZfETpmWHZjaU+ElJem75UUl+JsmNk9wsyXaH+Hb3iUleneQPu/uA7r7fFGzenOQTSa6b5G5Jjq2qn5k2+93pGDeejrcj1xi+NMmjpl7lw3Jp2Nreua2qqn4sycuSPCrJNZL8WZKTqurK29jsAUl+IsktpumPJDk8ydWT/FWS11fVvt399iS/n+R103Nz62n9V2Q2jPsmSW6T5B5Jfn1a9ntJ3pnk4CTXS/K87ZzCXZPcdNrHcVuCTZLHTXX+VJLrJPl6khes2PankvxIZq/BSjv1fE5+MMkhmb32Ryc5sapuPrf8FzNrW4ck+W6SDyT56DT9N0mevZX9PjfJc7v7oMzazl9P849OctUk18/sNXx0kgtX2f5Xp6+7JrlRkgOSPH/FOndKcvPM2uxTq+pHtnGeC53Hkn8eVvMLSe6e2c/w/ZL8fWav3yGZ/d/2uK1vCnDFI7ACjOdLmYWnlS5Kcu0kN+zui7r7vd09H0Ke391f6O6vJXlmkofu5PGPTHJodz+9u7/X3Z9L8pIkD5mW/2KSZ3b317r7C0n+dAf2fVGSW1TVQd399e7+6ILntjWPTPJn3f2h7r6ku1+RWfi43Ta2+X9T7RcmSXf/ZXd/tbsv7u5nJblyZqHncqaev3slOba7v9XdZyd5Ti59bi7KbHj3dbr7O939vtX2M+dp035OT/IXufQ1e1SS3+nuM7v7u0mOT/LAuuzw3+OnbVcLdzv7fG7xlO7+bnefnOStmb3mW7yxu0/t7u8keWOS73T3K7v7kiSvyyzEr+aiJDepqkO6+5vd/cG5+dfI7FrhS6Z9n7/K9kcleXZ3f667v5nkiUkesuI5eVp3X9jdn8gsYN56lf3s6Hks8+dhNc/r7q909xeTvDfJh7r7Y1M7eGO2/vwCXCEJrADjuW6Sr60y/4+S/EeSd1bV56rquBXLvzD3+POZ9cztjBsmuc40PPO8qjovsx6ea03Lr7PKsRb1C0nuneTzNRs6e/tp/vbObVu1PmFFrdfPts99vvZU1ROq6tM1G8Z7Xma9fYds43j7JDlr7nh/luSa0/LfSlJJPlyzu8P+2nbq39prdsMkb5w7xqczuzHXtbay7Uo7+3wmyde7+1tbqStJvjL3+MJVprd2k61HZNZr+Jlp2O99p/mvSvKOJK+t2fDoP6yqfVbZ/jq5bFv7fGY3j5x/Tr489/jb26hlR85jmT8Pu1IXwIYgsAIMpKqOzCywXq5nrrsv6O4ndPeNMhsq+H+q6m5zq1x/7vENMuupTZJvJbnK3DF+cOWuV0x/IckZ3X21ua8Du/ve0/KzVjnWQrr7I919/8wC3psyDQvdzrl9e77+zIasztf6zBW1XqW7X7OtMrY8qNn1qr+dWS/Zwd19tSTfyCx0XmbdueN9N8khc8c7aMudYLv7y939yO6+Tma9pC+suetFV7G11+wLSe614rz2nXrdLncelzvBnX8+k+Tgqtp/K3XttO7+bHc/NLPX/g+S/E1V7T/1AD+tu2+R5A5J7pvkV1bZxZcyC4/zdV2cywa6ZdidPw+X+VnM5Z97AFYQWAEGUFUHTT1Or03yl9MQ0ZXr3LdmN/WpJOdn1uN2ydwqj6mq69Xs5jxPymxYYzIbGnnLqjq8ZjdiOn7Frr+S2TWBW3w4yflV9dvTDWX2qqrDpjCdzELmE6vq4Kq6XpLHLniOP1BVR1XVVbv7orlz2N65fTzJL0113DOzaze3eEmSR1fVT9TM/lV1n6o6cJGakhyYWeg5J8neVfXUJAeteG42TdcxprvPyuwa1WdNr9mVqurGVfVT03k8aHpOktl1p53LvkYrPaWqrlJVt0zy8Fz6mr04yTOr6obTfg+tqvsveE678nxu8bTp9bpzZgHy9Yseexs1PayqDu3ZRzadN82+pKruWlU/WrMbV52f2RDh1Z6z1yT5jar6oao6IJdeX3zxrta2Hbvz5+HjSe5dVVef3jg6dqmVA1wBCKwA6+vNVXVBZr04v5PZjV4evpV1b5rkH5N8M7MbxLywu989t/yvMgtTn5u+npEk3f3vSZ4+bfvZXL739qWZXVd6XlW9abqG736Z3YjojCTnJvnzzIbKJsnTMhv2eMZ0vFftwPn+cpLNVXV+ZjfX2fL5pts6t8dP9ZyX2XWMb9qys+4+JbPrWJ+fWUD8j8xuzLOod2R2U5t/n87pO7ns8M4tQe2rVbXlettfSfIDmX1u7tczu0HPtadlRyb5UFV9M8lJSR7f3Wds4/gnTzW/K8kfd/c7p/nPnbZ/59Q+PpjZjaIWtVPP5+TL03l9KbMbcj26uz+zA8femnsm+dT03Dw3yUOm60d/MLPn8PzMhj6fnOQvV9n+ZZm1tfdk1va+kwXfLNkVu/nn4VWZvYG0eVp31btIA3Cp2rF7MAAwoqranOTXu/sf17sWtq+qNmUWcPZZgx5CANhj6WEFAABgSAIrAAAAQzIkGAAAgCHpYQUAAGBIAisAAABD2nu9C1jEIYcc0ps2bVrvMgAAAFiCU0899dzuPnTl/D0isG7atCmnnHLKepcBAADAElTV51ebb0gwAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADCkvde7AAAAYGybjnvrepfALth8wn3Wu4SdpocVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIe293gXARrPpuLeudwnsgs0n3Ge9SwAA2DD0sAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAh7b3eBVxRbDruretdAjtp8wn3We8SAACAVehhBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEhLC6xVdf2q+ueq+nRVfaqqHj/Nv3pV/UNVfXb6fvCyagAAAGDPtcwe1ouTPKG7fyTJ7ZI8pqpukeS4JO/q7psmedc0DQAAAJextMDa3Wd190enxxck+XSS6ya5f5JXTKu9IskDllUDAAAAe641uYa1qjYluU2SDyW5VneflcxCbZJrbmWbY6rqlKo65ZxzzlmLMgEAABjI0gNrVR2Q5A1Jju3u8xfdrrtP7O4juvuIQw89dHkFAgAAMKSlBtaq2iezsPrq7v7bafZXqura0/JrJzl7mTUAAACwZ1rmXYIryUuTfLq7nz236KQkR0+Pj07yd8uqAQAAgD3X3kvc9x2T/HKS06vq49O8JyU5IclfV9UjkvxXkgctsQYAAAD2UEsLrN39viS1lcV3W9ZxAQAAuGJYk7sEAwAAwI4SWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEh7r3cBAACsvU3HvXW9S2AXbD7hPutdAqwJPawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJKbLgEMzE1R9mxuigIAu0YPKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQlhZYq+plVXV2VX1ybt7xVfXFqvr49HXvZR0fAACAPdsye1hfnuSeq8x/TncfPn29bYnHBwAAYA+2tMDa3e9J8rVl7R8AAIArtvW4hvV/V9Vp05Dhg7e2UlUdU1WnVNUp55xzzlrWBwAAwADWOrC+KMmNkxye5Kwkz9rait19Yncf0d1HHHrooWtUHgAAAKNY08Da3V/p7ku6+/tJXpLktmt5fAAAAPYcaxpYq+rac5M/l+STW1sXAACAjW3vZe24ql6T5C5JDqmqM5P8bpK7VNXhSTrJ5iSPWtbxAQAA2LMtLbB290NXmf3SZR0PAACAK5b1uEswAAAAbJfACgAAwJAEVgAAAIa0tGtYAYC1tem4t653CeyCzSfcZ71LABiOHlYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQthtYq+oqVfWUqnrJNH3Tqrrv8ksDAABgI1ukh/Uvknw3ye2n6TOTPGNpFQEAAEAWC6w37u4/THJRknT3hUlqqVUBAACw4S0SWL9XVfsl6SSpqhtn1uMKAAAAS7P3Auscn+TtSa5fVa9OcsckD19mUQAAALDdwNrd76yqU5PcLrOhwI/v7nOXXhkAAAAb2iJ3CX5Xd3+1u9/a3W/p7nOr6l1rURwAAAAb11Z7WKtq3yRXSXJIVR2cS2+0dFCS66xBbQAAAGxg2xoS/Kgkx2YWTk/NpYH1/CQvWG5ZAAAAbHRbDazd/dwkz62qx3b389awJgAAAFjopkvPq6rDktwiyb5z81+5zMIAAADY2LYbWKvqd5PcJbPA+rYk90ryviQCKwAAAEuz3bsEJ3lgkrsl+XJ3PzzJrZNcealVAQAAsOEtElgv7O7vJ7m4qg5KcnaSGy23LAAAADa67Q4JTnJKVV0tyUsyu1vwN5N8eJlFAQAAwDYDa1VVkv/X3ecleXFVvT3JQd192loUBwAAwMa1zSHB3d1J3jQ3vVlYBQAAYC0scg3rB6vqyKVXAgAAAHMWuYb1rkkeVVWfT/KtJJVZ5+utlloZAAAAG9oigfVeS68CAAAAVthuYO3uz69FIQAAADBvkWtYAQAAYM0JrAAAAAxpocBaVTesqp+eHu9XVQcutywAAAA2uu0G1qp6ZJK/SfJn06zrZe6zWQEAAGAZFulhfUySOyY5P0m6+7NJrrnMogAAAGCRwPrd7v7elomq2jtJL68kAAAAWCywnlxVT0qyX1XdPcnrk7x5uWUBAACw0S0SWI9Lck6S05M8Ksnbkjx5mUUBAADA3ttbobu/n+Ql0xcAAACsie0G1qo6I6tcs9rdN1pKRQAAAJAFAmuSI+Ye75vkQUmuvpxyAAAAYGa717B291fnvr7Y3X+S5H8svzQAAAA2skWGBP/Y3OSVMutxPXBpFQEAAEAWGxL8rLnHFyfZnOQXl1INAAAATBa5S/Bd16IQAAAAmLfda1ir6vFVdVDN/HlVfbSq7rEWxQEAALBxbTewJvm17j4/yT2SXDPJw5OcsNSqAAAA2PAWCaw1fb93kr/o7k/MzQMAAIClWCSwnlpV78wssL6jqg5M8v3llgUAAMBGt8hdgh+R5PAkn+vub1fV1TMbFgwAAABLs0gP6+2T/Ft3n1dVD0vy5CTfWG5ZAAAAbHSLBNYXJfl2Vd06yW8l+XySVy61KgAAADa8RQLrxd3dSe6f5Lnd/dwkBy63LAAAADa6Ra5hvaCqnpjkYUl+sqr2SrLPcssCAABgo1ukh/XBSb6b5BHd/eUk103yR0utCgAAgA1vuz2sU0h99tz0f8U1rAAAACzZVgNrVb2vu+9UVRck6flFSbq7D1p6dQAAAGxYWw2s3X2n6bsbLAEAALDmFrmGFQAAANacwAoAAMCQBFYAAACGJLACAAAwpG3dJXjl3YEvw12CAQAAWKZt3SX4wCSpqqcn+XKSV2X2kTZHJXHnYAAAAJZqkSHBP9PdL+zuC7r7/O5+UZJfWHZhAAAAbGyLBNZLquqoqtqrqq5UVUcluWTZhQEAALCxLRJYfynJLyb5yvT1oGkeAAAALM1Wr2Hdors3J7n/8ksBAACAS223h7WqblZV76qqT07Tt6qqJy+/NAAAADayRYYEvyTJE5NclCTdfVqShyyzKAAAAFgksF6luz+8Yt7FyygGAAAAtlgksJ5bVTdO0klSVQ9MctZSqwIAAGDD2+5Nl5I8JsmJSX64qr6Y5IwkRy21KgAAADa8RQJrd/dPV9X+Sa7U3RdU1Q8tuzAAAAA2tkWGBL8hSbr7W919wTTvb5ZXEgAAAGyjh7WqfjjJLZNctap+fm7RQUn2XXZhAAAAbGzbGhJ88yT3TXK1JPebm39BkkcusSYAAADYemDt7r9L8ndVdfvu/sAa1gQAAAAL3XTpmKq6XI9qd//aEuoBAACAJIsF1rfMPd43yc8l+dJyygEAAICZ7QbW7n7D/HRVvSbJPy6tIgAAAMhiH2uz0k2T3GB3FwIAAADzttvDWlUXJOkkNX3/cpLfXnJdAAAAbHCLDAk+cC0KAQAAgHmL3HQpVfXzSe6UWQ/re7v7TcssCgAAALZ7DWtVvTDJo5OcnuSTSR5dVS9YdmEAAABsbIv0sP5UksO6u5Okql6RWXjdpqp6WZL7Jjm7uw+b5l09yeuSbEqyOckvdvfXd6pyAAAArtAWuUvwv+WydwW+fpLTFtju5UnuuWLecUne1d03TfKuaRoAAAAuZ5HAeo0kn66qd1fVu5P8a5JDq+qkqjppaxt193uSfG3F7PsnecX0+BVJHrDDFQMAALAhLDIk+Km78XjX6u6zkqS7z6qqa25txao6JskxSXKDG/jYVwAAgI1mkcB6SpILu/v7VXWzJD+c5O+7+6JlFtbdJyY5MUmOOOKIXuaxAAAAGM8iQ4Lfk2TfqrpuZtedPjyz61N3xleq6tpJMn0/eyf3AwAAwBXcIoG1uvvbSX4+yfO6++eS3HInj3dSkqOnx0cn+bud3A8AAABXcAsF1qq6fZKjkrx1mrfXAhu9JskHkty8qs6sqkckOSHJ3avqs0nuPk0DAADA5SxyDeuxSZ6Y5I3d/amqulGSf97eRt390K0sutvi5QEAALBRbTewdvfJSU6em/5cksctsygAAADYamCtqj/p7mOr6s1JLneX3u7+2aVWBgAAwIa2rR7WV03f/3gtCgEAAIB5Ww2s3X3q9P3kqjp0enzOWhUGAADAxrbVuwTXzPFVdW6SzyT596o6p6qeunblAQAAsFFt62Ntjk1yxyRHdvc1uvvgJD+R5I5V9RtrURwAAAAb17YC668keWh3n7FlxnSH4IdNywAAAGBpthVY9+nuc1fOnK5j3Wd5JQEAAMC2A+v3dnIZAAAA7LJtfazNravq/FXmV5J9l1QPAAAAJNn2x9rstZaFAAAAwLxtDQkGAACAdSOwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABD2ns9DlpVm5NckOSSJBd39xHrUQcAAADjWpfAOrlrd5+7jscHAABgYIYEAwAAMKT1Cqyd5J1VdWpVHbPaClV1TFWdUlWnnHPOOWtcHgAAAOttvQLrHbv7x5LcK8ljquonV67Q3Sd29xHdfcShhx669hUCAACwrtYlsHb3l6bvZyd5Y5LbrkcdAAAAjGvNA2tV7V9VB255nOQeST651nUAAAAwtvW4S/C1kryxqrYc/6+6++3rUAcAAAADW/PA2t2fS3LrtT4uAAAAexYfawMAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABjSugTWqrpnVf1bVf1HVR23HjUAAAAwtjUPrFW1V5IXJLlXklskeWhV3WKt6wAAAGBs69HDetsk/9Hdn+vu7yV5bZL7r0MdAAAADGw9Aut1k3xhbvrMaR4AAAD8t+rutT1g1YOS/Ex3//o0/ctJbtvdj12x3jFJjpkmb57k39a0UFY6JMm5610EewRthR2hvbAjtBd2hPbCjtBe1t8Nu/vQlTP3XodCzkxy/bnp6yX50sqVuvvEJCeuVVFsW1Wd0t1HrHcdjE9bYUdoL+wI7YUdob2wI7SXca3HkOCPJLlpVf1QVf1AkockOWkd6gAAAGBga97D2t0XV9X/TvKOJHsleVl3f2qt6wAAAGBs6zEkON39tiRvW49js9MMz2ZR2go7QnthR2gv7AjthR2hvQxqzW+6BAAAAItYj2tYAQAAYLsE1g2oqi6pqo/PfR23m/b7L9P3TVX1yd2xT8a0ShvatN41sb7m2sQnq+r1VXUVvws2jtVe/x3cflNV/dKC6+32NlVVP7vlb2FVHV9Vv7m7j8HiVrSnN1fV1baz/qFV9aGq+lhV3XkJ9WgTe7Cqek5VHTs3/Y6q+vO56WdV1f/Zyrbvrip3Dl5nAuvGdGF3Hz73dcLu2Gl332F37Ic9wso2tHm9C2LdbWkThyX5XpJHr3dBrKldff03JdluYF2W7j5pd/0tZLeYb09fS/KY7ax/tySf6e7bdPd7FzlAVe21rWmuUP4lyR2SpKqulNnnrd5ybvkdkrx/HepiQQIr/62qNlfV71fVB6rqlKr6seldqP+sqkdP6xxQVe+qqo9W1elVdf+57b+5ftWznrbWLqrqyKo6rar2rar9q+pTVXXYetfL0r03yU2mx3tV1Uum1/6dVbVfklTV4VX1wal9vLGqDp7mv7uq/qCqPlxV/76lt6Sq9qqqP6qqj0zbPGp9To0FvDfJTarq6lX1pun1+mBV3SpJquqn5kZnfKyqDkxyQpI7T/N+Y+pJfe/0O+WjVbXNN0Sr6i5VdXJV/fXUbk6oqqOmdnR6Vd14Wu9+cz1x/1hV15rm/2pVPX/Jzws75wNJrpskVXXjqnp7VZ06tY8frqrDk/xhkntP7We/qrrH9L/MR6ce/wOm7TdX1VOr6n1JHrTK9COn3zGfqKo31A6OFGBY788UWDMLqp9MckFVHVxVV07yI0ky/Q45dfrf99pz2z+sqv6lZj3+t13b0kkE1o1qv7rscM4Hzy37QnffPrN/OF6e5IFJbpfk6dPy7yT5ue7+sSR3TfKsqqo1rJ0xzLehN2Yr7aK7P5LZ5yw/I7N/KP6yuw0RvQKrqr2T3CvJ6dOsmyZ5QXffMsl5SX5hmv/KJL/d3bea1v3dud3s3d23TXLs3PxHJPlGdx+Z5Mgkj6yqH1riqbATVrz+T0vysek1flJmr3mS/GaSx3T34UnunOTCJMclee/Uq/acJGcnufv0O+XBSf50gcPfOsnjk/xokl9OcrOpHf15ksdO67wvye26+zZJXpvkt3btjFmmmvV63i2zvyPJ7C6uj+3uH8+sHb2wuz+e5KlJXje1qf2TPDnJT0/t55Qk88M9v9Pdd+ru164y/bfdfWR33zrJpzP7vcMerru/lOTiqrpBZsH1A0k+lOT2SY7I7LV+TpIHTm3rZUmeObeL/adRhP9rWsYaW5ePtWHdXTj9Ul/Nlj8Kpyc5oLsvyOxdqO/U7BqSbyX5/ar6ySTfz+xdz2sl+fJyS2Ywl2lDVbVPtt4unp7kI5mF2setfamskf2q6uPT4/cmeWmS6yQ5Y/qHMklOTbKpqq6a5GrdffI0/xVJXj+3r7+dX396fI8kt6qqB07TV80sDJ+xe0+DnbTa6/+hTG9QdPc/VdU1ptf+/UmeXVWvziwgnLnK+577JHn+1Ht2SZKbLVDDR7r7rCSpqv9M8s5p/umZvZGWJNdL8rqp9+QHov2Makt72pTZ74F/mHpJ75Dk9XPt5cqrbHu7JLdI8v5pvR/ILKBs8boV689PH1ZVz0hytSQHJHnHrpwEQ9nSy3qHJM/O7P+UOyT5RpIvZvY35h+mNrNXkrPmtn1NknT3e6rqoKq6Wneft3alI7Cy0nen79+fe7xleu8kRyU5NMmPd/dFVbU5yb5rWiEj2la7uHpmf/j3meZ9a10qZNku90bY9Id//vfIJUn2W2BfW7a5JJf+narMelb8Azmm1V7/1UbfdHefUFVvTXLvJB+sqp9eZb3fSPKVzHpNr5TZG17bs/Jv1vzfsy3t6HlJnt3dJ1XVXZIcv8B+WXsXdvfh0xscb8nsGtaXJzlvG2+4b1FJ/qG7H7qV5Sv/Bs1PvzzJA7r7E1X1q0nusmNlM7At17H+aGZDgr+Q5AlJzk/yT0muO40wXM3KzwD1maBrzJBgdtRVk5w9hZK7JrnhehfEELbVLk5M8pQkr07yB+tRHGPp7m8k+XpdejfPX05y8jY2SWY9Hf9z6s1PVd2sqvZfYpnsuvdk9mZWpnB4bnefX1U37u7Tu/sPMhuu+cNJLkhy4Ny2V01yVnd/P7P2sbtuiHPVzHpTkuTo3bRPlmT6XfG4zIb/XpjkjKp6UDJ7Q6Sqbr3KZh9Mcsequsm03lWqapEe+mTWBs+afs8ctcsnwEjen+S+Sb7W3Zd099cy60m/fWa97IdW1e2T2aixqpq/KdODp/l3yuzSlG+saeXoYd2g5oduJcnbu3vRj7Z5dZI3V9UpST6e5DO7uTb2TKu2i6r6lSQXd/dfTdci/UtV/Y/u/qf1K5VBHJ3kxdNNTT6X5OHbWf/PMxse+NGp5+6cJA9YZoHssuOT/EVVnZbk27k0IB47vbF1SZJ/TfL3mfWCXlxVn8isl+uFSd4whZN/zu4bmXF8ZkNKv5hZsHEd9OC6+2NTu3hIZiHyRVX15MxG7bw2ySdWrH/O1Dv6mumGOsnsmtZ/X+BwT8lsKPvnMxtKfuC2V2cPcnpmdwf+qxXzDujus6fLTf506tXfO8mfJPnUtN7Xa/bRjQcl+bW1K5ktqluvNgAAAOMxJBgAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgC7QVV1Vb1qbnrvqjqnqt6yg/t5d1UdMT1+W1VdbTeXCgB7DJ/DCgC7x7eSHFZV+3X3hUnunuSLu7LD7r73bqkMAPZQelgBYPf5+yT3mR4/NMlrtiyoqv2r6mVV9ZGq+lhV3X+av19VvbaqTquq1yXZb26bzVV1SFVtqqpPzs3/zao6fnr87qp6TlW9p6o+XVVHVtXfVtVnq+oZa3DOALA0AisA7D6vTfKQqto3ya2SfGhu2e8k+afuPjLJXZP8UVXtn+R/Jvl2d98qyTOT/PhOHPd73f2TSV6c5O+SPCbJYUl+taqusdNnAwDrzJBgANhNuvu0qtqUWe/q21YsvkeSn62q35ym901ygyQ/meRP57Y/bScOfdL0/fQkn+rus5Kkqj6X5PpJvroT+wSAdSewAsDudVKSP05ylyTzvZuV5Be6+9/mV66qJOnt7PPiXHZU1L4rln93+v79ucdbpv2tB2CPZUgwAOxeL0vy9O4+fcX8dyR5bE0JtapuM81/T5KjpnmHZTaUeKWvJLlmVV2jqq6c5L5LqRwABiOwAsBu1N1ndvdzV1n0e0n2SXLadAOl35vmvyjJAdNQ4N9K8uFV9nlRkqdndk3sW5J8Zhm1A8Boqnt7o5AAAABg7elhBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADOn/AzjDS5+ZZsZkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig6, ax6 = plt.subplots(figsize=(16, 9))\n", + "ax6.bar(disp_med['submitted_via'], disp_med['dispute_rate'])\n", + "\n", + "ax6.set_title(\"Disputed issue rates per submission medium\")\n", + "ax6.set_xlabel('Medium')\n", + "ax6.set_ylabel('Disputed issue rate')" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "id": "c015f5bf", "metadata": {}, "outputs": [], "source": [ - "#@TODO NLP prediction" + "df_by_med = df[['submitted_via', 'timely_response']].groupby(['submitted_via', 'timely_response']).size().reset_index()\n", + "df_by_med = df_by_med[df_by_med['timely_response'] == 1]\n", + "df_by_med.columns = ['submitted_via', 'was timely_response', 'count']" ] + }, + { + "cell_type": "code", + "execution_count": 123, + "id": "67624d31", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(17.200000000000003, 0.5, 'Timely response count')" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAIICAYAAABEhEKaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAl2klEQVR4nO3df9TmdX3f+dc7jDFUI4KOHgJsxyO4LdKIdYLENLsmZIHq7mLOwnHcrNJdtqQuSWM3PbuY0xajpQd2q+yxqfaQwIKuEYhJVholZiL5oQaB0aCIP8o00ICwMukgIV2hC773j+sz8Zrh5p57fsA9fHw8zrnOfV2f6/v5zveC77nved7fH1PdHQAAAHim+5713gAAAAA4GAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFPYsN4bcLC98IUv7E2bNq33ZgAAAPAU+NznPvdn3b1xpfemC9xNmzZl27Zt670ZAAAAPAWq6t892XtOUQYAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAAprDXwK2q76uqW6rqC1V1R1X94hh/R1V9vapuG4/XLc15e1Vtr6qvVdUZS+Ovqqrbx3vvraoa48+uqmvH+M1VtWlpzrlVded4nHtQPz0AAADT2LCGZR5N8uPd/RdV9awkn66qG8Z7l3X3P19euKpOTLIlycuT/ECS362ql3X340nen+T8JJ9N8vEkZya5Icl5SR7s7uOrakuSS5O8saqOSnJRks1JOsnnqur67n7wwD42AAAAs9lr4HZ3J/mL8fJZ49GrTDkryTXd/WiSu6pqe5JTquruJM/r7puSpKo+kOQNWQTuWUneMeZ/JMkvjaO7ZyTZ2t07x5ytWUTxh9f+EQEAgKfTpgs/tt6bwAG4+5LXr/cm7Lc1XYNbVYdV1W1JHsgiOG8eb/1MVX2xqq6sqiPH2DFJ7lmafu8YO2Y833N8tznd/ViSh5K8YJV1AQAAwG7WFLjd/Xh3n5zk2CyOxp6UxenGL01ycpL7k7x7LF4rrWKV8f2d85eq6vyq2lZV23bs2LHKJwEAAGBW+3QX5e7+ZpLfT3Jmd39jhO+3k/xyklPGYvcmOW5p2rFJ7hvjx64wvtucqtqQ5IgkO1dZ157bdXl3b+7uzRs3btyXjwQAAMAk1nIX5Y1V9fzx/PAkP5Hkq1V19NJiP5nkS+P59Um2jDsjvyTJCUlu6e77kzxcVaeO62vfkuSjS3N23SH57CQ3jmt/P5Hk9Ko6cpwCffoYAwAAgN2s5S7KRye5uqoOyyKIr+vu36qqD1bVyVmcMnx3kp9Oku6+o6quS/LlJI8luWDcQTlJ3prkqiSHZ3FzqV13Y74iyQfHDal2ZnEX5nT3zqp6V5Jbx3Lv3HXDKQAAAFi2lrsofzHJK1cYf/Mqcy5OcvEK49uSnLTC+CNJznmSdV2Z5Mq9bScAAADf3fbpGlwAAAA4VAlcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsNfArarvq6pbquoLVXVHVf3iGD+qqrZW1Z3j65FLc95eVdur6mtVdcbS+Kuq6vbx3nurqsb4s6vq2jF+c1VtWppz7vgz7qyqcw/qpwcAAGAaazmC+2iSH+/uVyQ5OcmZVXVqkguTfLK7T0jyyfE6VXViki1JXp7kzCTvq6rDxrren+T8JCeMx5lj/LwkD3b38UkuS3LpWNdRSS5K8uokpyS5aDmkAQAAYJe9Bm4v/MV4+azx6CRnJbl6jF+d5A3j+VlJrunuR7v7riTbk5xSVUcneV5339TdneQDe8zZta6PJDltHN09I8nW7t7Z3Q8m2ZrvRDEAAAD8pTVdg1tVh1XVbUkeyCI4b07y4u6+P0nG1xeNxY9Jcs/S9HvH2DHj+Z7ju83p7seSPJTkBausa8/tO7+qtlXVth07dqzlIwEAADCZNQVudz/e3ScnOTaLo7EnrbJ4rbSKVcb3d87y9l3e3Zu7e/PGjRtX2TQAAABmtU93Ue7ubyb5/SxOE/7GOO044+sDY7F7kxy3NO3YJPeN8WNXGN9tTlVtSHJEkp2rrAsAAAB2s5a7KG+squeP54cn+YkkX01yfZJddzU+N8lHx/Prk2wZd0Z+SRY3k7plnMb8cFWdOq6vfcsec3at6+wkN47rdD+R5PSqOnLcXOr0MQYAAAC72bCGZY5OcvW4E/L3JLmuu3+rqm5Kcl1VnZfkT5OckyTdfUdVXZfky0keS3JBdz8+1vXWJFclOTzJDeORJFck+WBVbc/iyO2Wsa6dVfWuJLeO5d7Z3TsP5AMDAAAwp70Gbnd/MckrVxj/90lOe5I5Fye5eIXxbUmecP1udz+SEcgrvHdlkiv3tp0AAAB8d9una3ABAADgUCVwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsNfArarjqur3quorVXVHVf3cGH9HVX29qm4bj9ctzXl7VW2vqq9V1RlL46+qqtvHe++tqhrjz66qa8f4zVW1aWnOuVV153ice1A/PQAAANPYsIZlHkvy8939+ar6/iSfq6qt473LuvufLy9cVScm2ZLk5Ul+IMnvVtXLuvvxJO9Pcn6Szyb5eJIzk9yQ5LwkD3b38VW1JcmlSd5YVUcluSjJ5iQ9/uzru/vBA/vYAAAAzGavR3C7+/7u/vx4/nCSryQ5ZpUpZyW5prsf7e67kmxPckpVHZ3ked19U3d3kg8kecPSnKvH848kOW0c3T0jydbu3jmidmsWUQwAAAC72adrcMepw69McvMY+pmq+mJVXVlVR46xY5LcszTt3jF2zHi+5/huc7r7sSQPJXnBKuvac7vOr6ptVbVtx44d+/KRAAAAmMSaA7eqnpvk15O8rbv/PIvTjV+a5OQk9yd5965FV5jeq4zv75zvDHRf3t2bu3vzxo0bV/sYAAAATGpNgVtVz8oibj/U3b+RJN39je5+vLu/neSXk5wyFr83yXFL049Nct8YP3aF8d3mVNWGJEck2bnKugAAAGA3a7mLciW5IslXuvs9S+NHLy32k0m+NJ5fn2TLuDPyS5KckOSW7r4/ycNVdepY51uSfHRpzq47JJ+d5MZxne4nkpxeVUeOU6BPH2MAAACwm7XcRflHkrw5ye1VddsY+4Ukb6qqk7M4ZfjuJD+dJN19R1Vdl+TLWdyB+YJxB+UkeWuSq5IcnsXdk28Y41ck+WBVbc/iyO2Wsa6dVfWuJLeO5d7Z3Tv354MCAAAwt70Gbnd/OitfC/vxVeZcnOTiFca3JTlphfFHkpzzJOu6MsmVe9tOAAAAvrvt012UAQAA4FAlcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAAprDXwK2q46rq96rqK1V1R1X93Bg/qqq2VtWd4+uRS3PeXlXbq+prVXXG0virqur28d57q6rG+LOr6toxfnNVbVqac+74M+6sqnMP6qcHAABgGms5gvtYkp/v7r+e5NQkF1TViUkuTPLJ7j4hySfH64z3tiR5eZIzk7yvqg4b63p/kvOTnDAeZ47x85I82N3HJ7ksyaVjXUcluSjJq5OckuSi5ZAGAACAXfYauN19f3d/fjx/OMlXkhyT5KwkV4/Frk7yhvH8rCTXdPej3X1Xku1JTqmqo5M8r7tv6u5O8oE95uxa10eSnDaO7p6RZGt37+zuB5NszXeiGAAAAP7SPl2DO04dfmWSm5O8uLvvTxYRnORFY7FjktyzNO3eMXbMeL7n+G5zuvuxJA8lecEq6wIAAIDdrDlwq+q5SX49ydu6+89XW3SFsV5lfH/nLG/b+VW1raq27dixY5VNAwAAYFZrCtyqelYWcfuh7v6NMfyNcdpxxtcHxvi9SY5bmn5skvvG+LErjO82p6o2JDkiyc5V1rWb7r68uzd39+aNGzeu5SMBAAAwmbXcRbmSXJHkK939nqW3rk+y667G5yb56NL4lnFn5JdkcTOpW8ZpzA9X1aljnW/ZY86udZ2d5MZxne4nkpxeVUeOm0udPsYAAABgNxvWsMyPJHlzktur6rYx9gtJLklyXVWdl+RPk5yTJN19R1Vdl+TLWdyB+YLufnzMe2uSq5IcnuSG8UgWAf3BqtqexZHbLWNdO6vqXUluHcu9s7t37t9HBQAAYGZ7Ddzu/nRWvhY2SU57kjkXJ7l4hfFtSU5aYfyRjEBe4b0rk1y5t+0EAADgu9s+3UUZAAAADlUCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCnsN3Kq6sqoeqKovLY29o6q+XlW3jcfrlt57e1Vtr6qvVdUZS+Ovqqrbx3vvraoa48+uqmvH+M1VtWlpzrlVded4nHvQPjUAAADTWcsR3KuSnLnC+GXdffJ4fDxJqurEJFuSvHzMeV9VHTaWf3+S85OcMB671nlekge7+/gklyW5dKzrqCQXJXl1klOSXFRVR+7zJwQAAOC7wl4Dt7v/MMnONa7vrCTXdPej3X1Xku1JTqmqo5M8r7tv6u5O8oEkb1iac/V4/pEkp42ju2ck2drdO7v7wSRbs3JoAwAAwAFdg/szVfXFcQrzriOrxyS5Z2mZe8fYMeP5nuO7zenux5I8lOQFq6wLAAAAnmB/A/f9SV6a5OQk9yd59xivFZbtVcb3d85uqur8qtpWVdt27NixymYDAAAwq/0K3O7+Rnc/3t3fTvLLWVwjmyyOsh63tOixSe4b48euML7bnKrakOSILE6JfrJ1rbQ9l3f35u7evHHjxv35SAAAADzD7Vfgjmtqd/nJJLvusHx9ki3jzsgvyeJmUrd09/1JHq6qU8f1tW9J8tGlObvukHx2khvHdbqfSHJ6VR05ToE+fYwBAADAE2zY2wJV9eEkr03ywqq6N4s7G7+2qk7O4pThu5P8dJJ09x1VdV2SLyd5LMkF3f34WNVbs7gj8+FJbhiPJLkiyQeransWR263jHXtrKp3Jbl1LPfO7l7rza4AAAD4LrPXwO3uN60wfMUqy1+c5OIVxrclOWmF8UeSnPMk67oyyZV720YAAAA4kLsoAwAAwCFD4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABT2LDeGwAAwKFv04UfW+9N4ADcfcnr13sT4GnhCC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAU9hr4FbVlVX1QFV9aWnsqKraWlV3jq9HLr339qraXlVfq6ozlsZfVVW3j/feW1U1xp9dVdeO8ZuratPSnHPHn3FnVZ170D41AAAA01nLEdyrkpy5x9iFST7Z3Sck+eR4nao6McmWJC8fc95XVYeNOe9Pcn6SE8Zj1zrPS/Jgdx+f5LIkl451HZXkoiSvTnJKkouWQxoAAACW7TVwu/sPk+zcY/isJFeP51cnecPS+DXd/Wh335Vke5JTquroJM/r7pu6u5N8YI85u9b1kSSnjaO7ZyTZ2t07u/vBJFvzxNAGAACAJPt/De6Lu/v+JBlfXzTGj0lyz9Jy946xY8bzPcd3m9PdjyV5KMkLVlnXE1TV+VW1raq27dixYz8/EgAAAM9kB/smU7XCWK8yvr9zdh/svry7N3f35o0bN65pQwEAAJjL/gbuN8ZpxxlfHxjj9yY5bmm5Y5PcN8aPXWF8tzlVtSHJEVmcEv1k6wIAAIAn2N/AvT7Jrrsan5vko0vjW8adkV+Sxc2kbhmnMT9cVaeO62vfssecXes6O8mN4zrdTyQ5vaqOHDeXOn2MAQAAwBNs2NsCVfXhJK9N8sKqujeLOxtfkuS6qjovyZ8mOSdJuvuOqrouyZeTPJbkgu5+fKzqrVnckfnwJDeMR5JckeSDVbU9iyO3W8a6dlbVu5LcOpZ7Z3fvebMrAAAASLKGwO3uNz3JW6c9yfIXJ7l4hfFtSU5aYfyRjEBe4b0rk1y5t20EAACAg32TKQAAAFgXAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoHFLhVdXdV3V5Vt1XVtjF2VFVtrao7x9cjl5Z/e1Vtr6qvVdUZS+OvGuvZXlXvraoa48+uqmvH+M1VtelAthcAAIB5HYwjuD/W3Sd39+bx+sIkn+zuE5J8crxOVZ2YZEuSlyc5M8n7quqwMef9Sc5PcsJ4nDnGz0vyYHcfn+SyJJcehO0FAABgQk/FKcpnJbl6PL86yRuWxq/p7ke7+64k25OcUlVHJ3led9/U3Z3kA3vM2bWujyQ5bdfRXQAAAFh2oIHbSX6nqj5XVeePsRd39/1JMr6+aIwfk+Sepbn3jrFjxvM9x3eb092PJXkoyQv23IiqOr+qtlXVth07dhzgRwIAAOCZaMMBzv+R7r6vql6UZGtVfXWVZVc68tqrjK82Z/eB7suTXJ4kmzdvfsL7AAAAzO+AjuB2933j6wNJfjPJKUm+MU47zvj6wFj83iTHLU0/Nsl9Y/zYFcZ3m1NVG5IckWTngWwzAAAAc9rvwK2q51TV9+96nuT0JF9Kcn2Sc8di5yb56Hh+fZIt487IL8niZlK3jNOYH66qU8f1tW/ZY86udZ2d5MZxnS4AAADs5kBOUX5xkt8c93zakORXu/u3q+rWJNdV1XlJ/jTJOUnS3XdU1XVJvpzksSQXdPfjY11vTXJVksOT3DAeSXJFkg9W1fYsjtxuOYDtBQAAYGL7Hbjd/SdJXrHC+L9PctqTzLk4ycUrjG9LctIK449kBDIAAACs5qn4Z4IAAADgaSdwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsGG9NwCAg2fThR9b703gANx9yevXexMA4BnNEVwAAACmIHABAACYgsAFAABgCq7BBYDvUq7ZfmZzzTbAEzmCCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMIUN670BwOo2Xfix9d4EDsDdl7x+vTcBAOC7hiO4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADCFZ0TgVtWZVfW1qtpeVReu9/YAAABw6DnkA7eqDkvyL5P87SQnJnlTVZ24vlsFAADAoeaQD9wkpyTZ3t1/0t3/Mck1Sc5a520CAADgELNhvTdgDY5Jcs/S63uTvHqdtuWg2HThx9Z7EzgAd1/y+vXeBAAAYAXV3eu9DauqqnOSnNHd/+N4/eYkp3T3zy4tc36S88fL/zTJ1572DWXZC5P82XpvBM8Y9hf2hf2FfWF/YV/YX9gX9pf19Ve7e+NKbzwTjuDem+S4pdfHJrlveYHuvjzJ5U/nRvHkqmpbd29e7+3gmcH+wr6wv7Av7C/sC/sL+8L+cuh6JlyDe2uSE6rqJVX1vUm2JLl+nbcJAACAQ8whfwS3ux+rqp9J8okkhyW5srvvWOfNAgAA4BBzyAduknT3x5N8fL23gzVzujj7wv7CvrC/sC/sL+wL+wv7wv5yiDrkbzIFAAAAa/FMuAYXAAAA9krgsqqqeryqblt6XHiQ1vtH4+umqvrSwVgnh64V9qNN671NrJ+l/eFLVfVrVfVXfC/47rLSPrCP8zdV1X+7xuUO+n5VVf/1rp+HVfWOqvqHB/vPYG322Jf+dVU9fy/Lb6yqm6vqj6vqR5+C7bE/PINV1WVV9bal15+oql9Zev3uqvqfn2Tu71eVuyofAgQue/Ot7j556XHJwVhpd7/mYKyHZ4w996O713uDWFe79oeTkvzHJH9vvTeIp92B7gObkuw1cJ8q3X39wfp5yAFb3pd2JrlgL8ufluSr3f3K7v7UWv6AqjpstddM5Y+SvCZJqup7svi3bl++9P5rknxmHbaLfSBw2S9VdXdV/bOquqmqtlXV3xy/5fq3VfX3xjLPrapPVtXnq+r2qjpraf5frN/Ws96ebN+oqh+qqi9W1fdV1XOq6o6qOmm9t5en1KeSHD+eH1ZVvzz+v/9OVR2eJFV1clV9duwbv1lVR47x36+qS6vqlqr6N7uOxlTVYVX1v1fVrWPOT6/PR2ONPpXk+Ko6qqr+7/H/7LNV9YNJUlX/+dLZH39cVd+f5JIkPzrG/sE4Uvup8T3l81W16i9Rq+q1VfUHVXXd2HcuqaqfGvvS7VX10rHcf7V0tO93q+rFY/zvVNUvPcX/Xdh3NyU5Jkmq6qVV9dtV9bmxb/y1qjo5yf+W5HVj3zm8qk4ff5f5/Dib4Llj/t1V9U+q6tNJzlnh9d8d32O+UFW/Xvt4FgKHrM9kBG4WYfulJA9X1ZFV9ewkfz1JxvePz42/+x69NP+/q6o/qsUZBac8vZvOLgKXvTm8dj+19I1L793T3T+cxV9OrkpydpJTk7xzvP9Ikp/s7r+Z5MeSvLuq6mncdg4dy/vRb+ZJ9o3uvjWLf+f6n2bxl5D/q7udtjqpqtqQ5G8nuX0MnZDkX3b3y5N8M8l/M8Y/kOR/7e4fHMtetLSaDd19SpK3LY2fl+Sh7v6hJD+U5O9W1Uuewo/CftpjH/jFJH88/j//Qhb/35PkHya5oLtPTvKjSb6V5MIknxpH7i5L8kCS/2J8T3ljkveu4Y9/RZKfS/I3krw5ycvGvvQrSX52LPPpJKd29yuTXJPkfzmwT8xTpRZHVU/L4mdIsrjD7c9296uy2Ife1923JfknSa4d+9NzkvyjJD8x9p1tSZZPP32ku/9Wd1+zwuvf6O4f6u5XJPlKFt93eIbr7vuSPFZV/0kWoXtTkpuT/HCSzVn8v74sydlj37oyycVLq3jOOEvxfxrvsQ6eEf9MEOvqW+OHwEp2/RC5Pclzu/vhLH7L9UgtroH5D0n+WVX9Z0m+ncVvVV+c5P95ajeZQ9Bu+1FVPStPvm+8M8mtWUTw33/6N5WnweFVddt4/qkkVyT5gSR3jb+AJsnnkmyqqiOSPL+7/2CMX53k15bW9RvLy4/npyf5wao6e7w+Iot4vuvgfgwOwEr7wM0Zv9To7hur6gXj//9nkrynqj6URVTcu8LvSp+V5JfGEbrHk7xsDdtwa3ffnyRV9W+T/M4Yvz2LX7wlybFJrh1HaL439qFD0a59aVMW3we2jqOwr0nya0v7yrNXmHtqkhOTfGYs971ZBM0u1+6x/PLrk6rqnyZ5fpLnJvnEgXwIDim7juK+Jsl7svg7ymuSPJTk61n8jNk69pnDkty/NPfDSdLdf1hVz6uq53f3N5++TScRuByYR8fXby893/V6Q5KfSrIxyau6+/+rqruTfN/TuoUcqlbbN47K4i8Lzxpj/2FdtpCn0hN+cTb+orD8feTxJIevYV275jye7/xMqyyO3PgL56FrpX1gpTN8ursvqaqPJXldks9W1U+ssNw/SPKNLI7Kfk8WvyDbmz1/bi3/TNu1L/2LJO/p7uur6rVJ3rGG9fL0+lZ3nzx+GfJbWVyDe1WSb67yC/pdKsnW7n7Tk7y/58+f5ddXJXlDd3+hqv5Oktfu22ZzCNt1He7fyOIU5XuS/HySP09yY5JjxhmMK9nz31/177GuA6co81Q6IskDI2B+LMlfXe8N4pCx2r5xeZJ/nORDSS5dj43j0NHdDyV5sL5zt9M3J/mDVaYkiyMpbx1nCqSqXlZVz3kKN5OD4w+z+OVXRkz+WXf/eVW9tLtv7+5LsziF9K8leTjJ9y/NPSLJ/d397Sz2kYN1E6AjsjhikyTnHqR18hQY3yv+fhanI38ryV1VdU6y+OVJVb1ihWmfTfIjVXX8WO6vVNVajv4ni/3v/vF95qcO+ANwKPlMkv8yyc7ufry7d2ZxpP6HsziKv7GqfjhZnJFWVcs3oXrjGP9bWVwq89DTuuUkcQSXvVs+jSxJfru71/pPBX0oyb+uqm1Jbkvy1YO8bTxzrbhvVNVbkjzW3b86rqf6o6r68e6+cf02lUPAuUn+1biJy58k+e/3svyvZHG64ufHUcEdSd7wVG4gB8U7kvyfVfXFJP9vvhOUbxu/CHs8yZeT3JDFUdbHquoLWRxJe1+SXx9B83s5eGd+vCOL01y/nkUMuZb7ENbdfzz2iS1ZROf7q+ofZXFG0DVJvrDH8jvG0dcPjxsIJYtrcv/NGv64f5zFafX/LovT2r9/9cV5Brk9i7sn/+oeY8/t7gfG5S/vHWcNbEjyfyS5Yyz3YC3+KcznJfkfnr5NZll1O3IOAADAM59TlAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApvD/A8ocwoYFjp6rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig7, ax7 = plt.subplots(figsize=(16, 9))\n", + "ax7.bar(df_by_med['submitted_via'], df_by_med['count'])\n", + "\n", + "ax6.set_title(\"Number of timely responses per submission medium\")\n", + "ax6.set_xlabel('Medium')\n", + "ax6.set_ylabel('Timely response count')" + ] + }, + { + "cell_type": "markdown", + "id": "f5b3e26b", + "metadata": {}, + "source": [ + "### Analysis:\n", + "Quicker, digital forms of communication such as *Email* and *Web* clearly have a higher dispute rate than *Postal mail* or *Referral*, however it should be noted that timeliness of the response does not hold much weight for digital forms. This could highlight the possible complacency/bureaucracy that these companies may have that causes them to give a clearly untimely response, and can also warrant further delving into the structure of customer service in such companies." + ] + }, + { + "cell_type": "markdown", + "id": "f9d51a96", + "metadata": {}, + "source": [ + "## Sentiment Analysis/Prediction:" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "5aa0caf7", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 56b664fa116296e9ea44d610f1651674c44422fa Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Fri, 30 Sep 2022 19:54:54 -0500 Subject: [PATCH 09/12] Finished quick ML prediction, PDF and hypotheses are remaining --- consumer_analysis.ipynb | 608 +++++++++++++++++++++++++++++++++++----- 1 file changed, 533 insertions(+), 75 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index ec389d6..7f1f005 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "6b1a83c8", + "id": "2532726f", "metadata": {}, "source": [ "# Analyzing Consumer Complaints from Financial Corporations/Institutions" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "bef4646a", + "id": "5f270b27", "metadata": {}, "source": [ "## Introduction:\n", @@ -19,7 +19,7 @@ }, { "cell_type": "markdown", - "id": "af832702", + "id": "dd4e748c", "metadata": {}, "source": [ "## Getting Required Packages:" @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 55, "id": "0060a11a", "metadata": {}, "outputs": [ @@ -59,13 +59,12 @@ "from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n", "from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_report\n", "\n", - "#import nltk\n", "%matplotlib inline" ] }, { "cell_type": "markdown", - "id": "b71085bc", + "id": "53fc5391", "metadata": {}, "source": [ "## Importing and Cleaning Data" @@ -73,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 2, "id": "f92ee33a", "metadata": {}, "outputs": [ @@ -279,7 +278,7 @@ "4 511067 " ] }, - "execution_count": 107, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -291,7 +290,7 @@ }, { "cell_type": "markdown", - "id": "614bd252", + "id": "88e39fd7", "metadata": {}, "source": [ "Having a clean dataset allows for higher accuracy in visualizing, analyzing and in this case predicting on the dataset. In order to make the most efficient use of the above data, I am checking for the number of empty/NaN rows:" @@ -299,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 3, "id": "73bf52d6", "metadata": {}, "outputs": [ @@ -327,7 +326,7 @@ "dtype: int64" ] }, - "execution_count": 108, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +338,7 @@ }, { "cell_type": "markdown", - "id": "ed147dae", + "id": "e8db998a", "metadata": {}, "source": [ "From the above output it is evident that the dataset if populated with many NaNs. However, removing all NaN values can cause overfitting in the prediction model and inaccuracies in the data analysis.\n", @@ -349,8 +348,8 @@ }, { "cell_type": "code", - "execution_count": 109, - "id": "99db09c6", + "execution_count": 4, + "id": "45eebff3", "metadata": {}, "outputs": [ { @@ -365,7 +364,7 @@ "dtype: float64" ] }, - "execution_count": 109, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -379,17 +378,18 @@ }, { "cell_type": "markdown", - "id": "767768d6", + "id": "dee366ce", "metadata": {}, "source": [ - "The above columns will now be dropped as they have too many NaNs to have any use in our dataset. \n", + "The above columns will now be dropped as they have too many NaNs to have any use in our dataset.\n", + "\n", "*NOTE:* Along with these, the *complaint_id* column will aso be dropped for not being relevant in our analysis" ] }, { "cell_type": "code", - "execution_count": 110, - "id": "a0ef79df", + "execution_count": 5, + "id": "252d522a", "metadata": {}, "outputs": [ { @@ -531,7 +531,7 @@ "4 1 " ] }, - "execution_count": 110, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -551,7 +551,7 @@ }, { "cell_type": "markdown", - "id": "3bbb0b0f", + "id": "0e9dee79", "metadata": {}, "source": [ "## Data Analysis and Visualization:\n", @@ -562,8 +562,8 @@ }, { "cell_type": "code", - "execution_count": 49, - "id": "3119cae1", + "execution_count": 6, + "id": "08b7d908", "metadata": {}, "outputs": [], "source": [ @@ -582,7 +582,7 @@ }, { "cell_type": "markdown", - "id": "6fc19ea8", + "id": "6693cced", "metadata": {}, "source": [ "### Disputes according to State:" @@ -590,15 +590,15 @@ }, { "cell_type": "code", - "execution_count": 58, - "id": "d3f2083c", + "execution_count": 29, + "id": "d6ad5d11", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "State is CA with disputes: 17615\n" + "State is CA with max disputes: 17615\n" ] } ], @@ -608,13 +608,13 @@ "st_c = disp_st['consumer_disputed?']\n", "m_st = disp_st['state'][pd.Series.argmax(st_c)]\n", "m_c = disp_st['consumer_disputed?'][pd.Series.argmax(st_c)]\n", - "print(\"State is\", m_st, \"with disputes:\", m_c)" + "print(\"State is\", m_st, \"with max disputes:\", m_c)" ] }, { "cell_type": "code", - "execution_count": 79, - "id": "b747bcfe", + "execution_count": 8, + "id": "6f0729b6", "metadata": {}, "outputs": [ { @@ -623,7 +623,7 @@ "Text(0.5, 1.0, 'Dispute counts per state')" ] }, - "execution_count": 79, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, @@ -650,8 +650,8 @@ }, { "cell_type": "code", - "execution_count": 81, - "id": "2d58c8fc", + "execution_count": 9, + "id": "6dfa6225", "metadata": {}, "outputs": [ { @@ -660,7 +660,7 @@ "Text(0.5, 1.0, 'Dispute rates per state')" ] }, - "execution_count": 81, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, @@ -687,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 10, "id": "17ec819c", "metadata": {}, "outputs": [], @@ -699,7 +699,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 11, "id": "15c92542", "metadata": {}, "outputs": [ @@ -779,7 +779,7 @@ "485 CA Credit reporting Incorrect information on credit report 8585" ] }, - "execution_count": 76, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -791,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 12, "id": "63fa2a3a", "metadata": {}, "outputs": [ @@ -878,7 +878,7 @@ "0 1 " ] }, - "execution_count": 77, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -890,7 +890,7 @@ }, { "cell_type": "markdown", - "id": "74c173a9", + "id": "eb748a29", "metadata": {}, "source": [ "### **Analysis**: \n", @@ -901,7 +901,7 @@ }, { "cell_type": "markdown", - "id": "47764af9", + "id": "f45775c1", "metadata": {}, "source": [ "### Disputes according to Product:" @@ -909,8 +909,8 @@ }, { "cell_type": "code", - "execution_count": 84, - "id": "790fcd51", + "execution_count": 13, + "id": "1b73be97", "metadata": {}, "outputs": [], "source": [ @@ -919,7 +919,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "id": "95b32810", "metadata": {}, "outputs": [ @@ -993,7 +993,7 @@ "0 Bank account or service Account opening, closing, or management 26661" ] }, - "execution_count": 21, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1007,7 +1007,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 15, "id": "cd258ff1", "metadata": {}, "outputs": [ @@ -1017,7 +1017,7 @@ "Text(0, 0.5, 'Product')" ] }, - "execution_count": 88, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, @@ -1045,8 +1045,8 @@ }, { "cell_type": "code", - "execution_count": 95, - "id": "e5597801", + "execution_count": 16, + "id": "40b666b1", "metadata": {}, "outputs": [ { @@ -1055,7 +1055,7 @@ "Text(0.5, 0, 'Disputed issue rate')" ] }, - "execution_count": 95, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, @@ -1083,7 +1083,7 @@ }, { "cell_type": "markdown", - "id": "733a9626", + "id": "61b80521", "metadata": {}, "source": [ "### Analysis:\n", @@ -1092,7 +1092,7 @@ }, { "cell_type": "markdown", - "id": "07ff8ba7", + "id": "32296070", "metadata": {}, "source": [ "### Disputes according to submission medium:" @@ -1100,8 +1100,8 @@ }, { "cell_type": "code", - "execution_count": 97, - "id": "0d2034ae", + "execution_count": 17, + "id": "fd3459f9", "metadata": {}, "outputs": [], "source": [ @@ -1110,8 +1110,8 @@ }, { "cell_type": "code", - "execution_count": 99, - "id": "c6d9b268", + "execution_count": 18, + "id": "abdbe069", "metadata": {}, "outputs": [ { @@ -1120,7 +1120,7 @@ "Text(0.5, 17.200000000000003, 'Disputed issue count')" ] }, - "execution_count": 99, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, @@ -1148,8 +1148,8 @@ }, { "cell_type": "code", - "execution_count": 103, - "id": "c1ec299a", + "execution_count": 19, + "id": "5c033a69", "metadata": {}, "outputs": [ { @@ -1158,7 +1158,7 @@ "Text(0, 0.5, 'Disputed issue rate')" ] }, - "execution_count": 103, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, @@ -1186,8 +1186,8 @@ }, { "cell_type": "code", - "execution_count": 122, - "id": "c015f5bf", + "execution_count": 21, + "id": "52069de3", "metadata": {}, "outputs": [], "source": [ @@ -1198,23 +1198,23 @@ }, { "cell_type": "code", - "execution_count": 123, - "id": "67624d31", + "execution_count": 22, + "id": "06157da5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(17.200000000000003, 0.5, 'Timely response count')" + "Text(0, 0.5, 'Timely response count')" ] }, - "execution_count": 123, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAIICAYAAABEhEKaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAl2klEQVR4nO3df9TmdX3f+dc7jDFUI4KOHgJsxyO4LdKIdYLENLsmZIHq7mLOwnHcrNJdtqQuSWM3PbuY0xajpQd2q+yxqfaQwIKuEYhJVholZiL5oQaB0aCIP8o00ICwMukgIV2hC773j+sz8Zrh5p57fsA9fHw8zrnOfV2f6/v5zveC77nved7fH1PdHQAAAHim+5713gAAAAA4GAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFPYsN4bcLC98IUv7E2bNq33ZgAAAPAU+NznPvdn3b1xpfemC9xNmzZl27Zt670ZAAAAPAWq6t892XtOUQYAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAAprDXwK2q76uqW6rqC1V1R1X94hh/R1V9vapuG4/XLc15e1Vtr6qvVdUZS+Ovqqrbx3vvraoa48+uqmvH+M1VtWlpzrlVded4nHtQPz0AAADT2LCGZR5N8uPd/RdV9awkn66qG8Z7l3X3P19euKpOTLIlycuT/ECS362ql3X340nen+T8JJ9N8vEkZya5Icl5SR7s7uOrakuSS5O8saqOSnJRks1JOsnnqur67n7wwD42AAAAs9lr4HZ3J/mL8fJZ49GrTDkryTXd/WiSu6pqe5JTquruJM/r7puSpKo+kOQNWQTuWUneMeZ/JMkvjaO7ZyTZ2t07x5ytWUTxh9f+EQEAgKfTpgs/tt6bwAG4+5LXr/cm7Lc1XYNbVYdV1W1JHsgiOG8eb/1MVX2xqq6sqiPH2DFJ7lmafu8YO2Y833N8tznd/ViSh5K8YJV1AQAAwG7WFLjd/Xh3n5zk2CyOxp6UxenGL01ycpL7k7x7LF4rrWKV8f2d85eq6vyq2lZV23bs2LHKJwEAAGBW+3QX5e7+ZpLfT3Jmd39jhO+3k/xyklPGYvcmOW5p2rFJ7hvjx64wvtucqtqQ5IgkO1dZ157bdXl3b+7uzRs3btyXjwQAAMAk1nIX5Y1V9fzx/PAkP5Hkq1V19NJiP5nkS+P59Um2jDsjvyTJCUlu6e77kzxcVaeO62vfkuSjS3N23SH57CQ3jmt/P5Hk9Ko6cpwCffoYAwAAgN2s5S7KRye5uqoOyyKIr+vu36qqD1bVyVmcMnx3kp9Oku6+o6quS/LlJI8luWDcQTlJ3prkqiSHZ3FzqV13Y74iyQfHDal2ZnEX5nT3zqp6V5Jbx3Lv3HXDKQAAAFi2lrsofzHJK1cYf/Mqcy5OcvEK49uSnLTC+CNJznmSdV2Z5Mq9bScAAADf3fbpGlwAAAA4VAlcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsNfArarvq6pbquoLVXVHVf3iGD+qqrZW1Z3j65FLc95eVdur6mtVdcbS+Kuq6vbx3nurqsb4s6vq2jF+c1VtWppz7vgz7qyqcw/qpwcAAGAaazmC+2iSH+/uVyQ5OcmZVXVqkguTfLK7T0jyyfE6VXViki1JXp7kzCTvq6rDxrren+T8JCeMx5lj/LwkD3b38UkuS3LpWNdRSS5K8uokpyS5aDmkAQAAYJe9Bm4v/MV4+azx6CRnJbl6jF+d5A3j+VlJrunuR7v7riTbk5xSVUcneV5339TdneQDe8zZta6PJDltHN09I8nW7t7Z3Q8m2ZrvRDEAAAD8pTVdg1tVh1XVbUkeyCI4b07y4u6+P0nG1xeNxY9Jcs/S9HvH2DHj+Z7ju83p7seSPJTkBausa8/tO7+qtlXVth07dqzlIwEAADCZNQVudz/e3ScnOTaLo7EnrbJ4rbSKVcb3d87y9l3e3Zu7e/PGjRtX2TQAAABmtU93Ue7ubyb5/SxOE/7GOO044+sDY7F7kxy3NO3YJPeN8WNXGN9tTlVtSHJEkp2rrAsAAAB2s5a7KG+squeP54cn+YkkX01yfZJddzU+N8lHx/Prk2wZd0Z+SRY3k7plnMb8cFWdOq6vfcsec3at6+wkN47rdD+R5PSqOnLcXOr0MQYAAAC72bCGZY5OcvW4E/L3JLmuu3+rqm5Kcl1VnZfkT5OckyTdfUdVXZfky0keS3JBdz8+1vXWJFclOTzJDeORJFck+WBVbc/iyO2Wsa6dVfWuJLeO5d7Z3TsP5AMDAAAwp70Gbnd/MckrVxj/90lOe5I5Fye5eIXxbUmecP1udz+SEcgrvHdlkiv3tp0AAAB8d9una3ABAADgUCVwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsNfArarjqur3quorVXVHVf3cGH9HVX29qm4bj9ctzXl7VW2vqq9V1RlL46+qqtvHe++tqhrjz66qa8f4zVW1aWnOuVV153ice1A/PQAAANPYsIZlHkvy8939+ar6/iSfq6qt473LuvufLy9cVScm2ZLk5Ul+IMnvVtXLuvvxJO9Pcn6Szyb5eJIzk9yQ5LwkD3b38VW1JcmlSd5YVUcluSjJ5iQ9/uzru/vBA/vYAAAAzGavR3C7+/7u/vx4/nCSryQ5ZpUpZyW5prsf7e67kmxPckpVHZ3ked19U3d3kg8kecPSnKvH848kOW0c3T0jydbu3jmidmsWUQwAAAC72adrcMepw69McvMY+pmq+mJVXVlVR46xY5LcszTt3jF2zHi+5/huc7r7sSQPJXnBKuvac7vOr6ptVbVtx44d+/KRAAAAmMSaA7eqnpvk15O8rbv/PIvTjV+a5OQk9yd5965FV5jeq4zv75zvDHRf3t2bu3vzxo0bV/sYAAAATGpNgVtVz8oibj/U3b+RJN39je5+vLu/neSXk5wyFr83yXFL049Nct8YP3aF8d3mVNWGJEck2bnKugAAAGA3a7mLciW5IslXuvs9S+NHLy32k0m+NJ5fn2TLuDPyS5KckOSW7r4/ycNVdepY51uSfHRpzq47JJ+d5MZxne4nkpxeVUeOU6BPH2MAAACwm7XcRflHkrw5ye1VddsY+4Ukb6qqk7M4ZfjuJD+dJN19R1Vdl+TLWdyB+YJxB+UkeWuSq5IcnsXdk28Y41ck+WBVbc/iyO2Wsa6dVfWuJLeO5d7Z3Tv354MCAAAwt70Gbnd/OitfC/vxVeZcnOTiFca3JTlphfFHkpzzJOu6MsmVe9tOAAAAvrvt012UAQAA4FAlcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAAprDXwK2q46rq96rqK1V1R1X93Bg/qqq2VtWd4+uRS3PeXlXbq+prVXXG0virqur28d57q6rG+LOr6toxfnNVbVqac+74M+6sqnMP6qcHAABgGms5gvtYkp/v7r+e5NQkF1TViUkuTPLJ7j4hySfH64z3tiR5eZIzk7yvqg4b63p/kvOTnDAeZ47x85I82N3HJ7ksyaVjXUcluSjJq5OckuSi5ZAGAACAXfYauN19f3d/fjx/OMlXkhyT5KwkV4/Frk7yhvH8rCTXdPej3X1Xku1JTqmqo5M8r7tv6u5O8oE95uxa10eSnDaO7p6RZGt37+zuB5NszXeiGAAAAP7SPl2DO04dfmWSm5O8uLvvTxYRnORFY7FjktyzNO3eMXbMeL7n+G5zuvuxJA8lecEq6wIAAIDdrDlwq+q5SX49ydu6+89XW3SFsV5lfH/nLG/b+VW1raq27dixY5VNAwAAYFZrCtyqelYWcfuh7v6NMfyNcdpxxtcHxvi9SY5bmn5skvvG+LErjO82p6o2JDkiyc5V1rWb7r68uzd39+aNGzeu5SMBAAAwmbXcRbmSXJHkK939nqW3rk+y667G5yb56NL4lnFn5JdkcTOpW8ZpzA9X1aljnW/ZY86udZ2d5MZxne4nkpxeVUeOm0udPsYAAABgNxvWsMyPJHlzktur6rYx9gtJLklyXVWdl+RPk5yTJN19R1Vdl+TLWdyB+YLufnzMe2uSq5IcnuSG8UgWAf3BqtqexZHbLWNdO6vqXUluHcu9s7t37t9HBQAAYGZ7Ddzu/nRWvhY2SU57kjkXJ7l4hfFtSU5aYfyRjEBe4b0rk1y5t+0EAADgu9s+3UUZAAAADlUCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCnsN3Kq6sqoeqKovLY29o6q+XlW3jcfrlt57e1Vtr6qvVdUZS+Ovqqrbx3vvraoa48+uqmvH+M1VtWlpzrlVded4nHvQPjUAAADTWcsR3KuSnLnC+GXdffJ4fDxJqurEJFuSvHzMeV9VHTaWf3+S85OcMB671nlekge7+/gklyW5dKzrqCQXJXl1klOSXFRVR+7zJwQAAOC7wl4Dt7v/MMnONa7vrCTXdPej3X1Xku1JTqmqo5M8r7tv6u5O8oEkb1iac/V4/pEkp42ju2ck2drdO7v7wSRbs3JoAwAAwAFdg/szVfXFcQrzriOrxyS5Z2mZe8fYMeP5nuO7zenux5I8lOQFq6wLAAAAnmB/A/f9SV6a5OQk9yd59xivFZbtVcb3d85uqur8qtpWVdt27NixymYDAAAwq/0K3O7+Rnc/3t3fTvLLWVwjmyyOsh63tOixSe4b48euML7bnKrakOSILE6JfrJ1rbQ9l3f35u7evHHjxv35SAAAADzD7Vfgjmtqd/nJJLvusHx9ki3jzsgvyeJmUrd09/1JHq6qU8f1tW9J8tGlObvukHx2khvHdbqfSHJ6VR05ToE+fYwBAADAE2zY2wJV9eEkr03ywqq6N4s7G7+2qk7O4pThu5P8dJJ09x1VdV2SLyd5LMkF3f34WNVbs7gj8+FJbhiPJLkiyQeransWR263jHXtrKp3Jbl1LPfO7l7rza4AAAD4LrPXwO3uN60wfMUqy1+c5OIVxrclOWmF8UeSnPMk67oyyZV720YAAAA4kLsoAwAAwCFD4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABT2LDeGwAAwKFv04UfW+9N4ADcfcnr13sT4GnhCC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAU9hr4FbVlVX1QFV9aWnsqKraWlV3jq9HLr339qraXlVfq6ozlsZfVVW3j/feW1U1xp9dVdeO8ZuratPSnHPHn3FnVZ170D41AAAA01nLEdyrkpy5x9iFST7Z3Sck+eR4nao6McmWJC8fc95XVYeNOe9Pcn6SE8Zj1zrPS/Jgdx+f5LIkl451HZXkoiSvTnJKkouWQxoAAACW7TVwu/sPk+zcY/isJFeP51cnecPS+DXd/Wh335Vke5JTquroJM/r7pu6u5N8YI85u9b1kSSnjaO7ZyTZ2t07u/vBJFvzxNAGAACAJPt/De6Lu/v+JBlfXzTGj0lyz9Jy946xY8bzPcd3m9PdjyV5KMkLVlnXE1TV+VW1raq27dixYz8/EgAAAM9kB/smU7XCWK8yvr9zdh/svry7N3f35o0bN65pQwEAAJjL/gbuN8ZpxxlfHxjj9yY5bmm5Y5PcN8aPXWF8tzlVtSHJEVmcEv1k6wIAAIAn2N/AvT7Jrrsan5vko0vjW8adkV+Sxc2kbhmnMT9cVaeO62vfssecXes6O8mN4zrdTyQ5vaqOHDeXOn2MAQAAwBNs2NsCVfXhJK9N8sKqujeLOxtfkuS6qjovyZ8mOSdJuvuOqrouyZeTPJbkgu5+fKzqrVnckfnwJDeMR5JckeSDVbU9iyO3W8a6dlbVu5LcOpZ7Z3fvebMrAAAASLKGwO3uNz3JW6c9yfIXJ7l4hfFtSU5aYfyRjEBe4b0rk1y5t20EAACAg32TKQAAAFgXAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApiBwAQAAmILABQAAYAoHFLhVdXdV3V5Vt1XVtjF2VFVtrao7x9cjl5Z/e1Vtr6qvVdUZS+OvGuvZXlXvraoa48+uqmvH+M1VtelAthcAAIB5HYwjuD/W3Sd39+bx+sIkn+zuE5J8crxOVZ2YZEuSlyc5M8n7quqwMef9Sc5PcsJ4nDnGz0vyYHcfn+SyJJcehO0FAABgQk/FKcpnJbl6PL86yRuWxq/p7ke7+64k25OcUlVHJ3led9/U3Z3kA3vM2bWujyQ5bdfRXQAAAFh2oIHbSX6nqj5XVeePsRd39/1JMr6+aIwfk+Sepbn3jrFjxvM9x3eb092PJXkoyQv23IiqOr+qtlXVth07dhzgRwIAAOCZaMMBzv+R7r6vql6UZGtVfXWVZVc68tqrjK82Z/eB7suTXJ4kmzdvfsL7AAAAzO+AjuB2933j6wNJfjPJKUm+MU47zvj6wFj83iTHLU0/Nsl9Y/zYFcZ3m1NVG5IckWTngWwzAAAAc9rvwK2q51TV9+96nuT0JF9Kcn2Sc8di5yb56Hh+fZIt487IL8niZlK3jNOYH66qU8f1tW/ZY86udZ2d5MZxnS4AAADs5kBOUX5xkt8c93zakORXu/u3q+rWJNdV1XlJ/jTJOUnS3XdU1XVJvpzksSQXdPfjY11vTXJVksOT3DAeSXJFkg9W1fYsjtxuOYDtBQAAYGL7Hbjd/SdJXrHC+L9PctqTzLk4ycUrjG9LctIK449kBDIAAACs5qn4Z4IAAADgaSdwAQAAmILABQAAYAoCFwAAgCkIXAAAAKYgcAEAAJiCwAUAAGAKAhcAAIApCFwAAACmsGG9NwCAg2fThR9b703gANx9yevXexMA4BnNEVwAAACmIHABAACYgsAFAABgCq7BBYDvUq7ZfmZzzTbAEzmCCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADAFgQsAAMAUBC4AAABTELgAAABMQeACAAAwBYELAADAFAQuAAAAUxC4AAAATEHgAgAAMIUN670BwOo2Xfix9d4EDsDdl7x+vTcBAOC7hiO4AAAATEHgAgAAMAWBCwAAwBQELgAAAFMQuAAAAExB4AIAADCFZ0TgVtWZVfW1qtpeVReu9/YAAABw6DnkA7eqDkvyL5P87SQnJnlTVZ24vlsFAADAoeaQD9wkpyTZ3t1/0t3/Mck1Sc5a520CAADgELNhvTdgDY5Jcs/S63uTvHqdtuWg2HThx9Z7EzgAd1/y+vXeBAAAYAXV3eu9DauqqnOSnNHd/+N4/eYkp3T3zy4tc36S88fL/zTJ1572DWXZC5P82XpvBM8Y9hf2hf2FfWF/YV/YX9gX9pf19Ve7e+NKbzwTjuDem+S4pdfHJrlveYHuvjzJ5U/nRvHkqmpbd29e7+3gmcH+wr6wv7Av7C/sC/sL+8L+cuh6JlyDe2uSE6rqJVX1vUm2JLl+nbcJAACAQ8whfwS3ux+rqp9J8okkhyW5srvvWOfNAgAA4BBzyAduknT3x5N8fL23gzVzujj7wv7CvrC/sC/sL+wL+wv7wv5yiDrkbzIFAAAAa/FMuAYXAAAA9krgsqqqeryqblt6XHiQ1vtH4+umqvrSwVgnh64V9qNN671NrJ+l/eFLVfVrVfVXfC/47rLSPrCP8zdV1X+7xuUO+n5VVf/1rp+HVfWOqvqHB/vPYG322Jf+dVU9fy/Lb6yqm6vqj6vqR5+C7bE/PINV1WVV9bal15+oql9Zev3uqvqfn2Tu71eVuyofAgQue/Ot7j556XHJwVhpd7/mYKyHZ4w996O713uDWFe79oeTkvzHJH9vvTeIp92B7gObkuw1cJ8q3X39wfp5yAFb3pd2JrlgL8ufluSr3f3K7v7UWv6AqjpstddM5Y+SvCZJqup7svi3bl++9P5rknxmHbaLfSBw2S9VdXdV/bOquqmqtlXV3xy/5fq3VfX3xjLPrapPVtXnq+r2qjpraf5frN/Ws96ebN+oqh+qqi9W1fdV1XOq6o6qOmm9t5en1KeSHD+eH1ZVvzz+v/9OVR2eJFV1clV9duwbv1lVR47x36+qS6vqlqr6N7uOxlTVYVX1v1fVrWPOT6/PR2ONPpXk+Ko6qqr+7/H/7LNV9YNJUlX/+dLZH39cVd+f5JIkPzrG/sE4Uvup8T3l81W16i9Rq+q1VfUHVXXd2HcuqaqfGvvS7VX10rHcf7V0tO93q+rFY/zvVNUvPcX/Xdh3NyU5Jkmq6qVV9dtV9bmxb/y1qjo5yf+W5HVj3zm8qk4ff5f5/Dib4Llj/t1V9U+q6tNJzlnh9d8d32O+UFW/Xvt4FgKHrM9kBG4WYfulJA9X1ZFV9ewkfz1JxvePz42/+x69NP+/q6o/qsUZBac8vZvOLgKXvTm8dj+19I1L793T3T+cxV9OrkpydpJTk7xzvP9Ikp/s7r+Z5MeSvLuq6mncdg4dy/vRb+ZJ9o3uvjWLf+f6n2bxl5D/q7udtjqpqtqQ5G8nuX0MnZDkX3b3y5N8M8l/M8Y/kOR/7e4fHMtetLSaDd19SpK3LY2fl+Sh7v6hJD+U5O9W1Uuewo/CftpjH/jFJH88/j//Qhb/35PkHya5oLtPTvKjSb6V5MIknxpH7i5L8kCS/2J8T3ljkveu4Y9/RZKfS/I3krw5ycvGvvQrSX52LPPpJKd29yuTXJPkfzmwT8xTpRZHVU/L4mdIsrjD7c9296uy2Ife1923JfknSa4d+9NzkvyjJD8x9p1tSZZPP32ku/9Wd1+zwuvf6O4f6u5XJPlKFt93eIbr7vuSPFZV/0kWoXtTkpuT/HCSzVn8v74sydlj37oyycVLq3jOOEvxfxrvsQ6eEf9MEOvqW+OHwEp2/RC5Pclzu/vhLH7L9UgtroH5D0n+WVX9Z0m+ncVvVV+c5P95ajeZQ9Bu+1FVPStPvm+8M8mtWUTw33/6N5WnweFVddt4/qkkVyT5gSR3jb+AJsnnkmyqqiOSPL+7/2CMX53k15bW9RvLy4/npyf5wao6e7w+Iot4vuvgfgwOwEr7wM0Zv9To7hur6gXj//9nkrynqj6URVTcu8LvSp+V5JfGEbrHk7xsDdtwa3ffnyRV9W+T/M4Yvz2LX7wlybFJrh1HaL439qFD0a59aVMW3we2jqOwr0nya0v7yrNXmHtqkhOTfGYs971ZBM0u1+6x/PLrk6rqnyZ5fpLnJvnEgXwIDim7juK+Jsl7svg7ymuSPJTk61n8jNk69pnDkty/NPfDSdLdf1hVz6uq53f3N5++TScRuByYR8fXby893/V6Q5KfSrIxyau6+/+rqruTfN/TuoUcqlbbN47K4i8Lzxpj/2FdtpCn0hN+cTb+orD8feTxJIevYV275jye7/xMqyyO3PgL56FrpX1gpTN8ursvqaqPJXldks9W1U+ssNw/SPKNLI7Kfk8WvyDbmz1/bi3/TNu1L/2LJO/p7uur6rVJ3rGG9fL0+lZ3nzx+GfJbWVyDe1WSb67yC/pdKsnW7n7Tk7y/58+f5ddXJXlDd3+hqv5Oktfu22ZzCNt1He7fyOIU5XuS/HySP09yY5JjxhmMK9nz31/177GuA6co81Q6IskDI2B+LMlfXe8N4pCx2r5xeZJ/nORDSS5dj43j0NHdDyV5sL5zt9M3J/mDVaYkiyMpbx1nCqSqXlZVz3kKN5OD4w+z+OVXRkz+WXf/eVW9tLtv7+5LsziF9K8leTjJ9y/NPSLJ/d397Sz2kYN1E6AjsjhikyTnHqR18hQY3yv+fhanI38ryV1VdU6y+OVJVb1ihWmfTfIjVXX8WO6vVNVajv4ni/3v/vF95qcO+ANwKPlMkv8yyc7ufry7d2ZxpP6HsziKv7GqfjhZnJFWVcs3oXrjGP9bWVwq89DTuuUkcQSXvVs+jSxJfru71/pPBX0oyb+uqm1Jbkvy1YO8bTxzrbhvVNVbkjzW3b86rqf6o6r68e6+cf02lUPAuUn+1biJy58k+e/3svyvZHG64ufHUcEdSd7wVG4gB8U7kvyfVfXFJP9vvhOUbxu/CHs8yZeT3JDFUdbHquoLWRxJe1+SXx9B83s5eGd+vCOL01y/nkUMuZb7ENbdfzz2iS1ZROf7q+ofZXFG0DVJvrDH8jvG0dcPjxsIJYtrcv/NGv64f5zFafX/LovT2r9/9cV5Brk9i7sn/+oeY8/t7gfG5S/vHWcNbEjyfyS5Yyz3YC3+KcznJfkfnr5NZll1O3IOAADAM59TlAEAAJiCwAUAAGAKAhcAAIApCFwAAACmIHABAACYgsAFAABgCgIXAACAKQhcAAAApvD/A8ocwoYFjp6rAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAImCAYAAACRopP3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA56UlEQVR4nO3de7xtZV0v/s83QCEV5KZHgcS85EGOUSJesrIoMK2wDh4xL1gW5sHSU57CbhhKYSfll8ejHRMUSQXykqQSkuQlL8hWUcRLkOIBQUE3Iqmg4Pf3xxgr516svfbasOdae+/xfr9e87XGfMZ4xnzGWGNdPvN5xjOruwMAAABT9X1r3QAAAABYS4IxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDTExVvaaqXrhGr11V9eqquq6qPrzCOn9dVX88h7bsX1VdVTtu6X2zdqrq8qr6mS20rz+oqlfdjvpPqqp3bom2rKbZc3h7zwHAtsI/AwBrrKouT7JLkh/s7m+MZb+e5Mnd/ag1bNo8PDLJzybZd+FYZ1XV05L8enc/cqGsu39z9ZoH39Pdf3Y7678uyeu2UHPWxO09BwDbCj3GAFuHHZM8e60bsbmqaofNrHKvJJcvFYq3VWMvuL+nt5HzB8DWwB8igK3D/0ry3Kq66+IVSw35rap3j73KqaqnVdX7q+rkqvpaVX2uqh4xll9RVddU1dGLdrtXVZ1XVTdU1Xuq6l4z+37AuG59VX22qv7bzLrXVNUrquodVfWNJD+1RHvvWVVnj/Uvq6rfGMufnuRVSR5eVf9eVX+6qN5/TvLXM+u/NvOaLxyXH1VVV1bV743HdXVVPa6qHlNV/zq+5h/M7PP7quq4qvq3qvpqVZ1VVXss0ebHV9VHFpX9blX9/eJtZ87/iVX1/iTfTPKDmzhvj6mqT43n+4tV9dxFx/MHVfWVcQjrk2bq7VZVr62qa6vqC1X1Rwshcvz+/ktV/eU4NP3zVfVzM3WfNl4LN4zrZvf7a1X16bHeuQvf/zGknjye2+ur6hNVdeAy5+DPq+rD47ZvnT23VfWwqvrAeE1+vKoetdz5W2L/vz+eqxvG83noWL7BrQAL53BR9YeM5/u6Gobu77zofK/0+nl+Vf3tuLxzVf3teB19raourKq7L3euF75HM/t7xFjv+vHrIxadkxfU8LN8Q1W9s6r22si536I/B1X1lPH6+mpV/eGi15o9B7c617XhsOvnV9Xfjefphqq6uKruX1XPG9t5RVUdttQxAaw1wRhg67AuybuTPPc21n9okk8k2TPJ65OckeQhSe6b5MlJXlZVd57Z/klJXpBkryQXZRzuWVV3SnLeuI+7JXlikpdX1QNn6v5KkhOT3CXJv+TW3pDkyiT3THJkkj+rqkO7+5Qkv5nkg9195+4+frZSd3960fq7buRY/1OSnZPsk+RPkvzNeIwPTvLjSf6kqhaC1m8neVySnxzbc12S/7PEPs9Ocu8awvmCJyc5fSNtSJKnJDkmw3m4Nsuft1OSPKO775LkwCTnLzqevcbjOTrJK6vqh8Z1/zvJbhmC408meWqSX52p+9Aknx3r/0WSU8Zwe6ckL03yc+NrPiLD9zlV9bgkf5Dkl5PsneR9Gb5nSXJYkp9Icv8kd03yhCRfXeYcPDXJr2U4tzePr5mq2ifJ25O8MMkeGa7rN1XV3hs5f1+Y3el4/M9K8pCx/YcnuXyZdiz2pLHOfcZj+aOZdZtz/cw6OsP3Yr8MP2e/meRby53rRce0R4Zz8tKx/kuSvL2q9pzZ7FcyfH/vluQOWf73wRb5OaiqA5K8IsP3455j2/Zd5nU35Rcy/NzsnuRjSc7N8P/mPklOSPJ/b8e+AeZGMAbYevxJkt9aFB5W6vPd/eruviXJmRn+eT+hu2/q7ncm+XaGkLzg7d393u6+KckfZuil3S/Jz2cY6vzq7r65uz+a5E0ZAu6Ct3b3+7v7u91942wjxn08Msnvd/eN3X1Rhl7ip9yGY9qY7yQ5sbu/k+ENgL2S/FV339DdlyS5JMmDxm2fkeQPu/vK8Vifn+TIWjTh1rjuzAzBImOg3T/J25Zpx2u6+5LuvjnJo7P8eftOkgOqatfuvm5cP+uPx+/VezKEp/9WwzD1JyR53nhslyd5cTY8l1/o7r8Zv++nJblHkruP676b5MCq2qW7rx7PzcI5+fPu/vTY9j9LclANvcbfyRBUH5Ckxm2uXuYcnN7dnxyHxv/xTLufnOQd3f2O8To5L8ObP49Z6vyN38tZtyS543jOduruy7v735Zpx2Iv6+4runt9hjdxnjizbnOunyyqt2eS+3b3Ld39ke7++rhuY+d61mOTXNrdp4/H/IYkn8kQJBe8urv/tbu/leSsJActc4xb6ufgyCRvm/l98Mfj8dxW7+vuc8dr6+8yvPly0kw7968lRsYArDXBGGAr0d2fzBDEjrsN1b88s/ytcX+Ly2Z7jK+Yed1/T7I+Q2/RvZI8dBwq+rUahjM/KUPv1K3qLuGeSdZ39w0zZV/I0Fu0pXx1DILJeKy59fEvHOu9krxl5lg+nSF03T23dlqSX6mqyhA+zxqDwsbMnodNnbf/miEUfqGGoesPn6l73aJ7rr+Q4TzulaHX8AuL1s2eyy8tLHT3N8fFO4/7e0KGXs2rq+rtVfWAmbb+1Uw71yepJPt09/lJXpahN/HLVfXKqtp1hefgC0l2Gtt9rySPX3Q+HpkhuC9VdwPdfVmS52QIcNdU1RlVdc9l2rGpds3W3ZzrZ9bpGXo/z6iqq6rqL8bQvty5nnXPLOoZzzLfzwxDzJdqx205juV+Du6ZDX8ffCPLjxLYlMVt+MoS7VzuuADWhGAMsHU5PslvZMN/lhdC0/fPlM0G1dtiv4WFcYj1HkmuyvAP8nu6+64zjzt39zNn6vYy+70qyR5VdZeZsh9I8sUVtmu5fd8WV2QY4jp7PDt3963a090fytCz/uMZhrQuN4x6cVuXPW/dfWF3H5FhiOzfZ+gNXLD7OBx3wQ9kOI9fydAreK9F61Z0Lsdeu5/NEEY/k2Go7UJbn7Gorbt09wfGei/t7gcneWCGYcj/c5mX2W9m+QfG9n5lfI3TF73Gnbr7pNkmbqL9r+9hdvJ7jdu+aFz1jWz6Z2Fxu65a7rVWoru/091/2t0HZBgu/fMZhpIvd65nXZUNv5cLbVvpz8btsdzPwdXZ8PfB92foGV/KBud+HB1wW0a4AGx1BGOArcjYU3ZmhnsCF8quzfDP85Oraoeq+rUM907eHo+pqkdW1R0y3Gt8QXdfkaHH+v7jZDw7jY+HLLr3drn2X5HkA0n+vIbJih6U5OlZ+UfWfDnJvmO7toS/TnJifW9yqb2r6ohltn9thh7Tm7t7qfunN2aj562q7lDD59nuNg4n/XqG3rpZfzpu9+MZAtffjb1sZ43tv8t4DL+T5G831ZiquntV/eIYuG9K8u8zr/nXSZ63cP9zDRN8PX5cfkhVPbSqdsoQgm5coq2znlxVB4xh6oQkbxzb/bdJfqGqDh+v2Z1rmLhpRfeuVtUPVdVPV9UdxzZ8a6YdF2W4fveoqv+UoWd5sWOrat/xvt4/yPAzdbtU1U9V1X8Zw+DXM7wJcMsmzvWsd2S4Rn6lqnasqickOSDLD9ffUpb7OXhjkp+f+X1wQjb+/+G/Jtm5qh47XiN/lGHIO8A2TzAG2PqckOROi8p+I0PP3Vcz9OR94Ha+xusz9E6vzzBZz5OSZBwCfViSozL0cH0pQ0/d5vzz+8QM9+deleQtSY4f7zFdifMz3Bv5par6yma85sb8VYaJtd5ZVTck+VCGCas25vQMk2Ntqrd4Ays4b09JcnlVfT3DkNsnz1T/UobJkK7K8AbCb3b3Z8Z1v5UhoH4uw0Rnr09y6gqa9H1Jfnfc5/oMky7997GtbxnbdsbYnk8mWZjNetcMvZ3XZRjm+9Ukf7nM65ye5DXjMeyc8Q2d8Q2SIzKE0msz9Fj+z6z8/447JjkpQ+/zlzL0tC/Msnx6ko9nmIzrnVk69L5+XPe58fHCJbbZXP8pQ4j8eoahyO/J8AbARs/1rO7+aoY3PX43w3n9vSQ/391b4jrflI3+HIz3Ix+b4ZxdneF7v3iW74zbXp/h2F6V4c26b2xsW4BtTXVv6VFrALBtqqpdklyT5Ee7+9JVeL1HJfnb7r49swCviap6d4a2v2qt2wIAt5ceYwD4nmcmuXA1QjEAsPXYcdObAMD2r6ouzzA78+PWtiUAwGozlBoAAIBJM5QaAACASROMAQAAmDT3GI/22muv3n///de6GQAAAMzBRz7yka90995LrROMR/vvv3/WrVu31s0AAABgDqrqCxtbZyg1AAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkza3YFxVO1fVh6vq41V1SVX96Vj+/Kr6YlVdND4eM1PneVV1WVV9tqoOnyl/cFVdPK57aVXVWH7HqjpzLL+gqvafqXN0VV06Po6e13ECAACwbdtxjvu+KclPd/e/V9VOSf6lqs4Z153c3X85u3FVHZDkqCQPTHLPJP9UVffv7luSvCLJMUk+lOQdSR6d5JwkT09yXXfft6qOSvKiJE+oqj2SHJ/k4CSd5CNVdXZ3XzfH4wUAAGAbNLdg3N2d5N/HpzuNj16myhFJzujum5J8vqouS3JIVV2eZNfu/mCSVNVrkzwuQzA+Isnzx/pvTPKysTf58CTndff6sc55GcL0G7bU8QEAAFvW/se9fa2bwO1w+UmPXesm3GZzvce4qnaoqouSXJMhqF4wrnpWVX2iqk6tqt3Hsn2SXDFT/cqxbJ9xeXH5BnW6++Yk1yfZc5l9AQAAwAbmGoy7+5buPijJvhl6fw/MMCz6PkkOSnJ1khePm9dSu1im/LbW+Q9VdUxVrauqdddee+0yRwIAAMD2alVmpe7uryV5d5JHd/eXx8D83SR/k+SQcbMrk+w3U23fJFeN5fsuUb5BnaraMcluSdYvs6/F7Xpldx/c3Qfvvffet+cQAQAA2EbNc1bqvavqruPyLkl+JslnquoeM5v9UpJPjstnJzlqnGn63knul+TD3X11khuq6mHj/cNPTfLWmToLM04fmeT88d7mc5McVlW7j0O1DxvLAAAAYAPznJX6HklOq6odMgTws7r7bVV1elUdlGFo8+VJnpEk3X1JVZ2V5FNJbk5y7DgjdZI8M8lrkuySYdKthdmtT0ly+jhR1/oMs1qnu9dX1QuSXDhud8LCRFwAAAAwa56zUn8iyY8sUf6UZeqcmOTEJcrXJTlwifIbkzx+I/s6Ncmpm9FkAAAAJmhV7jEGAACArZVgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkzS0YV9XOVfXhqvp4VV1SVX86lu9RVedV1aXj191n6jyvqi6rqs9W1eEz5Q+uqovHdS+tqhrL71hVZ47lF1TV/jN1jh5f49KqOnpexwkAAMC2bZ49xjcl+enu/uEkByV5dFU9LMlxSd7V3fdL8q7xearqgCRHJXlgkkcneXlV7TDu6xVJjklyv/Hx6LH86Umu6+77Jjk5yYvGfe2R5PgkD01ySJLjZwM4AAAALJhbMO7Bv49PdxofneSIJKeN5acledy4fESSM7r7pu7+fJLLkhxSVfdIsmt3f7C7O8lrF9VZ2Ncbkxw69iYfnuS87l7f3dclOS/fC9MAAADwH+Z6j3FV7VBVFyW5JkNQvSDJ3bv76iQZv95t3HyfJFfMVL9yLNtnXF5cvkGd7r45yfVJ9lxmX4vbd0xVrauqdddee+3tOFIAAAC2VXMNxt19S3cflGTfDL2/By6zeS21i2XKb2ud2fa9srsP7u6D995772WaBgAAwPZqVWal7u6vJXl3huHMXx6HR2f8es242ZVJ9puptm+Sq8byfZco36BOVe2YZLck65fZFwAAAGxgnrNS711Vdx2Xd0nyM0k+k+TsJAuzRB+d5K3j8tlJjhpnmr53hkm2PjwOt76hqh423j/81EV1FvZ1ZJLzx/uQz01yWFXtPk66ddhYBgAAABvYcY77vkeS08aZpb8vyVnd/baq+mCSs6rq6Un+X5LHJ0l3X1JVZyX5VJKbkxzb3beM+3pmktck2SXJOeMjSU5JcnpVXZahp/iocV/rq+oFSS4ctzuhu9fP8VgBAADYRs0tGHf3J5L8yBLlX01y6EbqnJjkxCXK1yW51f3J3X1jxmC9xLpTk5y6ea0GAABgalblHmMAAADYWgnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKTNLRhX1X5V9c9V9emquqSqnj2WP7+qvlhVF42Px8zUeV5VXVZVn62qw2fKH1xVF4/rXlpVNZbfsarOHMsvqKr9Z+ocXVWXjo+j53WcAAAAbNt2nOO+b07yu9390aq6S5KPVNV547qTu/svZzeuqgOSHJXkgUnumeSfqur+3X1LklckOSbJh5K8I8mjk5yT5OlJruvu+1bVUUlelOQJVbVHkuOTHJykx9c+u7uvm+PxAgAAsA2aW49xd1/d3R8dl29I8ukk+yxT5YgkZ3T3Td39+SSXJTmkqu6RZNfu/mB3d5LXJnncTJ3TxuU3Jjl07E0+PMl53b1+DMPnZQjTAAAAsIFVucd4HOL8I0kuGIueVVWfqKpTq2r3sWyfJFfMVLtyLNtnXF5cvkGd7r45yfVJ9lxmX4vbdUxVrauqdddee+1tP0AAAAC2WXMPxlV15yRvSvKc7v56hmHR90lyUJKrk7x4YdMlqvcy5be1zvcKul/Z3Qd398F77733cocBAADAdmquwbiqdsoQil/X3W9Oku7+cnff0t3fTfI3SQ4ZN78yyX4z1fdNctVYvu8S5RvUqaodk+yWZP0y+wIAAIANzHNW6kpySpJPd/dLZsrvMbPZLyX55Lh8dpKjxpmm753kfkk+3N1XJ7mhqh427vOpSd46U2dhxukjk5w/3od8bpLDqmr3caj2YWMZAAAAbGCes1L/WJKnJLm4qi4ay/4gyROr6qAMQ5svT/KMJOnuS6rqrCSfyjCj9bHjjNRJ8swkr0myS4bZqM8Zy09JcnpVXZahp/iocV/rq+oFSS4ctzuhu9fP5SgBAADYps0tGHf3v2Tpe33fsUydE5OcuET5uiQHLlF+Y5LHb2RfpyY5daXtBQAAYJpWZVZqAAAA2FoJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEzaJoNxVT17JWUAAACwLVpJj/HRS5Q9bQu3AwAAANbEjhtbUVVPTPIrSe5dVWfPrLpLkq/Ou2EAAACwGjYajJN8IMnVSfZK8uKZ8huSfGKejQIAAIDVstFg3N1fSPKFJA9fveYAAADA6lrJ5Fu/XFWXVtX1VfX1qrqhqr6+Go0DAACAeVtuKPWCv0jyC9396Xk3BgAAAFbbSmal/rJQDAAAwPZqJT3G66rqzCR/n+SmhcLufvO8GgUAAACrZSXBeNck30xy2ExZJxGMAQAA2OZtMhh396+uRkMAAABgLWwyGFfVqzP0EG+gu39tLi0CAACAVbSSodRvm1neOckvJblqPs0BAACA1bWSodRvmn1eVW9I8k9zaxEAAACsopV8XNNi90vyA1u6IQAAALAWVnKP8Q0Z7jGu8euXkvz+nNsFAAAAq2IlQ6nvshoNAQAAgLWwksm3UlW/mOQnxqfv7u63Lbc9AAAAbCs2eY9xVZ2U5NlJPjU+nl1Vfz7vhgEAAMBqWEmP8WOSHNTd302SqjotyceSPG+eDQMAAIDVsNJZqe86s7zbHNoBAAAAa2IlPcZ/nuRjVfXPGWam/onoLQYAAGA7sZJZqd9QVe9O8pAMwfj3u/tL824YAAAArIaVTL71S0m+2d1nd/dbk9xYVY+be8sAAABgFazkHuPju/v6hSfd/bUkx8+tRQAAALCKVhKMl9pmRZ9/DAAAAFu7lQTjdVX1kqq6T1X9YFWdnOQj824YAAAArIaVBOPfSvLtJGcmOSvJt5IcO89GAQAAwGpZyazU30hy3Cq0BQAAAFbdSnqMAQAAYLslGAMAADBpcwvGVbVfVf1zVX26qi6pqmeP5XtU1XlVden4dfeZOs+rqsuq6rNVdfhM+YOr6uJx3UurqsbyO1bVmWP5BVW1/0ydo8fXuLSqjp7XcQIAALBt22Qwrqr7V9W7quqT4/MHVdUfrWDfNyf53e7+z0keluTYqjogw/3K7+ru+yV51/g847qjkjwwyaOTvLyqdhj39YokxyS53/h49Fj+9CTXdfd9k5yc5EXjvvbI8FnLD01ySJLjZwM4AAAALFhJj/HfJHleku8kSXd/IkOAXVZ3X93dHx2Xb0jy6ST7JDkiyWnjZqcledy4fESSM7r7pu7+fJLLkhxSVfdIsmt3f7C7O8lrF9VZ2Ncbkxw69iYfnuS87l7f3dclOS/fC9MAAADwH1YSjL+/uz+8qOzmzXmRcYjzjyS5IMndu/vqZAjPSe42brZPkitmql05lu0zLi8u36BOd9+c5Pokey6zLwAAANjASoLxV6rqPkk6SarqyCRXr/QFqurOSd6U5Dnd/fXlNl2irJcpv611Ztt2TFWtq6p111577TJNAwAAYHu1kmB8bJL/m+QBVfXFJM9J8syV7LyqdsoQil/X3W8ei788Do/O+PWasfzKJPvNVN83yVVj+b5LlG9Qp6p2TLJbkvXL7GsD3f3K7j64uw/ee++9V3JIAAAAbGc2GYy7+3Pd/TNJ9k7ygO5+ZHdfvql6472+pyT5dHe/ZGbV2UkWZok+OslbZ8qPGmeavneGSbY+PA63vqGqHjbu86mL6izs68gk54/3IZ+b5LCq2n2cdOuwsQwAAAA2sJJZqZ9dVbsm+WaSk6vqo1V12Ar2/WNJnpLkp6vqovHxmCQnJfnZqro0yc+Oz9PdlyQ5K8mnkvxjkmO7+5ZxX89M8qoME3L9W5JzxvJTkuxZVZcl+Z2MM1x39/okL0hy4fg4YSwDAACADey4gm1+rbv/avxc4bsl+dUkr07yzuUqdfe/ZOl7fZPk0I3UOTHJiUuUr0ty4BLlNyZ5/Eb2dWqSU5drIwAAAKzkHuOFcPuYJK/u7o9n44EXAAAAtikrCcYfqap3ZgjG51bVXZJ8d77NAgAAgNWxkqHUT09yUJLPdfc3q2rPDMOpAQAAYJu3yWDc3d+tqi8nOWD8SCQAAADYbmwy6FbVi5I8IcNs0QuzRHeS986xXQAAALAqVtID/LgkP9TdN825LQAAALDqVjL51ueS7DTvhgAAAMBaWEmP8TeTXFRV70ryH73G3f3bc2sVAAAArJKVBOOzxwcAAABsd1YyK/VpVXWHJPcfiz7b3d+Zb7MAAABgdaxkVupHJTktyeVJKsl+VXV0d5uVGgAAgG3eSoZSvzjJYd392SSpqvsneUOSB8+zYQAAALAaVjIr9U4LoThJuvtfY5ZqAAAAthMr6TFeV1WnJDl9fP6kJB+ZX5MAAABg9awkGD8zybFJfjvDPcbvTfLyeTYKAAAAVstKZqW+qapeluRdSb6bYVbqb8+9ZQAAALAKVjIr9WOT/HWSf8vQY3zvqnpGd58z78YBAADAvK10Vuqf6u7LkqSq7pPk7UkEYwAAALZ5K5mV+pqFUDz6XJJr5tQeAAAAWFUr6TG+pKrekeSsJJ3k8UkurKpfTpLufvMc2wcAAABztZJgvHOSLyf5yfH5tUn2SPILGYKyYAwAAMA2ayWzUv/qajQEAAAA1sIm7zGuqr+oql2raqeqeldVfaWqnrwajQMAAIB5W8nkW4d199eT/HySK5PcP8n/nGurAAAAYJWsJBjvNH59TJI3dPf6ObYHAAAAVtVKJt/6h6r6TJJvJfnvVbV3khvn2ywAAABYHZvsMe7u45I8PMnB3f2dJN9McsS8GwYAAACrYSWTb31/kmOTvGIsumeSg+fZKAAAAFgtK7nH+NVJvp3kEePzK5O8cG4tAgAAgFW0kmB8n+7+iyTfSZLu/laSmmurAAAAYJWsJBh/u6p2SdJJUlX3SXLTXFsFAAAAq2Qls1Ifn+Qfk+xXVa9L8mNJnjbPRgEAAMBqWTYYV9X3Jdk9yS8neViGIdTP7u6vrELbAAAAYO6WDcbd/d2qelZ3n5Xk7avUJgAAAFg1K7nH+Lyqem5V7VdVeyw85t4yAAAAWAUrucf418avx86UdZIf3PLNAQAAgNW1yWDc3fdejYYAAADAWljJUGoAAADYbgnGAAAATJpgDAAAwKRtMhhX1Zuq6rHjZxoDAADAdmUlYfcVSX4lyaVVdVJVPWDObQIAAIBVs8lg3N3/1N1PSvKjSS7P8LnGH6iqX62qnebdQAAAAJinFQ2Prqo9kzwtya8n+ViSv8oQlM+bW8sAAABgFWzyc4yr6s1JHpDk9CS/0N1Xj6vOrKp182wcAAAAzNsmg3GSl3X3+Uut6O6Dt3B7AAAAYFVtNBhX1S8vtbygu988r0YBAADAalmux/gXllnXSQRjAAAAtnkbDcbd/aur2RAAAABYC5uclbqq7l5Vp1TVOePzA6rq6fNvGgAAAMzfSj6u6TVJzk1yz/H5vyZ5zpzaAwAAAKtqJcF4r+4+K8l3k6S7b05yy1xbBQAAAKtkJcH4G1W1Z4YJt1JVD0ty/VxbBQAAAKtkJZ9j/DtJzk5yn6p6f5K9kxw511YBAADAKtlkMO7uj1bVTyb5oSSV5LPd/Z25twwAAABWwSaDcVXtkOQxSfYftz+sqtLdL5lz2wAAAGDuVjKU+h+S3Jjk4owTcAEAAMD2YiWTb+3b3b/c3cd3958uPDZVqapOraprquqTM2XPr6ovVtVF4+MxM+ueV1WXVdVnq+rwmfIHV9XF47qXVlWN5XesqjPH8guqav+ZOkdX1aXj4+iVngwAAACmZyXB+JyqOuw27Ps1SR69RPnJ3X3Q+HhHklTVAUmOSvLAsc7LxyHcSfKKJMckud/4WNjn05Nc1933TXJykheN+9ojyfFJHprkkCTHV9Xut6H9AAAATMBKgvGHkrylqr5VVV+vqhuq6uubqtTd702yfoXtOCLJGd19U3d/PsllSQ6pqnsk2bW7P9jdneS1SR43U+e0cfmNSQ4de5MPT3Jed6/v7uuSnJelAzoAAACsKBi/OMnDk3x/d+/a3Xfp7l1vx2s+q6o+MQ61XujJ3SfJFTPbXDmW7TMuLy7foE5335zhs5X3XGZfAAAAcCsrCcaXJvnk2GN7e70iyX2SHJTk6gyhOxk+BmqxXqb8ttbZQFUdU1Xrqmrdtddeu0yzAQAA2F6tZFbqq5O8u6rOSXLTQuFt+bim7v7ywnJV/U2St41Pr0yy38ym+ya5aizfd4ny2TpXVtWOSXbLMHT7yiSPWlTn3RtpzyuTvDJJDj744C0R/AEAANjGrKTH+PNJ3pXkDknuMvPYbOM9wwt+KcnCjNVnJzlqnGn63hkm2fpwd1+d5Iaqeth4//BTk7x1ps7CjNNHJjl/7NU+N8NnLe8+DtU+bCwDAACAW9lkj/FKPpppKVX1hgw9t3tV1ZUZZop+VFUdlGFo8+VJnjG+xiVVdVaSTyW5Ocmx3X3LuKtnZpjhepck54yPJDklyelVdVmGnuKjxn2tr6oXJLlw3O6E7l7pJGAAAABMzEaDcVW9rLufVVX/kCXu0e3uX1xux939xCWKT1lm+xOTnLhE+bokBy5RfmOSx29kX6cmOXW59gEAAECyfI/xU5M8K8lfrlJbAAAAYNUtF4z/LUm6+z2r1BYAAABYdcsF472r6nc2tvK2zEoNAAAAW5vlgvEOSe6cpT8XGAAAALYLywXjq7v7hFVrCQAAAKyB5T7HWE8xAAAA273lgvGhq9YKAAAAWCMbDcbdvX41GwIAAABrYbkeYwAAANjuCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABM2o5r3QAAALZf+x/39rVuArfD5Sc9dq2bAKtCjzEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJM2t2BcVadW1TVV9cmZsj2q6ryqunT8uvvMuudV1WVV9dmqOnym/MFVdfG47qVVVWP5HavqzLH8gqraf6bO0eNrXFpVR8/rGAEAANj2zbPH+DVJHr2o7Lgk7+ru+yV51/g8VXVAkqOSPHCs8/Kq2mGs84okxyS53/hY2OfTk1zX3fdNcnKSF4372iPJ8UkemuSQJMfPBnAAAACYNbdg3N3vTbJ+UfERSU4bl09L8riZ8jO6+6bu/nySy5IcUlX3SLJrd3+wuzvJaxfVWdjXG5McOvYmH57kvO5e393XJTkvtw7oAAAAkGT17zG+e3dfnSTj17uN5fskuWJmuyvHsn3G5cXlG9Tp7puTXJ9kz2X2dStVdUxVrauqdddee+3tOCwAAAC2VVvL5Fu1RFkvU35b62xY2P3K7j64uw/ee++9V9RQAAAAti+rHYy/PA6Pzvj1mrH8yiT7zWy3b5KrxvJ9lyjfoE5V7ZhktwxDtze2LwAAALiV1Q7GZydZmCX66CRvnSk/apxp+t4ZJtn68Djc+oaqeth4//BTF9VZ2NeRSc4f70M+N8lhVbX7OOnWYWMZAAAA3MqO89pxVb0hyaOS7FVVV2aYKfqkJGdV1dOT/L8kj0+S7r6kqs5K8qkkNyc5trtvGXf1zAwzXO+S5JzxkSSnJDm9qi7L0FN81Liv9VX1giQXjtud0N2LJwEDAACAJHMMxt39xI2sOnQj25+Y5MQlytclOXCJ8hszBusl1p2a5NQVNxYAAIDJ2lom3wIAAIA1IRgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAk7YmwbiqLq+qi6vqoqpaN5btUVXnVdWl49fdZ7Z/XlVdVlWfrarDZ8ofPO7nsqp6aVXVWH7HqjpzLL+gqvZf9YMEAABgm7CWPcY/1d0HdffB4/Pjkryru++X5F3j81TVAUmOSvLAJI9O8vKq2mGs84okxyS53/h49Fj+9CTXdfd9k5yc5EWrcDwAAABsg7amodRHJDltXD4tyeNmys/o7pu6+/NJLktySFXdI8mu3f3B7u4kr11UZ2Ffb0xy6EJvMgAAAMxaq2DcSd5ZVR+pqmPGsrt399VJMn6921i+T5IrZupeOZbtMy4vLt+gTnffnOT6JHsubkRVHVNV66pq3bXXXrtFDgwAAIBty45r9Lo/1t1XVdXdkpxXVZ9ZZtulenp7mfLl6mxY0P3KJK9MkoMPPvhW6wEAANj+rUmPcXdfNX69JslbkhyS5Mvj8OiMX68ZN78yyX4z1fdNctVYvu8S5RvUqaodk+yWZP08jgUAAIBt26oH46q6U1XdZWE5yWFJPpnk7CRHj5sdneSt4/LZSY4aZ5q+d4ZJtj48Dre+oaoeNt4//NRFdRb2dWSS88f7kAEAAGADazGU+u5J3jLOhbVjktd39z9W1YVJzqqqpyf5f0kenyTdfUlVnZXkU0luTnJsd98y7uuZSV6TZJck54yPJDklyelVdVmGnuKjVuPAAAAA2PasejDu7s8l+eElyr+a5NCN1DkxyYlLlK9LcuAS5TdmDNYAAACwnK3p45oAAABg1QnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKTtuNYNAGDt7X/c29e6CdwOl5/02LVuAgBs0/QYAwAAMGmCMQAAAJMmGAMAADBp7jEGADaLe9K3be5JB7g1PcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCk7bjWDQDmY//j3r7WTeB2uPykx651EwAAJkOPMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGnbdTCuqkdX1Wer6rKqOm6t2wMAAMDWZ7sNxlW1Q5L/k+TnkhyQ5IlVdcDatgoAAICtzXYbjJMckuSy7v5cd387yRlJjljjNgEAALCV2XGtGzBH+yS5Yub5lUkeukZt2SL2P+7ta90EbofLT3rsWjcBAABYQnX3WrdhLqrq8UkO7+5fH58/Jckh3f1bM9sck+SY8ekPJfnsqjeUWXsl+cpaN4JthuuFzeF6YXO4Xtgcrhc2h+tlbd2ru/deasX23GN8ZZL9Zp7vm+Sq2Q26+5VJXrmajWLjqmpddx+81u1g2+B6YXO4Xtgcrhc2h+uFzeF62Xptz/cYX5jkflV176q6Q5Kjkpy9xm0CAABgK7Pd9hh3981V9awk5ybZIcmp3X3JGjcLAACArcx2G4yTpLvfkeQda90OVsywdjaH64XN4Xphc7he2ByuFzaH62Urtd1OvgUAAAArsT3fYwwAAACbJBgzF1V1S1VdNPM4bgvt9wPj1/2r6pNbYp9svZa4jvZf6zaxdmauh09W1d9V1ff7XTAtS10Dm1l//6r6lRVut8Wvq6r6xYW/h1X1/Kp67pZ+DVZm0bX0D1V1101sv3dVXVBVH6uqH59De1wP27CqOrmqnjPz/NyqetXM8xdX1e9spO67q8os1VsBwZh5+VZ3HzTzOGlL7LS7H7El9sM2Y/F1dPlaN4g1tXA9HJjk20l+c60bxKq7vdfA/kk2GYznpbvP3lJ/D7ndZq+l9UmO3cT2hyb5THf/SHe/byUvUFU7LPec7coHkjwiSarq+zJ8VvEDZ9Y/Isn716BdbAbBmFVVVZdX1Z9V1Qeral1V/ej4rtq/VdVvjtvcuareVVUfraqLq+qImfr/vnatZ61t7NqoqodU1SeqauequlNVXVJVB651e5mr9yW577i8Q1X9zfh9f2dV7ZIkVXVQVX1ovDbeUlW7j+XvrqoXVdWHq+pfF3p/qmqHqvpfVXXhWOcZa3NorND7kty3qvaoqr8fv2cfqqoHJUlV/eTMaJOPVdVdkpyU5MfHsv8x9gy/b/yd8tGqWvbN16p6VFW9p6rOGq+dk6rqSeO1dHFV3Wfc7hdmehf/qaruPpY/rapeNufzwub7YJJ9kqSq7lNV/1hVHxmvjQdU1UFJ/iLJY8ZrZ5eqOmz8X+aj4+iFO4/1L6+qP6mqf0ny+CWe/8b4O+bjVfWm2sxRD2y13p8xGGcIxJ9MckNV7V5Vd0zyn5Nk/P3xkfF/33vM1H9yVX2ghhEMh6xu01kgGDMvu9SGQ2CfMLPuiu5+eIZ/al6T5MgkD0tywrj+xiS/1N0/muSnkry4qmoV287WY/Y6eks2cm1094UZPqf8hRn+efnb7ja8djtVVTsm+bkkF49F90vyf7r7gUm+luS/juWvTfL73f2gcdvjZ3azY3cfkuQ5M+VPT3J9dz8kyUOS/EZV3XuOh8JttOga+NMkHxu/z3+Q4fueJM9Ncmx3H5Tkx5N8K8lxSd439hSenOSaJD87/k55QpKXruDlfzjJs5P8lyRPSXL/8Vp6VZLfGrf5lyQP6+4fSXJGkt+7fUfMvNTQi3tohr8hyTBj8G9194MzXEMv7+6LkvxJkjPH6+lOSf4oyc+M1866JLPDZG/s7kd29xlLPH9zdz+ku384yacz/N5hG9fdVyW5uap+IENA/mCSC5I8PMnBGb7XJyc5cry2Tk1y4swu7jSOivzv4zrWwHb9cU2sqW+NfzyWsvDH5+Ikd+7uGzK8q3ZjDff4fCPJn1XVTyT5boZ3ce+e5EvzbTJboQ2uo6raKRu/Nk5IcmGG8Pzbq99UVsEuVXXRuPy+JKckuWeSz4//uCbJR5LsX1W7Jblrd79nLD8tyd/N7OvNs9uPy4cleVBVHTk+3y1D6P78lj0MboelroELMr4Z0t3nV9We4/f//UleUlWvyxBGrlziPdadkrxs7BG8Jcn9V9CGC7v76iSpqn9L8s6x/OIMb9glyb5Jzhx7hO4Q19DWaOFa2j/D74Hzxl7fRyT5u5lr5Y5L1H1YkgOSvH/c7g4ZgtCCMxdtP/v8wKp6YZK7JrlzknNvz0GwVVnoNX5Ekpdk+B/lEUmuT/LFDH9jzhuvmR2SXD1T9w1J0t3vrapdq+qu3f211Ws6iWDM2rhp/PrdmeWF5zsmeVKSvZM8uLu/U1WXJ9l5VVvI1mq5a2OPDP9k7DSWfWNNWsg83eoNt/EfjNnfI7ck2WUF+1qoc0u+97ewMvQU+Ud167XUNbDUiKLu7pOq6u1JHpPkQ1X1M0ts9z+SfDlDL/D3ZXhjbVMW/92a/Zu2cC397yQv6e6zq+pRSZ6/gv2yur7V3QeNb6K8LcM9xq9J8rVl3thfUEnO6+4nbmT94r8/s89fk+Rx3f3xqnpakkdtXrPZii3cZ/xfMgylviLJ7yb5epLzk+wzjphcyuLPz/V5umvAUGq2RrsluWYMPj+V5F5r3SC2GstdG69M8sdJXpfkRWvROLYe3X19kuvqe7PHPiXJe5apkgw9N88cRyakqu5fVXeaYzPZMt6b4U2zjCH0K9399aq6T3df3N0vyjDU9QFJbkhyl5m6uyW5uru/m+Ea2VKTI+2WoYcoSY7eQvtkDsbfFb+dYdj0t5J8vqoenwxvulTVDy9R7UNJfqyq7jtu9/1VtZLRBslw/V09/p550u0+ALYm70/y80nWd/ct3b0+w8iAh2cYNbB3VT08GUbAVdXs5FxPGMsfmeGWnutXteUk0WPM/MwOd0uSf+zulX5k0+uS/ENVrUtyUZLPbOG2se1a8tqoqqcmubm7Xz/eL/aBqvrp7j5/7ZrKVuDoJH89Tm7zuSS/uontX5VhWOVHx17Ia5M8bp4NZIt4fpJXV9Unknwz3wuizxnfQLslyaeSnJOhV/fmqvp4hp67lyd50xiE/jlbbqTJ8zMMx/1ihhDlXvWtWHd/bLwmjsoQVl9RVX+UYQTSGUk+vmj7a8fe3jeMEyslwz3H/7qCl/vjDMP/v5Bh+P1dlt+cbcjFGWajfv2isjt39zXjbTovHUcp7Jjk/0tyybjddTV8JOmuSX5t9ZrMrOrWUw8AAMB0GUoNAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAsA2pqq6q02ee71hV11bV2zZzP++uqoPH5XdU1V23cFMBYJvhc4wBYNvyjSQHVtUu3f2tJD+b5Iu3Z4fd/Zgt0jIA2EbpMQaAbc85SR47Lj8xyRsWVlTVnarq1Kq6sKo+VlVHjOW7VNUZVfWJqjozyS4zdS6vqr2qav+q+uRM+XOr6vnj8rur6uSqem9VfbqqHlJVb66qS6vqhatwzAAwN4IxAGx7zkhyVFXtnORBSS6YWfeHSc7v7ock+akk/6uq7pTkmUm+2d0PSnJikgffhtf9dnf/RJK/TvLWJMcmOTDJ06pqz9t8NACwxgylBoBtTHd/oqr2z9Bb/I5Fqw9L8otV9dzx+c5JfiDJTyR56Uz9T9yGlz57/Hpxkku6++okqarPJdkvyVdvwz4BYM0JxgCwbTo7yV8meVSS2d7aSvJfu/uzsxtXVZL0JvZ5czYcTbbzovU3jV+/O7O88Nz/FABsswylBoBt06lJTujuixeVn5vkt2pMwlX1I2P5e5M8aSw7MMMQ7MW+nORuVbVnVd0xyc/PpeUAsJURjAFgG9TdV3b3Xy2x6gVJdkryiXEirReM5a9IcudxCPXvJfnwEvv8TpITMtyz/LYkn5lH2wFga1PdmxpVBQAAANsvPcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApP3/V/7Lgfz5Cj0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1229,14 +1229,14 @@ "fig7, ax7 = plt.subplots(figsize=(16, 9))\n", "ax7.bar(df_by_med['submitted_via'], df_by_med['count'])\n", "\n", - "ax6.set_title(\"Number of timely responses per submission medium\")\n", - "ax6.set_xlabel('Medium')\n", - "ax6.set_ylabel('Timely response count')" + "ax7.set_title(\"Number of timely responses per submission medium\")\n", + "ax7.set_xlabel('Medium')\n", + "ax7.set_ylabel('Timely response count')" ] }, { "cell_type": "markdown", - "id": "f5b3e26b", + "id": "86c3e653", "metadata": {}, "source": [ "### Analysis:\n", @@ -1245,19 +1245,477 @@ }, { "cell_type": "markdown", - "id": "f9d51a96", + "id": "a6eae2cf", "metadata": {}, "source": [ "## Sentiment Analysis/Prediction:" ] }, + { + "cell_type": "markdown", + "id": "05f5c8e9", + "metadata": {}, + "source": [ + "### Setting up data:\n", + "Since the key data is categorical in nature we can use *one-hot encoding* for it as there is no ordinal relationship in any of the data that is being used." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "c380bd0b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedcompanyzipcodedate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?product_Bank account or serviceproduct_Consumer Loanproduct_Credit card...state_WAstate_WIstate_WVstate_WYsubmitted_via_Emailsubmitted_via_Faxsubmitted_via_Phonesubmitted_via_Postal mailsubmitted_via_Referralsubmitted_via_Web
0735110U.S. Bancorp95993735114111000...0000000010
1735110Wells Fargo & Company91104735114111000...0000000010
2735110Wells Fargo & Company11764735129110000...0000000100
3735110Navient Solutions, Inc.21402735110111000...0000100000
4735110Resurgent Capital Services L.P.30106735110111000...0000000001
\n", + "

5 rows × 181 columns

\n", + "
" + ], + "text/plain": [ + " date_received company zipcode \\\n", + "0 735110 U.S. Bancorp 95993 \n", + "1 735110 Wells Fargo & Company 91104 \n", + "2 735110 Wells Fargo & Company 11764 \n", + "3 735110 Navient Solutions, Inc. 21402 \n", + "4 735110 Resurgent Capital Services L.P. 30106 \n", + "\n", + " date_sent_to_company company_response_to_consumer timely_response \\\n", + "0 735114 1 1 \n", + "1 735114 1 1 \n", + "2 735129 1 1 \n", + "3 735110 1 1 \n", + "4 735110 1 1 \n", + "\n", + " consumer_disputed? product_Bank account or service product_Consumer Loan \\\n", + "0 1 0 0 \n", + "1 1 0 0 \n", + "2 0 0 0 \n", + "3 1 0 0 \n", + "4 1 0 0 \n", + "\n", + " product_Credit card ... state_WA state_WI state_WV state_WY \\\n", + "0 0 ... 0 0 0 0 \n", + "1 0 ... 0 0 0 0 \n", + "2 0 ... 0 0 0 0 \n", + "3 0 ... 0 0 0 0 \n", + "4 0 ... 0 0 0 0 \n", + "\n", + " submitted_via_Email submitted_via_Fax submitted_via_Phone \\\n", + "0 0 0 0 \n", + "1 0 0 0 \n", + "2 0 0 0 \n", + "3 1 0 0 \n", + "4 0 0 0 \n", + "\n", + " submitted_via_Postal mail submitted_via_Referral submitted_via_Web \n", + "0 0 1 0 \n", + "1 0 1 0 \n", + "2 1 0 0 \n", + "3 0 0 0 \n", + "4 0 0 1 \n", + "\n", + "[5 rows x 181 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Converting dates to numerical values instead of datetime\n", + "date_cols = ['date_received', 'date_sent_to_company']\n", + "for date_col in date_cols:\n", + " df[date_col] = df[date_col].apply(pd.Timestamp.toordinal)\n", + "\n", + "analysis_cols = ['product', 'issue', 'state', 'submitted_via']\n", + "encoded = df\n", + "for c in analysis_cols:\n", + " c_encoded = pd.get_dummies(encoded[c], prefix=c)\n", + " encoded = pd.concat((encoded, c_encoded), axis=1).drop(c, axis=1)\n", + "encoded.head() " + ] + }, { "cell_type": "code", - "execution_count": 134, - "id": "5aa0caf7", + "execution_count": 31, + "id": "44062878", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "X = encoded.drop(['company', 'zipcode', 'consumer_disputed?'], axis=1)\n", + "y = encoded['consumer_disputed?']\n", + "X_tr, X_t, y_tr, y_t = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "markdown", + "id": "b0de514c", + "metadata": {}, + "source": [ + "**First using Logistic Regression to classify one-hot-encoded features:**" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "25a11427", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classifier accuracy is 0.7980160443197353\n" + ] + } + ], + "source": [ + "classifier1 = LogisticRegression()\n", + "classifier1.fit(X_tr, y_tr)\n", + "y_pred = classifier1.predict(X_t)\n", + "\n", + "print(\"Classifier accuracy is\", accuracy_score(y_t, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "a3ce0650", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEGCAYAAADyuIefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgeklEQVR4nO3deZhcVZ3/8fenu7MRFgkJWxCIECN7EAhhD+APwurggARQQcMEAUGccWTRkWFmYPCZcRAUkAwgILKETREkglEI8LAkhB1EIkQS9oRlAoGQ7nx/f9xTnepOd3XdpCpdVf159VNPV52659Sp9MOXc8+593wVEZiZWaaptztgZlZLHBTNzIo4KJqZFXFQNDMr4qBoZlakpbc7UEz9m4KBNdUl68HnP7t1b3fBcvjbnFeYP3++VqYNDR0YfLK0vIMXLvl9RIxfmc9b1WorAg1sgZ3X7e1eWA4PTn2gt7tgOey28+4r38gnS2HseuUde8+8oSv/gatWbQVFM6t9oqEn3hwUzSw/rdQZeE1zUDSz/Bo3JjoomllOEjQ3blR0UDSz/Hz6bGZWpHFjooOimeUkoKlxo6KDopnl17gx0UHRzFaA5xTNzBLh1Wczsw4aNyY6KJpZXvLps5lZO68+m5l10rgx0UHRzFaAR4pmZolPn83MOmncmNjIW0WaWdVI5T16bEbfkfSspGckXS9poKQhku6R9GL6vXbR8WdKmi3pBUn7F5XvIOnp9N5FUvbhkgZIujGVPyJp05765KBoZvk1lfkoQdJw4FRgx4jYGmgGJgBnANMiYiQwLb1G0pbp/a2A8cAlkppTc5cCk4CR6VHICzMReDciNgcuAH5UzlczMytfuaPE8q5lbAEGSWoBVgNeA74IXJ3evxr4u/T8i8ANEbE4Il4GZgNjJG0ArBkRD0VEANd0qlNo62Zg38IosjsOimaWX5PKe8BQSTOLHpMKTUTEq8B/A68ArwPvR8TdwHoR8Xo65nWgkM1uODC3qBfzUtnw9LxzeYc6EdEKvA+sU+qreaHFzPIrfzg1PyJ27OqNNFf4RWAE8B5wk6SvlGirqxFelCgvVadbHimaWT6iUqfPXwBejoi3I2IJcCuwK/BmOiUm/X4rHT8P+HRR/Y3ITrfnpeedyzvUSafoawHvlOqUg6KZ5acyH6W9AoyVtFqa59sXeB64HTg2HXMs8Jv0/HZgQlpRHkG2oPJoOsVeKGlsaudrneoU2joc+GOad+yWT5/NLL8KXLwdEY9IuhmYBbQCjwOTgdWBKZImkgXOI9Lxz0qaAjyXjj85ItpScycCVwGDgLvSA+AK4JeSZpONECf01C8HRTPLr0K75ETE2cDZnYoXk40auzr+XODcLspnAlt3Uf4xKaiWy0HRzPKRUJkjxZLnqTXKQdHMcuvhUr92Dopm1ic08B6zDopmlk+2SU55UbGt50NqjoOimeWj8k+f65GDopnlJJqaGvcSZwdFM8utgQeKDopmlk92l1/jRkUHRTPLx3OKZmYdqYHzETgomlluHimamSVCNDubn5nZMh4pmpkVeKHFzKyjBo6J3nnbzPIpXKdYzqNkO9IoSU8UPf5P0mnO+2xmdacSQTEiXoiI0RExGtgBWATchvM+m1ldUXbvczmPHPYF/hoRf8N5n82s3uRI5tdt3udOJgDXp+fO+2xm9SPnvc/d5n1ub0/qDxwKnFnGR3fmvM9m1vsqMadY5ABgVkS8mV4777OZ1ZcmqaxHmY5i2akzOO+zmdUTSTRV6DY/SasB/w84oaj4fJz3uT6ccthxHDf+CCKCZ+f8hUk/PoNRn96Mn55yDgP6D6C1rZXTfnYOM//yFBP2PoTTDj++ve42I0axy7cO46mXnuc3/3E56w9Zl5bmZh58ZianXXwOS5cu5fgDJ3DCIcfQtnQpH368iJMv/AF/fuWvvfiN+567Z07nu5eeS9vSNo4bfwT/fOQJPVfqgyq1S05ELKLTwkdELKAX8z6rh5HkSpE0HrgQaAYuj4jzSx6/Zv9g53VLHdJrNlxnPab9+Dq2n3QgH3+ymGvP+glTZ9zHkeMO4ae3XcXdM6ez/0578Y9HHM/+3/tqh7pbbfpZbjr7Urb8evZ3XmO1wSxc9CEA1//gp9x6/1Ruuu/ODuUHjd2HSQcfzRd/cDy17KOpf+ntLlRMW1sb2xy/H3ee9wuGD12f3U/9e64+4wK22GTz3u5axey28+48NnPWSkW0ARutGRueMqasY+ecMe2xnhZaak3V5hTTRZUXk02ibgkclS6+rFstzS0M6j+Q5qZmBg0YxOsL3iII1lxtdQDWGrw6ry94a7l6Xx53MFPuvaP9dSHwtTS30K+lH4X/MRXKAQYPHEQV/39lXZjxwlNstsEmjNhgY/r3688Rex3EHQ/9obe7VZMqvNBSU6p5+jwGmB0RLwFIuoHsQsrnqviZVfPagjf5yc1X8Jdf3stHixczbdYDTJv1IPPefoPfnnsF//kPp9OkJvb+xyOXq3v4ngdyxDkndii7/dwr2PGz23L3zOnc+sDU9vITDjmGUw/7Ov379WP86V+r9teyIq8teJONhq3f/nr40PV59IUne7FHtatO411Zqrn63N2Flh1ImlS4sJMlS6vYnZXzqdXX5OBd9mWL4/bhM8fszuCBqzFhn0OZdPBRfO+y8xj51b343mXncel3zutQb6dR27Jo8Uc897cXO5Qf+v2JjDh6Nwb068+47ca2l1/221+x1Te+wA+u+C/OOOqkVfLdLNPVVFK9jnaqSWrskWI1g2JZF01GxOSI2DEidqRf7V4htM/2uzLnzXnMf/9dWtta+fWDdzN2i+055guH8esH7wbglvvvYsfPbtuh3hF7HcSUe+/sss3FSz7hjof/yCG7fGG596bcdyeH7Lp8uVXP8KHrM+/tN9pfvzr/DTYcUptz3L2rKrf51Yxq9rq7Cy3r0ty3XmPM50YzaMBAAPYevQsvzH2J1xe8xR7bZpPO40bvwuzX5rTXkcSX9jiAm+5bFhQHD1yN9YcMA6C5qZnxO+3FC3NfAmCzDTdpP+6AMeOY/eqytqz6dhy1DbNfm8OcN+byyZJPuOm+OzlobJeLoH1ejtv86k415xRnACPTRZavkl0fdHQVP6+qZrzwFLfd/3se+tmvaW1r5cm/Ps8Vd93Ak399jv/65vdpaW5h8SeL+daF/9JeZ/dtduLV+W8w541lswiDBw7i5n/9Of379aO5qZn7nniY/70zu271xEO/wt7b78qS1lbe++B9/uHHp6/y79mXtTS3cMFJP+SQ70+kbWkbx+53OFtuOrK3u1WT6vXUuBzVviTnQOAnZJfkXJmuMer++Bq+JMe61kiX5PQFlbgkZ9DGa8Wm/7RbWcf++bS76u6SnKpevB0RvwN+V83PMLNVr5FHir6jxcxya+CY6KBoZnmpbleWy+GgaGa5FK5TbFQOimaWWwPHRAdFM8vPI0Uzs2IOimZmSQU3ma1FjbuEZGZVUUhcVYkNISR9StLNkv4s6XlJu0gaIukeSS+m32sXHX9mSmz/gqT9i8p3kPR0eu+iQhrTlLrgxlT+iKRNe+qTg6KZ5VbBXXIuBKZGxOeA7YDngTOAaRExEpiWXpP2Y50AbEWW7P6StG8rwKXAJLK8LSPT+wATgXcjYnPgAuBHPXXIQdHMcqtEUJS0JrAnWR4VIuKTiHiPjgnsr6ZjYvsbImJxRLwMzAbGpIx/a0bEQykp1TWd6hTauhnYVz10zEHRzHLLsUvO0MJ+qekxqaiZzwBvA7+Q9LikyyUNBtZLGfpIvwsbInS3R+vw9LxzeYc6EdEKvE+nnDCdeaHFzPLJt4Hs/BIbQrQAnwdOiYhHJF1IOlXu7pO7KIsS5aXqdMsjRTPLRVCpTWbnAfMi4pH0+mayIPlmOiUm/X6r6Piu9midl553Lu9QR1ILsBZZqtNuOSiaWW6VmFOMiDeAuZJGpaJ9yXI4FSewP5aOie0npBXlEWQLKo+mU+yFksam+cKvdapTaOtw4I/Rw36JPn02s3wqu6v2KcCvJPUHXgK+TjZYmyJpIvAKKW9zRDwraQpZ4GwFTo6IttTOicBVwCDgrvSAbBHnl5Jmk40QJ/TUIQdFM8utUrf5RcQTQFdzjl3mgUgbVS+3WXVEzAS27qL8Y1JQLZeDopnlIuo3U185HBTNLDcHRTOzAtHQ9z47KJpZfh4pmpkt49NnM7NEQAOfPTsomlleXn02M2snQbOz+ZmZLdO4IdFB0cxWQFNfPH2W9FNKbLETEadWpUdmVtMK6QgaVamR4sxV1gszqyPqmyPFiLi6+LWkwRHxYfW7ZGY1TY09UuxxvjRl13qOLKEMkraTdEnVe2ZmNUlAi1TWox6Vs4j0E2B/YAFARDxJlmzGzPqoCmbzqzllraxHxNxORW1dHmhmDS+7o0VlPXpsS5qT8jU/IWlmKqv5vM9zJe0KhKT+kr5LOpU2s75JZT7KtHdEjC5KcFXzeZ+/CZxMlirwVWB0em1mfVJ5o8SVWKHu1bzPPV68HRHzgWPK/jpm1tBy3uY3tHBanEyOiMlFrwO4W1IAl6X3OuR9llSc9/nhorqF/M5LKDPvs6RC3uf53XW4x6Ao6TPAhcDY9AUeAr4TES/1VNfMGlOOUWCpvM8Au0XEaynw3SPpzyWOrZm8z9cBU4ANgA2Bm4Dry6hnZg2o3PnEcsJmRLyWfr8F3AaMoQ7yPisifhkRrelxLT1EWjNrbJWYU5Q0WNIahefAfsAz1GreZ0lD0tM/SToDuIEsGB4J3Fny25pZA6vYbX7rAbeldY8W4LqImCppBjWa9/kxOp6vn1D0XgD/3lPjZtZ4VKHb/NK6xHZdlC+gFvM+R8SIPA2ZWd/RXKd3q5SjrP0UJW0NbAkMLJRFxDXV6pSZ1a7CHS2NqpxLcs4GxpEFxd8BBwAPkF0gaWZ9UCMHxXJWnw8nO79/IyK+TjYHMKCqvTKzGlbeZhD1uiFEOafPH0XEUkmtktYku2boM1Xul5nVKOEcLTMlfQr4X7IV6Q+AR6vZKTOrYQ2+yWw59z6flJ7+XNJUshuvn6put8ysVglo6YspTiV9vtR7ETGrOl0ys1rXV0eKPy7xXgD7VLgvfG7ECK689rJKN2tmFSWa8uyWWGdKXby996rsiJnVj746UjQzW47U2NcpOiiaWW5N6oMLLWZmXVHldsmpSeXkfZakr0j6YXq9saQx1e+amdWqbKml50c9KqfXlwC7AEel1wuBi6vWIzOreVVOXNWryjl93jkiPi/pcYCIeFdS/yr3y8xqWCOvPpczUlyScqsGgKRhwNKq9srMapZy/JTVntQs6XFJd6TXQyTdI+nF9HvtomPPTIntX5C0f1H5DpKeTu9dVEhjmlIX3JjKH5G0aU/9KScoXkSWUGZdSeeSbRt2Xlnf1swaT0pxWs6jTN8Gni96fQYwLSJGAtPSayRtSZZOYCuyZPeXpAEbwKXAJLK8LSPT+wATgXcjYnPgAuBHPXWmx15HxK+A7wH/CbwO/F1E3NRTPTNrTNkuOeX99NiWtBFwEHB5UXFxAvur6ZjY/oaIWBwRLwOzgTEp49+aEfFQSkp1Tac6hbZuBvZVD+f+5WwyuzGwCPhtcVlEvNJTXTNrRLn2ShwqaWbR68kp4X3BT8gGXWsUla2XMvQREa+nnNCQJbZ/uOi4QtL7Jel55/JCnbmprVZJ7wPrAPO763A5Cy13siyB1UBgBPAC2RDWzPqgHEFxfkTs2E0bBwNvRcRjksaV87FdlEWJ8lJ1ulXO1mHbdOhVtnvOCd0cbmZ9QIU2hNgNOFTSgWQDrjUlXQu8KWmDNErcgGxjayhKbJ8Ukt7PS887lxfXmSepBViLLNVpt3JfXZm2DNspbz0zawyCiqQjiIgzI2KjiNiUbAHljxHxFTomsD+WjontJ6QV5RFkCyqPplPthZLGpvnCr3WqU2jr8PQZKzdSlPSPRS+bgM8Db/dUz8walERzde99Ph+YImki8Aopb3NEPCtpCvAc0AqcHBFtqc6JwFXAIOCu9AC4AvilpNlkI8QJPX14OXOKxROgrWRzjLeUUc/MGlCW4rSyQTEi7gXuTc8XkCXL6+q4c4FzuyifCWzdRfnHpKBarpJBMV0DtHpE/HOeRs2ssTXyHS2l0hG0pCXsbtMSmFnfVO7dKvWo1EjxUbL5wyck3Q7cBHxYeDMibq1y38ysJtXvZg/lKGdOcQiwgCwnS+GaoAAcFM36IEG1F1p6VamguG5aeX6G5S+QLLmkbWYNTKA+GhSbgdVZgSvCzayRlb8DTj0qFRRfj4h/W2U9MbO6kF2S0zeDYuN+azNbKX3ykhy6uXjSzKxC9z7XpG6DYkSUvGnazPomIZqamns+sE45xamZ5dYnR4pmZl2R+u6coplZl/rqJTlmZl3IlY6g7jgomllujTyn2Lj36phZVQjRpOayHiXbkQZKelTSk5KelXROKq/5vM9mZh1UIh0BsBjYJyK2A0YD4yWNpdbzPpuZdaYyf0qJzAfpZb/0CHo577ODopnllmOkOFTSzKLHpE7tNEt6gixj3z0R8Qid8j4DxXmf5xZVL+R3Hk6ZeZ+BQt7nbnmhxcxyEbkWWrrN+wyQEk+NlvQp4DZJy+VZ6fTRyzVRorxUnW55pGhm+agyCy3FIuI9ssRV40l5n7OPqljeZ6qW99nMrBILLZKGpREikgYBXwD+TK3nfTYzKyYqdkfLBsDVaQW5CZgSEXdIeogaz/tsZlakMomrIuIpYPsuyms377OZWVd877OZWRHf+2xmlhRu82tUDopmllsjbwjhoGhm+XiTWTOzZSp4SU5NclA0s9w8UjQzayeavdBiZpbx6bMB8OaCBfz7z3/Ogvffp0ni0L335sjx4/nZddfxwOOP06+lheHrrsv3J01ijcGD2+u9MX8+x5x+OhO/9CWOPuggAE7+j/9gwXvvMaB/fwAuOP10hqy1Fq/Pn895kyfz3sKFrDl4MGefeCLrrlNylyOrsLtnTue7l55L29I2jht/BP985Am93aWa5NPnFSDpSuBg4K2IKLUdUF1obmrilKOPZtSIEXz40Ud841/+hTHbbMNO22zDN488kpbmZi6+4Qau+e1vOXnCstsrL/rVrxi73XbLtXf2SSexxWc+06HsZ9ddxwG7786Be+7JzGef5dIpUzj7xBOr/t0s09bWxmkXn8Od5/2C4UPXZ/dT/56Dx+7LFpts3ttdqzE9byBbz6q5S85VLNsSvO4NXXttRo0YAcDgQYPYZMMNefudd9h5m21oac7mV7bebDPefmfZrkT3zZzJhsOGMWL48C7b7GzOq6+y41ZbAbDDllty/2OPVfhbWCkzXniKzTbYhBEbbEz/fv05Yq+DuOOhP/R2t2pShdIR1KSqBcWImE4P+5bVq9fffpsX//Y3ttpssw7ld0yfzthttwXgo48/5to77uAbX/pSl22cO3kyx551Fr+47TYKOxltvvHG/GnGDCALqIs+/pj3Fy6s4jexYq8teJONhq3f/nr40PV5dcGbvdij2pRtMlveTz3q9TnFtD35JID1Nlqvl3vTs0Uff8xZF17It7/yFQavtlp7+VW/+Q3NTU3sv9tuAFx+661MGD+e1QYOXK6Nfz3pJIYNGcKHH33EWRdeyNQHHuCAPfbgW0cfzf9cfTW/u/9+Ro8axbC116a5uXFX+WpNV9vs1etop6okmlSfAa8cvR4UI2IyMBlgi+1Gldz8sbe1trZy1oUXst+uuzJup53ay383fToPPv44Pz3zzPb/iJ6bPZs/PfooF99wAx8sWoQk+vfrx+H77cewIUOA7DR8v1135bmXXuKAPfZg2Npr85+nnQZkwffeGTNYvSjwWnUNH7o+895+o/31q/PfYMMh65ao0Xc18v8sej0o1ouI4LzLL2fTDTfkqAMPbC9/+MknufaOO7j4Bz9g4IAB7eWX/vCH7c8vv+UWVhs4kMP324/WtjY+WLSIT62xBq2trTz4+OPstHW2DlVYdW5qauKa22/n4L32WnVf0Nhx1DbMfm0Oc96Yy4brrMdN993JVaf/T293qyY18kKLg2KZnvrLX5j6wANs9ulPc+xZZwFwwpe/zAXXXMOS1lZOO/98ALbafHO+941vdNvOkiVL+M6PfkRrWxtLly5lx6224tC99wZg1vPP8/Mbb0QSo0eN4p+OO67q38uWaWlu4YKTfsgh359I29I2jt3vcLbcdGRvd6vmVOo6RUmfJktHuj6wFJgcERdKGgLcCGwKzAG+HBHvpjpnkuVybgNOjYjfp/IdWLbz9u+Ab0dESBqQPmMHYAFwZETMKdmvHtIVrDBJ1wPjgKHAm8DZEXFFqTpbbDcqrrz7sqr0x6pj+6FjersLlsNuO+/OYzNnrVRE23L05+KaP1xZ1rE7Ddvtse6y+aWkVBtExCxJawCPkeVrPg54JyLOl3QGsHZEnC5pS+B6YAywIfAH4LMR0SbpUeDbwMNkQfGiiLhL0knAthHxTUkTgMMi4shSfa7m6vNREbFBRPSLiI16CohmVi+6Tnzf1U8pEfF6RMxKzxcCz5PlaS5OYH81HRPb3xARiyPiZWA2MCYF1zUj4qGUlOqaTnUKbd0M7KseJkR9+mxmueVYfR4qaWbR68lpcbUDSZuS5Wt5BFgvZegjIl6XVFjtGk42EiwoJL1fkp53Li/UmZvaapX0PrAOML+7DjsomlluOeYU53d3+tzelrQ6cAtwWkT8X4mBXHeJ7UslvC/1Xpca92IjM6sKUbk7WiT1IwuIv4qIW1Pxm+mUuDDv+FYqb09snxSS3s9LzzuXd6gjqQVYix5uKnFQNLOcKjOnmOb2rgCej4jia5+KE9gfS8fE9hMkDZA0AhgJPJpOtRdKGpva/FqnOoW2Dgf+GD2sLvv02cxyq9B1irsBXwWelvREKjsLOB+YImki8Aopb3NEPCtpCvAc0AqcHBFtqd6JLLsk5670gCzo/lLSbLIR4rLdWrrhoGhm+SjXQku3IuIBup7zA9i3mzrnAud2UT4TWG43roj4mBRUy+WgaGa5FOYUG5WDopnl1Nj7KToomlluDopmZkV8+mxmVsQjRTOzRHiTWTOzTjxSNDPLyHOKZmYdeE7RzKyIg6KZWSLqN6dzORwUzSy3es3pXA4HRTPLzSNFM7MinlM0M0safU6xcScGzKxqKrHzNoCkKyW9JemZorIhku6R9GL6vXbRe2dKmi3pBUn7F5XvIOnp9N5FhYx9aZfuG1P5IylBVkkOimaWW6WCItlu2eM7lZ0BTIuIkcC09JqU93kCsFWqc4mk5lTnUmASWYqCkUVtTgTejYjNgQuAH/XUIQdFM8utUomrImI6yyeS6tW8zw6KZrYCVOYjy/tc9JhURuMd8j4DxXmf5xYdV8jvPJwy8z4DhbzP3fJCi5nllmOZpce8zyv5sc77bGa9rdxR4gqvUDvvs5nVD6lyc4rdcN5nM6svlbp4W9L1wDiyucd5wNk477OZ1ZtKBcWIOKqbt3ot77NPn83MinikaGa5+TY/M7M+wiNFM8up7Fv46pKDopnlkl2B6KBoZtaukecUHRTNbAU4KJqZtWvckOigaGYrpHHDooOimeXU2OkIHBTNLBevPpuZLcdB0cysXeOGRAdFM1sBnlM0M2u3Urtq1zwHRTPLrZEXWrxLjpnlU8F0BJLGp8T2syWdsQp63yMHRTPrFSmR/cXAAcCWwFEp4X2vclA0s1wK1ymW89ODMcDsiHgpIj4BbiBLXt+r1ENiq1VK0tvA33q7H1UwFJjf252wXBr1b7ZJRAxbmQYkTSX79ynHQODjoteTI2JyaudwYHxEHJ9efxXYOSK+tTL9W1k1tdCysn+sWiVpZgUTgtsq4L9Z9yJifIWayp2oflXw6bOZ9Zbuktv3KgdFM+stM4CRkkZI6k+Wk/n2Xu5TbZ0+N7DJvd0By81/syqLiFZJ3wJ+DzQDV0bEs73crdpaaDEz620+fTYzK+KgaGZWxEGximrxFiYrTdKVkt6S9Exv98V6h4NildTqLUzWo6uASl2HZ3XIQbF6avIWJistIqYD7/R2P6z3OChWz3BgbtHreanMzGqYg2L11OQtTGZWmoNi9dTkLUxmVpqDYvXU5C1MZlaag2KVREQrULiF6XlgSi3cwmSlSboeeAgYJWmepIm93SdbtXybn5lZEY8UzcyKOCiamRVxUDQzK+KgaGZWxEHRzKyIg2IdkdQm6QlJz0i6SdJqK9HWVSmbGpIuL7VZhaRxknZdgc+YI2m5rG/dlXc65oOcn/Wvkr6bt49mnTko1pePImJ0RGwNfAJ8s/jNtDNPbhFxfEQ8V+KQcUDuoGhWjxwU69f9wOZpFPcnSdcBT0tqlvRfkmZIekrSCQDK/EzSc5LuBNYtNCTpXkk7pufjJc2S9KSkaZI2JQu+30mj1D0kDZN0S/qMGZJ2S3XXkXS3pMclXUbX9393IOnXkh6T9KykSZ3e+3HqyzRJw1LZZpKmpjr3S/pcRf41zRInrqpDklrI9mmcmorGAFtHxMspsLwfETtJGgA8KOluYHtgFLANsB7wHHBlp3aHAf8L7JnaGhIR70j6OfBBRPx3Ou464IKIeEDSxmR37WwBnA08EBH/JukgoEOQ68Y30mcMAmZIuiUiFgCDgVkR8U+Sfpja/hZZQqlvRsSLknYGLgH2WYF/RrMuOSjWl0GSnkjP7weuIDutfTQiXk7l+wHbFuYLgbWAkcCewPUR0Qa8JumPXbQ/FpheaCsiuttX8AvAllL7QHBNSWukz/hSqnunpHfL+E6nSjosPf906usCYClwYyq/FrhV0urp+95U9NkDyvgMs7I5KNaXjyJidHFBCg4fFhcBp0TE7zsddyA9b12mMo6BbNpll4j4qIu+lH3fqKRxZAF2l4hYJOleYGA3h0f63Pc6/xuYVZLnFBvP74ETJfUDkPRZSYOB6cCENOe4AbB3F3UfAvaSNCLVHZLKFwJrFB13N9mpLOm40enpdOCYVHYAsHYPfV0LeDcFxM+RjVQLmoDCaPdostPy/wNelnRE+gxJ2q6HzzDLxUGx8VxONl84KyVfuozsjOA24EXgaeBS4L7OFSPibbJ5wFslPcmy09ffAocVFlqAU4Ed00LOcyxbBT8H2FPSLLLT+Fd66OtUoEXSU8C/Aw8XvfchsJWkx8jmDP8tlR8DTEz9exaneLAK8y45ZmZFPFI0MyvioGhmVsRB0cysiIOimVkRB0UzsyIOimZmRRwUzcyK/H/msrqeshyIlgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(classifier1, X_t, y_t, cmap=plt.cm.Greens)" + ] + }, + { + "cell_type": "markdown", + "id": "141b8875", + "metadata": {}, + "source": [ + "### Analysis:\n", + "As we can see the classifier needs a great deal of work to accurately predict a disputed complaint as the above confusion matrix shows that a true disputed complaint is not recognized by the classifier." + ] + }, + { + "cell_type": "markdown", + "id": "730fb665", + "metadata": {}, + "source": [ + "**Using Random Forest Classifier to better prediction:**" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "fc0a33cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classifier accuracy is 0.7119846751564861\n" + ] + } + ], + "source": [ + "classifier2 = DecisionTreeClassifier(random_state=42)\n", + "classifier2.fit(X_tr, y_tr)\n", + "y_pred = classifier2.predict(X_t)\n", + "\n", + "print(\"Classifier accuracy is\", accuracy_score(y_t, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "0435bfbf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEGCAYAAADyuIefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAk70lEQVR4nO3de5zVVb3/8dd7BhTkfncELyikgooKEUTeU0lNtLAoS/JwwvxZ1qmjeesepZWZdsQy9Yh38ZakeQsys0MgKIagxiTFNe4gys3Bz++PvQb3DDOz98YZZmbP+/l4fB/7uz/7u757bZQPa33X97uWIgIzM8soaewKmJk1JU6KZmZZnBTNzLI4KZqZZXFSNDPL0qqxK5CtjRQdnKeblf0PO7ixq2AF+OfSZaxeu17v5xz7qlVsIb+7Vlbz7lMRMfL9fN/u1qSSYgdK+CR7NXY1rAATf3tXY1fBCjD0rM+973NsJTiHdnkdexMbu7/vL9zNmlRSNLPmoUR5Njab4W3QTopmVhBR3IMRTopmVrCSfK9KuqVoZsVOiFb5dp+bISdFMyuYu89mZokooPvcDDkpmlnB3FI0M6skUBFfUyzmhG9mDaDylpx8tjrPIx0saU7W9qakr0nqKukZSQvSa5esMpdLKpf0uqRTs+KDJc1Nn92glLUl7Snp/hSfIemAXL/PSdHMCtZK+W11iYjXI+LIiDgSGAxsAh4BLgOmRkR/YGp6j6QBwBhgIDASmCipNJ3uJmA80D9tlY8WjgPWRUQ/4Drgmly/zUnRzAqSGWhRXlsBTgL+ERH/AkYBk1J8EnBW2h8F3BcRWyNiIVAODJVUBnSMiOmRWUrgjmplKs/1IHCScvT9nRTNrGAFdJ+7S5qVtY2v5ZRjgHvTfq+IWA6QXnumeG9gcVaZJSnWO+1Xj1cpExEVwAagW12/zQMtZlaQAm/JWR0RQ+o8n7QHcCZweR5fXV3UEa+rTK3cUjSzgtXHQEuWjwEvRsSK9H5F6hKTXlem+BJg36xyfYBlKd6nhniVMpJaAZ2Atbl+m5lZ3gS0kvLa8vQZ3us6A0wBxqb9scCjWfExaUS5L5kBlZmpi71R0rB0vfC8amUqzzUamBY5ljB199nMClZfrSlJewEnAxdkha8GJksaBywCzgGIiHmSJgPzgQrgoojYnspcCNwOtAWeSBvArcCdksrJtBDH5KqTk6KZFUSqv8f8ImIT1QY+ImINmdHomo6fAEyoIT4LOKyG+BZSUs2Xk6KZFaykxvGL4uCkaGYF84QQZmaJZ942M8viSWbNzKpx99nMLEsR50QnRTMrjGfeNjOrxrfkmJkl9XnzdlPkpGhmBSvNfUiz5aRoZgWpnGS2WDkpmlnBijclOima2S5wUjQzy+KkaGaW+JqimVk1nhDCzCxLETcUnRTNrHAq4quKTopmVhDhgRYzsyqcFM3MdhClRXxR0UnRzAri7rOZWTYV9+hzMd9uZGYNRHluOc8jdZb0oKTXJL0qabikrpKekbQgvXbJOv5ySeWSXpd0alZ8sKS56bMbpEzalrSnpPtTfIakA3LVyUnRzApWgvLa8nA98GREHAIMAl4FLgOmRkR/YGp6j6QBwBhgIDASmCipchazm4DxQP+0jUzxccC6iOgHXAdck/u3mZkVIN9WYq6UKKkjcCxwK0BEbIuI9cAoYFI6bBJwVtofBdwXEVsjYiFQDgyVVAZ0jIjpERHAHdXKVJ7rQeCkylZkbZwUzaxgJcpvA7pLmpW1jc86zYHAKuB/Jb0k6RZJ7YBeEbEcIL32TMf3BhZnlV+SYr3TfvV4lTIRUQFsALrV9ds80GJmBSvgiZbVETGkls9aAUcDX4mIGZKuJ3WVa/3anUUd8brK1MotRTMrSOVqfnm2FOuyBFgSETPS+wfJJMkVqUtMel2Zdfy+WeX7AMtSvE8N8SplJLUCOgFr66qUk6KZFaw+rilGxL+BxZIOTqGTgPnAFGBsio0FHk37U4AxaUS5L5kBlZmpi71R0rB0vfC8amUqzzUamJauO9bK3WczK1g93qb4FeBuSXsAbwDnk2msTZY0DlgEnAMQEfMkTSaTOCuAiyJiezrPhcDtQFvgibRBZhDnTknlZFqIY3JVyEnRzApWX5PMRsQcoKZrjifVcvwEYEIN8VnAYTXEt5CSar6cFPPUq/+B/OcdN+143/2A/fjdD3/GtBtvBeDkr17AJ3/0Lb6x3+G8vWYd7bp2ZvxdN7P/4EH89a4HuO8bV+0ou9+RhzP25uto3aYNrzw1jcmXfHvHZ4M/cQZnXPF1IoIlr7zKbed/eff9yCJz52XXMHfadDp068y3nri9ymfP3HIfj1z9K34y87e079oZgCWv/YN7r7qWLW9tQiXim4/8ing3+M1XvsvqRUspKSnl8BOHc9alFwDw4A//h7/PeAmAbZu3snHNOq596fHd+RMbhSju624NmhQljSRzc2YpcEtEXN2Q39eQVix4gwnDMzfQq6SEq8tnMWfKkwB06V3GIScew5pF790V8M6WrUz5wU/ZZ8DB9B5wSJVzffb6H3PXly9l4cwX+fIjdzLwlBOY9/Qf6XlQX0797y/z04+ezab1G+jQo847ByyHYZ8YyXGfO5tJl/yoSnztspW89vxsuu7Ta0dse0UFt39jAl/42RX0ObQfb63bQGmrVlRse4ePjvs0Bw8/iopt73D9eV9n3p9mMPC4DzH6qvf+wfrjHQ+zZP6C3fbbGlsRP+XXcAk/3Wl+I/AxYADwmXRHerN3yAkfYfUb/2Lt4qUAnHPNd3n4qgmQdf1226bN/GP6C1Rs3VqlbMe9e9KmQ3sWznwRgL/e8yCDzsgk24+c/1n+9OtJbFq/AYCNq9bsjp9TtPoPHUS7zh12ij804X84+5sXVPmb/erzs+h98IH0ObQfAO27dKKktJQ92rbh4OFHAdBqj9bsO/ADrFu+aqdzzvrdVIacUWOPryhJymtrjhqyFTwUKI+INyJiG3AfmbvLm70ho8/khQcyg1tHnHYy65f/m6VzX82rbOeyvVm3bPmO9+uXLqfzPnsD0LNfX3r1P5BL/vAIl/5xCgNOPr7e697S/e0Pf6HT3j12JL9KKxcuRhK//MIl/PjML/L0zffuVHbTmxuZO+3/OOTDR1eJr1n6b9YsWb4jebYE9fXsc1PUkEmxtrvPq5A0vvJu9y1131PZJJS2bs2g005h9iOP0bptGz526cVM+cHP8i5f47+eqYVZ0qoVPQ/qy7Ujz+HWL1zE52/8KW07dayvqrd42zZv4cmb7uLjXzt/p8+2b9/OP2bP5fyfX8k37v8lLz/9Z177v9nvfV5RwW1f+wEnnPcJuu+3T5Wysx+bxlEjj6OktLT6aYtSfT3m11Q1ZFLM607yiLg5IoZExJA2zeCP8bBTTmDRy3PZuHI1PQ48gG4H7Mu3/vo0E+ZPp3PvMq78y5N07NWj1vLrli2nyz5lO9537l3G+uUrgEyr8eXHn+LdigrW/GsxKxb8g54H9W3w39RSrFq0jNWLlzPhjHFcddynWf/vVfx41Hg2rFpDl7170H/oINp37cwebdsw8PhhLJ733jXCe666lp4H9OHE83ceyJz12DSGfLzldJ2RKC3Jb2uOGjIp1nb3ebM25JxRO7rOy+a9xqUHHMmVA4Zz5YDhrF+6nAkjRvLmip2vOVV6898r2fLWW/T9YKYLNuyzo/nb408DMOexp/jAsR8GoF23LvTsdyCr//mvBv5FLUfvgw/kJzN/yw//dD8//NP9dN67B5c/ejOdenRjwDFDWfraG2zbvIXtFRUsmDmHvfvtD8CUn9/C5o1vVxlYqbTijUVsenMjBx41cHf/nEalEuW1NUcNOfr8AtA/3Xm+lMxNk59twO9rcK3btuHQE4/l7ovrejzzPRPmT6dNhw6U7tGaQR8/lRvO/CzLX1vAPV+9grE3/5w92rRh3tPP8spT0wCY/8yzDDjpWL4zaxrvvvsuD1/5Q95eu74Bf1Fxu+1r3+fvM+bw1roNXDFiNKd/9XxGfOr0Go/dq1MHTvyPc7jm7C+BYODxwzj8hOGsW76SJyfeRa+D9uPqUV8E4LjPnc2IT58BwAu/m8qQ009stoMKu0IU9ySzyvHEy/s7uXQa8Asyt+Tclm68rFUPlcYn2avB6mP1b2L5nxq7ClaAoWd9jllz57+vlDZwzz3j3r3Lch8IDFr0r9l1TAjRJDXofYoR8Xvg9w35HWa2+xVzy9hPtJhZwYo4JzopmllhBJQ000GUfDgpmllhVH8TQjRFTopmVrAizolOimZWqOb7XHM+nBTNrCACVMRzhzkpmllh5IEWM7Mq3H02M8tSxDnRSdHMCpNZ4rR4s6KTopkVRm4pmplVUczXFIt4YN3MGkLmMb/8tpznkv4paa6kOZJmpVhXSc9IWpBeu2Qdf7mkckmvSzo1Kz44nadc0g1KWVvSnpLuT/EZkg7IVScnRTMrjPKbYLaASWZPiIgjs6YYuwyYGhH9ganpPWnhuzHAQGAkMDEtkAdwEzAe6J+2kSk+DlgXEf2A64BrclXGSdHMCiblt+2iUcCktD8JOCsrfl9EbI2IhUA5MFRSGdAxIqZHZoLYO6qVqTzXg8BJytH3d1I0s4KVSHltQPfKhenSNr7aqQJ4WtLsrM96RcRygPTaM8VrWwyvd9qvHq9SJiIqgA1AnQuqe6DFzApS4HIEq3PMvD0iIpZJ6gk8I+m1HF9dXdQRr6tMrdxSNLOC1bTwfU1bLhGxLL2uBB4hs178itQlJr2uTIfXthjekrRfPV6ljKRWQCdgbV11clI0s8KkZ5/z2eo8jdROUofKfeAU4BVgCjA2HTYWeDTtTwHGpBHlvmQGVGamLvZGScPS9cLzqpWpPNdoYFrkWJjK3WczK1g93abYC3gktShbAfdExJOSXgAmSxoHLALOAYiIeZImA/OBCuCiiNieznUhcDvQFngibQC3AndKKifTQhyTq1JOimZWkMw1xfefFSPiDWBQDfE1wEm1lJkA7LQqaETMAg6rIb6FlFTz5aRoZoWR51M0M8vimbfNzKoqLd6mopOimRVGxT0hhJOimRWuJS5HIOmX1HHnd0Rc3CA1MrMmrrgnVKyrpThrt9XCzJoNiUJmwGl2ak2KETEp+72kdhHxdsNXycyavCJuKeYcQpI0XNJ84NX0fpCkiQ1eMzNrslRaktfWHOVT618ApwJrACLiZeDYBqyTmTVlUmagJZ+tGcpr9DkiFlcbgt9e27FmVvxa+i05iyV9GAhJewAXk7rSZtZCNdNWYD7y6T5/CbiIzAy2S4Ej03sza4kqZ5ltwPUIGlPOlmJErAbO3Q11MbNmQqXNM+HlI5/R5wMl/U7SKkkrJT0q6cDdUTkza4LqfzW/JiWf7vM9wGSgDNgHeAC4tyErZWZNXBF3n/NJioqIOyOiIm13kWPhFzMrci3xlhxJXdPuHyVdBtxHJhl+Gnh8N9TNzJogteBZcmZTdfnAC7I+C+AHDVUpM2vimmkrMB91Pfvcd3dWxMyaC6GS5vkIXz7yeqJF0mHAAKBNZSwi7mioSplZEyZaZkuxkqTvAMeTSYq/Bz4GPA84KZq1UMV8TTGfNvBoMssN/jsiziezJOGeDVorM2vainj0OZ+kuDki3gUqJHUEVgK+eduspcr3HsU8W5OSSiW9JOmx9L6rpGckLUivXbKOvVxSuaTXJZ2aFR8saW767AalpqykPSXdn+IzJB2Qqz75JMVZkjoDvyEzIv0iMDOvX2tmRamen2j5KlUnmbkMmBoR/YGp6T2SBgBjgIHASGCipNJU5iZgPNA/bSNTfBywLiL6AdcB1+SqTM6kGBH/LyLWR8SvgJOBsakbbWYtkcgscZrPlutUUh/gdOCWrPAooHLm/0nAWVnx+yJia0QsBMqBoZLKgI4RMT0igsx4x1k1nOtB4CTluCBa183bR9f1WUS8WNeJzax4FTDQ0l1S9npPN0fEzVnvfwFcCnTIivWKiOUAEbFcUs8U7w38Neu4JSn2TtqvHq8sszidq0LSBqAbsLq2Ctc1+nxtHZ8FcGIdn++S/Qf0Y+I9N9X3aa0BlZQd1NhVsEK0ro8x0oIGUVZHxJAazyKdAayMiNmSjs/vi3cSdcTrKlOrum7ePqGugmbWgtXPLTkjgDMlnUbmHuiOku4CVkgqS63EMjKDu5BpAe6bVb4PsCzF+9QQzy6zRFIroBOwtq5KFe9t6WbWMOppktmIuDwi+kTEAWQGUKZFxOeAKcDYdNhY4NG0PwUYk0aU+5IZUJmZutobJQ1L1wvPq1am8lyj03fsWkvRzKxmgtLS3IftuquByZLGAYuAcwAiYp6kycB8oAK4KCIq14u6ELgdaAs8kTaAW4E7JZWTaSGOyfXlTopmVrh6fqIlIp4Fnk37a8g8MFLTcROACTXEZwGH1RDfQkqq+cpn5m1J+pykb6f3+0kaWsiXmFkRKfI1WvK5pjgRGA58Jr3fCNzYYDUys6aviJNiPt3nD0XE0ZJeAoiIdWmpUzNrkQQtfOqwd9KjNAEgqQfwboPWysyatmbaCsxHPknxBuARoKekCWSGta9q0FqZWdMlWnZLMSLuljSbzGiQgLMi4tUcxcysaLXw7rOk/YBNwO+yYxGxqCErZmZNWAvvPj/Oe88XtgH6Aq+Tmb7HzFqayltyilQ+3efDs9+n2XMuqOVwM2sJWnJSrC4iXpT0wYaojJk1fWrpq/lJ+nrW2xLgaGBVg9XIzJq2lj76TNXJHyvIXGN8qGGqY2bNQkvtPqebtttHxCW7qT5m1uS10FtyJLVK03fXuiyBmbVQLbSlOJPM9cM5kqYADwBvV34YEQ83cN3MrClq6bfkAF2BNWTWZKm8XzEAJ0WzFqnBJ5ltVHUlxZ5p5PkVdl4cps7pvM2syLXQlmIp0J5dWA3LzIpYC+4+L4+I7++2mphZM9FCR5+puYVoZtZiW4o1LhxjZtYik2JE1LlgtJm1UCru0efivTBgZg2nHhauktRG0kxJL0uaJ+l7Kd5V0jOSFqTXLlllLpdULul1SadmxQdLmps+u0HKfLmkPSXdn+IzJB2Q66c5KZpZ4epnNb+twIkRMQg4EhgpaRhwGTA1IvoDU9N7JA0gs5j9QGAkMDE9igxwEzAe6J+2kSk+DlgXEf2A64BrclXKSdHMCiNAJfltdYiMt9Lb1mkLYBQwKcUnAWel/VHAfRGxNSIWAuXAUEllQMeImB4RAdxRrUzluR4ETqpsRdbGSdHMCiQoyXOD7pJmZW3jq5xJKpU0B1gJPBMRM4BeEbEcIL32TIf3BhZnFV+SYr3TfvV4lTIRUQFsALrV9esKnmTWzCxXKzDL6ogYUtuHEbEdOFJSZ+ARSYfV9a01naKOeF1lauWWopkVpnL0OZ8tTxGxHniWzLXAFalLTHpdmQ5bAuybVawPsCzF+9QQr1JGUiugE1DnnTVOimZWuPoZfe6RWohIagt8FHgNmAKMTYeNBR5N+1OAMWlEuS+ZAZWZqYu9UdKwdL3wvGplKs81GpiWrjvWyt1nMytc/t3nupQBk9IIcgkwOSIekzQdmCxpHLAIOAcgIuZJmgzMJ7MKwEWp+w1wIXA70BZ4Im0AtwJ3Sion00Ick6tSTopmVrh6eKIlIv4GHFVDfA21PFEXEROACTXEZwE7XY+MiC2kpJovJ0UzK4xa7oQQZmY1Kynex/ycFM2sMNpxD2JRclI0s8LVz0BLk+SkaGaFa4lTh5mZ1UxuKZqZ7SB8TdHMrAqPPpuZJR59NjOrxtcUzcyyePTZzKySR5/NzN4jino1PydFMyucu89253d+ydznZtGhaye+9dANANxy6U9Z+c+lAGza+DZ7dWjHFZN/wT/n/p17fjARyMx7fvqXxnDkicMAmPXU8zx5ywPE9ncZeMxgPvFfXwBg7fJVTPrW9Wze+DbvvvsuZ138eQ47ptZZ3G0XXHHocNq0b0dJaSklrUq54vnf8/badfzmvItYs2gx3fbbly/eOZF2XToDsGTuq9x98WVs2fgWkrj8z4/Ruk0bfvvda5hxz0NsWr+B61e+3rg/qlF4lpxdIuk24AxgZUTUte5CszDszBM5bsxpTLrq+h2x//zJJTv2H7r2Ntq2bwfAPv3255v3XEtpq1I2rFrLhE/9F4cf+0E2v/U2j1x3O5fdcy0dunZi0lXX89qMlznkQ4N44jeTGXzKCI791MdY/o/F3Pjl7/PDJ5wU69vXn5hM++5dd7x/8tqJHHL8CEb+90U8+bMbeeraiXzih1ewvaKC/x13Meffcj19jhjAW2vWUdq6NQBHnHYyJ1zwBb496NjG+hmNSxR1S7Eh0/3tvLf2arPXf/BA2nVsX+NnEcHsp//CkJHHALBH2z0pbZW55vLOtnd2/P+zeskKeu6/Dx26dgLgkGFH8NIfpgMgiS1vbwZg81tv06lHV6zh/e3xpxl+7mgAhp87mpcfewqA+X94jt6HHUqfIwYA0L5bF0rSdbQDhx5Np7JejVPhpqIeljhtqhqspRgRz0k6oKHO35SUvzifjt0603P/fXbEFs79O3d955esXb6KsRO+RmmrUnruV8aKhUtZs3QFnXt15+U/zqDinQog08X+5YXf5dl7H2fr5i189dffa6yfU7Qkcf2Z5yKJY8adyzH/cS5vrly9I8F1KuvFxlVrAFhZ/gaSuOHMc9m4ei1DRp/JqV+/sDGr34TktdB9s9Xo1xTTOrDjAfYr65nj6KZp1pN/3tFKrNT38A/wrYd/yfI3FnPHt25g4Iij2atje8ZceQG3fvNnqKSEAwcdzOolK3acY9iZJ/LR887ijZdf4/arfsFVD95ASRFfu9ndLpn6MJ3L9ubNlau5/uOfZe8PHFTrsdsrKiif/gKXP/cYe+zVlutOH8P+Rx3OISd8ZDfWuIkq8tHnRv8bFxE3R8SQiBjSI13gbk62V2xnztTpDD615r8sZQfuyx5t92RZ+SIAjjhuKJfe9VMuueMaeu3fmx77lQHwf4/8gaNPGQHAgYMO4Z2t7/D2+jd3z49oITqX7Q1Ax57dOfLMkSycNYeOPbuzYXnmH6YNy1fQoUdmnfQuvcvo/5EP0b57V/bYqy2HnXoCi+a80mh1b1pU1N3n5lnrJuS1GS/Tq28fuvTqviO2eukKtldkFhlbs2wlK/+1lG77ZFrBG9euB2DTm2/x3OQnGPGJkwHoUtaD12f8DYDlbyymYts22nfptBt/SXHb+vYmtmx8a8f+q1Ofo/eAgznitJOZfveDAEy/+0GOOP0UAAZ89DiWvvIa2zZtZntFBQv+PIOyQ/s3Wv2bnHpY4rSpavTuc3Nx22XX8vdZr/DW+je54pRxnH7hGEacfTKza+g6/+Ol+Tx928OUtipFJSV8+vILaN+lIwAP/ORWlvx9IQCnjf80vfbvDcAnv34+d3//Rqbd/TsEfP57F6Nm+j9VU/TmylX8aswXAXh3+3Y++KlRDDzlBPYffCS/+fyF/OWO++japzfj77oJgHZdOvPRr3yRHx97BgIGnnoih4/MLDD30JUTeGHyb9m2aTOX9f8gI77wGT5+5dcb66c1jmbaCsyHcqwLvesnlu4Fjge6AyuA70TErXWVGTLw4Jh5z00NUh9rGCX9Bzd2FawAQz5yPLNefOl9/Ws75JCDYsbNP8rr2FbHjZkdEc3q3rIGS/cR8ZmIKIuI1hHRJ1dCNLNmpB6uKUraV9IfJb0qaZ6kr6Z4V0nPSFqQXrtklblcUrmk1yWdmhUfLGlu+uwGpW6WpD0l3Z/iM/K5I6Z428Bm1kCUmWQ2n61uFcA3IuJQYBhwkaQBwGXA1IjoD0xN70mfjQEGkrkHeqKkyi+5icxdLP3TVnmP9DhgXUT0A64DrslVKSdFMyuYpLy2ukTE8oh4Me1vBF4FegOjgEnpsEnAWWl/FHBfRGyNiIVAOTBUUhnQMSKmR+Z64B3VylSe60HgJOWomAdazKwwopCBlu6SZmW9vzkibt7plJlu7VHADKBXRCyHTOKUVHkDc2/gr1nFlqTYO2m/eryyzOJ0rgpJG4BuwOraKuykaGYFKmg+xdW5BloktQceAr4WEW/W0ZCr6YOoI15XmVq5+2xmhStRflsOklqTSYh3R8TDKbwidYlJrytTfAmwb1bxPsCyFO9TQ7xKGUmtgE7A2jp/Ws5am5llE/Uy0JKu7d0KvBoRP8/6aAowNu2PBR7Nio9JI8p9yQyozExd7Y2ShqVznletTOW5RgPTIsd9iO4+m1mB6m05ghHA54G5kuak2BXA1cBkSeOARcA5ABExT9JkYD6ZkeuLImJ7KnchmZm52gJPpA0ySfdOSeVkWohjclXKSdHMClcPT1tFxPPUfM0P4KRaykwAJtQQnwXsNG9rRGwhJdV8OSmaWeGK+DE/J0UzK4zyG0RprpwUzaxwbimamVVSPo/wNVtOimZWuCKe1s5J0cwKU9hjfs2Ok6KZFcjrPpuZVVHMs8I7KZpZ4dx9NjNL5NFnM7Oq3H02M8vigRYzs6QZr+mcDydFMyucB1rMzLI4KZqZVXL32cysKidFM7NsTopmZhnCLUUzsyqKNyc6KZpZoeptNb8myUnRzApXxN3n4k33ZtaAlOeW4yzSbZJWSnolK9ZV0jOSFqTXLlmfXS6pXNLrkk7Nig+WNDd9doPS3GaS9pR0f4rPkHRArjo5KZpZ4Sof9cu15XY7MLJa7DJgakT0B6am90gaQGYx+4GpzERJldP13ASMB/qnrfKc44B1EdEPuA64JleFnBTNbBfUT0sxIp4D1lYLjwImpf1JwFlZ8fsiYmtELATKgaGSyoCOETE9IgK4o1qZynM9CJykHDPkOimaWWHybSVmck93SbOytvF5fEOviFgOkF57pnhvYHHWcUtSrHfarx6vUiYiKoANQLe6vtwDLWZWuPxHn1dHxJD6+tYaYlFHvK4ytXJL0cwKJimvbRetSF1i0uvKFF8C7Jt1XB9gWYr3qSFepYykVkAndu6uV+GkaGaFq7+BlppMAcam/bHAo1nxMWlEuS+ZAZWZqYu9UdKwdL3wvGplKs81GpiWrjvWyt1nMytQfoMoeZ1Juhc4nsy1xyXAd4CrgcmSxgGLgHMAImKepMnAfKACuCgitqdTXUhmJLst8ETaAG4F7pRUTqaFOCZXnZwUzaxw9XTzdkR8ppaPTqrl+AnAhBris4DDaohvISXVfDkpmllhhB/zMzOroogf83NSNLPCFW9OdFI0s0LV30BLU+SkaGaFc/fZzCzxzNtmZtV49NnMrJKXODUzq8ZJ0czsPUXcUlSOZ6N3K0mrgH81dj0aQHdgdWNXwgpSrP/N9o+IHu/nBJKeJPPnk4/VEVF9Zu0mrUklxWIlaVY9zilnu4H/m7VcxTuEZGa2C5wUzcyyOCnuHjc3dgWsYP5v1kL5mqKZWRa3FM3MsjgpmpllcVJsQJJGSnpdUrmkyxq7PpabpNskrZT0SmPXxRqHk2IDkVQK3Ah8DBgAfEbSgMatleXhdqBZ3Wxs9ctJseEMBcoj4o2I2AbcB4xq5DpZDhHxHDnWBbbi5qTYcHoDi7PeL0kxM2vCnBQbTk1PzPv+J7Mmzkmx4SwB9s163wdY1kh1MbM8OSk2nBeA/pL6StoDGANMaeQ6mVkOTooNJCIqgC8DTwGvApMjYl7j1spykXQvMB04WNISSeMau062e/kxPzOzLG4pmpllcVI0M8vipGhmlsVJ0cwsi5OimVkWJ8VmRNJ2SXMkvSLpAUl7vY9z3S5pdNq/pa7JKiQdL+nDu/Ad/5S006pvtcWrHfNWgd/1XUn/XWgdzapzUmxeNkfEkRFxGLAN+FL2h2lmnoJFxH9GxPw6DjkeKDgpmjVHTorN15+BfqkV90dJ9wBzJZVK+qmkFyT9TdIFAMr4H0nzJT0O9Kw8kaRnJQ1J+yMlvSjpZUlTJR1AJvn+V2qlHiOph6SH0ne8IGlEKttN0tOSXpL0a2p+/rsKSb+VNFvSPEnjq312barLVEk9UuwgSU+mMn+WdEi9/GmaJa0auwJWOEmtyMzT+GQKDQUOi4iFKbFsiIgPStoT+Iukp4GjgIOBw4FewHzgtmrn7QH8Bjg2natrRKyV9CvgrYj4WTruHuC6iHhe0n5knto5FPgO8HxEfF/S6UCVJFeL/0jf0RZ4QdJDEbEGaAe8GBHfkPTtdO4vk1lQ6ksRsUDSh4CJwIm78MdoViMnxealraQ5af/PwK1kurUzI2Jhip8CHFF5vRDoBPQHjgXujYjtwDJJ02o4/zDgucpzRURt8wp+FBgg7WgIdpTUIX3HJ1LZxyWty+M3XSzp7LS/b6rrGuBd4P4Uvwt4WFL79HsfyPruPfP4DrO8OSk2L5sj4sjsQEoOb2eHgK9ExFPVjjuN3FOXKY9jIHPZZXhEbK6hLnk/NyrpeDIJdnhEbJL0LNCmlsMjfe/66n8GZvXJ1xSLz1PAhZJaA0j6gKR2wHPAmHTNsQw4oYay04HjJPVNZbum+EagQ9ZxT5PpypKOOzLtPgecm2IfA7rkqGsnYF1KiIeQaalWKgEqW7ufJdMtfxNYKOmc9B2SNCjHd5gVxEmx+NxC5nrhi2nxpV+T6RE8AiwA5gI3AX+qXjAiVpG5DviwpJd5r/v6O+DsyoEW4GJgSBrImc97o+DfA46V9CKZbvyiHHV9Emgl6W/AD4C/Zn32NjBQ0mwy1wy/n+LnAuNS/ebhJR6snnmWHDOzLG4pmpllcVI0M8vipGhmlsVJ0cwsi5OimVkWJ0UzsyxOimZmWf4/sLuj4Ay6ff8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(classifier2, X_t, y_t, cmap=plt.cm.Reds)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "2862af72", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.81 0.84 0.82 88733\n", + " 1 0.26 0.23 0.24 22459\n", + "\n", + " accuracy 0.71 111192\n", + " macro avg 0.53 0.53 0.53 111192\n", + "weighted avg 0.70 0.71 0.70 111192\n", + "\n" + ] + } + ], + "source": [ + "print(classification_report(y_t, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "52f413a8", + "metadata": {}, + "source": [ + "### Analysis:\n", + "The decision tree model has a lower accuracy but because it deals with the categorical data better it manages to correctly predict some of the disputed issues." + ] + }, + { + "cell_type": "markdown", + "id": "c04cfc62", + "metadata": {}, + "source": [ + "## Conclusion:" + ] + }, + { + "cell_type": "markdown", + "id": "ce1b2eb9", + "metadata": {}, + "source": [ + "Since both models are very quick and dirty, detailed parsing of the data using the *nltk* library would be ideal in getting a higher recall and higher number of true positive recognition in the future.\n", + "\n", + "However, the visualizations and insights provided by the dataset do inform of key areas for our company to be wary and cautious of, and with constant improvement of data preparation and more robust training models there lies a higher scope of predicting disputed issues and even company responses." + ] } ], "metadata": { From aacb4bd1ee2dee33ef994b606dbc0c632aaa1288 Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Fri, 30 Sep 2022 21:05:45 -0500 Subject: [PATCH 10/12] Added report --- consumer_analysis.ipynb | 22 ++++++++++++---------- 1 file changed, 12 insertions(+), 10 deletions(-) diff --git a/consumer_analysis.ipynb b/consumer_analysis.ipynb index 7f1f005..5e10f2a 100644 --- a/consumer_analysis.ipynb +++ b/consumer_analysis.ipynb @@ -1045,9 +1045,11 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 59, "id": "40b666b1", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -1055,7 +1057,7 @@ "Text(0.5, 0, 'Disputed issue rate')" ] }, - "execution_count": 16, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" }, @@ -1110,23 +1112,23 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 58, "id": "abdbe069", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(0.5, 17.200000000000003, 'Disputed issue count')" + "Text(0.5, 0, 'Disputed issue count')" ] }, - "execution_count": 18, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAIICAYAAABTptJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmIUlEQVR4nO3df7Tn9V0f+OdLJhKSCIFkwqFDtsMKaoEaIiNLYu1qsQZNV9izcBxXDe2ypc2yatz2dElPW21P6YHuNnRpCz00sZA0BhDNhppGZaHRGBEy+SUhCc0oGEYojEKQasAOvvaP73tOvnNzmbkDA3feN4/HOd/z/Xxf3/f7M+/P3M+59z6/7/fnc6u7AwAAALP4uvUeAAAAABwMQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R7Ac/XqV7+6t27dut7DAAAA4AXw8Y9//Pe7e/Nq700bZLdu3ZodO3as9zAAAAB4AVTV7z7be5YWAwAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVNYUZKvqJ6vq3qr6TFW9r6peWlXHVdVtVfWF8XzsUvu3V9XOqrqvqt60VD+zqu4Z711dVTXqR1bVTaN+V1VtPeRHCgAAwIZwwCBbVVuS/HiSbd19epIjkmxPclmS27v7lCS3j9epqlPH+6clOTfJNVV1xNjdtUkuSXLKeJw76hcneby7T05yVZIrD8nRAQAAsOGsdWnxpiRHVdWmJC9L8lCS85LcMN6/Icn5Y/u8JDd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwLIDBtnu/r0k/3eSLyZ5OMkT3f0rSY7v7odHm4eTvGZ02ZLkwaVd7Bq1LWN7ZX2fPt29J8kTSV61cixVdUlV7aiqHbt3717rMQIAALCBrGVp8bFZzJielOTPJHl5Vf3I/rqsUuv91PfXZ99C93Xdva27t23evHn/AwcAAGBDWsvS4u9Jcn937+7u/5rkF5K8MckjY7lwxvOjo/2uJK9d6n9iFkuRd43tlfV9+ozly8ckeey5HBAAAAAb26Y1tPlikrOr6mVJvpzknCQ7kvxRkouSXDGePzDa35rkZ6vqHVnM4J6S5O7ufqaqnqyqs5PcleQtSf7FUp+LktyZ5IIkd4zraAEAgMPQ1ss+uN5D4Hl44Io3r/cQnpcDBtnuvquqbknyiSR7knwyyXVJXpHk5qq6OIuwe+Fof29V3Zzks6P9pd39zNjdW5Ncn+SoJB8ajyR5V5L3VNXOLGZitx+SowMAAGDDWcuMbLr7p5L81Iry01nMzq7W/vIkl69S35Hk9FXqT2UEYQAAANiftf75HQAAADgsCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpHDDIVtU3V9Wnlh5/WFVvq6rjquq2qvrCeD52qc/bq2pnVd1XVW9aqp9ZVfeM966uqhr1I6vqplG/q6q2viBHCwAAwPQOGGS7+77uPqO7z0hyZpI/TvL+JJclub27T0ly+3idqjo1yfYkpyU5N8k1VXXE2N21SS5Jcsp4nDvqFyd5vLtPTnJVkisPydEBAACw4Rzs0uJzkvx2d/9ukvOS3DDqNyQ5f2yfl+TG7n66u+9PsjPJWVV1QpKju/vO7u4k717RZ+++bklyzt7ZWgAAAFh2sEF2e5L3je3ju/vhJBnPrxn1LUkeXOqza9S2jO2V9X36dPeeJE8kedVBjg0AAICvAWsOslX19Ul+IMnPHajpKrXeT31/fVaO4ZKq2lFVO3bv3n2AYQAAALARHcyM7Pcl+UR3PzJePzKWC2c8Pzrqu5K8dqnfiUkeGvUTV6nv06eqNiU5JsljKwfQ3dd197bu3rZ58+aDGDoAAAAbxcEE2R/KV5YVJ8mtSS4a2xcl+cBSffu4E/FJWdzU6e6x/PjJqjp7XP/6lhV99u7rgiR3jOtoAQAAYB+b1tKoql6W5C8n+RtL5SuS3FxVFyf5YpILk6S7762qm5N8NsmeJJd29zOjz1uTXJ/kqCQfGo8keVeS91TVzixmYrc/j2MCAABgA1tTkO3uP86Kmy919x9kcRfj1dpfnuTyVeo7kpy+Sv2pjCAMAAAA+3Owdy0GAACAdSXIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMJU1BdmqemVV3VJVn6+qz1XVG6rquKq6raq+MJ6PXWr/9qraWVX3VdWblupnVtU9472rq6pG/ciqumnU76qqrYf8SAEAANgQ1joj+/8k+aXu/pYkr0vyuSSXJbm9u09Jcvt4nao6Ncn2JKclOTfJNVV1xNjPtUkuSXLKeJw76hcneby7T05yVZIrn+dxAQAAsEEdMMhW1dFJ/mKSdyVJd/9Jd38pyXlJbhjNbkhy/tg+L8mN3f10d9+fZGeSs6rqhCRHd/ed3d1J3r2iz9593ZLknL2ztQAAALBsLTOy/22S3Un+bVV9sqreWVUvT3J8dz+cJOP5NaP9liQPLvXfNWpbxvbK+j59untPkieSvGrlQKrqkqraUVU7du/evcZDBAAAYCNZS5DdlOTbklzb3a9P8kcZy4ifxWozqb2f+v767Fvovq67t3X3ts2bN+9/1AAAAGxIawmyu5Ls6u67xutbsgi2j4zlwhnPjy61f+1S/xOTPDTqJ65S36dPVW1KckySxw72YAAAANj4Dhhku/s/J3mwqr55lM5J8tkktya5aNQuSvKBsX1rku3jTsQnZXFTp7vH8uMnq+rscf3rW1b02buvC5LcMa6jBQAAgH1sWmO7H0vy3qr6+iS/k+SvZRGCb66qi5N8McmFSdLd91bVzVmE3T1JLu3uZ8Z+3prk+iRHJfnQeCSLG0m9p6p2ZjETu/15HhcAAAAb1JqCbHd/Ksm2Vd4651naX57k8lXqO5Kcvkr9qYwgDAAAAPuz1r8jCwAAAIcFQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICprCnIVtUDVXVPVX2qqnaM2nFVdVtVfWE8H7vU/u1VtbOq7quqNy3Vzxz72VlVV1dVjfqRVXXTqN9VVVsP8XECAACwQRzMjOx3d/cZ3b1tvL4sye3dfUqS28frVNWpSbYnOS3JuUmuqaojRp9rk1yS5JTxOHfUL07yeHefnOSqJFc+90MCAABgI3s+S4vPS3LD2L4hyflL9Ru7++nuvj/JziRnVdUJSY7u7ju7u5O8e0Wfvfu6Jck5e2drAQAAYNlag2wn+ZWq+nhVXTJqx3f3w0kynl8z6luSPLjUd9eobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGsmmN7b6jux+qqtckua2qPr+ftqvNpPZ+6vvrs2+h+7ok1yXJtm3bvup9AAAANr41zch290Pj+dEk709yVpJHxnLhjOdHR/NdSV671P3EJA+N+omr1PfpU1WbkhyT5LGDPxwAAAA2ugMG2ap6eVV9w97tJN+b5DNJbk1y0Wh2UZIPjO1bk2wfdyI+KYubOt09lh8/WVVnj+tf37Kiz959XZDkjnEdLQAAAOxjLUuLj0/y/nHvpU1Jfra7f6mqPpbk5qq6OMkXk1yYJN19b1XdnOSzSfYkubS7nxn7emuS65McleRD45Ek70rynqramcVM7PZDcGwAAABsQAcMst39O0let0r9D5Kc8yx9Lk9y+Sr1HUlOX6X+VEYQBgAAgP15Pn9+BwAAAF50giwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqaw6yVXVEVX2yqn5xvD6uqm6rqi+M52OX2r69qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrITxGAAAANpCDmZH9iSSfW3p9WZLbu/uUJLeP16mqU5NsT3JaknOTXFNVR4w+1ya5JMkp43HuqF+c5PHuPjnJVUmufE5HAwAAwIa3piBbVScmeXOSdy6Vz0tyw9i+Icn5S/Ubu/vp7r4/yc4kZ1XVCUmO7u47u7uTvHtFn737uiXJOXtnawEAAGDZWmdk/3mSv5PkT5dqx3f3w0kynl8z6luSPLjUbteobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGcsAgW1V/Jcmj3f3xNe5ztZnU3k99f332LXRf193bunvb5s2b1zgcAAAANpJNa2jzHUl+oKq+P8lLkxxdVf8uySNVdUJ3PzyWDT862u9K8tql/icmeWjUT1ylvtxnV1VtSnJMksee4zEBAACwgR1wRra7397dJ3b31ixu4nRHd/9IkluTXDSaXZTkA2P71iTbx52IT8ripk53j+XHT1bV2eP617es6LN3XxeMf+OrZmQBAABgLTOyz+aKJDdX1cVJvpjkwiTp7nur6uYkn02yJ8ml3f3M6PPWJNcnOSrJh8YjSd6V5D1VtTOLmdjtz2NcAAAAbGAHFWS7+8NJPjy2/yDJOc/S7vIkl69S35Hk9FXqT2UEYQAAANifg/k7sgAAALDuBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmcsAgW1Uvraq7q+rTVXVvVf3DUT+uqm6rqi+M52OX+ry9qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrC3CsAAAAbABrmZF9Oslf6u7XJTkjyblVdXaSy5Lc3t2nJLl9vE5VnZpke5LTkpyb5JqqOmLs69oklyQ5ZTzOHfWLkzze3ScnuSrJlc//0AAAANiIDhhke+G/jJcvGY9Ocl6SG0b9hiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMvWdI1sVR1RVZ9K8miS27r7riTHd/fDSTKeXzOab0ny4FL3XaO2ZWyvrO/Tp7v3JHkiyatWGcclVbWjqnbs3r17TQcIAADAxrKmINvdz3T3GUlOzGJ29fT9NF9tJrX3U99fn5XjuK67t3X3ts2bNx9g1AAAAGxEB3XX4u7+UpIPZ3Ft6yNjuXDG86Oj2a4kr13qdmKSh0b9xFXq+/Spqk1Jjkny2MGMDQAAgK8Na7lr8eaqeuXYPirJ9yT5fJJbk1w0ml2U5ANj+9Yk28ediE/K4qZOd4/lx09W1dnj+te3rOizd18XJLljXEcLAAAA+9i0hjYnJLlh3Hn465Lc3N2/WFV3Jrm5qi5O8sUkFyZJd99bVTcn+WySPUku7e5nxr7emuT6JEcl+dB4JMm7krynqnZmMRO7/VAcHAAAABvPAYNsd/9WktevUv+DJOc8S5/Lk1y+Sn1Hkq+6vra7n8oIwgAAALA/B3WNLAAAAKw3QRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVAwbZqnptVf3HqvpcVd1bVT8x6sdV1W1V9YXxfOxSn7dX1c6quq+q3rRUP7Oq7hnvXV1VNepHVtVNo35XVW19AY4VAACADWAtM7J7kvyt7v5zSc5OcmlVnZrksiS3d/cpSW4frzPe257ktCTnJrmmqo4Y+7o2ySVJThmPc0f94iSPd/fJSa5KcuUhODYAAAA2oAMG2e5+uLs/MbafTPK5JFuSnJfkhtHshiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMsO6hrZseT39UnuSnJ8dz+cLMJukteMZluSPLjUbdeobRnbK+v79OnuPUmeSPKqgxkbAAAAXxvWHGSr6hVJfj7J27r7D/fXdJVa76e+vz4rx3BJVe2oqh27d+8+0JABAADYgNYUZKvqJVmE2Pd29y+M8iNjuXDG86OjvivJa5e6n5jkoVE/cZX6Pn2qalOSY5I8tnIc3X1dd2/r7m2bN29ey9ABAADYYNZy1+JK8q4kn+vudyy9dWuSi8b2RUk+sFTfPu5EfFIWN3W6eyw/frKqzh77fMuKPnv3dUGSO8Z1tAAAALCPTWto8x1JfjTJPVX1qVH7u0muSHJzVV2c5ItJLkyS7r63qm5O8tks7nh8aXc/M/q9Ncn1SY5K8qHxSBZB+T1VtTOLmdjtz++wAAAA2KgOGGS7+9ez+jWsSXLOs/S5PMnlq9R3JDl9lfpTGUEYAAAA9ueg7loMAAAA602QBQAAYCpruUYWAICvAVsv++B6D4Hn4YEr3rzeQ4AXjRlZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYygGDbFX9TFU9WlWfWaodV1W3VdUXxvOxS++9vap2VtV9VfWmpfqZVXXPeO/qqqpRP7Kqbhr1u6pq6yE+RgAAADaQtczIXp/k3BW1y5Lc3t2nJLl9vE5VnZpke5LTRp9rquqI0efaJJckOWU89u7z4iSPd/fJSa5KcuVzPRgAAAA2vgMG2e7+tSSPrSifl+SGsX1DkvOX6jd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwErP9RrZ47v74SQZz68Z9S1JHlxqt2vUtoztlfV9+nT3niRPJHnVav9oVV1SVTuqasfu3buf49ABAACY2aG+2dNqM6m9n/r++nx1sfu67t7W3ds2b978HIcIAADAzJ5rkH1kLBfOeH501Hclee1SuxOTPDTqJ65S36dPVW1Kcky+eikzAAAAJHnuQfbWJBeN7YuSfGCpvn3cifikLG7qdPdYfvxkVZ09rn99y4o+e/d1QZI7xnW0AAAA8FU2HahBVb0vyXcleXVV7UryU0muSHJzVV2c5ItJLkyS7r63qm5O8tkke5Jc2t3PjF29NYs7IB+V5EPjkSTvSvKeqtqZxUzs9kNyZAAAAGxIBwyy3f1Dz/LWOc/S/vIkl69S35Hk9FXqT2UEYQAAADiQQ32zJwAAAHhBCbIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R4AAAdv62UfXO8h8Bw9cMWb13sIADA9M7IAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVf0cWADYwf3N4bv7uMMDqzMgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFPZtN4DABa2XvbB9R4Cz8MDV7x5vYcAAPA1w4wsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVwybIVtW5VXVfVe2sqsvWezwAAAAcng6LIFtVRyT5V0m+L8mpSX6oqk5d31EBAABwODosgmySs5Ls7O7f6e4/SXJjkvPWeUwAAAAchjat9wCGLUkeXHq9K8l/t05jOWS2XvbB9R4Cz8MDV7x5vYcAAACsorp7vceQqrowyZu6+38dr380yVnd/WMr2l2S5JLx8puT3PeiDpSVXp3k99d7EEzD+cLBcL6wVs4VDobzhYPhfFl/f7a7N6/2xuEyI7sryWuXXp+Y5KGVjbr7uiTXvViDYv+qakd3b1vvcTAH5wsHw/nCWjlXOBjOFw6G8+XwdrhcI/uxJKdU1UlV9fVJtie5dZ3HBAAAwGHosJiR7e49VfW/J/nlJEck+ZnuvnedhwUAAMBh6LAIsknS3f8hyX9Y73FwUCzz5mA4XzgYzhfWyrnCwXC+cDCcL4exw+JmTwAAALBWh8s1sgAAALAmgixJkqp6pqo+tfS47BDt9zfG89aq+syh2CeHp1XOoa3rPSbW19I58Zmq+rmqepnvBV87Vvv6H2T/rVX1P6+x3SE/p6rqB/b+LKyqn66qv32o/w3WbsX59O+r6pUHaL+5qu6qqk9W1Xe+AONxTkysqq6qqrctvf7lqnrn0ut/VlX/x7P0/XBVuZPxYUCQZa8vd/cZS48rDsVOu/uNh2I/TGHlOfTAeg+Idbf3nDg9yZ8k+ZvrPSBeVM/36781yQGD7Aulu289VD8LOSSWz6fHklx6gPbnJPl8d7++uz+yln+gqo7Y32s2lN9I8sYkqaqvy+LvxZ629P4bk3x0HcbFQRBk2a+qeqCq/klV3VlVO6rq28anVr9dVX9ztHlFVd1eVZ+oqnuq6ryl/v9l/UbPenq286Kqvr2qfquqXlpVL6+qe6vq9PUeLy+4jyQ5eWwfUVX/Znztf6WqjkqSqjqjqn5znB/vr6pjR/3DVXVlVd1dVf9p7+xKVR1RVf9XVX1s9Pkb63NorMFHkpxcVcdV1f87vl6/WVXfmiRV9d8vreb4ZFV9Q5IrknznqP3kmHn9yPie8omq2u8HpVX1XVX1q1V18zhvrqiqHx7n0T1V9Y2j3f+wNHP3/1XV8aP+V6vqX77A/y88N3cm2ZIkVfWNVfVLVfXxcX58S1WdkeSfJvn+cf4cVVXfO36X+cRYIfCK0f+BqvoHVfXrSS5c5fVfH99jPl1VP18HubKAw9ZHM4JsFgH2M0merKpjq+rIJH8uScb3kI+P331PWOr/I1X1G7VYIXDWizt09hJk2euo2ndZ6A8uvfdgd78hi19Erk9yQZKzk/yj8f5TSf7H7v62JN+d5J9VVb2IY+fwsHwOvT/Pcl5098ey+DvR/ziLXzT+XXdbarqBVdWmJN+X5J5ROiXJv+ru05J8Kcn/NOrvTvJ/dve3jrY/tbSbTd19VpK3LdUvTvJEd397km9P8ter6qQX8FB4DlZ8/f9hkk+Or/HfzeJrniR/O8ml3X1Gku9M8uUklyX5yJiFuyrJo0n+8vie8oNJrl7DP/+6JD+R5M8n+dEk3zTOo3cm+bHR5teTnN3dr09yY5K/8/yOmBdSLWZJz8ni50iyuKvsj3X3mVmcR9d096eS/IMkN41z6uVJ/l6S7xnnz44ky8tGn+ruv9DdN67y+he6+9u7+3VJPpfF9x0m190PJdlTVf9NFoH2ziR3JXlDkm1ZfK2vSnLBOLd+JsnlS7t4+Vh1+L+N91gHh82f32HdfXl8s1/N3h8W9yR5RXc/mcWnVk/V4hqVP0ryT6rqLyb50yw+JT0+yX9+YYfMYWafc6iqXpJnPy/+UZKPZRF2f/zFHyovkqOq6lNj+yNJ3pXkzyS5f/yimSQfT7K1qo5J8sru/tVRvyHJzy3t6xeW24/t703yrVV1wXh9TBYh+f5Dexg8R6t9/e/K+OCiu++oqleNr/1Hk7yjqt6bRXDYtcrnoS9J8i/HbNszSb5pDWP4WHc/nCRV9dtJfmXU78niA7YkOTHJTWO25evj/Dlc7T2ftmbxfeC2Mav6xiQ/t3S+HLlK37OTnJrko6Pd12cRXPa6aUX75denV9U/TvLKJK9I8svP5yA4rOydlX1jkndk8XvKG5M8keT3svgZc9s4Z45I8vBS3/clSXf/WlUdXVWv7O4vvXhDJxFkWZunx/OfLm3vfb0pyQ8n2ZzkzO7+r1X1QJKXvqgj5HC0v/PiuCx+IXjJqP3RuoyQF9pXfUA2fiFY/j7yTJKj1rCvvX2eyVd+dlUWMzF+sTw8rfb1X221Tnf3FVX1wSTfn+Q3q+p7Vmn3k0keyWKW9euy+CDsQFb+zFr+ebb3PPoXSd7R3bdW1Xcl+ek17JcX35e7+4zxwccvZnGN7PVJvrSfD+L3qiS3dfcPPcv7K38GLb++Psn53f3pqvqrSb7r4IbNYWzvdbJ/PoulxQ8m+VtJ/jDJHUm2jBWJq1n590v9PdN1YGkxh8IxSR4dYeW7k/zZ9R4Qh4X9nRfXJfn7Sd6b5Mr1GByHl+5+Isnj9ZW7i/5okl/dT5dkMTPy1jH7n6r6pqp6+Qs4TJ6/X8viQ66M0Pj73f2HVfWN3X1Pd1+ZxbLPb0nyZJJvWOp7TJKHu/tPszg/DtWNeI7JYvYlSS46RPvkBTK+V/x4FsuIv5zk/qq6MFl8UFJVr1ul228m+Y6qOnm0e1lVrWVGP1mcgw+P7zM//LwPgMPJR5P8lSSPdfcz3f1YFjPvb8hiVn5zVb0hWawyq6rlm0H94Kj/hSwucXniRR05SczI8hXLS8CS5Je6e61/gue9Sf59Ve1I8qkknz/EY2NOq54XVfWWJHu6+2fHtU6/UVV/qbvvWL+hcpi4KMm/HjdT+Z0kf+0A7d+ZxTLDT4yZvt1Jzn8hB8jz9tNJ/m1V/VaSP85XguPbxgdezyT5bJIPZTFruqeqPp3FrNg1SX5+hJb/mEO3kuOns1ia+ntZBB7XWR/muvuT47zYnkW4vLaq/l4Wq3xuTPLpFe13j9nU940b+SSLa2b/0xr+ub+fxZL4381iSfo37L85E7kni7sV/+yK2iu6+9Fx2crVYxXApiT/PMm9o93jtfgTk0cn+V9evCGzrLrNhAMAADAPS4sBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABT+f8BJeOZKz7AJjwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAImCAYAAABuALYVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA090lEQVR4nO3df9xmdV0n/tdbRhF/gKgji0COCf0ASlQktK00WqW0YHdhm9aEiqL8sqn92Bbb2qyNXdhKikyLpEBTASmTdP1BkOYPAkdFEcx1EpQRglEQ0YSE3t8/rs+d19zeM3MPM3DPGZ/Px+N6XOf6nM/nXJ9zrjP33K/78znnqu4OAAAATMUDVroDAAAAsC0EWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBdjJVdUfVtWvrnQ/tqSqnlFVG7aw/otV9Y33Z5+471TVmqrqqlq1g7b31qo6cTva7/T/RhZbfAy39xgAfL0p3yMLsHKq6vok+yS5O8k9Sa5N8uokZ3f3v9yP/Tg3yYbu/pV72f4ZSf6su/ffgd3aZVRVJzmou9evdF92hKpak+S6JA/s7rtXuDuT5BgCbB8jsgAr7we7++FJHpfk9CT/Lck5K9sldjU7avQUAHYGgizATqK7b+/ui5P8cJITq+rQZDZaWlW/OZYfXVVvrqrPV9WtVfXuqnrAWHd9Vb2kqq6tqtuq6k+r6sFj3Y9V1Xvm329Mazywqk5O8rwkvzSmAP/VWP/YqvrzqtpYVddV1Qvn2u4x+nVbVV2b5Klb2reF9xrLPzD6eEdVfaaqfnEZ+/av7Rcfk/H6uVV11Wj7vqr69i305ZCqumS8x81V9cujfPeq+t2qunE8freqdt/a8Zvrzx9U1VvGfl1RVU8Y6/52NPnwOL4/vKV93cyxe2FVfbKqPltVvzVft6p+oqo+Nj6Lt1fV4xa1PaWqPpHkE0ts+8FV9WdV9bnRl/dX1T5j3fVV9X1zdV9aVX+2aBM/MY7VTVX1C4vqvmFs+46qurqqvmmcn7dU1Q1V9ay5+u+sqp8cywdW1buq6vaxvxeM8qqqM0f726vqI7XEv5Hx+qeqav04thdX1WMXHZOfqapPjGP2B1VVmzn227ofe1XVOeN4fKaqfrOqdhvrdquq3x779Mkkz1n0XvPHYJNjXV87DfmdY9vvG+fUX1XVo6rqtVX1hfE5rllqnwB2FYIswE6mu69MsiHJdy2x+hfGutWZTUn+5STz14g8L8mzkzwhyTcl2epU4e4+O8lrk/yf7n5Yd//gCEp/leTDSfZLclSSF1fVs0ezXxvv8YTxfttybd85SX56jEIfmuSyZe7bkqrqyUn+JMlPJ3lUkj9KcnGNELqo7sOT/HWStyV5bJIDk1w6Vv/3JEcmOSzJE5MckWUcvzk/kuTXk+ydZH2S05Kku797rH/iOL4X3It9/fdJDk/y5CTHJPmJsT/Hjrb/YWzr3Ulev6jtsUm+I8nBS2z3xCR7JTkgs2P3M0m+vLzdTZI8M8lBSZ6V5NT54JvkB5O8JrPj8aEkb8/s9479kvxGZp/TUv5nkneMdvsn+f1R/qwk353Zef2IzP7g87nFjavqe5P87yT/Kcm+ST6V5PxF1Z6b2R9fnjjqPTubty37cV5mlwkcmORJo88/Odb91HjfJ2X2WR63hfdcjrVJnj/68YQklyf50ySPTPKxzP6NAuyyBFmAndONmf1CuthXMvvl/HHd/ZXufndverODl3f3Dd19a2ZB6kfu5fs/Ncnq7v6N7v7n7v5kkj/O7JfnZPbL/2ndfWt335DkrG3Y9leSHFxVe3b3bd39wWXu2+b8VJI/6u4ruvue7j4vyV2ZhdLFnpvkH7v7d7r7zu6+o7uvGOuel+Q3uvuW7t6YWSh9/jbs119095XjesfXZhaIN2db9/WMcaw/neR389XP9aeT/O/u/th43/+V5LD5Udmx/tbuXiqgfiWzAHvgOHYf6O4vLGdnh1/v7i9199WZhaj58+3d3f320a83ZBa0T+/ur2QWLNdU1SM206fHJXns+IzeM1f+8CTfktk9Pj7W3Tct0f55Sf6kuz/Y3XcleUmSpy0aoTy9uz8/juffZMuf1bL2Y4xkf3+SF49jckuSM7Ppv5nfnfv3+b+38J7L8afd/Q/dfXuStyb5h+7+67l+Pmk7tw+wUxNkAXZO+yW5dYny38pstO8dY6rpqYvW3zC3/KnMRh3vjccleeyYbvr5qvp8ZiN/+4z1j13ivZbrPyb5gSSfGlNInzbKt7ZvW+rrLyzq6wFZet8PSPIPm9nOY7Ppfmzr8fvHueV/SvKwLdTd1n3d3Of6uCS/N7fftyapzM6fpdou9prMRhjPH1OE/09VPXArfVlOv5Lk5rnlLyf5bHffM/c6WfoY/VJm+3BlVV1TVT+RJN19WZKXJ/mDJDdX1dlVtecS7Tf5HLv7i5mN3M4fk235rJa7H49L8sAkN819Hn+U5DFz/bq3/2aW06/Fr7e0TwCTJ8gC7GSq6qmZ/dL9nsXrxgjiL3T3N2Y25fHnq+qouSoHzC1/Q2Yju0nypSQPmXuPf7N404te35Dkuu5+xNzj4d39A2P9TUu817J09/u7+5jMfsH/yyQXLmPf/mm+/0nm+39DZqPD8319SHcvnmK7UPcJm+najZmFkfl9Wu7x2ybL+BwX29znekNm07Tn932P7n7f/NttoR9f6e5f7+6Dkzw9sxHrE8bqTfY5mx7zrfXrXuvuf+zun+rux2Y24vyKGtcid/dZ3f2UJIdkNsX4vy6xiU0+x6p6aGajzp/Z3r5txQ2ZzQR49NxnsWd3HzLWb8u/meUce4Cva4IswE6iqvasqudmNl3xz8Z0zcV1njtuhlNJvpDZV/bcM1fllKrav6oemdkI6gWj/MNJDqmqw2p2A6iXLtr0zUnmv+f1yiRfqKr/VrMbO+1WVYeOkJ3MwudLqmrvqto/yc8ucx8fVFXPq6q9xtTMhX3Y2r5dleQ/j34cneR75jb7x0l+pqq+o2YeWlXPGdfDLvbmJP+mql5cs5s7PbyqvmOse32SX6mq1VX16CT/I8nCDXe2dvy2ZpPju4zPcbH/Oo71AUlelK9+rn+Y2edwyNjuXlV1/HI7VVXPrKpvGzck+kJm03fnj/naqnpgVW3ums5fraqHjPf/8bl+3WtVdfw4p5LktsyC+D1V9dTxGT8ws6B3Z5Y+Zq9L8uPjs9o9s+nWV3T39dvbty0Z05zfkeR3xr/lB1TVE6pq4Vy9MMkLx7/PvZNsaRT+qiTfXVXfUFV7ZTY9GoA5gizAyvurqrojsxGd/57kZZmFgqUclNnNir6Y2c1dXtHd75xb/7rMfpn+5Hj8ZpJ09//L7MY0f53Z3WsXj/aek9l1q5+vqr8cUyd/MLNrB69L8tkkr8rsxkDJ7PrRT41178hsiupyPT/J9VX1hcxuLvSjy9i3F43+fD6zayD/cmFj3b0us+tkX55Z8Fmf5MeWeuPuviPJvxvb+sfMjsUzx+rfTLIuyUeSXJ3kg1n+8dualyY5bxzf/7SVfV3Km5J8ILOA85aMr2fq7jcmOSOzqcFfSPLRzK7TXK5/k+SizELsx5K8K18N77+a2ej1bZl93q9bov27Mjvelyb57e5+xza89+Y8NckVVfXFJBcneVF3X5dkz8z+aHFbZufe55L89uLG3X3p6PufZzYK+oR89TrV+9oJSR6U2fdB35bZsd13rPvjzKZxfzizc+svNreR7r4ksz8KfCSzz/3N912XAaaplncfDQB2dlV1fZKf7O6/Xum+sONUVSc5qLvXr3RfAGBnYUQWAACASRFkAQAAmBRTiwEAAJgUI7IAAABMiiALAADApKxa6Q7cW49+9KN7zZo1K90NAAAA7gMf+MAHPtvdq5daN9kgu2bNmqxbt26luwEAAMB9oKo+tbl1phYDAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCnLCrJV9XNVdU1VfbSqXl9VD66qR1bVJVX1ifG891z9l1TV+qr6eFU9e678KVV19Vh3VlXVKN+9qi4Y5VdU1ZodvqcAAADsErYaZKtqvyQvTHJ4dx+aZLcka5OcmuTS7j4oyaXjdarq4LH+kCRHJ3lFVe02NvfKJCcnOWg8jh7lJyW5rbsPTHJmkjN2yN4BAACwy1nu1OJVSfaoqlVJHpLkxiTHJDlvrD8vybFj+Zgk53f3Xd19XZL1SY6oqn2T7Nndl3d3J3n1ojYL27ooyVELo7UAAAAwb6tBtrs/k+S3k3w6yU1Jbu/udyTZp7tvGnVuSvKY0WS/JDfMbWLDKNtvLC8u36RNd9+d5PYkj1rcl6o6uarWVdW6jRs3LncfAQAA2IUsZ2rx3pmNmD4+yWOTPLSqfnRLTZYo6y2Ub6nNpgXdZ3f34d19+OrVq7fccQAAAHZJy5la/H1Jruvujd39lSR/keTpSW4e04Uznm8Z9TckOWCu/f6ZTUXeMJYXl2/SZkxf3ivJrfdmhwAAANi1rVpGnU8nObKqHpLky0mOSrIuyZeSnJjk9PH8plH/4iSvq6qXZTaCe1CSK7v7nqq6o6qOTHJFkhOS/P5cmxOTXJ7kuCSXjetoAQCAndCaU9+y0l1gO1x/+nNWugvbZatBtruvqKqLknwwyd1JPpTk7CQPS3JhVZ2UWdg9ftS/pqouTHLtqH9Kd98zNveCJOcm2SPJW8cjSc5J8pqqWp/ZSOzaHbJ3AAAA7HKWMyKb7v61JL+2qPiuzEZnl6p/WpLTlihfl+TQJcrvzAjCAAAAsCXL/fodAAAA2CkIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKRsNchW1TdX1VVzjy9U1Yur6pFVdUlVfWI87z3X5iVVtb6qPl5Vz54rf0pVXT3WnVVVNcp3r6oLRvkVVbXmPtlbAAAAJm+rQba7P97dh3X3YUmekuSfkrwxyalJLu3ug5JcOl6nqg5OsjbJIUmOTvKKqtptbO6VSU5OctB4HD3KT0pyW3cfmOTMJGfskL0DAABgl7OtU4uPSvIP3f2pJMckOW+Un5fk2LF8TJLzu/uu7r4uyfokR1TVvkn27O7Lu7uTvHpRm4VtXZTkqIXRWgAAAJi3rUF2bZLXj+V9uvumJBnPjxnl+yW5Ya7NhlG231heXL5Jm+6+O8ntSR61jX0DAADg68Cyg2xVPSjJDyV5w9aqLlHWWyjfUpvFfTi5qtZV1bqNGzdupRsAAADsirZlRPb7k3ywu28er28e04Uznm8Z5RuSHDDXbv8kN47y/Zco36RNVa1KsleSWxd3oLvP7u7Du/vw1atXb0PXAQAA2FVsS5D9kXx1WnGSXJzkxLF8YpI3zZWvHXcifnxmN3W6ckw/vqOqjhzXv56wqM3Cto5Lctm4jhYAAAA2sWo5larqIUn+XZKfnis+PcmFVXVSkk8nOT5JuvuaqrowybVJ7k5ySnffM9q8IMm5SfZI8tbxSJJzkrymqtZnNhK7djv2CQAAgF3YsoJsd/9TFt18qbs/l9ldjJeqf1qS05YoX5fk0CXK78wIwgAAALAl23rXYgAAAFhRgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTsqwgW1WPqKqLqurvq+pjVfW0qnpkVV1SVZ8Yz3vP1X9JVa2vqo9X1bPnyp9SVVePdWdVVY3y3avqglF+RVWt2eF7CgAAwC5huSOyv5fkbd39LUmemORjSU5Ncml3H5Tk0vE6VXVwkrVJDklydJJXVNVuYzuvTHJykoPG4+hRflKS27r7wCRnJjljO/cLAACAXdRWg2xV7Znku5OckyTd/c/d/fkkxyQ5b1Q7L8mxY/mYJOd3913dfV2S9UmOqKp9k+zZ3Zd3dyd59aI2C9u6KMlRC6O1AAAAMG85I7LfmGRjkj+tqg9V1auq6qFJ9unum5JkPD9m1N8vyQ1z7TeMsv3G8uLyTdp0991Jbk/yqMUdqaqTq2pdVa3buHHjMncRAACAXclyguyqJE9O8sruflKSL2VMI96MpUZSewvlW2qzaUH32d19eHcfvnr16i33GgAAgF3ScoLshiQbuvuK8fqizILtzWO6cMbzLXP1D5hrv3+SG0f5/kuUb9KmqlYl2SvJrdu6MwAAAOz6thpku/sfk9xQVd88io5Kcm2Si5OcOMpOTPKmsXxxkrXjTsSPz+ymTleO6cd3VNWR4/rXExa1WdjWcUkuG9fRAgAAwCZWLbPezyZ5bVU9KMknk/x4ZiH4wqo6KcmnkxyfJN19TVVdmFnYvTvJKd19z9jOC5Kcm2SPJG8dj2R2I6nXVNX6zEZi127nfgEAALCLWlaQ7e6rkhy+xKqjNlP/tCSnLVG+LsmhS5TfmRGEAQAAYEuW+z2yAAAAsFMQZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJiUZQXZqrq+qq6uqquqat0oe2RVXVJVnxjPe8/Vf0lVra+qj1fVs+fKnzK2s76qzqqqGuW7V9UFo/yKqlqzg/cTAACAXcS2jMg+s7sP6+7Dx+tTk1za3QcluXS8TlUdnGRtkkOSHJ3kFVW122jzyiQnJzloPI4e5Sclua27D0xyZpIz7v0uAQAAsCvbnqnFxyQ5byyfl+TYufLzu/uu7r4uyfokR1TVvkn27O7Lu7uTvHpRm4VtXZTkqIXRWgAAAJi33CDbSd5RVR+oqpNH2T7dfVOSjOfHjPL9ktww13bDKNtvLC8u36RNd9+d5PYkj1rciao6uarWVdW6jRs3LrPrAAAA7EpWLbPed3b3jVX1mCSXVNXfb6HuUiOpvYXyLbXZtKD77CRnJ8nhhx/+NesBAADY9S1rRLa7bxzPtyR5Y5Ijktw8pgtnPN8yqm9IcsBc8/2T3DjK91+ifJM2VbUqyV5Jbt323QEAAGBXt9UgW1UPraqHLywneVaSjya5OMmJo9qJSd40li9Osnbcifjxmd3U6cox/fiOqjpyXP96wqI2C9s6Lsll4zpaAAAA2MRyphbvk+SN495Lq5K8rrvfVlXvT3JhVZ2U5NNJjk+S7r6mqi5Mcm2Su5Oc0t33jG29IMm5SfZI8tbxSJJzkrymqtZnNhK7dgfsGwAAALugrQbZ7v5kkicuUf65JEdtps1pSU5bonxdkkOXKL8zIwgDAADAlmzP1+8AAADA/U6QBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJmXZQbaqdquqD1XVm8frR1bVJVX1ifG891zdl1TV+qr6eFU9e678KVV19Vh3VlXVKN+9qi4Y5VdU1ZoduI8AAADsQrZlRPZFST429/rUJJd290FJLh2vU1UHJ1mb5JAkRyd5RVXtNtq8MsnJSQ4aj6NH+UlJbuvuA5OcmeSMe7U3AAAA7PKWFWSrav8kz0nyqrniY5KcN5bPS3LsXPn53X1Xd1+XZH2SI6pq3yR7dvfl3d1JXr2ozcK2Lkpy1MJoLQAAAMxb7ojs7yb5pST/Mle2T3fflCTj+TGjfL8kN8zV2zDK9hvLi8s3adPddye5PcmjFneiqk6uqnVVtW7jxo3L7DoAAAC7kq0G2ap6bpJbuvsDy9zmUiOpvYXyLbXZtKD77O4+vLsPX7169TK7AwAAwK5k1TLqfGeSH6qqH0jy4CR7VtWfJbm5qvbt7pvGtOFbRv0NSQ6Ya79/khtH+f5LlM+32VBVq5LsleTWe7lPAAAA7MK2OiLb3S/p7v27e01mN3G6rLt/NMnFSU4c1U5M8qaxfHGSteNOxI/P7KZOV47px3dU1ZHj+tcTFrVZ2NZx4z2+ZkQWAAAAljMiuzmnJ7mwqk5K8ukkxydJd19TVRcmuTbJ3UlO6e57RpsXJDk3yR5J3joeSXJOktdU1frMRmLXbke/AAAA2IVtU5Dt7ncmeedY/lySozZT77Qkpy1Rvi7JoUuU35kRhAEAAGBLtuV7ZAEAAGDFCbIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMiiALAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIAAABMylaDbFU9uKqurKoPV9U1VfXro/yRVXVJVX1iPO891+YlVbW+qj5eVc+eK39KVV091p1VVTXKd6+qC0b5FVW15j7YVwAAAHYByxmRvSvJ93b3E5McluToqjoyyalJLu3ug5JcOl6nqg5OsjbJIUmOTvKKqtptbOuVSU5OctB4HD3KT0pyW3cfmOTMJGds/64BAACwK9pqkO2ZL46XDxyPTnJMkvNG+XlJjh3LxyQ5v7vv6u7rkqxPckRV7Ztkz+6+vLs7yasXtVnY1kVJjloYrQUAAIB5y7pGtqp2q6qrktyS5JLuviLJPt19U5KM58eM6vsluWGu+YZRtt9YXly+SZvuvjvJ7UketUQ/Tq6qdVW1buPGjcvaQQAAAHYtywqy3X1Pdx+WZP/MRlcP3UL1pUZSewvlW2qzuB9nd/fh3X346tWrt9JrAAAAdkXbdNfi7v58kndmdm3rzWO6cMbzLaPahiQHzDXbP8mNo3z/Jco3aVNVq5LsleTWbekbAAAAXx+Wc9fi1VX1iLG8R5LvS/L3SS5OcuKodmKSN43li5OsHXcifnxmN3W6ckw/vqOqjhzXv56wqM3Cto5Lctm4jhYAAAA2sWoZdfZNct648/ADklzY3W+uqsuTXFhVJyX5dJLjk6S7r6mqC5Ncm+TuJKd09z1jWy9Icm6SPZK8dTyS5Jwkr6mq9ZmNxK7dETsHAADArmerQba7P5LkSUuUfy7JUZtpc1qS05YoX5fka66v7e47M4IwAAAAbMk2XSMLAAAAK02QBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAmRZAFAABgUgRZAAAAJmWrQbaqDqiqv6mqj1XVNVX1olH+yKq6pKo+MZ73nmvzkqpaX1Ufr6pnz5U/paquHuvOqqoa5btX1QWj/IqqWnMf7CsAAAC7gOWMyN6d5Be6+1uTHJnklKo6OMmpSS7t7oOSXDpeZ6xbm+SQJEcneUVV7Ta29cokJyc5aDyOHuUnJbmtuw9McmaSM3bAvgEAALAL2mqQ7e6buvuDY/mOJB9Lsl+SY5KcN6qdl+TYsXxMkvO7+67uvi7J+iRHVNW+Sfbs7su7u5O8elGbhW1dlOSohdFaAAAAmLdN18iOKb9PSnJFkn26+6ZkFnaTPGZU2y/JDXPNNoyy/cby4vJN2nT33UluT/KobekbAAAAXx+WHWSr6mFJ/jzJi7v7C1uqukRZb6F8S20W9+HkqlpXVes2bty4tS4DAACwC1pWkK2qB2YWYl/b3X8xim8e04Uznm8Z5RuSHDDXfP8kN47y/Zco36RNVa1KsleSWxf3o7vP7u7Du/vw1atXL6frAAAA7GKWc9fiSnJOko9198vmVl2c5MSxfGKSN82Vrx13In58Zjd1unJMP76jqo4c2zxhUZuFbR2X5LJxHS0AAABsYtUy6nxnkucnubqqrhplv5zk9CQXVtVJST6d5Pgk6e5rqurCJNdmdsfjU7r7ntHuBUnOTbJHkreORzILyq+pqvWZjcSu3b7dAgAAYFe11SDb3e/J0tewJslRm2lzWpLTlihfl+TQJcrvzAjCAAAAsCXbdNdiAAAAWGmCLAAAAJOynGtkAQD4OrDm1LesdBfYDtef/pyV7gLcb4zIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKVsNslX1J1V1S1V9dK7skVV1SVV9YjzvPbfuJVW1vqo+XlXPnit/SlVdPdadVVU1ynevqgtG+RVVtWYH7yMAAAC7kOWMyJ6b5OhFZacmubS7D0py6Xidqjo4ydokh4w2r6iq3UabVyY5OclB47GwzZOS3NbdByY5M8kZ93ZnAAAA2PVtNch2998muXVR8TFJzhvL5yU5dq78/O6+q7uvS7I+yRFVtW+SPbv78u7uJK9e1GZhWxclOWphtBYAAAAWu7fXyO7T3TclyXh+zCjfL8kNc/U2jLL9xvLi8k3adPfdSW5P8qil3rSqTq6qdVW1buPGjfey6wAAAEzZjr7Z01Ijqb2F8i21+drC7rO7+/DuPnz16tX3sosAAABM2b0NsjeP6cIZz7eM8g1JDpirt3+SG0f5/kuUb9KmqlYl2StfO5UZAAAAktz7IHtxkhPH8olJ3jRXvnbcifjxmd3U6cox/fiOqjpyXP96wqI2C9s6Lsll4zpaAAAA+Bqrtlahql6f5BlJHl1VG5L8WpLTk1xYVScl+XSS45Oku6+pqguTXJvk7iSndPc9Y1MvyOwOyHskeet4JMk5SV5TVeszG4ldu0P2DAAAgF3SVoNsd//IZlYdtZn6pyU5bYnydUkOXaL8zowgDAAAAFuzo2/2BAAAAPcpQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJgUQRYAAIBJEWQBAACYFEEWAACASRFkAQAAmBRBFgAAgEkRZAEAAJiUVSvdAQC23ZpT37LSXeBeuv7056x0FwBg8ozIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCm+RxYAdmG+c3jafO8wwNKMyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCmCLAAAAJMiyAIAADApgiwAAACTIsgCAAAwKatWugPAzJpT37LSXWA7XH/6c1a6CwAAXzeMyAIAADApgiwAAACTIsgCAAAwKYIsAAAAkyLIAgAAMCk7TZCtqqOr6uNVtb6qTl3p/gAAALBz2imCbFXtluQPknx/koOT/EhVHbyyvQIAAGBntFME2SRHJFnf3Z/s7n9Ocn6SY1a4TwAAAOyEVq10B4b9ktww93pDku9Yob7sMGtOfctKd4HtcP3pz1npLgAAAEuo7l7pPqSqjk/y7O7+yfH6+UmO6O6fXVTv5CQnj5ffnOTj92tHWezRST670p1gMpwvbAvnC8vlXGFbOF/YFs6Xlfe47l691IqdZUR2Q5ID5l7vn+TGxZW6++wkZ99fnWLLqmpddx++0v1gGpwvbAvnC8vlXGFbOF/YFs6XndvOco3s+5McVFWPr6oHJVmb5OIV7hMAAAA7oZ1iRLa7766q/5Lk7Ul2S/In3X3NCncLAACAndBOEWSTpLv/b5L/u9L9YJuY5s22cL6wLZwvLJdzhW3hfGFbOF92YjvFzZ4AAABguXaWa2QBAABgWQRZkiRVdU9VXTX3OHUHbfd943lNVX10R2yTndMS59Cale4TK2vunPhoVb2hqh7iZ8HXj6U+/21sv6aq/vMy6+3wc6qqfmjh/8KqemlV/eKOfg+Wb9H59FdV9Yit1F9dVVdU1Yeq6rvug/44Jyasqs6sqhfPvX57Vb1q7vXvVNXPb6btO6vKnYx3AoIsC77c3YfNPU7fERvt7qfviO0wCYvPoetXukOsuIVz4tAk/5zkZ1a6Q9yvtvfzX5Nkq0H2vtLdF++o/wvZIebPp1uTnLKV+kcl+fvuflJ3v3s5b1BVu23pNbuU9yV5epJU1QMy+77YQ+bWPz3Je1egX2wDQZYtqqrrq+p/VdXlVbWuqp48/mr1D1X1M6POw6rq0qr6YFVdXVXHzLX/4sr1npW0ufOiqp5aVR+pqgdX1UOr6pqqOnSl+8t97t1JDhzLu1XVH4/P/h1VtUeSVNVhVfV34/x4Y1XtPcrfWVVnVNWVVfX/FkZXqmq3qvqtqnr/aPPTK7NrLMO7kxxYVY+sqr8cn9ffVdW3J0lVfc/cbI4PVdXDk5ye5LtG2c+Nkdd3j58pH6yqLf6htKqeUVXvqqoLx3lzelU9b5xHV1fVE0a9H5wbufvrqtpnlP9YVb38Pj4u3DuXJ9kvSarqCVX1tqr6wDg/vqWqDkvyf5L8wDh/9qiqZ43fZT44Zgg8bLS/vqr+R1W9J8nxS7z+qfEz5sNV9ee1jTML2Gm9NyPIZhZgP5rkjqrau6p2T/KtSTJ+hnxg/O6771z7H62q99VshsAR92/XWSDIsmCP2nRa6A/Prbuhu5+W2S8i5yY5LsmRSX5jrL8zyb/v7icneWaS36mquh/7zs5h/hx6YzZzXnT3+zP7nujfzOwXjT/rblNNd2FVtSrJ9ye5ehQdlOQPuvuQJJ9P8h9H+auT/Lfu/vZR99fmNrOqu49I8uK58pOS3N7dT03y1CQ/VVWPvw93hXth0ef/60k+ND7jX87sM0+SX0xySncfluS7knw5yalJ3j1G4c5MckuSfzd+pvxwkrOW8fZPTPKiJN+W5PlJvmmcR69K8rOjznuSHNndT0pyfpJf2r495r5Us1HSozL7fySZ3VX2Z7v7KZmdR6/o7quS/I8kF4xz6qFJfiXJ943zZ12S+Wmjd3b3v+3u85d4/Rfd/dTufmKSj2X2c4eJ6+4bk9xdVd+QWaC9PMkVSZ6W5PDMPuszkxw3zq0/SXLa3CYeOmYd/n9jHStgp/n6HVbcl8cP+6Us/GdxdZKHdfcdmf3V6s6aXaPypST/q6q+O8m/ZPZX0n2S/ON922V2MpucQ1X1wGz+vPiNJO/PLOy+8P7vKveTParqqrH87iTnJHlskuvGL5pJ8oEka6pqrySP6O53jfLzkrxhblt/MV9/LD8rybdX1XHj9V6ZheTrduxucC8t9flfkfGHi+6+rKoeNT779yZ5WVW9NrPgsGGJv4c+MMnLx2jbPUm+aRl9eH9335QkVfUPSd4xyq/O7A9sSbJ/kgvGaMuD4vzZWS2cT2sy+zlwyRhVfXqSN8ydL7sv0fbIJAcnee+o96DMgsuCCxbVn399aFX9ZpJHJHlYkrdvz06wU1kYlX16kpdl9nvK05PcnuQzmf0fc8k4Z3ZLctNc29cnSXf/bVXtWVWP6O7P339dJxFkWZ67xvO/zC0vvF6V5HlJVid5Snd/paquT/Lg+7WH7Iy2dF48MrNfCB44yr60Ij3kvvY1fyAbvxDM/xy5J8key9jWQpt78tX/uyqzkRi/WO6clvr8l5qt0919elW9JckPJPm7qvq+Jer9XJKbMxtlfUBmfwjbmsX/Z83/f7ZwHv1+kpd198VV9YwkL13Gdrn/fbm7Dxt/+HhzZtfInpvk81v4Q/yCSnJJd//IZtYv/j9o/vW5SY7t7g9X1Y8leca2dZud2MJ1st+W2dTiG5L8QpIvJLksyX5jRuJSFn9/qe8zXQGmFrMj7JXklhFWnpnkcSvdIXYKWzovzk7yq0lem+SMlegcO5fuvj3JbfXVu4s+P8m7ttAkmY2MvGCM/qeqvqmqHnofdpPt97eZ/ZErIzR+tru/UFVP6O6ru/uMzKZ9fkuSO5I8fK7tXklu6u5/yez82FE34tkrs9GXJDlxB22T+8j4WfHCzKYRfznJdVV1fDL7Q0lVPXGJZn+X5Dur6sBR7yFVtZwR/WR2Dt40fs48b7t3gJ3Je5M8N8mt3X1Pd9+a2cj70zIblV9dVU9LZrPMqmr+ZlA/PMr/bWaXuNx+v/acJEZk+ar5KWBJ8rbuXu5X8Lw2yV9V1bokVyX5+x3cN6ZpyfOiqk5Icnd3v25c6/S+qvre7r5s5brKTuLEJH84bqbyySQ/vpX6r8psmuEHx0jfxiTH3pcdZLu9NMmfVtVHkvxTvhocXzz+4HVPkmuTvDWzUdO7q+rDmY2KvSLJn4/Q8jfZcTM5XprZ1NTPZBZ4XGe9k+vuD43zYm1m4fKVVfUrmc3yOT/JhxfV3zhGU18/buSTzK6Z/X/LeLtfzWxK/Kcym5L+8C1XZ0Kuzuxuxa9bVPaw7r5lXLZy1pgFsCrJ7ya5ZtS7rWZfMblnkp+4/7rMvOo2Eg4AAMB0mFoMAADApAiyAAAATIogCwAAwKQIsgAAAEyKIAsAAMCkCLIA7LKq6p6quqqqrqmqD1fVz1fVA8a6w6vqrB38fsdW1cH3ot0XN1P+vu3v1c6lql48vmIJAO41X78DwC6rqr7Y3Q8by4/J7PsC39vdv3Yfvd+5Sd7c3RdtY7t/7eeurqquT3J4d392pfsCwHQZkQXg60J335Lk5CT/pWaeUVVvTpKq+p4xcntVVX2oqh4+1v9tVb2xqq6tqj+cG8391xHUqjquqs6tqqcn+aEkvzW284TxeFtVfaCq3l1V3zLaPL6qLq+q91fV/9xcnxfep6r2HX25qqo+WlXfVVW7jff9aFVdXVU/N+q+s6oOH8uPHsExo/5vjff8SFX99Gbe84Sx/sNV9ZpR9riqunSUX1pV3zDKz62q45bo7zNGPy6qqr+vqteOY/7CJI9N8jdV9Tf34mMEgCTJqpXuAADcX7r7kyOMPmbRql9Mckp3v7eqHpbkzlF+RJKDk3wqyduS/IckS462dvf7qurizI3IVtWlSX6muz9RVd+R5BVJvjfJ7yV5ZXe/uqpOWUbX/3OSt3f3aVW1W5KHJDksyX7dfeh4r0dsZRsnJbm9u59aVbsneW9VvaO7r1uoUFWHJPnvSb6zuz9bVY8cq16e5NXdfV5V/USSs5Icu5X3e1KSQ5LcmOS9Y5tnVdXPJ3mmEVkAtocRWQC+3tQSZe9N8rIxYviI7r57lF/Z3Z/s7nuSvD7Jv132m8wC8dOTvKGqrkryR0n2Hau/c2wvSV6zjM29P8mPV9VLk3xbd9+R5JNJvrGqfr+qjk7yha1s41lJThh9uSLJo5IctKjO9ya5aCFkdveto/xpmU3LXujvco7Dld29obv/JclVSdYsow0ALIsgC8DXjar6xiT3JLllvry7T0/yk0n2SPJ3C1OAkyy+kUQvUf7gzbzdA5J8vrsPm3t86xLb2qru/tsk353kM0leU1UndPdtSZ6Y5J1JTknyqlH97nz1//f5vlWSn53ry+O7+x2L3qqW2a+FOv/6XlVVSR40V+euueV7YhYYADuQIAvA14WqWp3kD5O8vBfd6bCqntDdV3f3GUnWJVkIskeM61kfkOSHk7xnlN9cVd86yv/93KbuSPLwJOnuLyS5rqqOH+9RVfXEUe+9SdaO5ecto++PS3JLd/9xknOSPLmqHp3kAd3950l+NcmTR/XrkzxlLB83t5m3J3lBVT1wbPObquqhi97q0iT/qaoeNeosTC1+36L+LhyH+fc6JskDt7YvmTtGAHBvCbIA7Mr2GDdIuibJXyd5R5JfX6Lei8dNkz6c5MtJ3jrKL09yepKPJrkuyRtH+alJ3pzksiQ3zW3n/CT/ddww6gmZhb6TxnavySzsJcmLkpxSVe9Pstcy9uMZSa6qqg8l+Y+ZXWO7X5J3jqnC5yZ5yaj725kF1vclefTcNl6V5NokH6yqj2Y21XmTUdLuvibJaUneNfr8srHqhZlNbf5IkueP/ifJHyf5nqq6Msl3JPnSMvbl7CRvdbMnALaHr98BgCVU1TOS/GJ3P3eFuwIALGJEFgAAgEkxIgsAAMCkGJEFAABgUgRZAAAAJkWQBQAAYFIEWQAAACZFkAUAAGBSBFkAAAAm5f8HnYnryPElOVAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1141,9 +1143,9 @@ "fig5, ax5 = plt.subplots(figsize=(16, 9))\n", "ax5.bar(disp_med['submitted_via'], disp_med['consumer_disputed?'])\n", "\n", - "ax4.set_title(\"Disputed issue counts per submission medium\")\n", - "ax4.set_xlabel('Medium')\n", - "ax4.set_xlabel('Disputed issue count')" + "ax5.set_title(\"Disputed issue counts per submission medium\")\n", + "ax5.set_xlabel('Medium')\n", + "ax5.set_xlabel('Disputed issue count')" ] }, { From 3d9d6649a326e3c8b317c359deee0dbc8660787a Mon Sep 17 00:00:00 2001 From: aryanvakharia Date: Fri, 30 Sep 2022 21:27:22 -0500 Subject: [PATCH 11/12] Added hypotheses --- .DS_Store | Bin 0 -> 6148 bytes .../consumer_analysis-checkpoint.ipynb | 1742 +++++++++++++++++ main.tex | 34 + report.pdf | Bin 0 -> 260552 bytes 4 files changed, 1776 insertions(+) create mode 100644 .DS_Store create mode 100644 .ipynb_checkpoints/consumer_analysis-checkpoint.ipynb create mode 100644 main.tex create mode 100644 report.pdf diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..9249650f33f374d4d3ca4ca29bc2a0e07f8b276e GIT binary patch literal 6148 zcmeHKF;2rk5S$A^N}x#x4U%7Ai65BADJW>*0f1v8MRM#25(J%l9>e>nVD|PDkxSAd zK)cfJ+^u)k_So|I0J!n0JO@Sq26VyRkYR_(aq%tdh0Gz*`5r6GQQ;A{xZkR_#BWqU zp4|ziXwl#a-=AN@XISHv*%>`$TyWN)xUAc0QMUz|^4eU`(@$?4?d~T1=j7MyIb)Bd z?>J?Aj=H@^-3H_-Cnc-G%Vxbhi|U8C#)Q|DAnalyzing Consumer Complaints from Financial Corporations/Institutions" + ] + }, + { + "cell_type": "markdown", + "id": "5f270b27", + "metadata": {}, + "source": [ + "## Introduction:\n", + "In this notebook I will be analyzing the counts and percentage of **disputed** customer complaints with regard to financial institutions, states and financial products along with a quick and dirty machine learning model to give a rough prediction of when the disputes will occur" + ] + }, + { + "cell_type": "markdown", + "id": "dd4e748c", + "metadata": {}, + "source": [ + "## Getting Required Packages:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "0060a11a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: xgboost in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (1.6.2)\n", + "Requirement already satisfied: numpy in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.21.5)\n", + "Requirement already satisfied: scipy in /Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages (from xgboost) (1.7.3)\n", + "\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m22.2.2\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install xgboost\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.impute import SimpleImputer\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "import xgboost as xgb\n", + "from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n", + "from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_report\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "53fc5391", + "metadata": {}, + "source": [ + "## Importing and Cleaning Data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f92ee33a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedproductsub_productissuesub_issueconsumer_complaint_narrativecompany_public_responsecompanystatezipcodetagsconsumer_consent_providedsubmitted_viadate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?complaint_id
02013-08-30MortgageOther mortgageLoan modification,collection,foreclosureNaNNaNNaNU.S. BancorpCA95993NaNNaNReferral2013-09-03Closed with explanationYesYes511074
12013-08-30MortgageOther mortgageLoan servicing, payments, escrow accountNaNNaNNaNWells Fargo & CompanyCA91104NaNNaNReferral2013-09-03Closed with explanationYesYes511080
22013-08-30Credit reportingNaNIncorrect information on credit reportAccount statusNaNNaNWells Fargo & CompanyNY11764NaNNaNPostal mail2013-09-18Closed with explanationYesNo510473
32013-08-30Student loanNon-federal student loanRepaying your loanRepaying your loanNaNNaNNavient Solutions, Inc.MD21402NaNNaNEmail2013-08-30Closed with explanationYesYes510326
42013-08-30Debt collectionCredit cardFalse statements or representationAttempted to collect wrong amountNaNNaNResurgent Capital Services L.P.GA30106NaNNaNWeb2013-08-30Closed with explanationYesYes511067
\n", + "
" + ], + "text/plain": [ + " date_received product sub_product \\\n", + "0 2013-08-30 Mortgage Other mortgage \n", + "1 2013-08-30 Mortgage Other mortgage \n", + "2 2013-08-30 Credit reporting NaN \n", + "3 2013-08-30 Student loan Non-federal student loan \n", + "4 2013-08-30 Debt collection Credit card \n", + "\n", + " issue \\\n", + "0 Loan modification,collection,foreclosure \n", + "1 Loan servicing, payments, escrow account \n", + "2 Incorrect information on credit report \n", + "3 Repaying your loan \n", + "4 False statements or representation \n", + "\n", + " sub_issue consumer_complaint_narrative \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 Account status NaN \n", + "3 Repaying your loan NaN \n", + "4 Attempted to collect wrong amount NaN \n", + "\n", + " company_public_response company state zipcode tags \\\n", + "0 NaN U.S. Bancorp CA 95993 NaN \n", + "1 NaN Wells Fargo & Company CA 91104 NaN \n", + "2 NaN Wells Fargo & Company NY 11764 NaN \n", + "3 NaN Navient Solutions, Inc. MD 21402 NaN \n", + "4 NaN Resurgent Capital Services L.P. GA 30106 NaN \n", + "\n", + " consumer_consent_provided submitted_via date_sent_to_company \\\n", + "0 NaN Referral 2013-09-03 \n", + "1 NaN Referral 2013-09-03 \n", + "2 NaN Postal mail 2013-09-18 \n", + "3 NaN Email 2013-08-30 \n", + "4 NaN Web 2013-08-30 \n", + "\n", + " company_response_to_consumer timely_response consumer_disputed? \\\n", + "0 Closed with explanation Yes Yes \n", + "1 Closed with explanation Yes Yes \n", + "2 Closed with explanation Yes No \n", + "3 Closed with explanation Yes Yes \n", + "4 Closed with explanation Yes Yes \n", + "\n", + " complaint_id \n", + "0 511074 \n", + "1 511080 \n", + "2 510473 \n", + "3 510326 \n", + "4 511067 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('consumer_complaints.csv', parse_dates=['date_received', 'date_sent_to_company'], low_memory=False)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "88e39fd7", + "metadata": {}, + "source": [ + "Having a clean dataset allows for higher accuracy in visualizing, analyzing and in this case predicting on the dataset. In order to make the most efficient use of the above data, I am checking for the number of empty/NaN rows:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "73bf52d6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "date_received 0\n", + "product 0\n", + "sub_product 158322\n", + "issue 0\n", + "sub_issue 343335\n", + "consumer_complaint_narrative 489151\n", + "company_public_response 470833\n", + "company 0\n", + "state 4887\n", + "zipcode 4505\n", + "tags 477998\n", + "consumer_consent_provided 432499\n", + "submitted_via 0\n", + "date_sent_to_company 0\n", + "company_response_to_consumer 0\n", + "timely_response 0\n", + "consumer_disputed? 0\n", + "complaint_id 0\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Check NaNs\n", + "df.isna().sum()" + ] + }, + { + "cell_type": "markdown", + "id": "e8db998a", + "metadata": {}, + "source": [ + "From the above output it is evident that the dataset if populated with many NaNs. However, removing all NaN values can cause overfitting in the prediction model and inaccuracies in the data analysis.\n", + "\n", + "So, keeping threshold of *column contains >= 10% NaNs* we will clean each column" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "45eebff3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sub_product 0.284774\n", + "sub_issue 0.617557\n", + "consumer_complaint_narrative 0.879836\n", + "company_public_response 0.846887\n", + "tags 0.859775\n", + "consumer_consent_provided 0.777936\n", + "dtype: float64" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "thresh = 0.10\n", + "col_nans = df.isna().mean(axis=0)\n", + "col_w_thresh = col_nans[col_nans >= thresh]\n", + "col_w_thresh" + ] + }, + { + "cell_type": "markdown", + "id": "dee366ce", + "metadata": {}, + "source": [ + "The above columns will now be dropped as they have too many NaNs to have any use in our dataset.\n", + "\n", + "*NOTE:* Along with these, the *complaint_id* column will aso be dropped for not being relevant in our analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "252d522a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedproductissuecompanystatezipcodesubmitted_viadate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?
02013-08-30MortgageLoan modification,collection,foreclosureU.S. BancorpCA95993Referral2013-09-03111
12013-08-30MortgageLoan servicing, payments, escrow accountWells Fargo & CompanyCA91104Referral2013-09-03111
22013-08-30Credit reportingIncorrect information on credit reportWells Fargo & CompanyNY11764Postal mail2013-09-18110
32013-08-30Student loanRepaying your loanNavient Solutions, Inc.MD21402Email2013-08-30111
42013-08-30Debt collectionFalse statements or representationResurgent Capital Services L.P.GA30106Web2013-08-30111
\n", + "
" + ], + "text/plain": [ + " date_received product issue \\\n", + "0 2013-08-30 Mortgage Loan modification,collection,foreclosure \n", + "1 2013-08-30 Mortgage Loan servicing, payments, escrow account \n", + "2 2013-08-30 Credit reporting Incorrect information on credit report \n", + "3 2013-08-30 Student loan Repaying your loan \n", + "4 2013-08-30 Debt collection False statements or representation \n", + "\n", + " company state zipcode submitted_via \\\n", + "0 U.S. Bancorp CA 95993 Referral \n", + "1 Wells Fargo & Company CA 91104 Referral \n", + "2 Wells Fargo & Company NY 11764 Postal mail \n", + "3 Navient Solutions, Inc. MD 21402 Email \n", + "4 Resurgent Capital Services L.P. GA 30106 Web \n", + "\n", + " date_sent_to_company company_response_to_consumer timely_response \\\n", + "0 2013-09-03 1 1 \n", + "1 2013-09-03 1 1 \n", + "2 2013-09-18 1 1 \n", + "3 2013-08-30 1 1 \n", + "4 2013-08-30 1 1 \n", + "\n", + " consumer_disputed? \n", + "0 1 \n", + "1 1 \n", + "2 0 \n", + "3 1 \n", + "4 1 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drops_l = list(col_w_thresh.index) + ['complaint_id']\n", + "df = df.drop(drops_l, axis=1)\n", + "\n", + "#Tokenizing Yes and No to 1 and 0 respectively\n", + "df = df.replace(['Yes', 'No'], [1, 0])\n", + "\n", + "#Also tokenizing company response for easier NLP classification\n", + "df.loc[df['company_response_to_consumer'].str.contains(\"Closed\"), 'company_response_to_consumer'] = 1\n", + "df.loc[df['company_response_to_consumer'] != 1, 'company_response_to_consumer'] = 0\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "0e9dee79", + "metadata": {}, + "source": [ + "## Data Analysis and Visualization:\n", + "Since I will be mainly checking the count AND rate of disputed issues, the following functions will be used to get these metrics as a DataFrame:\n", + "\n", + "(*NOTE: Since the data being analysed is categorical I will mostly be using bar graphs*)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "08b7d908", + "metadata": {}, + "outputs": [], + "source": [ + "def is_disputed(row, cat):\n", + " return df[(df['consumer_disputed?'] == 1) & (df[cat] == row[cat])]['consumer_disputed?'].sum()\n", + "\n", + "def get_count(cat, data=df):\n", + " df_by_cat = df[[cat, 'issue', 'consumer_disputed?']].groupby([cat]).count().reset_index()\n", + " \n", + " df_by_cat['consumer_disputed?'] = df_by_cat.apply(lambda r: is_disputed(r, cat), axis=1)\n", + " \n", + " df_by_cat['dispute_rate'] = df_by_cat.apply(lambda r: (r['consumer_disputed?'] / r['issue']) * 100, axis=1)\n", + " \n", + " return df_by_cat" + ] + }, + { + "cell_type": "markdown", + "id": "6693cced", + "metadata": {}, + "source": [ + "### Disputes according to State:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "d6ad5d11", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "State is CA with max disputes: 17615\n" + ] + } + ], + "source": [ + "#State with most disputes using above function:\n", + "disp_st = get_count('state')\n", + "st_c = disp_st['consumer_disputed?']\n", + "m_st = disp_st['state'][pd.Series.argmax(st_c)]\n", + "m_c = disp_st['consumer_disputed?'][pd.Series.argmax(st_c)]\n", + "print(\"State is\", m_st, \"with max disputes:\", m_c)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6f0729b6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Dispute counts per state')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAImCAYAAAD9mCv2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABEr0lEQVR4nO3de7xt53wv/s9XohGVuKYaidguQUk1KnWpUqp1v4S6JKUUp8GhRdtToc6po0eb9lBFXX4UoaeCUsSt7ndRQiM3VBAVCeKa1CUk+f7+GGMx99rrMtfae+y19vJ+v17zteZ8xnie8R1zjTnnmN/5PM+o7g4AAAAATOEyGx0AAAAAAFuX5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwBg06qqF1TV/9zoOAAAWD/JJwBgQ1TV2VX1/aq6sKq+XVUfrqpHVtWPz0+6+5Hd/RcTx3F8Vf2fKbexq+2hMf9eVX1wDetvq6quqr2njAsAmJ7kEwCwke7R3fsluVaS45I8IcmLNzYk5lVVe210DADA5if5BABsuO7+TnefmOQBSR5SVYcl2/fwqaqrVdWbxl5S36yqDyz0khp7UT2xqs6sqm9V1Uur6nLjsh163Iw9aq5XVcckeWCSP62q/6qqN47Lr1FVr62q86vqC1X1h8vFXlX7VtUzquqLVfWdqvpgVe07LrtnVZ0xxvzeqvqFxTHMPJ7d19tV1TlV9cdV9bWqOq+qHjouWy7mJ1TVl8eeZJ+pqjssE+/x43DGd4zrvq+qrjWz/Ibjsm+O7dx/Ud3nV9Vbquq7SW6/RPu/V1WfH9v+QlU9cNzvFyS51Rjzt8d171ZV/15VF1TVl6rqKTNNvX/8++2xzq3GOg+rqk+N/+e3zcYOAGxOkk8AwKbR3R9Nck6S2yyx+I/HZQckuXqSJyXpmeUPTHKnJNdNcv0kT55jey9M8k9J/qa7r9Dd9xgTWm9M8skkByW5Q5LHVdWdlmnm6UluluRXk1wlyZ8mubSqrp/khCSPG2N+S5I3VtXPrBbX6OeTXHGM4eFJnltVV14m5hskeUySXxl7kt0pydkrtP3AJH+R5GpJThnbS1X9bJJ3JHlFkp9LcnSS51XVjWfq/k6SpyXZL8nipN7PJnl2kruMcfxqklO6+1NJHpnkpDHmK41VvpvkwUmulORuSR5VVUeOy247/r3SWOekcdmTktwnw3P6gQzPMQCwiUk+AQCbzbkZkjiL/SjJgUmu1d0/6u4PdPds8unvu/tL3f3NDMmRo9e5/V9JckB3P7W7f9jdn0/yoiRHLV5xTFQ9LMlju/vL3X1Jd3+4uy/K0Ivrzd39ju7+UYYk1b4ZEjLz+FGSp477+pYk/5XkBsuse0mSfZLcqKou291nd/fnVmj7zd39/jHOP8vQI+maSe6e5Ozufml3X9zdn0jy2iT3nan7hu7+UHdf2t0/WKLtS5McVlX7dvd53X3GckF093u7+7SxrVMzJJJ+fYW4H5Hkr7r7U919cZK/THK43k8AsLlJPgEAm81BSb65RPn/TXJWkrePw7qOXbT8SzP3v5jkGuvc/rWSXGMcKvftcYjYkzL0tlrsakkul2SpRM81xjiSJN196RjjQXPG8Y0xwbLge0musNSK3X1Whh5WT0nytap6ZVWttP8/fq66+78yPN/XyLDvt1i07w/M0Atrh7pLxPHdDEm3RyY5r6reXFU3XG79qrpFVb1nHN74nbHe1VaI+1pJnjUT2zeTVOZ/TgGADSD5BABsGlX1KxkSCTtcFa27L+zuP+7u6yS5R5I/WjSv0TVn7h+SoQdVMgztuvzMNmYTKcn2Q/eSIbnyhe6+0sxtv+6+6xIhfz3JDzIM9Vvs3AzJkoXt1hjjl8ei783Gle0TPKtZHHO6+xXd/WvjNjvJX69Q/8fPVVVdIUNPs3Mz7Pv7Fu37Fbr7UStte1Ecb+vu38rQS+3TGXqNLVfvFUlOTHLN7r5ihnmhaoX1v5TkEYvi27e7P7xSTADAxpJ8AgA2XFXtX1V3T/LKJP+vu09bYp27j5OEV5ILMgw1u2RmlUdX1cFVdZUMPZVeNZZ/MsmNq+rwGiYhf8qipr+a5Dozjz+a5IJxAu99q2qvqjpsTIxtZ+zN9JIkfztOUr5XVd2qqvZJ8uokd6uqO1TVZTPMWXVRkoVEySlJfmesc+esPNxsse1irqobVNVvjNv9QZLvL3puFrtrVf3aOP/UXyT5t+7+UpI3Jbl+Vf1uVV12vP3K7ETpK6mqq9cwyfrPjvv6XzNxfDXJwYvmvNovyTe7+wdVdfMM80ktOD/DEL7Z/80LkjxxYQ6qqrpiVd1vntgAgI0j+QQAbKQ3VtWFGXq0/FmSv03y0GXWPTTJOzMkNE5K8rzufu/M8lckeXuSz4+3/5Mk3f0fSZ461v1sduxV9eIMcyV9u6pe392XZOhZdXiSL2To3fQPGSb/XsqfJDktyccyDAP76ySX6e7PJHlQkueMbdwjyT26+4djvceOZd/OMLTt9cu0v5TtYs4w39Nx43a+kmGy8CetUP8VSf58jPdm4/bT3RcmuWOG+a3OHdv667H9eVwmQ5Lt3LHtX0/y38dl705yRpKvVNXXx7L/nuSp4zHwvzIk7DLG8r0Mc3d9aNzPW3b368Z4XllVFyQ5Pcld5owNANggtf08nQAAe56qOjvJf+vud250LJtdVR2f5JzuXvVqgAAAu4KeTwAAAABMRvIJAAAAgMkYdgcAAADAZPR8AgAAAGAykk8AAAAATGbvjQ5gd7va1a7W27Zt2+gwAAAAALaMj3/841/v7gOWWvZTl3zatm1bTj755I0OAwAAAGDLqKovLrfMsDsAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMntP1XBVvSTJ3ZN8rbsPG8teleQG4ypXSvLt7j68qrYl+VSSz4zLPtLdjxzr3CzJ8Un2TfKWJI/t7q6qfZK8PMnNknwjyQO6++yp9gc2s23HvnnNdc4+7m4TRAIAAADbm7Ln0/FJ7jxb0N0P6O7Du/vwJK9N8i8ziz+3sGwh8TR6fpJjkhw63hbafHiSb3X39ZI8M8lfT7IXAAAAAKzbZMmn7n5/km8utayqKsn9k5ywUhtVdWCS/bv7pO7uDD2djhwX3yvJy8b7r0lyh7FdAAAAADaJjZrz6TZJvtrdn50pu3ZV/XtVva+qbjOWHZTknJl1zhnLFpZ9KUm6++Ik30ly1aU2VlXHVNXJVXXy+eefvyv3AwAAAIAVbFTy6ehs3+vpvCSHdPdNk/xRkldU1f5JlurJ1OPflZZtX9j9wu4+oruPOOCAA3YibAAAAADWYrIJx5dTVXsnuU+GicKTJN19UZKLxvsfr6rPJbl+hp5OB89UPzjJueP9c5JcM8k5Y5tXzDLD/AAAAADYGBvR8+k3k3y6u388nK6qDqiqvcb718kwsfjnu/u8JBdW1S3H+ZwenOQNY7UTkzxkvH/fJO8e54UCAAAAYJOYLPlUVSckOSnJDarqnKp6+LjoqOw40fhtk5xaVZ/MMHn4I7t7oRfTo5L8Q5KzknwuyVvH8hcnuWpVnZVhqN6xU+0LAAAAAOsz2bC77j56mfLfW6LstUleu8z6Jyc5bInyHyS5385FCQAAAMCUNmrCcQAAAAB+Ckg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlMlnyqqpdU1deq6vSZsqdU1Zer6pTxdteZZU+sqrOq6jNVdaeZ8ptV1WnjsmdXVY3l+1TVq8byf6uqbVPtCwAAAADrM2XPp+OT3HmJ8md29+Hj7S1JUlU3SnJUkhuPdZ5XVXuN6z8/yTFJDh1vC20+PMm3uvt6SZ6Z5K+n2hEAAAAA1mey5FN3vz/JN+dc/V5JXtndF3X3F5KcleTmVXVgkv27+6Tu7iQvT3LkTJ2Xjfdfk+QOC72iAAAAANgcNmLOp8dU1anjsLwrj2UHJfnSzDrnjGUHjfcXl29Xp7svTvKdJFddaoNVdUxVnVxVJ59//vm7bk8AAAAAWNHuTj49P8l1kxye5LwkzxjLl+qx1CuUr1Rnx8LuF3b3Ed19xAEHHLCmgAEAAABYv92afOrur3b3Jd19aZIXJbn5uOicJNecWfXgJOeO5QcvUb5dnaraO8kVM/8wPwAAAAB2g92afBrncFpw7yQLV8I7MclR4xXsrp1hYvGPdvd5SS6sqluO8zk9OMkbZuo8ZLx/3yTvHueFAgAAAGCT2HuqhqvqhCS3S3K1qjonyZ8nuV1VHZ5heNzZSR6RJN19RlW9OsmZSS5O8ujuvmRs6lEZrpy3b5K3jrckeXGSf6yqszL0eDpqqn0BAAAAYH0mSz5199FLFL94hfWfluRpS5SfnOSwJcp/kOR+OxMjAAAAANPaiKvdAQAAAPBTQvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATGay5FNVvaSqvlZVp8+U/d+q+nRVnVpVr6uqK43l26rq+1V1ynh7wUydm1XVaVV1VlU9u6pqLN+nql41lv9bVW2bal8AAAAAWJ8pez4dn+TOi8rekeSw7r5Jkv9I8sSZZZ/r7sPH2yNnyp+f5Jgkh463hTYfnuRb3X29JM9M8te7fhcAAAAA2BmTJZ+6+/1Jvrmo7O3dffH48CNJDl6pjao6MMn+3X1Sd3eSlyc5clx8ryQvG++/JskdFnpFAQAAALA5bOScTw9L8taZx9euqn+vqvdV1W3GsoOSnDOzzjlj2cKyLyXJmND6TpKrLrWhqjqmqk6uqpPPP//8XbkPAAAAAKxgQ5JPVfVnSS5O8k9j0XlJDunumyb5oySvqKr9kyzVk6kXmllh2faF3S/s7iO6+4gDDjhg54IHAAAAYG577+4NVtVDktw9yR3GoXTp7ouSXDTe/3hVfS7J9TP0dJodmndwknPH++ckuWaSc6pq7yRXzKJhfgAAAABsrN3a86mq7pzkCUnu2d3fmyk/oKr2Gu9fJ8PE4p/v7vOSXFhVtxznc3pwkjeM1U5M8pDx/n2TvHshmQUAAADA5jBZz6eqOiHJ7ZJcrarOSfLnGa5ut0+Sd4xzg39kvLLdbZM8taouTnJJkkd290IvpkdluHLevhnmiFqYJ+rFSf6xqs7K0OPpqKn2BQAAAID1mSz51N1HL1H84mXWfW2S1y6z7OQkhy1R/oMk99uZGAEAAACY1kZe7Q4AAACALU7yCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMJlVk09V9diq2r8GL66qT1TVHXdHcAAAAADs2ebp+fSw7r4gyR2THJDkoUmOmzQqAAAAALaEeZJPNf69a5KXdvcnZ8oAAAAAYFnzJJ8+XlVvz5B8eltV7Zfk0mnDAgAAAGAr2HuOdR6e5PAkn+/u71XVVTMMvQMAAACAFc3T8+kd3f2J7v52knT3N5I8c9KoAAAAANgSlu35VFWXS3L5JFerqivnJ/M87Z/kGrshNgAAAAD2cCsNu3tEksdlSDR9PD9JPl2Q5LnThgUAAADAVrBs8qm7n5XkWVX1B939nN0YEwAAAABbxKoTjnf3c6rqV5Nsm12/u18+YVwAAAAAbAGrJp+q6h+TXDfJKUkuGYs7ieQTAAAAACtaNfmU5IgkN+runjoYAAAAALaWy8yxzulJfn7qQAAAAADYeubp+XS1JGdW1UeTXLRQ2N33nCwqAAAAALaEeZJPT5k6CAAAAAC2pnmudve+3REIAAAAAFvPPFe7uzDD1e2S5GeSXDbJd7t7/ykDAwAAAGDPN0/Pp/1mH1fVkUluPlVAAAAAAGwd81ztbjvd/fokv7HrQwEAAABgq5ln2N19Zh5eJskR+ckwPAAAAABY1jxXu7vHzP2Lk5yd5F6TRAMAAADAljLPnE8P3R2BAAAAALD1zDPs7uAkz0ly6wzD7T6Y5LHdfc7EsQHsVtuOffOa65x93N0miAQAAGDrmGfC8ZcmOTHJNZIclOSNYxkAAAAArGie5NMB3f3S7r54vB2f5ICJ4wIAAABgC5gn+fT1qnpQVe013h6U5BtTBwYAAADAnm+e5NPDktw/yVeSnJfkvmMZAAAAAKxonqvd/WeSe+6GWAAAAADYYlbt+VRVL6uqK808vnJVvWTSqAAAAADYEuYZdneT7v72woPu/laSm04WEQAAAABbxjzJp8tU1ZUXHlTVVTLHcL2qeklVfa2qTp+tW1XvqKrPjn9n231iVZ1VVZ+pqjvNlN+sqk4blz27qmos36eqXjWW/1tVbZtznwEAAADYTeZJPj0jyYer6i+q6qlJPpzkb+aod3ySOy8qOzbJu7r70CTvGh+nqm6U5KgkNx7rPK+q9hrrPD/JMUkOHW8LbT48ybe6+3pJnpnkr+eICQAAAIDdaNXkU3e/PMlvJ/lqkvOT3Ke7/3GOeu9P8s1FxfdK8rLx/suSHDlT/sruvqi7v5DkrCQ3r6oDk+zf3Sd1dyd5+aI6C229JskdFnpFAQAAALA5rDp8Lkm6+8wkZ+6C7V29u88b2zyvqn5uLD8oyUdm1jtnLPvReH9x+UKdL41tXVxV30ly1SRfX7zRqjomQ++pHHLIIbtgNwAAAACYxzzD7naHpXos9QrlK9XZsbD7hd19RHcfccABB6wzRAAAAADWancnn746DqXL+PdrY/k5Sa45s97BSc4dyw9eony7OlW1d5IrZsdhfgAAAABsoLmST1V1rar6zfH+vlW13zq3d2KSh4z3H5LkDTPlR41XsLt2honFPzoO0buwqm45zuf04EV1Ftq6b5J3j/NCAQAAALBJrDrnU1X9fob5kq6S5LoZeh+9IMkdVql3QpLbJblaVZ2T5M+THJfk1VX18CT/meR+SdLdZ1TVqzPMK3Vxkkd39yVjU4/KcOW8fZO8dbwlyYuT/GNVnZWhx9NRc+0xAAAAALvNPBOOPzrJzZP8W5J092dnJgpfVncfvcyiJZNW3f20JE9bovzkJIctUf6DjMkrAAAAADaneYbdXdTdP1x4MM6vZHgbAAAAAKuaJ/n0vqp6UpJ9q+q3kvxzkjdOGxYAAAAAW8E8yadjk5yf5LQkj0jyliRPnjIoAAAAALaGVed86u5Lk7xovAEAAADA3Oa52t0XssQcT919nUkiAgAAAGDLmOdqd0fM3L9chivMXWWacAAAAADYSlad86m7vzFz+3J3/12S35g+NAAAAAD2dPMMu/vlmYeXydATar/JIgIAAABgy5hn2N0zZu5fnOTsJPefJBoAAAAAtpR5rnZ3+90RCAAAAABbz6pzPlXVY6tq/xr8Q1V9oqruuDuCAwAAAGDPtmryKcnDuvuCJHdM8nNJHprkuEmjAgAAAGBLmCf5VOPfuyZ5aXd/cqYMAAAAAJY1T/Lp41X19gzJp7dV1X5JLp02LAAAAAC2gnmudvfwJIcn+Xx3f6+qrpJh6B0AAAAArGienk+3SvKZ7v52VT0oyZOTfGfasAAAAADYCuZJPj0/yfeq6peS/GmSLyZ5+aRRAQAAALAlzJN8uri7O8m9kjyru5+VZL9pwwIAAABgK5hnzqcLq+qJSR6U5LZVtVeSy04bFgAAAABbwTw9nx6Q5KIkD+/uryQ5KMn/nTQqAAAAALaEVXs+jQmnv515/J8x5xMAAAAAc1g2+VRVH+zuX6uqC5P07KIk3d37Tx4dAAAAAHu0ZZNP3f1r41+TiwMAAACwLvPM+QQAAAAA6yL5BAAAAMBkJJ8AAAAAmIzkEwAAAACTWelqd4uvcrcdV7sDAAAAYDUrXe1uvySpqqcm+UqSf0xSSR6YxBXwAAAAAFjVPMPu7tTdz+vuC7v7gu5+fpLfnjowAAAAAPZ88ySfLqmqB1bVXlV1map6YJJLpg4MAAAAgD3fPMmn30ly/yRfHW/3G8sAAAAAYEXLzvm0oLvPTnKv6UMBAAAAYKtZtedTVV2/qt5VVaePj29SVU+ePjQAAAAA9nTzDLt7UZInJvlRknT3qUmOmjIoAAAAALaGeZJPl+/ujy4qu3iKYAAAAADYWuZJPn29qq6bpJOkqu6b5LxJowIAAABgS1h1wvEkj07ywiQ3rKovJ/lCkgdOGhUAAAAAW8I8yafu7t+sqp9NcpnuvrCqrj11YAAAAADs+eYZdvfaJOnu73b3hWPZa6YLCQAAAICtYtmeT1V1wyQ3TnLFqrrPzKL9k1xu6sAAAAAA2POtNOzuBknunuRKSe4xU35hkt+fMCYAAAAAtohlk0/d/YYkb6iqW3X3SbsxJgAAAAC2iHkmHD+mqnbo6dTdD5sgHgAAAAC2kHmST2+auX+5JPdOcu404QAAAACwlayafOru184+rqoTkrxzsogAAAAA2DIus446hyY5ZFcHAgAAAMDWs2rPp6q6MEknqfHvV5I8YeK4AAAAANgC5hl2t9/uCAQAAACArWeeCcdTVfdJ8msZej59oLtfP2VQAAAAAGwNq875VFXPS/LIJKclOT3JI6vquVMHBgAAAMCeb56eT7+e5LDu7iSpqpdlSEQBAAAAwIrmudrdZ7L91e2umeTUacIBAAAAYCuZp+fTVZN8qqo+Oj7+lSQnVdWJSdLd95wqOAAAAAD2bPMkn/7X5FEAAAAAsCXNk3w6Ocn3u/vSqrp+khsmeWt3/2ja0AAAAADY080z59P7k1yuqg5K8q4kD01y/JRBAQAAALA1zJN8qu7+XpL7JHlOd987yY3Xu8GqukFVnTJzu6CqHldVT6mqL8+U33WmzhOr6qyq+kxV3Wmm/GZVddq47NlVVeuNCwAAAIBdb55hd1VVt0rywCQPH8v2Wu8Gu/szSQ4fG94ryZeTvC5Dj6pndvfTF238RkmOypDwukaSd1bV9bv7kiTPT3JMko8keUuSOyd563pjAwAAgLXYduyb11zn7OPuNkEksHnN0/PpcUmemOR13X1GVV0nyXt20fbvkORz3f3FFda5V5JXdvdF3f2FJGcluXlVHZhk/+4+qbs7ycuTHLmL4gIAAABgF1i151N3vy/J+2Yefz7JH+6i7R+V5ISZx4+pqgdnmOT8j7v7W0kOytCzacE5Y9mPxvuLy3dQVcdk6CGVQw45ZBeFDgAAAMBqlk0+VdXfdffjquqNSXrx8u6+585suKp+Jsk9M/SqSoYhdH8xbusvkjwjycOSLDWPU69QvmNh9wuTvDBJjjjiiCXXAQAApmeIEsBPn5V6Pv3j+PfpK6yzM+6S5BPd/dUkWfibJFX1oiRvGh+ek+SaM/UOTnLuWH7wEuUAAAAAbBLLJp+6++Pj3/dV1QHj/fN34baPzsyQu6o6sLvPGx/eO8np4/0Tk7yiqv42w4Tjhyb5aHdfUlUXVtUtk/xbkgcnec4ujA8AAACAnbTSsLtK8udJHpNhiNtlquriJM/p7qfuzEar6vJJfivJI2aK/6aqDs8wdO7shWXjJOevTnJmkouTPHq80l2SPCrJ8Un2zXCVO1e6AwAAANhEVhp297gkt07yK+NV5jJe6e75VfX47n7mejfa3d9LctVFZb+7wvpPS/K0JcpPTnLYeuMAAAAAYFqXWWHZg5McvZB4Sn58pbsHjcsAAAAAYEUrJZ8u291fX1w4zvt02elCAgAAAGCrWCn59MN1LgMAAACAJCvP+fRLVXXBEuWV5HITxQMAAADAFrJs8qm799qdgQAAAACw9aw07A4AAAAAdorkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMZkOST1V1dlWdVlWnVNXJY9lVquodVfXZ8e+VZ9Z/YlWdVVWfqao7zZTfbGznrKp6dlXVRuwPAAAAAEvbyJ5Pt+/uw7v7iPHxsUne1d2HJnnX+DhVdaMkRyW5cZI7J3leVe011nl+kmOSHDre7rwb4wcAAABgFZtp2N29krxsvP+yJEfOlL+yuy/q7i8kOSvJzavqwCT7d/dJ3d1JXj5TBwAAAIBNYKOST53k7VX18ao6Ziy7eneflyTj358byw9K8qWZuueMZQeN9xeXAwAAALBJ7L1B2711d59bVT+X5B1V9ekV1l1qHqdeoXzHBoYE1zFJcsghh6w1VgAAAADWaUN6PnX3uePfryV5XZKbJ/nqOJQu49+vjaufk+SaM9UPTnLuWH7wEuVLbe+F3X1Edx9xwAEH7MpdAQAAAGAFuz35VFU/W1X7LdxPcsckpyc5MclDxtUekuQN4/0TkxxVVftU1bUzTCz+0XFo3oVVdcvxKncPnqkDAAAAwCawEcPurp7kdUO+KHsneUV3/2tVfSzJq6vq4Un+M8n9kqS7z6iqVyc5M8nFSR7d3ZeMbT0qyfFJ9k3y1vEGAAAAwCax25NP3f35JL+0RPk3ktxhmTpPS/K0JcpPTnLYro4RAAAAgF1joyYcB2AJ245985rrnH3c3SaIBAAAYNfYkAnHAQAAAPjpIPkEAAAAwGQknwAAAACYjOQTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADCZvTc6AAAAYD7bjn3zmuucfdzdJogEAOan5xMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGT23ugAAGBX23bsm9dc5+zj7jZBJAAAgJ5PAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmMzeGx0AALB1bTv2zWuuc/Zxd5sgEoDNxfsju5Ljic1OzycAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMlIPgEAAAAwGcknAAAAACYj+QQAAADAZPbe6AAAAADWYtuxb15znbOPu9sEkQAwDz2fAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJSD4BAAAAMBnJJwAAAAAmI/kEAAAAwGT23ugAAABgNduOffO66p193N12cSQAwFrp+QQAAADAZCSfAAAAAJiM5BMAAAAAk5F8AgAAAGAykk8AAAAATEbyCQAAAIDJ7L3RAQAAbGbbjn3zmuucfdzdJogEAGDPpOcTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyZhwHDYBk9kCAACwVe32nk9Vdc2qek9Vfaqqzqiqx47lT6mqL1fVKePtrjN1nlhVZ1XVZ6rqTjPlN6uq08Zlz66q2t37AwAAAMDyNqLn08VJ/ri7P1FV+yX5eFW9Y1z2zO5++uzKVXWjJEcluXGSayR5Z1Vdv7svSfL8JMck+UiStyS5c5K37qb9AAAAAGAVu73nU3ef192fGO9fmORTSQ5aocq9kryyuy/q7i8kOSvJzavqwCT7d/dJ3d1JXp7kyGmjBwAAAGAtNnTC8araluSmSf5tLHpMVZ1aVS+pqiuPZQcl+dJMtXPGsoPG+4vLAQAAANgkNiz5VFVXSPLaJI/r7gsyDKG7bpLDk5yX5BkLqy5RvVcoX2pbx1TVyVV18vnnn7+zoQMAAAAwpw252l1VXTZD4umfuvtfkqS7vzqz/EVJ3jQ+PCfJNWeqH5zk3LH84CXKd9DdL0zywiQ54ogjlkxQAQAAABvDFcC3to242l0leXGST3X3386UHziz2r2TnD7ePzHJUVW1T1VdO8mhST7a3eclubCqbjm2+eAkb9gtOwEAAADAXDai59Otk/xuktOq6pSx7ElJjq6qwzMMnTs7ySOSpLvPqKpXJzkzw5XyHj1e6S5JHpXk+CT7ZrjKnSvdAQAAAGwiuz351N0fzNLzNb1lhTpPS/K0JcpPTnLYrosOAAAAgF1pQ692BwAAAMDWtiETjgMAm5+JPwEA2BX0fAIAAABgMpJPAAAAAExG8gkAAACAyZjzCUhibhcAAACmoecTAAAAAJORfAIAAABgMpJPAAAAAExG8gkAAACAyUg+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMZu+NDgAAAAA2wrZj37yuemcfd7ddHAlsbXo+AQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIwJxwEANrn1TIhrMlym4ngceB4A5qfnEwAAAACTkXwCAAAAYDKSTwAAAABMxpxPwC5h3gOApXl/BFie90j46SD5BAAAAOzR1pPITCQzdxfD7gAAAACYjOQTAAAAAJORfAIAAABgMuZ8YkOZYBDYrLw/AQDArqHnEwAAAACTkXwCAAAAYDKSTwAAAABMxpxPALBFmbcKAIDNQM8nAAAAACYj+QQAAADAZCSfAAAAAJiM5BMAAAAAkzHhOABsQuuZLDwxYTgAAJuPnk8AAAAATEbyCQAAAIDJGHYHbBnrGaZkiBIA/PRxzgCwe+n5BAAAAMBk9HwCNgWTKwMA8NNITzx+Gkg+AQCwKl+OAID1knwCgAn4og4sxXsDAD+NzPkEAAAAwGT0fOKnnl8gYXteE2wmjkfYtcyxCMBGkHwCYJeSLACAnw4+84F5ST4BsOk4mQU2I+9NALA+5nwCAAAAYDKSTwAAAABMxrA7AACAPYzJ42HXM7x6Ono+AQAAADAZPZ8AAJicX5MBtjbv86xkj+/5VFV3rqrPVNVZVXXsRscDAAAAwE/s0T2fqmqvJM9N8ltJzknysao6sbvP3NjIfnrIbgMAewrnLbD1eF2zmTgel7en93y6eZKzuvvz3f3DJK9Mcq8NjgkAAACA0R7d8ynJQUm+NPP4nCS32KBY9jhbISvrKh+wPa8JAADWait8N2Rzq+7e6BjWrarul+RO3f3fxse/m+Tm3f0Hi9Y7Jskx48MbJPnMbg1097takq9vcBtbIYatsA9i2DX1xbBr6oth88SwFfZhM8SwFfZBDLumvhh2TX0xbJ4YtsI+bIYYtsI+iGHX1N9VbWx21+ruA5Zc0t177C3JrZK8bebxE5M8caPj2uhbkpM3uo2tEMNW2AcxbJ192AwxbIV9EMPW2YfNEMNW2AcxbJ192AwxbIV9EMPW2YfNEMNW2AcxbJ592NNve/qcTx9LcmhVXbuqfibJUUlO3OCYAAAAABjt0XM+dffFVfWYJG9LsleSl3T3GRscFgAAAACjPTr5lCTd/ZYkb9noODaZF26CNrZCDFthH8Swa+qLYdfUF8PmiWEr7MNmiGEr7IMYdk19Meya+mLYPDFshX3YDDFshX0Qw66pv6va2GPt0ROOAwAAALC57elzPgEAAACwiUk+7eGq6t5V1VV1w0XlNx3L77TWNqpqW1V9v6pOmbk9eB1tnD6z/Per6hNVdeX1trGT+3FmVb2gqpY95ueo//Kquuwa6l+mqp5dVadX1WlV9bGquvYa6j960f/g9HH5LyxT/+er6pVV9bkx3rdU1fXHZY+vqh9U1RVX2P6S9avqxlX17qr6j6r6bFX9z6qqNbTznqr63rgP36yqL4z337lE3UvGZWdU1Ser6o9m/2dVdfOqen9VfaaqPl1V/1BVl5+nflXdrqq+s+g5/c1l9uGSRettG+u/abn9nqNuV9XDZ9a76Vj2J0u0cfWqekVVfb6qPl5VJ1XVvWeWP6uqvrzc8bxc/ar6var6+0Xrvreqjlimnf9a9PjH9avqKUvFPkcbqx6LS9Wvn7we/72qPlVVH62qh8zTxhLtzP2+skTdrqo/mFn291X1e6vVHe/fdXwNHVJVNxif+1PG/Vm2G/Yybby7qh41U36Lqjq1qnYYTr/4f7Bo2WrHUlfVP8483ruqzl/8WqiqN1TVSWutPx5T54//189W1duq6lfX2cbs6+5Ga6w/1+tiPW2tod6lVXWTmXVOr6pt89Qfy44cj4FP1/CZc+ROPI9nVtXvr2M/rl5Vb6rh/ffMqnrLvPWr6qEz/78fjvtwSlUdt0Qbz5h5/CdV9ZSZxw8en7szxhj+ZN76NbyvfXnc7mer6l9mj6V1tLFwu9Ia6y+O+eyquto64ljyPXqOel1V15tZ/vix7IjV2qjh826794Lx//zVqjpwnjiq6o41fG7VWL7X+Dwufm84uIb3ns/WcM7xrKr6mVri87qqjq+q+y7xXMzVRlX9nxren/ZZQ/3v1PDe9umqevpS/4uxjYXzhtOr6p9rPK8Zn7evV9VfLVd3jjZmy9+4xLG4Q72qemZVPW5mnbdV1T/MPH5GVf3RHHH8eHs1x2dvVf1ZDa/bU8c2blFVl62q48bn9/QaPvvvsob6763hnHHhvfHvFz8HY92r1k9er1+p7V/DK77nzNHG52o4973KuN6Vx8fXWqKNHZ6nGl4T362fvDfPfke776J131uLvvtV1eOq6nlVdUBV/aiqHrHS/2GVdt4yx/9xqbr/c4z9lFrhu8C8x95qr401tLP4uZ6nXlfVDRbV+7uq+tM1tPHDqvrFmbI/raoXLLUvW43k057v6CQfzHClv6XKj15nG5/r7sNnbi9fZxypqt9N8gdJ7tjd31pPG3Nadj+S3CTJjZIcuc76v5jk4CT3X0P9ByS5RpKbdPcvJrl3km/PW7+7nzv7P8hwJcd/6u5PLa5YVZXkdUne293X7e4bJXlSkqvPtP2xMYYdrFL/xCTHdff1k/xSkl9N8t/X0M7jk9xpZh/+x7hPSyV+vj8uu3GS30py1yR/PrZ99ST/nOQJ3X2DJL+Q5F+T7DdP/dEHFh3XOyTAFrWzcDt7mfXWUve0DMfEgqOSfHJx5fE5fH2S93f3dbr7ZuO6B4/LL5Ph//ilJLdda/1NYMVjcRWf6+6bdvcvZNinx1fVQ3dpdKv7WpLH1nCF1blV1R2SPCfJnbv7P5M8O8kzx2PkF8Zlc7eR4Xn8H+PJ5GWS/H2S/97dF68hphWPpdF3kxxWVfuOj38ryZcXtXOlJL+c5Eq1Y4J91fpJXjX+Xw9NclySf6ntk+zztjH7ujtzjfXntd625ql3TpI/W0/9qvqlJE9Pcq/uvmGSeyZ5es0ks+aM4VXje/Xtkvzl+L67lv14apJ3dPcvje//x85bv7tfOvN5d26S24+PF7dxUZL71NLJmLskeVyG840bZzguvzNv/dHC6/LQJK9K8u6qOmCdbSzcvr3G+vNabzur1Tst258L3TfJmYvWWa6N9yc5uMbE6eg3k5ze3efN00Z3vz3JF5Ms/GDzB0k+1t0fXlhn/Kz7lySvH/9X109yhSRPW2afdjBvG1X1Z0luneTI7r5oDfU/0N03TXLTJHevqlsvE8rCecNhSX6Y5JFj+R2TfCbJ/cdtrWS5NmbLv5nk0XPU+3CGc72Fz4mrJbnxTJ1fTfKhOeJYantLqqpbJbl7kl/u7ptkOGa+lOQvkhyY5LCxzXtk+/O+1eonyQPHsptkOObesLh+d39j5v3nBZl5DWfO19kKbVw3yfMzfL5l/PvC7v7iPM/N6M/Hdu+a7b+jvWbReidkx+9RR43l90vykcz33XC5dlZNhC5T925JHjHHd4F5j73VXhvrPYbnqfevs/s3rnffDJ8X87bxtCTPq8FBSR6R5IlLxLPlSD7twarqChk+DB+e7V8EleFF8HtJ7lhVl1trG7sijnHZ/TOcfN6xu78+VRyr1R+/kH04yfUWL5uz/iVJPprkoDXUPzDJed196djGOcsl31bbflXdNkPia8mkT5LbJ/lRd/84a97dp3T3B6rquhlOhp6c5T9wlqyf4UTqQ+OJYLr7e0kekx2/UKwaxzLrL6u7v5bkmCSPGY/pRyd5WXefNC7v7n5Nd391zvob7T+TXK6GngGVIYHw1iXW+40kP1z0HH6xuxeSE7dPcnqGE5ml/p+r1d8wcx6Lc+nuzyf5oyR/uAtCW4vzk7wryVp6Xd0myYuS3K27PzcWH5gh2ZAk6e7T1tLGeNw/PcnfZPiycGp3f3AtO5LVj6UFb81w4phxvRMWLf/tJG9M8sos/f69Wv0f6+73ZJiM85j1trGMna2/K9pard6bktx48S+qc9b/kyR/2d1fSJLx718l+R/riX18//xckh1+mV+ljcXH9alrrD+PizMcI49fYtkTk/xJd587bv8H3f2iNdTfTne/Ksnbk/zOettYxs7W39l2Vqv3+iT3SpKquk6GBN7587QxnvP8c3b8sWWp//NKcTw+yROr6sYZzjuesGj5byT5QXe/dNzuJWOdhyW5fOazahtV9ccZvvDfo7u/v54YxnqnZJlzyEU+kJ+cqx6d5FkZzh9uOec+LW5j1kmrxLBQ70MZvzxn+NJ8epILa+ixs0+GH//+fY44VtverAOTfH0huTd+Z/h2kt9P8gcz5V/t7lfPU3/hfWBBd/8wyZ8mOWRM2M9rV7xen5nklmOPmF9L8oyVV1+312RIdO6TDD2pMvwQvtAh4Y8zJIdX+78s1845K1WaI4bVzHvsrfbamKedpb6TzVPvCdn+XOe2Sc6eSSbO08ZfJTkvyYMzHBtPWe474lYj+bRnOzLJv3b3fyT5ZlX98lh+6yRfGL/kvDfDh+Za27hubd9l/DbraONaGX6Nv2N3f2Wd+zKvFevX0P34Dhl+zVtP/csluUWGbPe89V+d5B7j8/eMqrrpeuIfexW8NMlDuvuCZeofluTjyyxbOLn/QJIbVNXPraH+jReXj8fVFapq/zXGsWZjguEySX5uPW0vqp8kt1l0XF93mar7zqzzujWGvVLd12T45elXk3wiw69pi914XLachf/n6zJ8uC8eCrpa/bWY3ZdTMvRq2BnzHItr8YkkN1x1rV3vuCR/XFV7zbHuPhl+ZT2yuz89U/7MDD0q3lrDkJYrraONF2To0fk/MpxQr9Vqx9KCVyY5anwfvEmSf1umnROydBJrtfqLLfV/Xa2NByx6be+7M/WTLDkUdZ37M2+9SzMkE5+0jvo7vFcnOTnb/9o6d+xjwuE6Sc5aYxzPTfLiGoZb/1lVXWON9ef13CQPrB2H7877ObFc/aUs9z6zUhuPnzme3rOOGB6/6Hhc6nmcp52VrFTvgiRfqqrDMrymX7XEOiu18eOeD+OXrbsmee1a2hh7Sf1dhgTG/+nuby6qt9T5yQUZvoxeL4s+7zP0BlxstTZunSG5f5fuXmr48mr1kwzDrJIcmqFX2LJqGDZ9lySnje9hd8iQlF7uvXXFNhaV7zW2d+Jq9cakzcVVdUiG85WTMrxOb5XhvfHUMZGzUhwrbm8Jb09yzRqmeHheVf16hufwP1c4912t/g7GBOEns/Zzh/W+zha2+6MMn9XPTPK41Z6/9erub2T4sfzOY9FRGV6/Byf5+e7+aIbvJw9YuoVV21n1SmXL1e1e/Spn8xx7SRaOrWVfG3O2s8P/YM5j/9Qkl84kMLdLrq/h9fO4DD2gDujuHw9H3+okn/ZsR2c4icv49+hVytfSxuJhdyv1XFmujfMzfACvNFRttTbmtVz9644nHR9K8ubuXqqnyTz1v5HhA3CpX3GXrN/d5yS5QYZfYi9N8q4ahs2sZfvJ0Cvh/3X3cl2cV3NUkleOv0b+S4bkx7wqy3/Q7K5LZe5sr6XZ+ouH3X1umTqzQ+fWOjxspbqvzvD8z/1rf1U9t4b5Uz5Ww1Cvu2bo4n9Bhg+zO85bP2v/X243hDDJ/5on5hXszLG4lA3p0Tb2KvloduwNsZQfZeh1+fDZwvGX8l/I0EPgdkk+UovmEpmjjUuT/H9J3jqe7M1tLcfS+L63LcNxu3gOn6tn+ILwwTF5fvH4hXWu+suFt5YYRouH3X1/Z+pnSNwsaR37s5Z6r8jw6/gO8wOuUn+p9+odyuaI4QHjZ94JGYZILP7Cv2Ib3f22DEmrF2X4cvfvtWjI2nqfv0VtXJDk5Vlnz8c11l/yfWaVNp45czzdfifrH55hGOKS1vtczFFvoSfjkRkS1HO30d0fy/Aj1Q0yJDQ+styv+qvE8dwke3X38UssW+78ZKH8A4uew6WSIKu1cdZ4f7nP2dXq36aqTk3ylSRvWuGH2H3H193JGc6bX5xhCNl7euhx/tok917lB4+l2pgt/0aSqyR5x5z1FnpvLHx5Pmnm8YezvNW2t6QxuXezDL1ez8+Q6LjdPHWXq1/Lz8e45nOHnX3PGd0lQ2+Xw1ZYZ1ecc88Oeztq5vFCj7F5v2ct1c7OxDCv1Y69eV8b6z2G56l3QoYfUfbO0Ev0n9faxpikeneG73k/NXaYmJQ9Q1VdNUN338OqqjNkgbuqjs0wBOKeNYxRryRXrar9uvvCedpI8rydjWNs43sZ3mg/WFVf6+5/WkcbOxvDwpxNO1W/hkky31tV9+zuE+epX1V/2kP337cmeWtVfTXDSdy75q2foTvmtiS/u8rTcEaGoZaL9+0mGX5te0cNI89+JsnnM5zQrVp/LN9uLpjxF/H/Wnw8rdLOuozbuiTDPDtnZDix2GGs/pz1f2FXxbVe3f2VqvpRhnlOHpufdMuddUaG1/BCnUfXMM/AyRl+Rbpihl9Fk6Fb//eSvHnO+t9IsnjS/6skWXZI7K6yhmNxLW6aZIc50HaTv8zQk23FX7IzJJ7vn+SdVfWk7v7LhQXjicdLkrykhkkvl+u1sWwb47JL1xH/PMfSrBMzDPO7XZKrzpQ/IMMx9YWxnf0znGg+ec76S1nu/7qWNpays/V3RVsr1uvui2uY2HbxEKPV6p+Rn/yau+CXs+M8PavF8Krufswq+7BiG2PC6hVJXlHDhM23zY69XnbF/+LvMvRKeulM2cLnxLvXWX8pN83yych529jZGKZqZ6V6b0zyf5Oc3N0X1PKj15drYyF59QtZ/Yvnkm1096XjedFStvusS5IaemRfM8OQ0Xms1sZXkzwww4+H3+hhWPBa6n+gu+9ew8VfPlhVr+thSoPFvr/4XLWqjk5y66o6eyy6aoah0ivOVblc+dhj500ZpjB49hz1Fuat+cUMw4a+lGHI1gUZPreWs9r2ljX2SnpvhvPt0zLMg3PIUt9h5qy/w/D4MUnxi1nfucPfZZ2v16o6PMO53y0zHAuv7B3nQEuWP0/7who29/okf1vDKIp9u/sTNUx4ffWqeuC4zjWq6tDu/uwa29m23hjWEP9qx95DM99rY73H8Dz1TsjQ2+59GXoyfW2d217vOdweS8+nPdd9k7y8u6/V3du6+5oZ3pienOST3X3NsfxaGU76jlxDG2uZmHjFNrr7/Axfcv6ylr/y3s7GMXn98QPi2Cw9Gdxy9W9b45CDGiacu0mGCTTnrp+hO+YDe/VJhN+dZJ+auTpRVf1KhvHQTxnb3dbd10hyUO14hY3l6n82ya/VeFW4sRv4szMMDZk7juW6P69k/LX8BUn+vrs7wxDOh1TVLWbWeVBV/fyc9TeL/5Vh0vRLlln+7gxzQz1qpmxh7oijk/y3hf9nkmtnmNft8nPW/1iGD+yfT5Iarly0T34yKeeUjs58x+JcxhOgp2eOibqn0MPwtzMz/AK32rrfG9d7YI1XPKyqO9c4zG38f1w1K0xcvVQbO2meY2nWS5I8tXecm+roDJOoL7SzMMH9vPW3M75XHJOh58y62ljBztbfFW3NU+/4DJPlLp7keqX6T88wP8625Mevjydl6XlFdsXzsGQbVfUb9ZOrbO2X5LoZelPs8hjGJNers32PwL9K8jcz73H7VNWSPRWWqb+dqvrtDL1elpsba9U21rEPu62dler10HvwCVllAu8V2jghyYMy/Li24tCrdcb/riSXr/FqzGNS4RkZXj/f21Vt9NCj8z5J/t+YQFhzDGMbf5Xlk8rbGRNYv5bkkJn31kdnJ+ZK7O7vZOi18ye1wpWbZ3wow2fON7v7kvF/dKUMQ4dO2tXbq+EKsIfOFB2eYULpFyd5do0X+aiqA6vqQXPW/+KidS6b4f/wpV5+JMOy1vs6qyFz+/wMw+3+M0NSd8mrH/bQg+u8GkdK1HCFvDtnvvmSZtt4b4b32RNq6IH4s9190Mzx9FdZZY7dxe3Mu/2drZuVj71PZv7XxnqP4VXr9TBy4hsZpmFYav926vWzlUk+7bmOzo7doF+bIaO+VPlSw0OWa+NJ2XHOp+W6ma7URpIfD1G5Z4Zf92+RHa3Uxg2q6pyZ21LDdFaNYRXz1n99hpOMxfNfLVf/+CRvHHs0nJphwsIdLsG9Qv3fS/KzGa78tOL8W2Ny5d5JfquGS7qekeQpGX5VXtz267LoA2eF+udm6E765Kr6TIY5BD62zH6s1s48FuYYOiPDLxhvT/K/x7a/Osb99Boum/upJLfJ8CvCqvVHi+d8WmsvrTssOh5vtcb66e4Pd/frV1jeGZLFv17DpWg/muRlGa7ad6fM9Ezp7u9mOCG5xxz1nzA+h49N8pYausX/XYYhorvjV5ejMsexuIrr1nDZ6k9lOAF8To8Tva7RPO8r83ha5kxyjyced87wWrpXhi+0p1fVJ5O8LcOVX1acG2+JNuZ1+UX7+6TMcSwt2vY53f2s2bIxwXFIhqvnLKz3hSQXLH6vX6r+jIX5lv4jw/vub/cSV/Wcs42F2w69ClepvybrbWueej3MBfHs/GSuulXr99Cb4gkZPnM+naHXyp/2Er0sdsXzsEIbN0tycg1DjU5K8g89DMHa5TGMnpHhSkIL7b4lQ2/Kd46fAx/Pyr38t6s/evx4DH02Y/Kkhx/S1tPGwm3bGuuvx+J29s7S8wrOvf3ufmXP12NhhzZ6uOLk95K8e3x/WXccy8S2cL5xv/F/9R9JfpD5z/3mbmM8hh+a5MSamStyjTG8IMOPkjsMqV3CfTI8b7P/vzdkGNWw3PDsVXX3v2f48j7P5+5pGf4fH1lU9p1e4QJCO7G9KyR5WVWdOb5/3CjD+eOTMwyjO3M8n359dpz8fqX6SfJPY9npGc6r1/L5udh6Xq+/n2HqjoUhiM9LcsNa/ofZB2f4nD8lww+K/7uXnyZiOSdkuEL1whC7pb5nzDv0bqGdtVpv3WWPvQzJ7HlfG+s9huetd0KG4eVLDUve6dfPVlW9qToEAAAAO6OGC168aEzIAcCG0/MJAAC2iBrmu7k0Q+9fANgU9HwCAAAAYDJ6PgEAAAAwGcknAAAAACYj+QQAAADAZCSfAAB2o6r6s6o6o6pOrapTquoWVfW4qrr8HHXnWg8AYDMx4TgAwG5SVbdK8rdJbtfdF1XV1ZL8TJIPJzmiu7++Sv2z51kPAGAz0fMJAGD3OTDJ17v7oiQZk0j3TXKNJO+pqvckSVU9v6pOHntI/e+x7A+XWO+OVXVSVX2iqv65qq6wETsFALASPZ8AAHaTMTn0wSSXT/LOJK/q7vct7tFUVVfp7m9W1V5J3pXkD7v71Nn1xl5T/5LkLt393ap6QpJ9uvupG7BrAADL2nujAwAA+GnR3f9VVTdLcpskt0/yqqo6dolV719Vx2Q4VzswyY2SnLponVuO5R+qqmQYvnfSVLEDAKyX5BMAwG7U3ZckeW+S91bVaUkeMru8qq6d5E+S/Ep3f6uqjk9yuSWaqiTv6O6jp40YAGDnmPMJAGA3qaobVNWhM0WHJ/likguT7DeW7Z/ku0m+U1VXT3KXmfVn1/tIkltX1fXGti9fVdefMHwAgHXR8wkAYPe5QpLnVNWVklyc5KwkxyQ5Oslbq+q87r59Vf17kjOSfD7Jh2bqv3DRer+X5ISq2mdc/uQk/7F7dgUAYD4mHAcAAABgMobdAQAAADAZyScAAAAAJiP5BAAAAMBkJJ8AAAAAmIzkEwAAAACTkXwCAAAAYDKSTwAAAABMRvIJAAAAgMn8/2yC3EqhfiJaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig1, ax1 = plt.subplots(figsize=(20, 9))\n", + "ax1.bar(disp_st['state'], disp_st['consumer_disputed?'])\n", + "ax1.set_xlabel(\"State\")\n", + "ax1.set_ylabel(\"Disputed issue counts\")\n", + "ax1.set_title(\"Dispute counts per state\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6dfa6225", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Dispute rates per state')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAImCAYAAAAxAREdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFmklEQVR4nO3dd7h0Z1U3/u9KiIQSesSAhAhSBKRoEBBBEEWqFGl5QRCRoC+goCIBeTX6quT3ShGQIog0pSnSQzMQmhQThBCaCAQIAgkgJBQhZf3+2PvIzHlO2ec8z5w5efL5XNdc58yeve69ZmbPzJ41933v6u4AAAAAwIoDlp0AAAAAALuLghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAFioqnpWVf2fZecBAMB0CkYAwLZV1WlV9Z2qOruqvl5V/1JVv1FV/3OM0d2/0d3/d8F5PL+q/nSR21i1vSOqqqvqIju1zUWrqmOr6u+2sP6tqur0ReYEACyPghEAsLfu3N2HJLlqkuOSPDrJc5eb0t6pqgOXncPeqoFjPQBgWxxEAAD7RHd/o7tfk+TeSR5QVddL5nv/VNUVqup1Y2+kr1XVO1eKGmNvpcdU1Uer6r+q6nlVdfB4269W1btmtzf28PnRqjo6yX2T/H5VfbOqXjvefqWqekVVnVlVn6mq31ov9zHHZ1bV8VX1rSS3rqo7VtW/VdVZVfX5qjp2JuQd49+vj9u82djOr1XVx8b831RVVx2XV1U9uarOqKpvVNUpK4/PGrmcWFWPr6r3j+u+uqouN3P7TceeXF+vqg9V1a1Wxf5ZVb07ybeTXG2N9h9dVV8Ye4V9oqpuU1W3S/LYJPce78+HxnUfON6fs6vq01X1kHH5JZK8IcmVxvW/OT7eB1TVMVX1qar6alW9fDZ3AOCCQ8EIANinuvv9SU5Pcos1bv7d8bZDk1wxQ5GiZ26/b5JfTHL1JNdM8rgJ23t2kr9P8v+6+5LdfeexCPXaJB9KcuUkt0nyiKr6xQ2a+l9J/izJIUneleRbSe6f5DJJ7pjkN6vqruO6txz/Xmbc5nvG2x6b5O7j/XtnkpeM6912jLnm2N69k3x1g1zun+TXklwpyblJnpokVXXlJK9P8qdJLpfk95K8oqoOnYn9lSRHj/fjs7ONVtW1kjwsyY3HXmG/mOS07n5jkj9P8rLx/txgDDkjyZ2SXCrJA5M8uap+oru/leT2Sf5zXP+S3f2fSX4ryV2T/OyY+38lefoG9xMA2KUUjACARfjPDAWN1c5JcliSq3b3Od39zu6eLRj9VXd/vru/lqF4c9Q2t3/jJId295909/e6+9NJnpPkPhvEvLq7393d53f3f3f3id394fH6KRmKPz+7QfxDkjy+uz/W3edmKMDccOxldE6GAs61k9S4zhc3aOtF3X3qWJj5P0nuNQ6Tu1+S47v7+DGvtyQ5KckdZmKf390f6e5zu/ucVe2el+SiSa5TVQd192nd/an1kuju13f3p3rw9iRvztqFwNnH4A+6+/Tu/m6SY5PcY3+a6wkALiwUjACARbhykq+tsfwvkvxHkjePQ5yOWXX752f+/2yGXirbcdUMw6W+vnLJ0PvnihvEzG47VXWTqnrbOKTtG0l+I8kVNtnmU2a297UkleTK3f3WJH+VobfNl6vq2VV1qYm5fDbJQeO2r5rknqvu189kKMKteT9mdfd/JHlEhkLOGVX10qpa9zGuqttX1XvH4YNfz1CY2uwxeOVMbh/LUKTa6HEHAHYhBSMAYJ+qqhtnKBi9a/Vt3X12d/9ud18tyZ2T/E5V3WZmlavM/H94hp5KyTA87OIz2/ih1U2vuv75JJ/p7svMXA7p7jtkfavbeHGS1yS5SndfOsmzMhSA1lp3ZZsPWbXNi3X3v4z3/and/ZNJrpthaNqjNshl9eNwTpKvjNt40aptXKK7j9vgfszfye4Xd/fPZCjudJL/b624qrpoklckeUKSK3b3ZZIcP+ExuP2q/A7u7i9slBMAsPsoGAEA+0RVXaqq7pTkpUn+rrs/vMY6dxonqq4kZ2XofXLezCoPraofHidKfmySl43LP5TkulV1wxomwj52VdNfzvwEz+9PctY4wfPFqurAqrreWMya6pAkX+vu/66qn8owx9GKM5Ocv2qbz0rymKq67nhfL11V9xz/v/HYY+mgDMWv/151v1e7X1Vdp6ounuRPkvxjd5+X5O+S3LmqfnG8TwfXcHr7H55yh6rqWlX1c2Mx6L+TfGcmjy8nOaK+f2a1H8gwfO3MJOdW1e0zzMWUmfUvX1WXXvUY/NnMZN+HVtVdpuQGAOwuCkYAwN56bVWdnaF3yR8keVKGCZLXco0k/5zkm0nek+QZ3X3izO0vzjBPzqfHy58mSXf/e4bCyT8n+WT27L303Azz8ny9ql41FlfunOSGST6ToXfO3yS5dKb730n+ZLxvf5jk5Ss3dPe3M8yx9O5xmzft7ldm6K3z0qo6K8mpGSaGToZJo5+TYRLoz2aY8PoJG2z7RUmen+RLSQ7OMJl0uvvzSe6SoZh2ZobH/FGZfkx30STHZXg8vpTkB8e2kuQfxr9fraoPdPfZ43ZfPub9vzL0uFp5DD6eYV6nT4+PwZWSPGVc583j4/beJDeZmBsAsIvU/DyTAADLUVWnJfn17v7nZeeyTFV1YoYeWn+z7FwAgAsvPYwAAAAAmLOwgtE4pv79VfWhqvpIVf3xuPzYqvpCVX1wvGw0+SQAAAAAO2xhQ9LGySwv0d3fHCd4fFeS305yuyTf7O6Nxu0DAAAAsCQXWVTDPVSivjlePWi8mDAJAAAAYJdb6BxG4+leP5jkjCRv6e73jTc9rKpOqaq/rarLLjIHAAAAALZmR86SVlWXSfLKJA/PcArYr2TobfR/kxzW3b+2RszRSY5Okktc4hI/ee1rX3vheQIAAABcWJx88slf6e5D17ptRwpGSVJVf5TkW7NzF1XVEUle193X2yj2yCOP7JNOOmnBGQIAAABceFTVyd195Fq3LfIsaYeOPYtSVRdL8vNJPl5Vh82sdrckpy4qBwAAAAC2bmGTXic5LMkLqurADIWpl3f366rqRVV1wwxD0k5L8pAF5gAAAADAFi3yLGmnJLnRGst/ZVHbBAAAAGDvLfQsaQAAAABc8CgYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAw5yLLTuDC5ohjXr/lmNOOu+MCMgEAAC5ofJ8AdooeRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGDOwgpGVXVwVb2/qj5UVR+pqj8el1+uqt5SVZ8c/152UTkAAAAAsHWL7GH03SQ/1903SHLDJLerqpsmOSbJCd19jSQnjNcBAAAA2CUWVjDqwTfHqweNl05ylyQvGJe/IMldF5UDAAAAAFu30DmMqurAqvpgkjOSvKW735fkit39xSQZ//7gOrFHV9VJVXXSmWeeucg0AQAAAJix0IJRd5/X3TdM8sNJfqqqrreF2Gd395HdfeShhx66sBwBAAAAmLcjZ0nr7q8nOTHJ7ZJ8uaoOS5Lx7xk7kQMAAAAA0yzyLGmHVtVlxv8vluTnk3w8yWuSPGBc7QFJXr2oHAAAAADYuosssO3Dkrygqg7MUJh6eXe/rqrek+TlVfWgJJ9Lcs8F5gAAAADAFi2sYNTdpyS50RrLv5rkNovaLgAAAAB7Z0fmMAIAAADggkPBCAAAAIA5CkYAAAAAzFnkpNewax1xzOu3HHPacXdcQCYAAACw++hhBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkX2ejGqjo4yZ2S3CLJlZJ8J8mpSV7f3R9ZfHoAAAAA7LR1C0ZVdWySOyc5Mcn7kpyR5OAk10xy3FhM+t3uPmXxaQIAAACwUzbqYfSv3X3sOrc9qap+MMnh+z4lAAAAAJZp3TmMuvv1SVJV91x9W1Xds7vP6O6TFpkcAAAAADtvyqTXj5m4DAAAAID9wEZzGN0+yR2SXLmqnjpz06WSnLvoxAAAAABYjo3mMPrPJCcl+aUkJ88sPzvJIxeZFAAAAADLs27BqLs/lORDVfXi7j5nB3MCAAAAYIk26mG04qeq6tgkVx3XryTd3VdbZGIAAAAALMeUgtFzMwxBOznJeYtNBwAAAIBlm1Iw+kZ3v2HhmQAAAACwK0wpGL2tqv4iyT8l+e7Kwu7+wMKyAgAAAGBpphSMbjL+PXJmWSf5uX2fDgAAAADLtmnBqLtvvZ2Gq+oqSV6Y5IeSnJ/k2d39lHEC7QcnOXNc9bHdffx2tgEAAADAvrdpwaiq/nCt5d39J5uEnpvkd7v7A1V1SJKTq+ot421P7u4nbC1VAAAAAHbClCFp35r5/+Akd0rysc2CuvuLSb44/n92VX0syZW3kyQAAAAAO2fKkLQnzl6vqickec1WNlJVRyS5UZL3Jbl5kodV1f2TnJShF9J/rRFzdJKjk+Twww/fyuYAtuSIY16/5ZjTjrvjAjIBAADYHQ7YRszFk1xt6spVdckkr0jyiO4+K8kzk1w9yQ0z9EB64lpx3f3s7j6yu4889NBDt5EmAAAAANsxZQ6jD2c4K1qSHJjk0CSbzV+0EntQhmLR33f3PyVJd3955vbnJHndFnMGAAAAYIGmzGF0p5n/z03y5e4+d7Ogqqokz03yse5+0szyw8b5jZLkbklO3UK+AAAAACzYlDmMPltVN0hyi3HRO5KcMqHtmyf5lSQfrqoPjssem+Soqrphhl5LpyV5yNZSBgAAAGCRpgxJ++0kD07yT+Oiv6+qZ3f30zaK6+53Jak1bjp+y1kCAAAAsGOmDEl7UJKbdPe3kqSq/r8k70myYcEIAAAAgAumKWdJqyTnzVw/L2v3HAIAAABgPzClh9Hzkryvql45Xr9rhsmsAQAAANgPTZn0+klVdWKSn8nQs+iB3f1vi04MAAAAgOWYMun1TZN8pLs/MF4/pKpu0t3vW3h2AAAAAOy4KXMYPTPJN2euf2tcBgAAAMB+aMocRtXdvXKlu8+vqilxsKYjjnn9lmNOO+6OC8gEAAAAWMuUHkafrqrfqqqDxstvJ/n0ohMDAAAAYDmmFIx+I8lPJ/lCktOT3CTJ0YtMCgAAAIDlmXKWtDOS3GcHcgEAAABgF5jSwwgAAACACxEFIwAAAADmKBgBAAAAMGfTglFVXbGqnltVbxivX6eqHrT41AAAAABYhik9jJ6f5E1JrjRe//ckj1hQPgAAAAAs2ZSC0RW6++VJzk+S7j43yXkLzQoAAACApZlSMPpWVV0+SSdJVd00yTcWmhUAAAAAS3ORCev8TpLXJLl6Vb07yaFJ7rHQrAAAAABYmk0LRt39gar62STXSlJJPtHd5yw8MwAAAACWYtOCUVXdf9Win6iqdPcLF5QTAAAAAEs0ZUjajWf+PzjJbZJ8IImCEQAAAMB+aMqQtIfPXq+qSyd50cIyAgAAAGCpppwlbbVvJ7nGvk4EAAAAgN1hyhxGr03S49UDklwnycsXmRRw4XHEMa/fcsxpx91xAZkAAACwYsocRk+Y+f/cJJ/t7tMXlA8AAAAASzalYHRSku909/lVdc0MZ0n7cnefs+DcAAAAAFiCKXMYvSPJwVV15SQnJHlgkucvMikAAAAAlmdKwai6+9tJ7p7kad19twzzGAEAAACwH5oyJK2q6mZJ7pvkQVuIA2CHmDwcAADYl6b0MHpEksckeWV3f6SqrpbkbQvNCgAAAICl2bSnUHe/Pcnbk6SqDkjyle7+rUUnBgAAAMBybNrDqKpeXFWXqqpLJPlokk9U1aMWnxoAAAAAyzBlSNp1uvusJHdNcnySw5P8yiKTAgAAAGB5phSMDqqqgzIUjF7d3eck6YVmBQAAAMDSTDnb2V8nOS3Jh5K8o6qumuSsRSYFbG47Z8VKnBkLALhwcuwEsDVTJr1+apKnziz6bFXdenEpAQAAALBM6xaMqup+3f13VfU766zypAXlBABcgG3nV3y/4AMA7C4b9TC6xPj3kJ1IBADYHRR8AABYt2DU3X89/v3jnUsHAADY1xSCAdiqKWdJAwAAAOBCRMEIAAAAgDkbTXp9syTv7e7ewXzgAkPXbgB2M6cQBwD2xkaTXj8gydOr6t+TvDHJG7v7SzuTFuz/FJwAAADYrTaa9Po3kqSqrp3k9kmeX1WXTvK2DAWkd3f3eTuSJQAAbIMfaABgezadw6i7P97dT+7u2yX5uSTvSnLPJO9bdHIAAAAA7LyNhqTtobu/k+T48QIAAABsgx6Q7HbOkgYAAADAnC31MAIAAABI9JLa321aMKqq/6+7H73ZMgDYGw44AABg95gyJO0X1lh2+32dCAAAAAC7w7o9jKrqN5P87yRXq6pTZm46JMm7F50YAAAAAMux0ZC0Fyd5Q5LHJzlmZvnZ3f21hWYFAAAAwNKsWzDq7m8k+UaSo6rqwCRXHNe/ZFVdsrs/t0M5AgAAALCDpkx6/bAkxyb5cpLzx8Wd5PqLSwsAAIB9zUkm2E3sj7vbpgWjJI9Icq3u/uqCcwEAAABgF5hylrTPZxiaBgAAAMCFwJQeRp9OcmJVvT7Jd1cWdveTFpYVAAAAAEszpWD0ufHyA+MFAGC/Zk4FAODCbtOCUXf/8U4kAgAAAMDuMOUsaW/LcFa0Od39cwvJCAAAAIClmjIk7fdm/j84yS8nOXcx6QBc+Bj6wr5kf2I3sT8CwAXXlCFpJ69a9O6qevtmcVV1lSQvTPJDSc5P8uzufkpVXS7Jy5IckeS0JPfq7v/aYt4AAAAALMiUIWmXm7l6QJKfzFAE2sy5SX63uz9QVYckObmq3pLkV5Oc0N3HVdUxSY5J8ugtZw7sNb/8AgDABZNjeRZtypC0kzPMYVQZikCfSfKgzYK6+4tJvjj+f3ZVfSzJlZPcJcmtxtVekOTEKBhN5k0BAC4YfGYDABdkU4ak/cjebqSqjkhyoyTvS3LFsZiU7v5iVf3gOjFHJzk6SQ4//PC9TQEAAACAiaYMSTsoyW8mueW46MQkf93d50zZQFVdMskrkjyiu8+qqkmJdfezkzw7SY488sg9ztIGAABccOh1B3DBMmVI2jOTHJTkGeP1XxmX/fpmgWOx6RVJ/r67/2lc/OWqOmzsXXRYkjO2njYAAFwwKJQAcEE0pWB04+6+wcz1t1bVhzYLqqEr0XOTfKy7nzRz02uSPCDJcePfV28hX3YBBz0AAADsD3y/Xd+UgtF5VXX17v5UklTV1ZKcNyHu5hl6I324qj44LntshkLRy6vqQUk+l+SeW84agF3Hhy27if0R2I28N+0/PJdcGEwpGD0qyduq6tMZzpR21SQP3Cyou981rr+W20zOEAAAAIAdNeUsaSdU1TWSXCtDAejj3f3dhWcGcAHhFyZW2BcAANhfTDlL2kMzTFp9ynj9slX1oO5+xiahAADAfkBBHODCZ8qQtAd399NXrnT3f1XVg/P9s6YBLI0DWABgpzjuAC5MphSMDqiq6u5Okqo6MMkPLDYtAAAA2JPCHeyMKQWjN2U4q9mzknSS30jyxoVmBQAAAMDSTCkYPTrJ0Ul+M8Ok129O8jeLTAoAAACA5ZlylrTzkzxrvAAAAACwnztg2QkAAAAAsLsoGAEAAAAwZ8ocRuxnnFWAfcW+xP7GPg0AAIN1C0ZV9doMZ0VbU3f/0kIyAgAAAGCpNuph9ITx792T/FCSvxuvH5XktAXmBAAAAMASrVsw6u63J0lV/d/uvuXMTa+tqncsPDMAAC70dsNQ0d2QAwDstCmTXh9aVVdbuVJVP5Lk0MWlBAAAAMAyTZn0+pFJTqyqT4/Xj0jykIVlBAAAwK6l193+YTvPY+K5vDDZtGDU3W+sqmskufa46OPd/d3FpgUAXFj5IgIAsHybDkmrqosneVSSh3X3h5IcXlV3WnhmAAAAACzFlCFpz0tycpKbjddPT/IPSV63qKQAAFg+vb2A/ZX3N9jclILR1bv73lV1VJJ093eqqhacFwBsiXH4APs3X/ABdtaUgtH3qupiSTpJqurqScxhBAAAACyVYvLiTCkYHZvkjUmuUlV/n+TmSR64yKQA4MLKQQ8AALvBlLOkvbmqTk5y0ySV5Le7+ysLzww24AsVAAAALM6Us6Sd0N1f7e7Xd/fruvsrVXXCTiQHAAAAwM5bt4dRVR2c5OJJrlBVl83QuyhJLpXkSjuQGwAAAABLsNGQtIckeUSG4tAHZpafleTpC8wJAAAAgCVat2DU3U9J8pSqenh3P20HcwJgh5kXDAAAmDXlLGnfqKr7r17Y3S9cQD4AAAAALNmUgtGNZ/4/OMltMgxRUzACAAAA2A9tWjDq7ofPXq+qSyd50cIyAgAAAGCpDthGzLeTXGNfJwIAAADA7rBpD6Oqem2SHq8emOTHkrx8kUkBAAAAsDxT5jB6wsz/5yb5bHefvqB8AAAAAFiyTYekdffbk3wiyaWTXC5D0QgAAACA/dSmBaOq+vUk709y9yT3SPLeqvq1RScGAAAAwHJMGZL2qCQ36u6vJklVXT7JvyT520UmBgAAAMByTDlL2ulJzp65fnaSzy8mHQAAAACWbUoPoy8keV9VvTrD2dLukuT9VfU7SdLdT1pgfgAAAADssCkFo0+NlxWvHv8esu/TAQAAAGDZNi0Ydfcfr/xfVQckuWR3n7XQrAAAAABYmilnSXtxVV2qqi6R5KNJPlFVj1p8agAAAAAsw5RJr68z9ii6a5Ljkxye5FcWmRQAAAAAyzOlYHRQVR2UoWD06u4+J8Pk1wAAAADsh6YUjP46yWlJLpHkHVV11STmMAIAAADYT02Z9PqpSZ46s+izVXXrxaUEAAAAwDKtWzCqqvt1999V1e+ss8qTFpQTAAAAAEu0UQ+jS4x/D9mJRAAAAADYHdYtGHX3X49//3jn0gEAAABg2TYakvbU9W5Lku7+rX2fDgAAMOuIY16/5ZjTjrvjAjIB4MJko7OknTxeDk7yE0k+OV5umOS8hWcGAAAAwFJsNCTtBUlSVb+a5Nbdfc54/VlJ3rwj2QEAALBf0WsOLhg26mG04kqZn/j6kuMyAAAAAPZDG50lbcVxSf6tqt42Xv/ZJMcuLCMAAAAAlmrTglF3P6+q3pDkJuOiY7r7S4tNCwAAAIBl2egsaUd092lJMhaIXr3q9kpy5e4+faEZAgBcCJnjAwBYpo16GP1FVR2QoVB0cpIzM5wx7UeT3DrJbZL8URIFIwAAAID9yEZnSbtnVV0nyX2T/FqSw5J8O8nHkhyf5M+6+793JEsAAAAAdsyGcxh190eT/MEO5QIAAADALnDAZitU1cWr6nFV9ezx+jWq6k6LTw0AAACAZdi0YJTkeUm+l+Snx+unJ/nThWUEAAAAwFJNKRhdvbv/X5JzkqS7v5OkFpoVAAAAAEszpWD0vaq6WJJOkqq6epLvLjQrAAAAAJZmSsHo2CRvTHKVqvr7JCckefRmQVX1t1V1RlWdOrPs2Kr6QlV9cLzcYbuJAwAAALAYG54lLUm6+81VdXKSm2YYivbb3f2VCW0/P8lfJXnhquVP7u4nbDVRAAAAAHbGlLOkndDdX+3u13f367r7K1V1wmZx3f2OJF/bJ1kCAAAAsGPWLRhV1cFVdbkkV6iqy1bV5cbLEUmutBfbfFhVnTIOWbvsBts/uqpOqqqTzjzzzL3YHAAAAABbsVEPo4ckOTnJtce/K5dXJ3n6Nrf3zCRXT3LDJF9M8sT1VuzuZ3f3kd195KGHHrrNzQEAAACwVevOYdTdT0nylKp6eHc/bV9srLu/vPJ/VT0nyev2RbsAAAAA7DtTJr1+WlVdL8l1khw8s3z1ZNabqqrDuvuL49W7JTl1o/UBAAAA2HmbFoyq6o+S3CpDwej4JLdP8q7sefaz1XEvGeOuUFWnJ/mjJLeqqhsm6SSnZRj2BgAAAMAusmnBKMk9ktwgyb919wOr6opJ/mazoO4+ao3Fz91ifgAAAADssI0mvV7xne4+P8m5VXWpJGckudpi0wIAAABgWab0MDqpqi6T5DkZzpL2zSTvX2RSAAAAACzPhgWjqqokj+/uryd5VlW9McmluvuUnUgOAAAAgJ234ZC07u4kr5q5fppiEQAAAMD+bcocRu+tqhsvPBMAAAAAdoUpcxjdOslDquqzSb6VpDJ0Prr+QjMDAAAAYCmmFIxuv/AsAAAAANg1Ni0YdfdndyIRAAAAAHaHKXMYAQAAAHAhomAEAAAAwJxJBaOqumpV/fz4/8Wq6pDFpgUAAADAsmxaMKqqByf5xyR/PS764SSvWmBOAAAAACzRlB5GD01y8yRnJUl3fzLJDy4yKQAAAACWZ0rB6Lvd/b2VK1V1kSS9uJQAAAAAWKYpBaO3V9Vjk1ysqn4hyT8kee1i0wIAAABgWaYUjI5JcmaSDyd5SJLjkzxukUkBAAAAsDwX2WyF7j4/yXPGCwAAAAD7uU0LRlX1mawxZ1F3X20hGQEAAACwVJsWjJIcOfP/wUnumeRyi0kHAAAAgGXbdA6j7v7qzOUL3f2XSX5u8akBAAAAsAxThqT9xMzVAzL0ODpkYRkBAAAAsFRThqQ9ceb/c5OcluReC8kGAAAAgKWbcpa0W+9EIgAAAADsDpvOYVRVv11Vl6rB31TVB6rqtjuRHAAAAAA7b9OCUZJf6+6zktw2yQ8meWCS4xaaFQAAAABLM6VgVOPfOyR5Xnd/aGYZAAAAAPuZKQWjk6vqzRkKRm+qqkOSnL/YtAAAAABYlilnSXtQkhsm+XR3f7uqLpdhWBoAAAAA+6EpPYxuluQT3f31qrpfkscl+cZi0wIAAABgWaYUjJ6Z5NtVdYMkv5/ks0leuNCsAAAAAFiaKQWjc7u7k9wlyVO6+ylJDllsWgAAAAAsy5Q5jM6uqsckuV+SW1bVgUkOWmxaAAAAACzLlB5G907y3SQP6u4vJblykr9YaFYAAAAALM2mPYzGItGTZq5/LuYwAgAAANhvrVswqqp3dffPVNXZSXr2piTd3ZdaeHYAAAAA7Lh1C0bd/TPjXxNcAwAAAFyITJnDCAAAAIALEQUjAAAAAOYoGAEAAAAwR8EIAAAAgDkbnSVt9dnR5jhLGgAAAMD+aaOzpB2SJFX1J0m+lORFSSrJfZM4cxoAAADAfmrKkLRf7O5ndPfZ3X1Wdz8zyS8vOjEAAAAAlmNKwei8qrpvVR1YVQdU1X2TnLfoxAAAAABYjikFo/+V5F5Jvjxe7jkuAwAAAGA/tO4cRiu6+7Qkd1l8KgAAAADsBpv2MKqqa1bVCVV16nj9+lX1uMWnBgAAAMAyTBmS9pwkj0lyTpJ09ylJ7rPIpAAAAABYnikFo4t39/tXLTt3EckAAAAAsHxTCkZfqaqrJ+kkqap7JPniQrMCAAAAYGk2nfQ6yUOTPDvJtavqC0k+k+S+C80KAAAAgKWZUjDq7v75qrpEkgO6++yq+pFFJwYAAADAckwZkvaKJOnub3X32eOyf1xcSgAAAAAs07o9jKrq2kmum+TSVXX3mZsuleTgRScGAAAAwHJsNCTtWknulOQySe48s/zsJA9eYE4AAAAALNG6BaPufnWSV1fVzbr7PTuYEwAAAABLNGXS66Orao8eRd39awvIBwAAAIAlm1Iwet3M/wcnuVuS/1xMOgAAAAAs26YFo+5+xez1qnpJkn9eWEYAAAAALNUB24i5RpLD93UiAAAAAOwOm/Ywqqqzk3SSGv9+KcmjF5wXAAAAAEsyZUjaIdtpuKr+NsmdkpzR3dcbl10uycuSHJHktCT36u7/2k77AAAAACzGpCFpVXX3qnpSVT2xqu46se3nJ7ndqmXHJDmhu6+R5ITxOgAAAAC7yKYFo6p6RpLfSPLhJKcm+Y2qevpmcd39jiRfW7X4LkleMP7/giR33UqyAAAAACzepkPSkvxskut1dydJVb0gQ/FoO67Y3V9Mku7+YlX94HorVtXRSY5OksMPN8c2AAAAwE6ZMiTtE5k/K9pVkpyymHS+r7uf3d1HdveRhx566KI3BwAAAMBoSg+jyyf5WFW9f7x+4yTvqarXJEl3/9IWtvflqjps7F10WJIztpYuAAAAAIs2pWD0h/twe69J8oAkx41/X70P2wYAAABgH5hSMDopyXe6+/yqumaSayd5Q3efs1FQVb0kya2SXKGqTk/yRxkKRS+vqgcl+VySe+5N8gAAAADse1MKRu9IcouqumySEzIUkO6d5L4bBXX3UevcdJstZQgAAADAjpoy6XV197eT3D3J07r7bkmuu9i0AAAAAFiWSQWjqrpZhh5Frx+XHbi4lAAAAABYpikFo0ckeUySV3b3R6rqaknettCsAAAAAFiaTecw6u63J3n7zPVPJ/mtRSYFAAAAwPKsWzCqqr/s7kdU1WuT9Orbu/uXFpoZAAAAAEuxUQ+jF41/n7ATiQAAAACwO6xbMOruk8e/b6+qQ8f/z9ypxAAAAABYjnUnva7BsVX1lSQfT/LvVXVmVf3hzqUHAAAAwE7b6Cxpj0hy8yQ37u7Ld/dlk9wkyc2r6pE7kRwAAAAAO2+jgtH9kxzV3Z9ZWTCeIe1+420AAAAA7Ic2Khgd1N1fWb1wnMfooMWlBAAAAMAybVQw+t42bwMAAADgAmzds6QluUFVnbXG8kpy8ILyAQAAAGDJ1i0YdfeBO5kIAAAAALvDRkPSAAAAALgQUjACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAw5yLL2GhVnZbk7CTnJTm3u49cRh4AAAAA7GkpBaPRrbv7K0vcPgAAAABrMCQNAAAAgDnLKhh1kjdX1clVdfRaK1TV0VV1UlWddOaZZ+5wegAAAAAXXssqGN28u38iye2TPLSqbrl6he5+dncf2d1HHnrooTufIQAAAMCF1FIKRt39n+PfM5K8MslPLSMPAAAAAPa04wWjqrpEVR2y8n+S2yY5dafzAAAAAGBtyzhL2hWTvLKqVrb/4u5+4xLyAAAAAGANO14w6u5PJ7nBTm8XAAAAgGmWNek1AAAAALuUghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMxRMAIAAABgjoIRAAAAAHMUjAAAAACYo2AEAAAAwBwFIwAAAADmKBgBAAAAMEfBCAAAAIA5CkYAAAAAzFEwAgAAAGCOghEAAAAAcxSMAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAAAAwR8EIAAAAgDkKRgAAAADMUTACAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMCcpRSMqup2VfWJqvqPqjpmGTkAAAAAsLYdLxhV1YFJnp7k9kmuk+SoqrrOTucBAAAAwNqW0cPop5L8R3d/uru/l+SlSe6yhDwAAAAAWMMyCkZXTvL5meunj8sAAAAA2AWqu3d2g1X3TPKL3f3r4/VfSfJT3f3wVesdneTo8eq1knxiRxPdeVdI8pUlt7HseDnsnhz2h/uwG3LYH+6DHPZNvBz2Tbwcdk8O+8N92A057A/3QQ77Jl4O+yZeDrsnh/3hPuyrNna7q3b3oWve0t07eklysyRvmrn+mCSP2ek8dtslyUnLbmPZ8XLYPTnsD/dhN+SwP9wHOew/92E35LA/3Ac57D/3YTfksD/cBznsP/dhN+SwP9wHOew/92FftXFBvixjSNq/JrlGVf1IVf1Akvskec0S8gAAAABgDRfZ6Q1297lV9bAkb0pyYJK/7e6P7HQeAAAAAKxtxwtGSdLdxyc5fhnb3sWevQvaWHa8HHZPDvvDfdgNOewP90EO+yZeDvsmXg67J4f94T7shhz2h/sgh30TL4d9Ey+H3ZPD/nAf9lUbF1g7Puk1AAAAALvbMuYwAgAAAGAXUzBagqq6W1V1VV171fIbjct/cattVNURVfWdqvrgzOX+W4w/deb2B1fVB6rqstttY4pN7sdHq+pZVbXufjoh/oVVddAW4g+oqqdW1alV9eGq+teq+pEtxD901XNw6nj7j60T/0NV9dKq+tSY7/FVdc3xtkdW1X9X1aU32P6a8VV13ap6a1X9e1V9sqr+T1XVxDbeVlXfHvP/WlV9Zvz/n9eJP2+8/SNV9aGq+p3Z56yqfqqq3lFVn6iqj1fV31TVxafEV9Wtquobqx7Tn98kj5XLEWP869Z7/CbEdlU9aGa9G43Lfm+NNq5YVS+uqk9X1clV9Z6qutvM7U+pqi+stz+vF19Vv1pVf7Vq3ROr6sh12vnmquv/E19Vx66V+4Q2Nt0X14qv778e/62qPlZV76+qB2yjjS29r6wR31X18Jnb/qqqfnWz2PH/O4yvocOr6lrjY//B8f6s20V5nTbeWlW/ObP8JlV1SlXtMTx89XOw6rbN9qWuqhfNXL9IVZ25+rVQVa+uqvdsNX7cp84cn9dPVtWbquqnt9nG7OvuOluMn/S62E5bW4g7v6quP7POqVV1xJT4cdldx33g4zV85tx1Lx7Hj1bVg7dxP65YVa+r4f33o1V1/NT4qnrgzPP3vfE+fLCqjlujjSfOXP+9qjp25vr9x8fuI2MOvzc1vob3tS+M2/1kVf3T7L60jTZWLpfZYvzqnE+rqitsI48136MnxHVV/ejM7Y8clx25WRs1fN7NvReMz/OXq+qwKXlU1W1r+NyqcfmB4+O4+r3hh2t47/lkDccdT6mqH6g1Pq+r6vlVdY81HotJbVTVn9bw/nTRLcR/o4b3to9X1RPWei7GNlaOG06tqn+o8bhmfNy+UlWPXy92k/jZ5a9dvR+uF1tVT66qR8ys86aq+puZ60+sqt+ZkMv/bLMmfP5W1R/U8Lo9ZWzjJlV1UFUdNz6+p9bw2X/7LcSfWMMx48p741+t8zhcvr7/ev1Szb+GN3zPmdDGp2o4/r3cuN5lx+tXXaONPR6nGl4T36rvvzfPfke7x6p1T6xV3/2q6hFV9YyqOrSqzqmqh2z0PGzSzvETnse1Yv/PmPsHa4PvA1P3vc1eG1toZ/VjPSWuq+paq+L+sqp+fwttfK+qfnxm2e9X1bPWui/7GwWj5TgqybsynCFureVHbbONT3X3DWcuL9xGDqmqX0ny8CS37e7/2k4bW7Du/Uhy/STXSXLXbcb/eJIfTnKvLcTfO8mVkly/u388yd2SfH1qfHc/ffY5yHAGwL/v7o+tDqyqSvLKJCd299W7+zpJHpvkijNt/+uYwx42iX9NkuO6+5pJbpDkp5P874ltPDLJL87k/6jx/qxZqEnynfH26yb5hSR3SPJHY/tXTPIPSR7d3ddK8mNJ3pjkkCnxo3eu2q/XLFzNtLNyOW2d9bYS++EM+8SK+yT50Org8XF8VZJ3dPfVuvsnx3V/eLz9gAzP4+eT3HKr8bvAhvviJj7V3Tfq7h/LcJ8eWVUP3KfZbe6MJL9dw5k5J6uq2yR5WpLbdffnkjw1yZPHfeTHxtsmt5HhcXzUeAB4QJK/SvK/u/vcLeS04b40+laS61XVxcbrv5DkC6vauUySn0hymdqzKL5pfJKXjc/rNZIcl+Sfar4wPrWN2dfdR7cYP9V225oSd3qSP9hOfFXdIMkTktylu6+d5JeSPKFmClATc3jZ+H59qyR/Pr7vbuV+/EmSt3T3DcbPgGOmxnf382Y+7/4zya3H66vb+G6Su9faBZTbJ3lEhmOO62bYL78xNX608rq8RpKXJXlrVR26zTZWLl/fYvxU221ns7gPZ/5Y6B5JPrpqnfXaeEeSH66x2Dn6+SSndvcXp7TR3W9O8tkkKz+yPDzJv3b3v6ysM37W/VOSV43P1TWTXDLJn61zn/YwtY2q+oMkN09y1+7+7hbi39ndN0pyoyR3qqqbr5PKynHD9ZJ8L8lvjMtvm+QTSe41bms968XPLv9akodOjP2XDMd6K58TV0hy3ZmYn07y7gm5rLfNPVTVzZLcKclPdPf1M+wzn0/yf5McluR6Y5t3zvxx32bxSXLfcdn1M+xzr14d391fnXn/eVZmXsOZ+DrboI2rJ3lmhs+3jH+f3d2fnfLYjP5obPcOmf+O9o+r1ntJ9vwudZ9x+T2TvDfTvhuu186GxcsNYu+Y5CETvg9M3fc2e21sdx+eEvfG2fs3rnePDJ8XU9v4syTPqMGVkzwkyWPWyGe/o2C0w6rqkhk+wB6U+R23Muy4v5rktlV18Fbb2NscxtvuleFg8bbd/ZVF5TCljfFL1L8k+dHVt02MPy/J+5NceQvxhyX5YnefP7Zx+npFs822X1W3zFCs2qNQM7p1knO6+3+q0939we5+Z1VdPcMBzOOy/ofEmvEZDn7ePR68pbu/neRh2fNLwIY5rLPNDXX3GUmOTvKwcZ9+aJIXdPd7xtu7u/+xu788MX7ZPpfk4Bp+ga8MX/rfsMZ6P5fke6sex89290pB4dZJTs1w8LHW87lZ/NJM3Bcn6e5PJ/mdJL+1D1LbijOTnJBkUu+mJKmqWyR5TpI7dvenxsWHZSgQJEm6+8NbaWPc75+Q5P9lOMA/pbvftZU7ks33pRVvyHCwl3G9l6y6/ZeTvDbJS7P2e/hm8f+ju9+WYULIo7fbxjr2Nn5ftLVZ3OuSXHf1L5cT438vyZ9392eSZPz7+CSP2k7u4/vnp5Ls8Qv4Jm2s3q9P2WL8FOdm2EceucZtj0nye939n+P2/7u7n7OF+Dnd/bIkb07yv7bbxjr2Nn5v29ks7lVJ7pIkVXW1DEW3M6e0MR7z/EP2/IFkred5ozwemeQxVXXdDMcdj151+88l+e/uft643fPGmF9LcvFMs2kbVfW7Gb6k37m7v7OdHMa4D2adY8hV3pnvH6seleQpGY4fbjrxPs3Gz3rPhO2vxL474xfeDF90T01ydg09Yy6a4Qe7f5uQy5RtrjgsyVdWCnLj94avJ3lwkofPLP9yd798SvzK+8CK7v5ekt9PcvhYZJ9qX7xen5zkpmPPk59J8sSNV9+2f8xQnLxoMvRYyvDj9Uongt/NUNDd7HlZr53TNwqakMNmpu57m702prSz1neyKXGPzvyxzi2TnDZTAJzSxuOTfDHJ/TPsG8eu9x1xf6NgtPPumuSN3f3vSb5WVT8xLr95ks+MX0xOzPBBt9U2rl7z3alvscX4q2b4xfu23f2lbd6PrdiwjRq6594mw69m24k/OMlNMlSVp8a/PMmdx8fviVV1o+3kP/56/7wkD+jus9aJv16Sk9e5beWA/J1JrlVVP7iF+OuuXj7uV5esqkttIYdtGYsCByT5we20vyo+SW6xar+++jqhF5tZ55VbTHuj2H/M8AvPTyf5QIZfrVa77njbelaez1dm+EBePUxys/itmL0vH8zQe2BvTNkXt+IDSa696Vr73nFJfreqDpyw7kUz/Jp51+7++MzyJ2foufCGGoZ7XGYbbTwrQ8/JR2U4CN6qzfalFS9Ncp/xffD6Sd63TjsvydqFp83iV1vred2sjXuvem1fbG/ik6w5THOb92dq3PkZCoCP3Ub8Hu/VSU7K/K+ak3MfiwRXS/IfW8zj6UmeW8Nw5D+oqittMX6qpye5b+05tHXq58R68WtZ731mozYeObM/vW0bOTxy1f641uM4pZ2NbBR3VpLPV9X1MrymX7bGOhu18T89DMYvSHdI8oqttDH2RvrLDEWHP+3ur62KW+v45KwMXyB/NKs+7zP0ulttszZunqEgf/vuXmto72bxSYYhSEmukaH31bpqGFJ8+yQfHt/DbpOhkLzee+u68auWHzi29ZopsWOh5dyqOjzD8cp7MrxOb5bhvfGUsfiyUS6bbnOVNye5Sg3THzyjqn42w2P4uQ2OfTeL38NY1PtQtn7ssN3X2cp2z8nwWf3kJI/Y7PHbru7+aoYfuG83LrpPhtfvDyf5oe5+f4bvJ/deu4VN29n0DFfrxXZvfnasKftekpV9a93XxsR29ngOJu77pyQ5f6boOFcQ38Lr5xEZehod2t3/M1R7f6dgtPOOynDglfHvUZss30obq4ekrddLZL34MzN8YG40hGuzNrZivTauPh4ovDvJ67t7rR4dU+K/muFDa61fS9eM7+7Tk1wrwy+e5yc5oYYhJVvZfjL8+v933b1e99/N3CfJS8df/f4pQ8Fiqsr6Hw47dVrEve0dNBu/ekjap9aJmR1WttWhUxvFvjzD4z/5V/WqenoN84H8aw3DoO6Qofv7WRk+gG47NT5bfy7nhtcl+cMpOW9gb/bFtSyl59jYe+P92bPXwVrOydC78UGzC8dfpH8swy/xt0ry3lo1N8aENs5P8tdJ3jAeoE22lX1pfN87IsN+u3pOmitmOKh/11jwPnf8kjkpfr30tpLDaPWQtO/sTXyGYsuatnF/thL34gy/Qu8x390m8Wu9V++xbEIO9x4/816SYfjA6i/pG7bR3W/KUGh6ToYvZP9Wq4ZzbffxW9XGWUlemG32MNxi/JrvM5u08eSZ/enWexl/wwxD9Na03cdiQtxKj8G7ZigqT26ju/81ww9L18pQhHjver+eb5LH05Mc2N3PX+O29Y5PVpa/c9VjuFbhYrM2/mP8f73P2c3ib1FVpyT5UpLXbfAD6sXG191JGY6dn5theNXbeujZ/Yokd9vgR4q14meXfzXJ5ZK8ZQuxK70kVr7wvmfm+r/s2cwe7W20zT2MBbmfzNC79MwMxYlbTYldL77Wn19wy8cOe/ueM7p9hl4l19tgnX1xzD07JOw+M9dXemZN/a61Vjt7k8NUm+17U18b292Hp8S9JMMPHxfJ0BvzH7baxlhYemuG73kXGntMtMniVNXlM3SFvV5VdYZqa1fVMRmGB/xSDWOuK8nlq+qQ7j57ShtJnrE3OYzx387wxviuqjqju/9+G23s1WMxtrEyB9FexdcwUeOJVfVL3f2aKfFV9fs9dI19Q5I3VNWXMxx4nTA1PkNXxSOS/MomD8NHMgxDXH3frp/hV6231DAq6weSfDrDQdim8ePyublNxl+ev7l6f9qgjW0bt3VehnljPpLhYGCPsecT439sX+a2Hd39pao6J8O8Hb+d73dZnfWRDK/hlZiH1jBu/qQMv9ZcOsOvj8nQ5f3bSV4/Mf6rSVZPPn+5JOsOGd1XtrAvbsWNkuwxp9cO+fMMPcY2/MU4Q7H4Xkn+uaoe291/vnLDeLDwt0n+toaJF9frHbFuG+Nt528j/yn70qzXZBgCd6skl59Zfu8M+9RnxnYuleHg8HET49ey3vO6lTbWsrfx+6KtDeO6+9waJlddPfxms/iP5Pu/mq74iew578xmObysux+2yX3YsI2xyPTiJC+uYdLgW2bP3iX74rn4ywy9f543s2zlc+Kt24xfy42yfgFxaht7m8Oi2tko7rVJ/iLJSd19Vq0/snu9NlYKTj+Wzb8srtlGd58/HhetZe6zLklq6Pl8lQzDKafYrI0vJ7lvhh/8vtrDkNmtxL+zu+9UwwlI3lVVr+xhuP9q31l9rFpVRyW5eVWdNi66fIZhxGvNvbhH/OzysVfM6zIM7X/qxNiVeVh+PMOQms9nGM50VobPrfVM2eaaxt4/J2Y43v5whnldDl/rO8zE+D2Gjo+FhR/P9o4d/jLbfL1W1Q0zHPvdNMO+8NLec06vZP3jtM9sYXOvSvKkGkYrXKy7P1DDpMtXrKr7jutcqaqu0d2f3GI7R2w3hy3kv9m+98BMe21sdx+eEveSDL3a3p6hx9AZ29z2do/hLrD0MNpZ90jywu6+ancf0d1XyfBm8rgkH+ruq4zLr5rhQO2uW2hj6uS4G8Z395kZvpT8ea1/tra9zWHh92O8L1/MMG/PWhOSrRd/yxq749cw6dn1M0ziODk+Q1fF+/bmE9m+NclFa+asNlV14wzje48d2z2iu6+U5Mq155kZ1ov/ZJKfqfFsYmMX6admGDYxKYf1ugVvZvxV+llJ/qq7O8MQxwdU1U1m1rlfVf3QxPjd4g8zTNx93jq3vzXDXEe/ObNsZS6Eo5L8+srzmeRHMsxTdvGJ8f+a4UP2h5KkhjPeXDTfnxhykY7KtH1xkvGg5QmZMFn0IvQwNOyjGX7p2mzdb4/r3bfGM+VV1e1qHAI2Ph+XzwaTJ6/Vxl6asi/N+tskf9J7zrV0VIaJvFfaWZlkfWr8nPH94ugMPVS21cYG9jZ+X7Q1Je75GSZsXT3R8kbxT8gw38sRyf+8Ph6btefJ2BePw5ptVNXP1ffP0HRIkqtn6LWwz3MYC1Mvz3zPu8cn+X8z73EXrao1ewSsEz+nqn45Q++S9eZ62rSNbdyHHWtno7geeuk9OptMIr1BGy9Jcr8MP4htOCxpm/mfkOTiNZ7FdywEPDHD6+fb+6qNHnpO3j3J341f+recw9jG47N+IXjOWHT6mSSHz7y3PjTbnPuvu7+RoWfM79UGZ/td5d0ZPnO+1t3njc/RZTIMq3nPvt5mDWcOvcbMohtmmNT4uUmeWuOJJqrqsKq638T4z65a56AMz8Pne/0RA+va7uushmrrMzMMRftchkLsmmfN66Gn1BdrHJFQw5nVbpdp8//MtnFihvfZl9TQ0+8S3X3lmf3p8dlk3tjV7Uzd/t7GZuN970OZ/trY7j68aVwPIxS+mmGKgrXu3169fvZnCkY766js2UX4FRkq12stX2voxHptPDZ7zmG01gHXRvFJ/mfoxi9l+AX9JtnTRm1cq6pOn7msN3xl0zw2MTX+VRkODFbP57Re/POTvHbsOXBKhknz9jjd8gbxv5rkEhnOGLThfFJjQeRuSX6hhtN3fiTJsRl+vV3d9iuz6kNig/j/zNDV8nFV9YkM4+L/da37sUkbU63MmfORDL8UvDnJH4/tf3nM+wk1nCL1Y0lukaFav2n8aPUcRlvtEXWbVfvkzbYYn+7+l+5+1Qa3d4YC78/WcNrR9yd5QYazvf1iZnqAdPe3MhxE3HlC/KPHx/C3kxxfQ5fxv8wwfHInft24Tybsi5u4eg2nKP5YhoO2p/U42egWTH1fmeLPMrEwPR4s3C7Da+kuGb6EnlpVH0rypgxnDNlwvrc12pjq4qvu82MzYV9ate3Tu/sps8vGosThGc66srLeZ5Kctfr9fq34GSvzB/17hvfdX+41zgY5sY2Vyx699zaJ35LttjUlroe5DZ6a78+9tml8D70WHp3hM+fjGXqH/H6v0ZthXzwOG7Txk0lOqmEYznuS/E0Pw5P2eQ6jJ2Y4A81Ku8dn6LX4z+PnwMnZuAf8XPzokeM+9MmMBY8efgDbThsrlyO2GL8dq9u5SNaeJ2/y9rv7pT2tZ8AebfRwpsJvJ3nr+P6y7TzWyW3lmOOe43P170n+O9OP/Sa3Me7DD0zympqZ+3CLOTwrww+Jeww3XcPdMzxus8/fqzOMHlhv6PKGuvvfMnzZnvqZ++EMz8d7Vy37Rm9wIpu92OYlk7yghlOvn5Jhfr5jM/wQfmaSj47H06/KnhOwbxSfJH8/Ljs1w3H1Vj4/V9vO6/XBGaa1WBme94wk1671f1C9f4bP+Q9m+BHwj3v9KRTW85IMZzZeGX621veMqcPSVtrZqu3GrrvvZShAT31tbHcfnhr3kgxDr9casrvXr5/9VfWu+hEfAAAufGo46cJzxiIaACydHkYAALBENczfcn6GXrYAsCvoYQQAAADAHD2MAAAAAJijYAQAAADAHAUjAAAAAOYoGAEAbKCq/qCqPlJVp4ynXL9JVT2iqi4+IXbSegAAu41JrwEA1lFVN0vypCS36u7vVtUVkvxAkn9JcmR3f2WT+NOmrAcAsNvoYQQAsL7Dknylu7+bJGPh5x5JrpTkbVX1tiSpqmdW1UljT6Q/Hpf91hrr3baq3lNVH6iqf6iqSy7jTgEAbEYPIwCAdYwFnXcluXiSf07ysu5+++qeQ1V1ue7+WlUdmOSEJL/V3afMrjf2TvqnJLfv7m9V1aOTXLS7/2QJdw0AYEMXWXYCAAC7VXd/s6p+Msktktw6ycuq6pg1Vr1XVR2d4djqsCTXSXLKqnVuOi5/d1Ulw9C29ywqdwCAvaFgBACwge4+L8mJSU6sqg8necDs7VX1I0l+L8mNu/u/qur5SQ5eo6lK8pbuPmqxGQMA7D1zGAEArKOqrlVV15hZdMMkn01ydpJDxmWXSvKtJN+oqismuf3M+rPrvTfJzavqR8e2L15V11xg+gAA26aHEQDA+i6Z5GlVdZkk5yb5jyRHJzkqyRuq6ovdfeuq+rckH0ny6STvnol/9qr1fjXJS6rqouPtj0vy7ztzVwAApjPpNQAAAABzDEkDAAAAYI6CEQAAAABzFIwAAAAAmKNgBAAAAMAcBSMAAAAA5igYAQAAADBHwQgAAACAOQpGAAAAAMz5/wHQ0+/TMVapmQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig2, ax2 = plt.subplots(figsize=(20, 9))\n", + "ax2.bar(disp_st['state'], disp_st['dispute_rate'])\n", + "ax2.set_xlabel(\"State\")\n", + "ax2.set_ylabel(\"Disputed issue rate(disputed count / issue count)\")\n", + "ax2.set_title(\"Dispute rates per state\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "17ec819c", + "metadata": {}, + "outputs": [], + "source": [ + "#Getting count of issues per state with products\n", + "state_issue_count = df[['state', 'product', 'issue']].groupby(['state', 'product', 'issue']).size().reset_index()\n", + "state_issue_count.columns = ['state', 'product', 'issue', 'count']" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "15c92542", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateproductissuecount
501CAMortgageLoan modification,collection,foreclosure19433
942FLMortgageLoan modification,collection,foreclosure11337
502CAMortgageLoan servicing, payments, escrow account8957
4028TXCredit reportingIncorrect information on credit report8712
485CACredit reportingIncorrect information on credit report8585
\n", + "
" + ], + "text/plain": [ + " state product issue count\n", + "501 CA Mortgage Loan modification,collection,foreclosure 19433\n", + "942 FL Mortgage Loan modification,collection,foreclosure 11337\n", + "502 CA Mortgage Loan servicing, payments, escrow account 8957\n", + "4028 TX Credit reporting Incorrect information on credit report 8712\n", + "485 CA Credit reporting Incorrect information on credit report 8585" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#States with 5 highest dispute counts, issues and product\n", + "state_issue_count.sort_values(by = 'count', ascending = False).head()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "63fa2a3a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateproductissuecount
3083NVPrepaid cardOverdraft, savings or rewards features1
347AZConsumer LoanPayment to acct not credited1
344AZConsumer LoanLender repossessed or sold the vehicle1
1AACredit cardIdentity theft / Fraud / Embezzlement1
0AABank account or serviceAccount opening, closing, or management1
\n", + "
" + ], + "text/plain": [ + " state product issue \\\n", + "3083 NV Prepaid card Overdraft, savings or rewards features \n", + "347 AZ Consumer Loan Payment to acct not credited \n", + "344 AZ Consumer Loan Lender repossessed or sold the vehicle \n", + "1 AA Credit card Identity theft / Fraud / Embezzlement \n", + "0 AA Bank account or service Account opening, closing, or management \n", + "\n", + " count \n", + "3083 1 \n", + "347 1 \n", + "344 1 \n", + "1 1 \n", + "0 1 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#States with 5 lowest dispute counts with related issues and products\n", + "state_issue_count.sort_values(by = 'count', ascending = False).tail()" + ] + }, + { + "cell_type": "markdown", + "id": "eb748a29", + "metadata": {}, + "source": [ + "### **Analysis**: \n", + "As the above console output and bar graphs show, states with higher populations such as CA, NY, TX etc tend to have more disputes over financial issues. Moreover, West Coast states have a higher tendency to dipute complaints. Finally, Mortgage modifications and Credit reporting issues have caused the most disputed among the states \n", + "\n", + "Laws and operations regarding financial products and the companies headquartered in these states are areas which can be further analysed for why they yield such high issue counts for the a certain range of products." + ] + }, + { + "cell_type": "markdown", + "id": "f45775c1", + "metadata": {}, + "source": [ + "### Disputes according to Product:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1b73be97", + "metadata": {}, + "outputs": [], + "source": [ + "disp_prod = get_count('product')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "95b32810", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
productissuecount
75MortgageLoan modification,collection,foreclosure97191
59Credit reportingIncorrect information on credit report66718
76MortgageLoan servicing, payments, escrow account60375
62Debt collectionCont'd attempts collect debt not owed42285
0Bank account or serviceAccount opening, closing, or management26661
\n", + "
" + ], + "text/plain": [ + " product issue count\n", + "75 Mortgage Loan modification,collection,foreclosure 97191\n", + "59 Credit reporting Incorrect information on credit report 66718\n", + "76 Mortgage Loan servicing, payments, escrow account 60375\n", + "62 Debt collection Cont'd attempts collect debt not owed 42285\n", + "0 Bank account or service Account opening, closing, or management 26661" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Highest issues per product\n", + "product_issue_count = df.groupby(['product', 'issue']).size().reset_index()\n", + "product_issue_count.columns = ['product', 'issue', 'count']\n", + "product_issue_count.sort_values(by = 'count', ascending=False).head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "cd258ff1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Product')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBgAAAImCAYAAAD5QTmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABH5UlEQVR4nO3debhdVX3/8feHhAYQiCKoEYcgBimTUQKIOABaq8bWARSVKjghVkV/rVXUVsGhjcUqWhQFVFARcEIpqEQZFRFIICSAKAqxggNSMAICQvz+/jjrwuF6p7DvzSU379fz3Cf7rLX3Wt997j0PnM9Ze59UFZIkSZIkSV2sM9kFSJIkSZKkNZ8BgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmaIpJ8Ksm/TXYdI0mye5JrR+i/JcljVmdNmnyj/V1IktYMBgySJK0BkixPcluSm5P8PskPkxyY5O7/llfVgVX1/gmu49gkH5io8atqw6q6eqLGv79LUkkeO9l1rKmSnJ3ktZNdhyStrQwYJElac/xdVW0EPBpYALwD+MzklqSpJsn0+8MYkqQ1jwGDJElrmKpaUVWnAPsA+yXZDu69uiDJpklObasdbkzy/YHVDm01xDuTXJHkpiSfS7Je69s/yQ/65xv4VD3JAcC+wNvbpQz/0/ofnuRrSX6X5JokB/Udu36r66YkVwA7jXRu/Z/gJ3luq/HmJNcledsYzu1eKwAGr7hI8rwkS/pWgewwQi3bJvlum+O3Sd7V2mckOTzJr9rP4UlmjPb89dXziSSntfO6IMmWre/cdsil7fndZ6RzHea5OyjJ1UluSHJY/75JXp3kx+13cXqSRw869o1JrgKuGmLs2W2fA9o5/zrJP/f1H5Lkq0m+mOQPwP7t7+KUVvfPkryub/8R/y7G8Ht8fvs9/iHJz5M8O8kHgacCR7Tn74jhfreSpIlhuixJ0hqqqi5M77r1pwKXDer+Z+BaYLP2+ElA9fXvC/wtcCvwP8C/tp+R5jsqyZOBa6vqXwHaG9j/Ab4JvAx4BPC9JD+pqtOB9wJbtp8HAN9ehVP8DPCSqvp+kgcBW4zx3IaU5InAZ4G/AxYB/wCckuRxVXXHoH03Ar4HfLjtvy6wTet+d5tzbpv3m/Seu7He/+JlwLOBi4HjgA8CL62qpyUp4PFV9bNWx3+s4rm+EJgHbNjq/wlwTJIXAO9q53IVcDBwAvDkvmNfAOwC3DbC+HsAc4DHAGcmubSqvtf6ng+8GHglMAP4DnA58HBga+C7Sa6uqjPo8HeRZGfg88DewBnALGCjqvpOkt2AL1bVMWMdT5I0flzBIEnSmu1XwCZDtN9J743Xo6vqzqr6flX1vzE9oqp+WVU30nuD+7L7OP9OwGZV9b6q+lO7f8LRwEtb/0uAD1bVjVX1S+DjqzD2ncA2STauqpuq6uIxnttwXgd8uqouqKqVVXUccAe9N+2DPQ/4TVX9V1XdXlU3V9UFrW9f4H1VdX1V/Q44FHjFKpzX16vqwqq6CzieXlAxnFU91w+15/p/gcO55/f6euA/qurHbd5/B+b2r2Jo/TdW1UgBw6FVdWtVLQM+x73/bs6vqm9U1Z+BTYGnAO9oz98S4BjueZ66/F28BvhsVX23qv5cVddV1ZWrcLwkaYIYMEiStGbbHLhxiPbDgJ8BC9uS+YMH9f+yb/sX9D5lvi8eDTy8LeH/fZLf0/uk/KGt/+FDzDVWewHPBX6R5Jwku7b20c5tpFr/eVCtj2Toc38k8PNhxnk49z6PVX3+ftO3/Ud6qw2Gs6rnOtzv9dHAx/rO+0Yg9P5+hjp2Vccf3Pdw4MaqunnQ/pv39d/Xv4uRfjeSpElkwCBJ0hoqyU703rD9YHBf+8T9n6vqMfSWxf9Tkmf07fLIvu1H0VsJAb1LJjbom+Nhg4ce9PiXwDVV9cC+n42q6rmt/9dDzDUmVXVRVT0feAjwDeDLYzi3P/bXD/TX/0t6n5r317pBVZ0wxPS/pLd8fyi/oveGvf+cxvr8rZIx/B4HG+73+kvg9YPOff2q+mH/dGMoabjxBx//K2CTdqlJ//7Xte3R/i5G+z0O97sZyzlIkiaIAYMkSWuYJBsneR5wIr3rzZcNsc/z0rsxY4A/ACvbz4A3JnlEkk3orTg4qbVfCmybZG56N348ZNDQv6V3/f2AC4E/JHlHu3HftCTbtfADeqHAO5M8KMkjgDeP8Rz/Ksm+SWZW1Z195zDauS0BXt7qeDbw9L5hjwYOTLJLeh6QZP6gN8EDTgUeluSt6d3UcaMku7S+E4B/TbJZkk2B9wBfHOPzN5p7Pb9j+D0O9i/tuX4k8Bbu+b1+it7vYds27swkL17F2gD+LckGbZxX9Y1/L+2yhx8C/5FkvfRupvkaepeEwOh/F0sY/vf4GeBVSZ6RZJ0kmyfZuvUN/vuUJK1GBgySJK05/ifJzfQ+wX038BF6b/KGMofeTf5uAc4HPllVZ/f1fwlYCFzdfj4AUFU/Bd7Xjr2Kv1wd8Rl690X4fZJvVNVKep+szwWuAW6gd639zLb/ofSWv1/T5vvCKpzvK4Dl6X0rwYH0bso42rm9pdXze3r3SvjGwGBVtYjefRiOAG6id+nB/kNN3Jb2/00b6zf0nos9WvcH6N0kcimwjN7NGsf6/I3mEOC49vy+ZJRzHco3gcX03qCfRvsa06o6GfgQcGJ7Pi8DnrOKtQGcQ+95OwP4cFUtHGHflwGz6a1mOBl4b1V9t/WN9ncx0u/xQnp/9x8FVrSaBlaUfAzYO71vp1iV+zpIksZBxnZPJEmSNFUkWQ68tu/u/5oC2jdQzBn4BopxHns2vTBg3XaTSEmS/oIrGCRJkiRJUmcGDJIkSZIkqTMvkZAkSZIkSZ25gkGSJEmSJHVmwCBJkiRJkjqbPtkFaGrZdNNNa/bs2ZNdhiRJkiRpAixevPiGqtpsqD4DBo2r2bNns2jRoskuQ5IkSZI0AZL8Yrg+L5GQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSps+mTXYCmlmXXrWD2wadNdhmr1fIF8ye7BEmSJEmadK5gkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzA4YOkrw7yeVJliZZkmSX1v7WJBvch/Fu6VDL/kkePkzfsUn2vq9jS5IkSZI0GgOG+yjJrsDzgCdW1Q7AM4Fftu63AqscMHS0PzBkwCBJkiRJ0kQzYLjvZgE3VNUdAFV1Q1X9KslB9N7on5XkLLj3yoQkeyc5tm1vkeT8JBcleX//4En+pbUvTXJoa5ud5MdJjm4rJxYmWb+tTpgHHN9WUqw/XNFJnpHkkiTLknw2yYzW/p4232VJjkqS1n52kg8luTDJT5M8dfyeQkmSJEnSVGHAcN8tBB7Z3nR/MsnTAarq48CvgD2qao9RxvgYcGRV7QT8ZqAxybOAOcDOwFxgxyRPa91zgE9U1bbA74G9quqrwCJg36qaW1W3DTVZkvWAY4F9qmp7YDrwhtZ9RFXtVFXbAevTW50xYHpV7UxvZcZ7hxj3gCSLkixa+ccVo5yyJEmSJGkqMmC4j6rqFmBH4ADgd8BJSfZfxWF2A05o21/oa39W+7kEuBjYml6wAHBNVS1p24uB2asw3+Pa8T9tj48DBoKLPZJckGQZsCewbd9xXx9pvqo6qqrmVdW8aRvMXIVyJEmSJElTxfTJLmBNVlUrgbOBs9sb8/3orRD4i137ttcboW9AgP+oqk/fqzGZDdzR17SS3mqDscqQjb2VDZ8E5lXVL5McMqjOgTlX4t+MJEmSJGkIrmC4j5I8Lsmcvqa5wC/a9s3ARn19v03y10nWAV7Y134e8NK2vW9f++nAq5Ns2ObaPMlDRilp8JxDuRKYneSx7fErgHO4J0y4oc3pN05IkiRJklaJn0bfdxsC/53kgcBdwM/oXS4BcBTw7SS/bvdhOBg4ld63TFzWjgV4C/ClJG8BvjYwcFUtTPLXwPntXou3AP9AbwXBcI4FPpXkNmDXoe7DUFW3J3kV8JUk04GLgE9V1R1JjgaWActbuyRJkiRJY5aqoVboS/fNjFlzatZ+h092GavV8gXzJ7sESZIkSVotkiyuqnlD9XmJhCRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mz7ZBWhq2X7zmSxaMH+yy5AkSZIkrWauYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdTZ9sgvQ1LLsuhXMPvi0IfuWL5i/mquRJEmSJK0urmCQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDho6SrEyyJMllSb6SZIMJnu+YJNsM0b5/kiMmeO7dk5w6kXNIkiRJktZMBgzd3VZVc6tqO+BPwIH9nUmmjedkVfXaqrpiPMccznjXLkmSJEmaugwYxtf3gce2T/rPSvIlYFmSaUkOS3JRkqVJXg93rwg4N8nJSa5I8qkk67S+I5MsSnJ5kkMHJkhydpJ5bftVSX6a5Bxgt6EKSrJhks8lWdbm3muU8ZcneU+SHwAvTvLsJFe2xy+aoOdNkiRJkrSGmz7ZBUwVSaYDzwG+05p2BrarqmuSHACsqKqdkswAzkuysG+/bYBftGNfBHwVeHdV3dhWEZyRZIeqWto33yzgUGBHYAVwFnDJEKX9W5t7+3bcg1r7SOPfXlVPSbIecBWwJ/Az4KRhzv0A4ACAaRtvNubnTJIkSZI0dbiCobv1kywBFgH/C3ymtV9YVde07WcBr2z7XQA8GJjTt9/VVbUSOAF4Smt/SZKL6YUG29ILIfrtApxdVb+rqj8xzJt/4JnAJwYeVNVNYxh/YKytgWuq6qqqKuCLQ01QVUdV1byqmjdtg5nDlCFJkiRJmspcwdDdbVU1t78hCcCt/U3Am6vq9EH77Q7UoPEqyRbA24CdquqmJMcC6w0x9+Bjh5LB+41h/P7axzKHJEmSJGkt5wqG1eN04A1J1gVIslWSB7S+nZNs0e69sA/wA2Bjem/yVyR5KL1LLwa7ANg9yYPbuC8eZu6FwJsGHrRLJMYyPsCVwBZJtmyPXza205UkSZIkrW1cwbB6HAPMBi5Ob3nD74AXtL7zgQXA9sC5wMlV9ecklwCXA1cD5w0esKp+neSQdvyvgYuBob714QPAJ5JcBqwEDq2qr482fpvj9nZ/hdOS3EAv/Nhulc9ekiRJkjTlpXdpvSZDu0TibVX1vEkuZdzMmDWnZu13+JB9yxfMX73FSJIkSZLGVZLFVTVvqD4vkZAkSZIkSZ15icQkqqqzgbMnuQxJkiRJkjpzBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6mz6ZBegqWX7zWeyaMH8yS5DkiRJkrSauYJBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPLsutWMPvg08a8//IF8yewGkmSJEnS6uIKBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2AYJ0lWJlmS5LIkX0mywTiMecs41TYu40iSJEmSNBwDhvFzW1XNrartgD8BB052QZIkSZIkrS4GDBPj+8Bjk/xdkguSXJLke0kemmSdJFcl2QygPf5Zkk2TbJHk/CQXJXn/wGBJNkxyRpKLkyxL8vzW/v4kb+nb74NJDhquqPQc1lZZLEuyzyjjz07y4yRHJ7k8ycIk60/QcyZJkiRJWoMZMIyzJNOB5wDLgB8AT6qqJwAnAm+vqj8DXwT2bYc8E7i0qm4APgYcWVU7Ab/pG/Z24IVV9URgD+C/kgT4DLBfm3cd4KXA8SOU9yJgLvD4Nu9hSWaNMD7AHOATVbUt8Htgr/vyvEiSJEmSpjYDhvGzfpIlwCLgf+m9+X8EcHqSZcC/ANu2fT8LvLJtvxr4XNveDTihbX+hb+wA/55kKfA9YHPgoVW1HPi/JE8AngVcUlX/N0KNTwFOqKqVVfVb4Bxgp+HGb8dcU1VL2vZiYPbgQZMckGRRkkUr/7hihOklSZIkSVPV9MkuYAq5rarm9jck+W/gI1V1SpLdgUMAquqXSX6bZE9gF+5ZzQBQQ4y9L7AZsGNV3ZlkObBe6zsG2B94GL3gYiQZpn2k8e/o228l8BeXSFTVUcBRADNmzRmqfkmSJEnSFOcKhok1E7iube83qO8YepdKfLmqVra28+hd5gD3Dh1mAte3N/97AI/u6zsZeDa9lQinj1LPucA+Saa1e0A8DbhwlPElSZIkSRqVAcPEOgT4SpLvAzcM6jsF2JB7Lo8AeAvwxiQX0XvTP+B4YF6SRfSChysHOqrqT8BZ3DuoGM7JwFLgUuBMeveE+M1I40uSJEmSNBapckX7ZEgyD/hoVT214zjrABcDL66qq8aluA5mzJpTs/Y7fMz7L18wf+KKkSRJkiSNqySLq2reUH2uYJgESQ4Gvga8s+M42wA/A864P4QLkiRJkqS1lzd5nARVtQBYMA7jXAE8pntFkiRJkiR14woGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPL9pvPZNGC+ZNdhiRJkiRpNXMFgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGjatl161g9sGnMfvg0ya7FEmSJEnSamTAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnkxIwJHlEkm8muSrJz5N8LMlftb65SZ7bt+8hSd42jnNvnWRJkkuSbJnkh+M19hjmPibJNqPsc3aSeaupnr9PcvDqmEuSJEmSNLWt9oAhSYCvA9+oqjnAVsCGwAfbLnOB5w599H2ab9qgphcA36yqJ1TVz6vqyeM112iq6rVVdcXqmg8gyfQR6jmlqhasznokSZIkSVPTZKxg2BO4vao+B1BVK4H/B7w6ycbA+4B92iqDfdox27RP9q9OctDAQEn+IcmFbd9PD4QJSW5J8r4kFwC79u3/XOCtwGuTnDWwb/t39zbHV5NcmeT4FoaQ5D1JLkpyWZKj+trPTvKhVsNPkzy1tU9L8uEky5IsTfLmvv3nte0jkyxKcnmSQ0d70pIsSHJFG+/DrW2zJF9rtV2UZLfWfkircyHw+SQXJNm2b6yzk+yYZP8kR7S2hyY5Ocml7efJIz3HkiRJkiT1m4yAYVtgcX9DVf0B+F9gNvAe4KSqmltVJ7Vdtgb+FtgZeG+SdZP8NbAPsFtVzQVWAvu2/R8AXFZVu1TVD/rm+RbwKeCjVbXHELU9gV4AsQ3wGGC31n5EVe1UVdsB6wPP6ztmelXt3I57b2s7ANgCeEJV7QAcP8Rc766qecAOwNOT7DDEPgAk2QR4IbBtG+8Dretj7Vx2AvYCjuk7bEfg+VX1cuBE4CVtrFnAw6vqXr8D4OPAOVX1eOCJwOWjPMeSJEmSJN1t2OXzEyhArUI7wGlVdQdwR5LrgYcCz6D3JvqitqBgfeD6tv9K4Gv3obYLq+pagCRL6AUePwD2SPJ2YANgE+By4H/aMV9v/y5u+wM8E/hUVd0FUFU3DjHXS5IcQO93MIteqLF0mLr+ANwOHJPkNODUvnm2aecPsHGSjdr2KVV1W9v+MvBdegHIS4CvDDHHnsArW70rgRVJXsHwz/Hd2nkcADBt482GOQVJkiRJ0lQ2GQHD5fQ+bb9buzTikcDP6b2hHeyOvu2V9OoOcFxVvXOI/W9vb5JX1V/Mk2Q94JPAvKr6ZZJDgPWGOGagLhg5LCHJFsDbgJ2q6qYkxw4a816q6q4kO9MLVV4KvIleILAOsGtfkDAwPsCtfcdfl+T/2iqJfYDXDzfX4FIZ/jnur+8o4CiAGbPmDHvekiRJkqSpazIukTgD2CDJK+HumzD+F3BsVf0RuBnYaITj+8fZO8lD2jibJHn0BNQ78Mb/hiQbAnuP4ZiFwIEDN1hslzj025heALAiyUOB54w0WJt3ZrvE4630boQ5MM+b+vabO/jYPicCb2/jLBui/wzgDW2caS30WV3PsSRJkiRpDbfaA4aqKnr3E3hxkquAn9Jb/v+utstZ9Jb999/kcahxrgD+FViYZCm9SwBmTUC9vweOBpYB3wAuGsNhx9C7p8TSJJcCLx805qXAJfRWc3wWOG+U8TYCTm3neQ69m2ICHATMazd+vAI4cIQxvkpv9cOXh+l/C71LQZbRu9xj29X1HEuSJEmS1nzpvd+XxseMWXNq1n6HA7B8wfzJLUaSJEmSNK6SLG5fWPAXJuMSCUmSJEmSNMUYMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9MnuwBNLdtvPpNFC+ZPdhmSJEmSpNXMFQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmfTJ7sATS3LrlvB7INPm+wyJEmSJGmNsnzB/MkuoTNXMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQHDJEpSSb7Q93h6kt8lOXUVx5mb5LnjX6EkSZIkSWNjwDC5bgW2S7J+e/w3wHWrMkCS6cBcwIBBkiRJkjRpDBgm37eB+W37ZcAJAx1JNknyjSRLk/woyQ6t/ZAkRyVZCHweeB+wT5IlSfZJslmS7ya5OMmnk/wiyabt2G8kWZzk8iQH9M31miQ/TXJ2kqOTHNHaN0vytSQXtZ/dVs/TIkmSJElakxgwTL4TgZcmWQ/YAbigr+9Q4JKq2gF4F70wYcCOwPOr6uXAe4CTqmpuVZ0EvBc4s6qeCJwMPKrvuFdX1Y7APOCgJA9O8nDg34An0VtFsXXf/h8DPlpVOwF7AccMPoEkByRZlGTRyj+uuO/PhCRJkiRpjTV9sgtY21XV0iSz6a1e+Nag7qfQe1NPVZ3ZwoCZre+UqrptmGGfArywHfedJDf19R2U5IVt+5HAHOBhwDlVdSNAkq8AW7V9nglsk2Tg+I2TbFRVN/edw1HAUQAzZs2pMZ+8JEmSJGnKMGC4fzgF+DCwO/DgvvYMse/AG/hbRxhvqONIsju9wGDXqvpjkrOB9Ybbv1mn7T9cmCFJkiRJkpdI3E98FnhfVS0b1H4usC/cHQ7cUFV/GOL4m4GN+h7/AHhJO+5ZwINa+0zgphYubE3vkgiAC4GnJ3lQu2nkXn1jLQTeNPAgydxVPTlJkiRJ0tRnwHA/UFXXVtXHhug6BJiXZCmwANhvmCHOoncZw5Ik+9C7d8OzklwMPAf4Nb0Q4jvA9Dbe+4EftfmvA/6d3v0fvgdcAQzcTOGggRqSXAEc2PV8JUmSJElTT6q8ZH6qSTIDWFlVdyXZFTiyquaOcsyGVXVLW8FwMvDZqjp5VeeeMWtOzdrv8PtStiRJkiSttZYvmD/6TvcDSRZX1byh+rwHw9T0KODLSdYB/gS8bgzHHJLkmfTuybAQ+MbElSdJkiRJmmoMGKagqroKeMIqHvO2CSpHkiRJkrQW8B4MkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJn0ye7AE0t228+k0UL5k92GZIkSZKk1cwVDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9PHslOSD1XVO0Zrk5Zdt4LZB582pn2XL5g/wdVIkiRJklaXsa5g+Jsh2p4znoVIkiRJkqQ114grGJK8AfhHYMskS/u6NgJ+OJGFSZIkSZKkNcdol0h8Cfg28B/AwX3tN1fVjRNWlSRJkiRJWqOMeIlEVa2oquXAx4Abq+oXVfUL4M4ku6yOAiVJkiRJ0v3fWO/BcCRwS9/jW1ubJEmSJEnSmAOGVFUNPKiqPzPGb6CQJEmSJElT31gDhquTHJRk3fbzFuDqiSxMkiRJkiStOcYaMBwIPBm4DrgW2AU4YKKKkiRJkiRJa5YxXeZQVdcDL53gWiRJkiRJ0hpqTAFDks8BNbi9ql497hVJkiRJkqQ1zlhv1Hhq3/Z6wAuBX41/OZIkSZIkaU001kskvtb/OMkJwPcmpCJJkiRJkrTGGetNHgebAzxqPAtZnZJUki/0PZ6e5HdJTh3puAms512raZ7Dklye5LDVMZ8kSZIkae0x1nsw3EzvHgxp//4GeMcE1jXRbgW2S7J+Vd0G/A29b8iYLO8C/n1wY5IAqao/j9M8rwc2q6o7xrJzkulVddc4zS1JkiRJmsLGtIKhqjaqqo37/t1q8GUTa6BvA/Pb9suAEwY6kmyS5BtJlib5UZIdWvshST6b5OwkVyc5qO+Yf0hyYZIlST6dZFqS1yT5aN8+r0vykf4ikiwA1m/HHZ9kdpIfJ/kkcDHwyCRHJlnUVh8c2nfs8iSHJrk4ybIkW7f2p7fxliS5JMlGSU4BHgBckGSfJJsl+VqSi9rPbn3neFSShcDnk2zbd15Lk8wZ19+CJEmSJGlKGHEFQ5InjtRfVRePbzmr1YnAe9plETsAnwWe2voOBS6pqhck2RP4PDC39W0N7AFsBPwkyZHAY4F9gN2q6s4WDuzb5lia5O1VdSfwKnqrCO5WVQcneVNVzQVIMht4HPCqqvrH1vbuqroxyTTgjCQ7VNXSNsQNVfXEJP8IvA14bfv3jVV1XpINgdur6u+T3NI3z5eAj1bVD5I8Cjgd+Os25o7AU6rqtiT/DXysqo5P8lfAtMFPZJIDgAMApm282Zh/AZIkSZKkqWO0SyT+q/27HjAPuJTeZRI7ABcAT5m40iZWVS1tb+ZfBnxrUPdTgL3afmcmeXCSma3vtHaJwR1JrgceCjyD3pvyi3pXNbA+cH1V3ZrkTOB5SX4MrFtVy8ZQ3i+q6kd9j1/S3sRPB2YB2wADAcPX27+LgRe17fOAjyQ5Hvh6VV07xBzPBLZp9QJsnGSjtn1Ku3QE4Hzg3Uke0ca6avBAVXUUcBTAjFlz/uLrTCVJkiRJU9+IAUNV7QGQ5ETggIE3x0m2o/cp+ZruFODDwO7Ag/vaM8S+A2+c++9fsJLecxjguKp65xDHHUPvHgtXAp8bY1233l1IsgW953qnqropybH0Ap8BA/UM1EJVLUhyGvBc4EdJnllVVw6aYx1g174gYWC+e81fVV9KcgG9y0lOT/LaqjpzjOchSZIkSVpLjPVbJLbu/+S9qi7jnksG1mSfBd43xKqCc+ld4kCS3eldhvCHEcY5A9g7yUPaMZskeTRAVV0APBJ4OX33eRjkziTrDtO3Mb03/CuSPBR4zmgnlWTLqlpWVR8CFtG7rGOwhcCb+o6ZO8xYjwGurqqP0wtkdhhtfkmSJEnS2mesAcOPkxyTZPd2A8GjgR9PZGGrQ1VdW1UfG6LrEGBekqXAAmC/Uca5AvhXYGE75rv0LmUY8GXgvKq6aZghjqJ3r4bjhxj7UuAS4HJ6gch5I55Uz1uTXJbkUuA2eje0HOwg2jkmuQI4cJix9gEuS7KEXlDx+THML0mSJElay6Rq9Evmk6wHvAF4Wms6Fziyqm6fwNqmjHYjyY9W1RmTXctEmzFrTs3a7/Ax7bt8wfzRd5IkSZIk3W8kWVxV84bqG+0mjwBU1e1JPgF8j969CH7SvhVBI0jyQOBC4NK1IVyQJEmSJK29xhQwtPsQHAcsp3dDw0cm2a+qzp2wyqaAqvo9sNVk1yFJkiRJ0kQbU8BA7+sqn1VVPwFIshW9GxbuOFGFSZIkSZKkNcdYb/K47kC4AFBVPwWG+9YDSZIkSZK0lhnrCobFST4DfKE93hdYPDElSZIkSZKkNc1YA4YDgTfS+2rD0PsWiU9OVFGSJEmSJGnNMmrAkGQdYHFVbQd8ZOJLkiRJkiRJa5pR78FQVX8GLk3yqNVQjyRJkiRJWgON9RKJWcDlSS4Ebh1orKq/n5CqJEmSJEnSGmWsAcOhE1qFJEmSJElao40YMCRZj94NHh8LLAM+U1V3rY7CJEmSJEnSmmO0FQzHAXcC3weeA2wDvGWii9Kaa/vNZ7JowfzJLkOSJEmStJqNFjBsU1XbAyT5DHDhxJckSZIkSZLWNKN9i8SdAxteGiFJkiRJkoYz2gqGxyf5Q9sOsH57HKCqauMJrU6SJEmSJK0RRgwYqmra6ipEkiRJkiStuUa7REKSJEmSJGlUBgySJEmSJKkzAwZJkiRJktTZaDd5lFbJsutWMPvg0ya7DEnSIMsXzJ/sEiRJ0hTnCgZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNg6JNkZZIlSS5PcmmSf0oy4nOUZPckpw7T965xqmv/JEe07UOSvO0+jPHAJP/Y9/jhSb46HvVJkiRJkmTAcG+3VdXcqtoW+BvgucB7O4w3LgHDOHkgcHfAUFW/qqq9J68cSZIkSdJUYsAwjKq6HjgAeFN6piU5LMlFSZYmeX3f7hsnOTnJFUk+lWSdJAuA9duKiOMHj5/k2UkubislzmhtmyT5Rhv/R0l2GKnGJFsm+U6SxUm+n2Tr1v7QVs+l7efJwAJgy1bPYUlmJ7ms7b9eks8lWZbkkiR7tPb9k3y9zXFVkv8cj+dWkiRJkjT1TJ/sAu7PqurqdonEQ4DnAyuqaqckM4Dzkixsu+4MbAP8AvgO8KKqOjjJm6pq7uBxk2wGHA08raquSbJJ6zoUuKSqXpBkT+DzwF8c3+co4MCquirJLsAngT2BjwPnVNULk0wDNgQOBrYbqCfJ7L5x3tjOd/sWUixMslXrmws8AbgD+EmS/66qXw46nwPohTFM23izEcqVJEmSJE1VBgyjS/v3WcAOSQYuK5gJzAH+BFxYVVcDJDkBeAow0v0NngScW1XXAFTVja39KcBere3MJA9OMnPIopINgScDX0kGSmRG+3dP4JVtnJXAiiQPGqGepwD/3fa/MskvgIGA4YyqWtHmvAJ4NHCvgKGqjqIXdjBj1pwaYR5JkiRJ0hRlwDCCJI8BVgLX0wsa3lxVpw/aZ3dg8Jvq0d5kZ5h9MkTbcGOtA/x+qBUS98FQ8w64o297Jf7NSJIkSZKG4D0YhtEuY/gUcERVFXA68IYk67b+rZI8oO2+c5It2uUU+wA/aO13Duw/yPnA05Ns0cYauETiXGDf1rY7cENV/WGo+lr7NUle3PZPkse37jOAN7T2aUk2Bm4GNhrmdPvn3Qp4FPCT4Z4bSZIkSZIGM2C4t4GbMl4OfA9YSO++CADHAFcAF7ebI36aez7NP5/eTRQvA64BTm7tRwFLB9/ksap+R++eBV9PcilwUus6BJiXZGkbb79R6t0XeE0b43J694kAeAuwR5JlwGJg26r6P3r3jbgsyWGDxvkkMK3tfxKwf1XdgSRJkiRJY5Teh/PS+Jgxa07N2u/wyS5DkjTI8gXzJ7sESZI0BSRZXFXzhupzBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOps+2QVoatl+85ksWjB/ssuQJEmSJK1mrmCQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2fbIL0NSy7LoVzD74tMkuQ5KGtHzB/MkuQZIkacpyBYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJna3VAUOShyU5McnPk1yR5FtJtuow3rFJ9m7bxyTZpm2/a7xqvq+SvGCgnvb4fUmeOZk1SZIkSZKmjrU2YEgS4GTg7Krasqq2Ad4FPHTQftPuy/hV9dqquqI9HFPAcF/nGsO404EXAHcHDFX1nqr63kTMJ0mSJEla+6y1AQOwB3BnVX1qoKGqllTV95PsnuSsJF8CliWZluSwJBclWZrk9dALKZIc0VY/nAY8ZGCsJGcnmZdkAbB+kiVJjh9cRJJb2mqCC4Bdk/xDkgvb/p8eCB3afv+V5OIkZyTZrLXPTfKjVtfJSR7UN/+/JzkHeAfw98BhbdwtB622WJ7k0Db2siRbt/bNkny3tX86yS+SbDoRvwxJkiRJ0pptbQ4YtgMWj9C/M/DutrLhNcCKqtoJ2Al4XZItgBcCjwO2B14HPHnwIFV1MHBbVc2tqn2HmOcBwGVVtQvwf8A+wG5VNRdYCezbt9/FVfVE4Bzgva3988A7qmoHYFlfO8ADq+rpVfVB4BTgX1odPx+ijhva2EcCb2tt7wXObO0nA48a4fmSJEmSJK3Fpk92AfdjF1bVNW37WcAOA5/4AzOBOcDTgBOqaiXwqyRn3od5VgJfa9vPAHYELupdwcH6wPWt78/ASW37i8DXk8ykFyKc09qPA77SN/ZJjN3X27+LgRe17afQC1Goqu8kuWmoA5McABwAMG3jzVZhSkmSJEnSVLE2BwyXA3uP0H9r33aAN1fV6f07JHkuUB3ruL0FFAPzHFdV7xzDcWOZ99bRd7nbHe3fldzzd5GxHFhVRwFHAcyYNafr8yFJkiRJWgOtzZdInAnMSPK6gYYkOyV5+hD7ng68Icm6bb+tkjwAOBd4abtHwyx693UYyp0Dx47iDGDvJA9p82yS5NGtbx3uCUReDvygqlYANyV5amt/Bb3LJ4ZyM7DRGGro9wPgJa2WZwEPWsXjJUmSJElribU2YKiqorf8/2/a11ReDhwC/GqI3Y8BrgAuTnIZ8Gl6n/KfDFxF794HRzL8m/ujgKVD3eRxUE1XAP8KLEyyFPguMKt13wpsm2QxsCfwvta+H72bNy4F5va1D3Yi8C9JLkmy5Uh19DkUeFaSi4HnAL+mF1RIkiRJknQv6b3P1v1dkluqasPVPOcMYGVV3ZVkV+DIdvPJYc2YNadm7Xf46ihPklbZ8gXzJ7sESZKkNVqSxVU1b6i+tfkeDBrdo4AvJ1kH+BO9b8qQJEmSJOkvGDCsIVb36oU251XAE1b3vJIkSZKkNc9aew8GSZIkSZI0fgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTOpk92AZpatt98JosWzJ/sMiRJkiRJq5krGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnU2f7AI0tSy7bgWzDz5tssuQtAZavmD+ZJcgSZKkDlzBIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgwTKMnDkpyY5OdJrkjyrSRbdRjv2CR7t+1jkmzTtt81XjWPMv/ZSeatjrkkSZIkSWsWA4YJkiTAycDZVbVlVW0DvAt46KD9pt2X8avqtVV1RXs47gFDkunjPaYkSZIkaeoyYJg4ewB3VtWnBhqqaklVfT/J7knOSvIlYFmSaUkOS3JRkqVJXg+9kCLJEW31w2nAQwbGGlhNkGQBsH6SJUmOH1xEkmcnuTjJpUnOaG07J/lhkkvav49r7fsn+UqS/wEWJlm/rcBYmuQkYP2JfMIkSZIkSWsuP6WeONsBi0fo3xnYrqquSXIAsKKqdkoyAzgvyULgCcDjgO3prXy4Avhs/yBVdXCSN1XV3METJNkMOBp4Wptnk9Z1ZWu7K8kzgX8H9mp9uwI7VNWNSf4J+GNV7ZBkB+Di+/JESJIkSZKmPgOGyXNhVV3Ttp8F7DBwfwVgJjAHeBpwQlWtBH6V5MxVnONJwLkD81TVjX3jH5dkDlDAun3HfLdvv6cBH2/HLk2ydKhJWkByAMC0jTdbxRIlSZIkSVOBl0hMnMuBHUfov7VvO8Cbq2pu+9miqha2vupQQ4Y5/v3AWVW1HfB3wHrD1DWm+avqqKqaV1Xzpm0w8z4XK0mSJElacxkwTJwzgRlJXjfQkGSnJE8fYt/TgTckWbftt1WSBwDnAi9t92iYRe++DkO5c+DYQc4Hnp5kizbuwCUSM4Hr2vb+I5zDucC+7djtgB1G2FeSJEmStBYzYJggVVXAC4G/aV9TeTlwCPCrIXY/ht79FS5OchnwaXqXr5wMXAUsA44EzhlmuqOApYNv8lhVv6N36cLXk1wKnNS6/hP4jyTnASN9i8WRwIbt0oi3AxeOeNKSJEmSpLVWeu+DpfExY9acmrXf4ZNdhqQ10PIF8ye7BEmSJI0iyeKqmjdUnysYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZ9MkuQFPL9pvPZNGC+ZNdhiRJkiRpNXMFgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSps+mTXYCmlmXXrWD2wadNdhlrleUL5k92CZIkSZLkCgZJkiRJktSdAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwAEkeluTEJD9PckWSbyXZarLr6iLJ7CSXTXYdkiRJkqS1w1ofMCQJcDJwdlVtWVXbAO8CHjq5la2aJNMnuwZJkiRJ0tprrQ8YgD2AO6vqUwMNVbWkqr6fnsOSXJZkWZJ9AJLsnuTsJF9NcmWS41tQQZIFbRXE0iQfbm3HJtl7YPwkt/SNc06SLyf5aTt23yQXtvm2bPttluRrSS5qP7u19kOSHJVkIfD5sZxskmckuaSN/9kkM1r7e9rYl7UxB87n7CQfajX9NMlTuz/lkiRJkqSpxoABtgMWD9P3ImAu8HjgmcBhSWa1vicAbwW2AR4D7JZkE+CFwLZVtQPwgTHM/3jgLcD2wCuArapqZ+AY4M1tn48BH62qnYC9Wt+AHYHnV9XLR5soyXrAscA+VbU9MB14Q+s+oqp2qqrtgPWB5/UdOr3V9FbgvUOMe0CSRUkWrfzjijGcsiRJkiRpqjFgGNlTgBOqamVV/RY4B9ip9V1YVddW1Z+BJcBs4A/A7cAxSV4E/HEMc1xUVb+uqjuAnwMLW/uyNib0wo0jkiwBTgE2TrJR6zulqm4b4/k8Drimqn7aHh8HPK1t75HkgiTLgD2BbfuO+3r7d3FfTXerqqOqal5VzZu2wcwxliJJkiRJmkq8bh8uB/Yepi8jHHdH3/ZKep/y35VkZ+AZwEuBN9F7s34XLcxplx781TDj/Lnv8Z+55/ezDrDr4CChXcVw6wg1jul82sqGTwLzquqXSQ4B1huixpX4NyNJkiRJGoIrGOBMYEaS1w00JNkpydOBc4F9kkxLshm9T/svHG6gJBsCM6vqW/QuJ5jbupbTu5QB4PnAuqtY40J6YcXAPHOH33VEVwKzkzy2PX4FvVUZA2HCDe0chgtcJEmSJEka0lr/aXRVVZIXAocnOZjeJQ7L6QUE5wK7ApcCBby9qn6TZOthhtsI+GZbERDg/7X2o1v7hcAZrNqqA4CDgE8kWUrvd3YucOAYjntckmv7Hv8/4FXAV9q3TlwEfKqq7khyNL3LMpa3dkmSJEmSxixVNdk1aAqZMWtOzdrv8MkuY62yfMH8yS5BkiRJ0loiyeKqmjdUn5dISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJn0ye7AE0t228+k0UL5k92GZIkSZKk1cwVDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZ9MnuwBNLcuuW8Hsg0+b7DIkdbB8wfzJLkGSJElrIFcwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZhAUMSVYmWZLk0iQXJ3lyh7HOTjJvPOubaEneNdk1jCbJvCQfn+w6JEmSJElrvolcwXBbVc2tqscD7wT+YwLnuj/qFDAkmTYeRSSZPlxfVS2qqoPGYx5JkiRJ0tptdV0isTFwE0CSDZOc0VY1LEvy/NY+O8mPkxyd5PIkC5Os3z9IknWSHJfkA4MnSPKeJBcluSzJUUnS2h+b5Ht9Kym2bO1vb/NfmmRBa5ub5EdJliY5OcmDWvvdKyiSbJpkedveP8nXk3wnyVVJ/rO1LwDWbys4jh+i1pe1uS9L8qG+9luSvC/JBcCug445KMkVrbYTW9sDkny2nfclfc/l/km+kuR/gIVJTkry3L6xjk2yV5Ldk5za93v5XKtraZK9WvuzkpzfnruvJNlwjL9zSZIkSdJaZCIDhoE32FcCxwDvb+23Ay+sqicCewD/NRAGAHOAT1TVtsDvgb36xpsOHA/8tKr+dYj5jqiqnapqO2B94Hmt/fg25uOBJwO/TvIc4AXALq39P9u+nwfeUVU7AMuA947hPOcC+wDbA/skeWRVHcw9Kzj27d85ycOBDwF7tmN3SvKC1v0A4LKq2qWqfjBonoOBJ7TaDmxt7wbOrKqd6D2XhyV5QOvbFdivqvYETmw1kuSvgGcA3xo0/r8BK6pq+zbHmUk2Bf4VeGb7fS0C/mnwE5DkgCSLkixa+ccVY3jKJEmSJElTzeq4RGJr4NnA51uQEODfkywFvgdsDjy0HXNNVS1p24uB2X3jfZrem+8PDjPfHkkuSLKM3pv3bZNsBGxeVScDVNXtVfVH4JnA59o2VXVjkpnAA6vqnDbeccDTxnCeZ1TViqq6HbgCePQo++8EnF1Vv6uqu+gFIAPzrAS+NsxxS4Hjk/wDcFdrexZwcJIlwNnAesCjWt93q+rGtv1tYM8kM4DnAOdW1W2Dxn8m8ImBB1V1E/AkYBvgvDbHfkOdX1UdVVXzqmretA1mjnL6kiRJkqSpaNjr88dTVZ3fPg3fDHhu+3fHqrqzXW6wXtv1jr7DVtJbiTDgh/RChP9qb+bvlmQ94JPAvKr6ZZJD2phhaAFqFU7hLu4JY9Yb1De45tGe0+FqAri9qlYO0zefXhDx98C/Jdm2jbVXVf3kXhMkuwC3DjyuqtuTnA38Lb2VDCcMU9fg5yT0goqXjVCzJEmSJEmr5x4MSbYGpgH/B8wErm/hwh6M/on/gM/QW9b/lSFuXDjwpv+Gdo+AvQGq6g/AtQOXICSZkWQDYCHw6rZNkk2qagVwU5KntrFeAQysZlgO7Ni29x5jvXcmWXeI9guAp7d7OUwDXtY3z5CSrAM8sqrOAt4OPBDYEDgdeHPf/SaeMMIwJwKvAp7ajhtsIfCmvjkfBPwI2C3JY1vbBkm2GqlWSZIkSdLaaXXcg2EJcBK9+wGspHdJwLwki4B9gSvHOmBVfQS4GPhCe9M90P574Gh69034BnBR32GvAA5ql2T8EHhYVX0HOAVY1Op7W9t3P3r3MVhK7/4I72vtHwbekOSHwKZjLPcoYOngmzxW1a/pfavGWcClwMVV9c1RxpoGfLFd/nEJ8NF2zu8H1m3zXMY997kYykJ6KyC+V1V/GqL/A8CD2o0nLwX2qKrfAfsDJ7Tn5EfA1qPUKkmSJElaC6VqVa4UkEY2Y9acmrXf4ZNdhqQOli+YP9klSJIk6X4qyeKqmjdU3+r6mkpJkiRJkjSFGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmfTJ7sATS3bbz6TRQvmT3YZkiRJkqTVzBUMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOktVTXYNmkKS3Az8ZLLrkO5HNgVumOwipPsJXw/SvfmakO7h62HN8eiq2myojumruxJNeT+pqnmTXYR0f5Fkka8JqcfXg3Rvviake/h6mBq8REKSJEmSJHVmwCBJkiRJkjozYNB4O2qyC5DuZ3xNSPfw9SDdm68J6R6+HqYAb/IoSZIkSZI6cwWDJEmSJEnqzIBB4ybJs5P8JMnPkhw82fVI4yXJZ5Ncn+SyvrZNknw3yVXt3wf19b2zvQ5+kuRv+9p3TLKs9X08SVr7jCQntfYLksxerScorYIkj0xyVpIfJ7k8yVtau68JrZWSrJfkwiSXttfEoa3d14TWWkmmJbkkyantsa+HtYQBg8ZFkmnAJ4DnANsAL0uyzeRWJY2bY4FnD2o7GDijquYAZ7THtL/7lwLbtmM+2V4fAEcCBwBz2s/AmK8BbqqqxwIfBT40YWcidXcX8M9V9dfAk4A3tr97XxNaW90B7FlVjwfmAs9O8iR8TWjt9hbgx32PfT2sJQwYNF52Bn5WVVdX1Z+AE4HnT3JN0rioqnOBGwc1Px84rm0fB7ygr/3Eqrqjqq4BfgbsnGQWsHFVnV+9m998ftAxA2N9FXjGQEov3d9U1a+r6uK2fTO9/4HcHF8TWktVzy3t4brtp/A1obVUkkcA84Fj+pp9PawlDBg0XjYHftn3+NrWJk1VD62qX0PvDRfwkNY+3Gth87Y9uP1ex1TVXcAK4METVrk0Ttqy1CcAF+BrQmuxthx8CXA98N2q8jWhtdnhwNuBP/e1+XpYSxgwaLwMlRr6FSVaGw33WhjpNeLrR2ucJBsCXwPeWlV/GGnXIdp8TWhKqaqVVTUXeAS9T1+3G2F3XxOaspI8D7i+qhaP9ZAh2nw9rMEMGDRergUe2ff4EcCvJqkWaXX4bVu+R/v3+tY+3Gvh2rY9uP1exySZDszkLy/JkO43kqxLL1w4vqq+3pp9TWitV1W/B86md624rwmtjXYD/j7JcnqXTO+Z5Iv4elhrGDBovFwEzEmyRZK/onezllMmuSZpIp0C7Ne29wO+2df+0naH4y3o3ZTowrYc8OYkT2rXCb5y0DEDY+0NnNmuN5Tud9rf72eAH1fVR/q6fE1orZRksyQPbNvrA88ErsTXhNZCVfXOqnpEVc2m937gzKr6B3w9rDWmT3YBmhqq6q4kbwJOB6YBn62qyye5LGlcJDkB2B3YNMm1wHuBBcCXk7wG+F/gxQBVdXmSLwNX0Lvb/huramUb6g30vpFifeDb7Qd6b9a+kORn9BL4l66G05Luq92AVwDL2jXnAO/C14TWXrOA49qd79cBvlxVpyY5H18T0gD/G7GWiGGPJEmSJEnqykskJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZJWiyQrkyxJcnmSS5P8U5J1Wt+8JB8f5/lekGSb+3DcLcO0/7B7VfcvSd6aZIPJrkOSNDX4NZWSJGm1SHJLVW3Yth8CfAk4r6reO0HzHQucWlVfXcXj7q5zqkuyHJhXVTdMdi2SpDWfKxgkSdJqV1XXAwcAb0rP7klOBUjy9LbSYUmSS5Js1PrPTXJykiuSfKpv9cPdKw6S7J3k2CRPBv4eOKyNs2X7+U6SxUm+n2TrdswWSc5PclGS9w9X88A8SWa1WpYkuSzJU5NMa/NelmRZkv/X9j07yby2vWl7Q0/b/7A259Ikrx9mzle2/kuTfKG1PTrJGa39jCSPau3HJtl7iHp3b3V8NcmVSY5vz/lBwMOBs5KcNdw5SJI0VtMnuwBJkrR2qqqrW0jwkEFdbwPeWFXnJdkQuL217wxsA/wC+A7wImDI1QlV9cMkp9C3giHJGcCBVXVVkl2ATwJ7Ah8Djqyqzyd54xhKfzlwelV9MMk0YANgLrB5VW3X5nrgKGO8BlhRVTslmQGcl2RhVV0zsEOSbYF3A7tV1Q1JNmldRwCfr6rjkrwa+DjwglHmewKwLfAr4Lw25seT/BOwRxt/x1U8B0mS7sUVDJIkaTJliLbzgI+0T9gfWFV3tfYLq+rqqloJnAA8ZcyT9IKKJwNfSbIE+DQwq3Xv1sYD+MIYhrsIeFWSQ4Dtq+pm4GrgMUn+O8mzgT+MMsazgFe2Wi4AHgzMGbTPnsBXBy5fqKobW/uu9C4vGah3LM/DhVV1bVX9GVgCzB5in1U9B0mS7sWAQZIkTYokjwFWAtf3t1fVAuC1wPrAjwYuZQAG3ziqhmhfb5jp1gF+X1Vz+37+eoixRlVV5wJPA64DvpDklVV1E/B44GzgjcAxbfe7uOf/t/prC/Dmvlq2qKqFg6bKGOsa2OfuuZIE+Ku+fe7o217JEKtYRzgHSZLGxIBBkiStdkk2Az4FHFGD7jidZMuqWlZVHwIWAQMBw87tfgnrAPsAP2jtv03y1639hX1D3QxsBFBVfwCuSfLiNkeSPL7tdx7w0ra97xhqfzRwfVUdDXwGeGKSTYF1quprwL8BT2y7Lwd2bNt79w1zOvCGJOu2MbdK8oBBU50BvCTJg9s+A5dI/HBQvQPPQ/9czwfWHe1c6HuORjgHSZLGxIBBkiStLuu3GyNeDnwPWAgcOsR+b203GrwUuA34dms/H1gAXAZcA5zc2g8GTgXOBH7dN86JwL+kd6PILem9GX9NG/dyem/CAd4CvDHJRcDMMZzH7sCSJJcAe9G7h8PmwNntkodjgXe2fT9ML0j4IbBp3xjHAFcAFye5jN4lG/daVVBVlwMfBM5pNX+kdR1E7xKNpcArWv0ARwNPT3IhsAtw6xjO5Sjg20nOGuEcJEkaE7+mUpIk3e8l2R14W1U9b5JLkSRJw3AFgyRJkiRJ6swVDJIkSZIkqTNXMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdfb/AQcdVOQlgU8zAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig3, ax3 = plt.subplots(figsize=(16, 9))\n", + "ax3.barh(disp_prod['product'], disp_prod['consumer_disputed?']) \n", + "\n", + "ax3.set_title(\"Disputed issue counts per product\")\n", + "ax3.set_xlabel('Disputed issue counts')\n", + "ax3.set_ylabel('Product')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "40b666b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Disputed issue rate')" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBgAAAImCAYAAAD5QTmOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHpUlEQVR4nO3deZhdVZm28fshQQaBOIAYcQhiEJmMEnAWUJpWYzuBoqINbStiq+jXbSvO4NAdG+dW0YiK2giKgtKiEmVUVCCBkAAOqMQWHBDFCAgI8f3+OKvwUNYUdlUOqdy/66qr9ll777XefaqM7KfWXidVhSRJkiRJUhcbDLoASZIkSZK07jNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEnTWJKPJnnzoOsYS5K9klw5xv7rkzxwbdakqZXk4CTfGXQdkqTJZcAgSdI6KsnKJDcmuS7JH5J8N8mhSW77//eqOrSq3j7FdRyb5B1T1X9VbVZVP5uq/qdSkiOS/M+g65iu2v8G9hl0HZKkHgMGSZLWbf9QVZsDDwAWAq8DPjHYktYPSWYOuobJMBnXkWTGZNQiSVq3GTBIkjQNVNWqqjoFOAA4KMnOcPvZBUm2TPLVNtvh90m+PTTbof0l+PVJLktybZJPJdm47fub6exJKsmDkhwCHAi8tj3K8L9t/32SfCnJb5NckeSwvnM3aXVdm+QyYPexrm1orLb9lFbjdUmuSvKaCVzbbecPf0/a66cmWdY3C2TXcWp5eZLLgctb2weS/CLJH5MsTfK41v4k4A3AAe29ubi1z0ryiSS/atfwjqEb9Paenp1kVZJrknx+lDrmtFoOSfLL1te/9e3fIMnhSX6a5HdJvpDkHsPO/eck/wecMUL/eyW5MskbWh0rkxw47D08OsnXktwA7J3kIUnOau/jpUme1nf8PZOc0t6j84HtRriWmX1tZyV5cd/rlyT5Qfu5X5bk4Uk+C9wf+N/2/r52tJ+bJGntmBbJuyRJ6qmq89Nbz+BxwCXDdv8bcCWwVXv9SKD69h8I/D1wA/C/wJva11jjLUryaODKqnoT9G5u2/lfAZ4H3Bf4VpIfVdVpwFvp3WBuB9wV+PoaXOIngOdU1beT3B3YdoLXNqIkDwc+CfwDsAR4AXBKkgdX1c2jnPYM4BHAje31BcDbgFXAq4ATk8ypqm8k+Q/gQVX1gr7zPw38BngQvev/KvAL4GPA24HFwN7AXYD541zC3sBc4IHAGUkurqpvAYe1OvcEfgt8EPgwvZ/HkD2BhwB/GaXvewNbAtvQez+/lmRJVf2o7X8+8BTgqe06LqL3Xu4LPBb4SpL57fgPAzcBs+n9zE4Drhjn2gBI8mzgiHY9S+j93txSVS9sYc6L2zVLkgbMGQySJE0/vwTuMUL7LfRu8B5QVbdU1berqv8m/ENV9Yuq+j3wTm5/M7omdge2qqq3VdWf2/oJHwee2/Y/B3hnVf2+qn5B7+Z3om4BdkyyRVVdW1UXTvDaRvMS4GNVdV5Vra6qTwM307uhHs1/ttpvBKiq/6mq31XVrVX1HmAj4MEjnZhka+DJwKur6oaquhp4H399b26h97jLfarqpqoabyHEI1s/K4BP8def2UuBN1bVlS0oOQLYP7d/HOKIdu6NjO7NVXVzVZ0NnErvZzfkK1V1blX9BZgHbAYsbD/zM+gFJ89rszP2A97SxruEXsgyUS8G/quqLqien1TVz9fgfEnSWmLAIEnS9LMN8PsR2o8CfgIsTvKzJIcP2/+Lvu2fA/e5g+M/ALhPmyr/hyR/oPeowNZt/31GGGui9qP3V/Oft0cJHtXax7u2sWr9t2G13o+xr72/dpL8W5u+v6qdP4veX/5HG29D4Fd9430MuFfb/1ogwPntMYMXjVP/aD+zBwAn943xA2A1f/0Z/M11jODaqrphlP6Hn38f4BctbOg/fht6s0pmjlDrRN0P+OkaHC9JGhADBkmSppEku9O7qfubv3xX1XVV9W9V9UB6jwT8a5In9h1yv77t+9ObCQG9RyY27Rvj3sO7Hvb6F8AVVXW3vq/Nq+opbf+vRhhrQtpfsZ9O74b8y8AXJnBtf+qvn97U//5a3zms1k2r6vixyhjaaFP0X0fvL/t3r6q70XtUIsOP7RvvZmDLvvG2qKqd2nX8uqpeUlX3oTcL4SPpWz9iBKP9zH4BPHnYdW1cVVeNdB2juHuSu47S//DzfwncL32fYNKOv4reIxq3jlDrkKEQY6yf0XaMbCKzVCRJa4kBgyRJ00CSLZI8FTgB+J82ZX74MU9tiwgG+CO9v2iv7jvk5Unu2xYDfAMwtMDgxcBOSealt/DjEcO6/g29NQCGnA/8Mcnr0lvQcUaSnVv4Ab1Q4PVJ7p7kvsArJ3iNd0lyYJJZVXVL3zWMd23LgOe3Op5Eb+2BIR8HDk3yiPTcNcmCJJtPpCZgc3o3z78FZiZ5C7DFsPdmztCNd1X9it4aC+9pP7MNkmyXZM92Hc9u7wnAtfRuoPt/RsO9OcmmSXYC/om//sw+CrwzyQNav1slefoEr6nfke19fxy9tRZOHOW48+gFBa9NsmGSvegFPSdU1WrgJOCIVuuOwEFDJ1bVb+kFES9oP6MXcftA4RjgNUl2az+jBw1dF3/7uydJGiADBkmS1m3/m+Q6en/lfSPwXno3miOZC3wLuB74HvCRqjqrb//n6N38/qx9vQOgqn5MbxHDb9H75IThsyM+QW9dhD8k+XK7ofwHes/lXwFcQ+8mcVY7/kh6U+SvaON9dg2u94XAyiR/BA6ltyjjeNf2qlbPH+gtZPnloc6qagm9dRg+RO+G/ifAwWtQz2n0Fqn8cbumm7j9owBDN+S/SzK0XsQ/0lvA8bI25hfprR8BvfUrzktyPXAK8KqqGmsxxLNbzacD766qxa39A+38xe334/v0FqZcE79u9f0SOA44tKp+ONKBVfVn4Gn01pe4BvgI8I99x7+C3hoNvwaOpbdeRL+XAP8O/A7YCfhuX98n0lsT5HPAdfR+fkNrjPwn8Kb2u/eaNbw+SdIky8TWP5IkSdNZkpW4Gv86I8kcegHNhlV16xT0vxe9mTD3HedQSZJu4wwGSZIkSZLUmQGDJEmSJEnqzEckJEmSJElSZ85gkCRJkiRJnRkwSJIkSZKkzmYOugBNL1tuuWXNmTNn0GVIkiRJkqbA0qVLr6mqrUbaZ8CgSTVnzhyWLFky6DIkSZIkSVMgyc9H2+cjEpIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2c9AFaHpZcdUq5hx+6qDLkCRJku7UVi5cMOgSpEnnDAZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNg6CDJG5NcmmR5kmVJHtHaX51k0zvQ3/Udajk4yX1G2Xdskv3vaN+SJEmSJI3HgOEOSvIo4KnAw6tqV2Af4Bdt96uBNQ4YOjoYGDFgkCRJkiRpqhkw3HGzgWuq6maAqrqmqn6Z5DB6N/pnJjkTbj8zIcn+SY5t29sm+V6SC5K8vb/zJP/e2pcnObK1zUnygyQfbzMnFifZpM1OmA8c12ZSbDJa0UmemOSiJCuSfDLJRq39LW28S5IsSpLWflaSdyU5P8mPkzxu8t5CSZIkSdJ0YcBwxy0G7tduuj+SZE+Aqvog8Etg76rae5w+PgAcXVW7A78eakyyLzAX2AOYB+yW5PFt91zgw1W1E/AHYL+q+iKwBDiwquZV1Y0jDZZkY+BY4ICq2gWYCbys7f5QVe1eVTsDm9CbnTFkZlXtQW9mxltH6PeQJEuSLFn9p1XjXLIkSZIkaToyYLiDqup6YDfgEOC3wOeTHLyG3TwGOL5tf7avfd/2dRFwIbADvWAB4IqqWta2lwJz1mC8B7fzf9xefxoYCi72TnJekhXAE4Cd+s47aazxqmpRVc2vqvkzNp21BuVIkiRJkqaLmYMuYF1WVauBs4Cz2o35QfRmCPzNoX3bG4+xb0iA/6yqj92uMZkD3NzXtJrebIOJyoiNvZkNHwHmV9UvkhwxrM6hMVfj74wkSZIkaQTOYLiDkjw4ydy+pnnAz9v2dcDmfft+k+QhSTYAntnXfi7w3LZ9YF/7acCLkmzWxtomyb3GKWn4mCP5ITAnyYPa6xcCZ/PXMOGaNqafOCFJkiRJWiP+NfqO2wz47yR3A24FfkLvcQmARcDXk/yqrcNwOPBVep8ycUk7F+BVwOeSvAr40lDHVbU4yUOA77W1Fq8HXkBvBsFojgU+muRG4FEjrcNQVTcl+SfgxCQzgQuAj1bVzUk+DqwAVrZ2SZIkSZImLFUjzdCX7piNZs+t2Qe9f9BlSJIkSXdqKxcuGHQJ0h2SZGlVzR9pn49ISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKmzmYMuQNPLLtvMYsnCBYMuQ5IkSZK0ljmDQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cxBF6DpZcVVq5hz+KmDLkOSpPXayoULBl2CJGk95AwGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYOgoyeoky5JckuTEJJtO8XjHJNlxhPaDk3xoisfeK8lXp3IMSZIkSdK6yYChuxural5V7Qz8GTi0f2eSGZM5WFW9uKoum8w+RzPZtUuSJEmSpi8Dhsn1beBB7S/9Zyb5HLAiyYwkRyW5IMnyJC+F22YEnJPk5CSXJflokg3avqOTLElyaZIjhwZIclaS+W37n5L8OMnZwGNGKijJZkk+lWRFG3u/cfpfmeQtSb4DPDvJk5L8sL1+1hS9b5IkSZKkddzMQRcwXSSZCTwZ+EZr2gPYuaquSHIIsKqqdk+yEXBuksV9x+0I/Lyd+yzgi8Abq+r3bRbB6Ul2rarlfePNBo4EdgNWAWcCF41Q2pvb2Lu08+7e2sfq/6aqemySjYHLgScAPwE+P8q1HwIcAjBji60m/J5JkiRJkqYPZzB0t0mSZcAS4P+AT7T286vqira9L/CP7bjzgHsCc/uO+1lVrQaOBx7b2p+T5EJ6ocFO9EKIfo8Azqqq31bVnxnl5h/YB/jw0IuqunYC/Q/1tQNwRVVdXlUF/M9IA1TVoqqaX1XzZ2w6a5QyJEmSJEnTmTMYuruxqub1NyQBuKG/CXhlVZ027Li9gBrWXyXZFngNsHtVXZvkWGDjEcYefu5IMvy4CfTfX/tExpAkSZIkreecwbB2nAa8LMmGAEm2T3LXtm+PJNu2tRcOAL4DbEHvJn9Vkq3pPXox3HnAXknu2fp99ihjLwZeMfSiPSIxkf4Bfghsm2S79vp5E7tcSZIkSdL6xhkMa8cxwBzgwvSmN/wWeEbb9z1gIbALcA5wclX9JclFwKXAz4Bzh3dYVb9KckQ7/1fAhcBIn/rwDuDDSS4BVgNHVtVJ4/Xfxripra9wapJr6IUfO6/x1UuSJEmSpr30Hq3XILRHJF5TVU8dcCmTZqPZc2v2Qe8fdBmSJK3XVi5cMOgSJEnTVJKlVTV/pH0+IiFJkiRJkjrzEYkBqqqzgLMGXIYkSZIkSZ05g0GSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdTZz0AVoetllm1ksWbhg0GVIkiRJktYyZzBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjqbOegCNL2suGoVcw4/ddBlSJIkTamVCxcMugRJutNxBoMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwTJIkq5MsS3JJkhOTbDoJfV4/SbVNSj+SJEmSJI3GgGHy3FhV86pqZ+DPwKGDLkiSJEmSpLXFgGFqfBt4UJJ/SHJekouSfCvJ1kk2SHJ5kq0A2uufJNkyybZJvpfkgiRvH+osyWZJTk9yYZIVSZ7e2t+e5FV9x70zyWGjFZWeo9osixVJDhin/zlJfpDk40kuTbI4ySZT9J5JkiRJktZhBgyTLMlM4MnACuA7wCOr6mHACcBrq+ovwP8AB7ZT9gEurqprgA8AR1fV7sCv+7q9CXhmVT0c2Bt4T5IAnwAOauNuADwXOG6M8p4FzAMe2sY9KsnsMfoHmAt8uKp2Av4A7HdH3hdJkiRJ0vRmwDB5NkmyDFgC/B+9m//7AqclWQH8O7BTO/aTwD+27RcBn2rbjwGOb9uf7es7wH8kWQ58C9gG2LqqVgK/S/IwYF/goqr63Rg1PhY4vqpWV9VvgLOB3Ufrv51zRVUta9tLgTnDO01ySJIlSZas/tOqMYaXJEmSJE1XMwddwDRyY1XN629I8t/Ae6vqlCR7AUcAVNUvkvwmyROAR/DX2QwANULfBwJbAbtV1S1JVgIbt33HAAcD96YXXIwlo7SP1f/NfcetBv7mEYmqWgQsAtho9tyR6pckSZIkTXPOYJhas4Cr2vZBw/YdQ+9RiS9U1erWdi69xxzg9qHDLODqdvO/N/CAvn0nA0+iNxPhtHHqOQc4IMmMtgbE44Hzx+lfkiRJkqRxGTBMrSOAE5N8G7hm2L5TgM346+MRAK8CXp7kAno3/UOOA+YnWUIvePjh0I6q+jNwJrcPKkZzMrAcuBg4g96aEL8eq39JkiRJkiYiVc5oH4Qk84H3VdXjOvazAXAh8OyqunxSiutgo9lza/ZB7x90GZIkSVNq5cIFgy5BkgYiydKqmj/SPmcwDECSw4EvAa/v2M+OwE+A0+8M4YIkSZIkaf3lIo8DUFULgYWT0M9lwAO7VyRJkiRJUjfOYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXnbZZhZLFi4YdBmSJEmSpLXMGQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM5mDroATS8rrlrFnMNPHXQZkiRJ0rSzcuGCQZcgjckZDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1NpCAIcl9k3wlyeVJfprkA0nu0vbNS/KUvmOPSPKaSRx7hyTLklyUZLsk352svicw9jFJdhznmLOSzF9L9TwtyeFrYyxJkiRJ0vS21gOGJAFOAr5cVXOB7YHNgHe2Q+YBTxn57Ds03oxhTc8AvlJVD6uqn1bVoydrrPFU1Yur6rK1NR5Akplj1HNKVS1cm/VIkiRJkqanQcxgeAJwU1V9CqCqVgP/D3hRki2AtwEHtFkGB7Rzdmx/2f9ZksOGOkrygiTnt2M/NhQmJLk+yduSnAc8qu/4pwCvBl6c5MyhY9v3vdoYX0zywyTHtTCEJG9JckGSS5Is6ms/K8m7Wg0/TvK41j4jybuTrEiyPMkr+46f37aPTrIkyaVJjhzvTUuyMMllrb93t7atknyp1XZBkse09iNanYuBzyQ5L8lOfX2dlWS3JAcn+VBr2zrJyUkubl+PHus9liRJkiSp3yAChp2Apf0NVfVH4P+AOcBbgM9X1byq+nw7ZAfg74E9gLcm2TDJQ4ADgMdU1TxgNXBgO/6uwCVV9Yiq+k7fOF8DPgq8r6r2HqG2h9ELIHYEHgg8prV/qKp2r6qdgU2Ap/adM7Oq9mjnvbW1HQJsCzysqnYFjhthrDdW1XxgV2DPJLuOcAwASe4BPBPYqfX3jrbrA+1adgf2A47pO2034OlV9XzgBOA5ra/ZwH2q6nY/A+CDwNlV9VDg4cCl47zHkiRJkiTdZtTp81MoQK1BO8CpVXUzcHOSq4GtgSfSu4m+oE0o2AS4uh2/GvjSHajt/Kq6EiDJMnqBx3eAvZO8FtgUuAdwKfC/7ZyT2vel7XiAfYCPVtWtAFX1+xHGek6SQ+j9DGbTCzWWj1LXH4GbgGOSnAp8tW+cHdv1A2yRZPO2fUpV3di2vwB8k14A8hzgxBHGeALwj63e1cCqJC9k9Pf4Nu06DgGYscVWo1yCJEmSJGk6G0TAcCm9v7bfpj0acT/gp/RuaIe7uW97Nb26A3y6ql4/wvE3tZvkNfU34yTZGPgIML+qfpHkCGDjEc4ZqgvGDktIsi3wGmD3qro2ybHD+rydqro1yR70QpXnAq+gFwhsADyqL0gY6h/ghr7zr0ryuzZL4gDgpaONNbxURn+P++tbBCwC2Gj23FGvW5IkSZI0fQ3iEYnTgU2T/CPctgjje4Bjq+pPwHXA5mOc39/P/knu1fq5R5IHTEG9Qzf+1yTZDNh/AucsBg4dWmCxPeLQbwt6AcCqJFsDTx6rszburPaIx6vpLYQ5NM4r+o6bN/zcPicAr239rBhh/+nAy1o/M1ros7beY0mSJEnSOm6tBwxVVfTWE3h2ksuBH9Ob/v+GdsiZ9Kb99y/yOFI/lwFvAhYnWU7vEYDZU1DvH4CPAyuALwMXTOC0Y+itKbE8ycXA84f1eTFwEb3ZHJ8Ezh2nv82Br7brPJveopgAhwHz28KPlwGHjtHHF+nNfvjCKPtfRe9RkBX0HvfYaW29x5IkSZKkdV969/vS5Nho9tyafdD7B12GJEmSNO2sXLhg0CVIJFnaPrDgbwziEQlJkiRJkjTNGDBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmczB12AppddtpnFkoULBl2GJEmSJGktcwaDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZzEEXoOllxVWrmHP4qYMuQ5IkSZLWKSsXLhh0CZ05g0GSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYBihJJfls3+uZSX6b5Ktr2M+8JE+Z/AolSZIkSZoYA4bBugHYOckm7fXfAVetSQdJZgLzAAMGSZIkSdLAGDAM3teBBW37ecDxQzuS3CPJl5MsT/L9JLu29iOSLEqyGPgM8DbggCTLkhyQZKsk30xyYZKPJfl5ki3buV9OsjTJpUkO6Rvrn5P8OMlZST6e5EOtfaskX0pyQft6zNp5WyRJkiRJ6xIDhsE7AXhuko2BXYHz+vYdCVxUVbsCb6AXJgzZDXh6VT0feAvw+aqaV1WfB94KnFFVDwdOBu7fd96Lqmo3YD5wWJJ7JrkP8GbgkfRmUezQd/wHgPdV1e7AfsAxwy8gySFJliRZsvpPq+74OyFJkiRJWmfNHHQB67uqWp5kDr3ZC18btvux9G7qqaozWhgwq+07papuHKXbxwLPbOd9I8m1ffsOS/LMtn0/YC5wb+Dsqvo9QJITge3bMfsAOyYZOn+LJJtX1XV917AIWASw0ey5NeGLlyRJkiRNGwYMdw6nAO8G9gLu2deeEY4duoG/YYz+RjqPJHvRCwweVVV/SnIWsPFoxzcbtONHCzMkSZIkSfIRiTuJTwJvq6oVw9rPAQ6E28KBa6rqjyOcfx2wed/r7wDPaeftC9y9tc8Crm3hwg70HokAOB/YM8nd26KR+/X1tRh4xdCLJPPW9OIkSZIkSdOfAcOdQFVdWVUfGGHXEcD8JMuBhcBBo3RxJr3HGJYlOYDe2g37JrkQeDLwK3ohxDeAma2/twPfb+NfBfwHvfUfvgVcBgwtpnDYUA1JLgMO7Xq9kiRJkqTpJ1U+Mj/dJNkIWF1VtyZ5FHB0Vc0b55zNqur6NoPhZOCTVXXymo690ey5Nfug99+RsiVJkiRpvbVy4YLxD7oTSLK0quaPtM81GKan+wNfSLIB8GfgJRM454gk+9Bbk2Ex8OWpK0+SJEmSNN0YMExDVXU58LA1POc1U1SOJEmSJGk94BoMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnMwddgKaXXbaZxZKFCwZdhiRJkiRpLXMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cyJHJTkXVX1uvHapBVXrWLO4acOugxJknQnsXLhgkGXIElaSyY6g+HvRmh78mQWIkmSJEmS1l1jzmBI8jLgX4Dtkizv27U58N2pLEySJEmSJK07xntE4nPA14H/BA7va7+uqn4/ZVVJkiRJkqR1ypiPSFTVqqpaCXwA+H1V/byqfg7ckuQRa6NASZIkSZJ05zfRNRiOBq7ve31Da5MkSZIkSZpwwJCqqqEXVfUXJvgJFJIkSZIkafqbaMDwsySHJdmwfb0K+NlUFiZJkiRJktYdEw0YDgUeDVwFXAk8AjhkqoqSJEmSJEnrlgk95lBVVwPPneJaJEmSJEnSOmpCAUOSTwE1vL2qXjTpFUmSJEmSpHXORBdq/Grf9sbAM4FfTn45kiRJkiRpXTTRRyS+1P86yfHAt6akIkmSJEmStM6Z6CKPw80F7j+ZhaxNSSrJZ/tez0zy2yRfHeu8KaznDWtpnKOSXJrkqLUxniRJkiRp/THRNRiuo7cGQ9r3XwOvm8K6ptoNwM5JNqmqG4G/o/cJGYPyBuA/hjcmCZCq+sskjfNSYKuqunkiByeZWVW3TtLYkiRJkqRpbEIzGKpq86raou/79sMfm1gHfR1Y0LafBxw/tCPJPZJ8OcnyJN9PsmtrPyLJJ5OcleRnSQ7rO+cFSc5PsizJx5LMSPLPSd7Xd8xLkry3v4gkC4FN2nnHJZmT5AdJPgJcCNwvydFJlrTZB0f2nbsyyZFJLkyyIskOrX3P1t+yJBcl2TzJKcBdgfOSHJBkqyRfSnJB+3pM3zUuSrIY+EySnfqua3mSuZP6U5AkSZIkTQtjzmBI8vCx9lfVhZNbzlp1AvCW9ljErsAngce1fUcCF1XVM5I8AfgMMK/t2wHYG9gc+FGSo4EHAQcAj6mqW1o4cGAbY3mS11bVLcA/0ZtFcJuqOjzJK6pqHkCSOcCDgX+qqn9pbW+sqt8nmQGcnmTXqlreurimqh6e5F+A1wAvbt9fXlXnJtkMuKmqnpbk+r5xPge8r6q+k+T+wGnAQ1qfuwGPraobk/w38IGqOi7JXYAZw9/IJIcAhwDM2GKrCf8AJEmSJEnTx3iPSLynfd8YmA9cTO8xiV2B84DHTl1pU6uqlreb+ecBXxu2+7HAfu24M5LcM8mstu/U9ojBzUmuBrYGnkjvpvyC3lMNbAJcXVU3JDkDeGqSHwAbVtWKCZT386r6ft/r57Sb+JnAbGBHYChgOKl9Xwo8q22fC7w3yXHASVV15Qhj7APs2OoF2CLJ5m37lPboCMD3gDcmuW/r6/LhHVXVImARwEaz5/7Nx5lKkiRJkqa/MQOGqtobIMkJwCFDN8dJdqb3V/J13SnAu4G9gHv2tWeEY4dunPvXL1hN7z0M8Omqev0I5x1Db42FHwKfmmBdN9xWSLItvfd696q6Nsmx9AKfIUP1DNVCVS1McirwFOD7Sfapqh8OG2MD4FF9QcLQeLcbv6o+l+Q8eo+TnJbkxVV1xgSvQ5IkSZK0npjop0js0P+X96q6hL8+MrAu+yTwthFmFZxD7xEHkuxF7zGEP47Rz+nA/knu1c65R5IHAFTVecD9gOfTt87DMLck2XCUfVvQu+FflWRr4MnjXVSS7apqRVW9C1hC77GO4RYDr+g7Z94ofT0Q+FlVfZBeILPreONLkiRJktY/Ew0YfpDkmCR7tQUEPw78YCoLWxuq6sqq+sAIu44A5idZDiwEDhqnn8uANwGL2znfpPcow5AvAOdW1bWjdLGI3loNx43Q98XARcCl9AKRc8e8qJ5XJ7kkycXAjfQWtBzuMNo1JrkMOHSUvg4ALkmyjF5Q8ZkJjC9JkiRJWs+kavxH5pNsDLwMeHxrOgc4uqpumsLapo22kOT7qur0Qdcy1TaaPbdmH/T+QZchSZLuJFYuXDD+QZKkdUaSpVU1f6R94y3yCEBV3ZTkw8C36K1F8KP2qQgaQ5K7AecDF68P4YIkSZIkaf01oYChrUPwaWAlvQUN75fkoKo6Z8oqmwaq6g/A9oOuQ5IkSZKkqTahgIHex1XuW1U/AkiyPb0FC3ebqsIkSZIkSdK6Y6KLPG44FC4AVNWPgdE+9UCSJEmSJK1nJjqDYWmSTwCfba8PBJZOTUmSJEmSJGldM9GA4VDg5fQ+2jD0PkXiI1NVlCRJkiRJWreMGzAk2QBYWlU7A++d+pIkSZIkSdK6Ztw1GKrqL8DFSe6/FuqRJEmSJEnroIk+IjEbuDTJ+cANQ41V9bQpqUqSJEmSJK1TJhowHDmlVUiSJEmSpHXamAFDko3pLfD4IGAF8ImqunVtFCZJkiRJktYd481g+DRwC/Bt4MnAjsCrproorbt22WYWSxYuGHQZkiRJkqS1bLyAYceq2gUgySeA86e+JEmSJEmStK4Z71Mkbhna8NEISZIkSZI0mvFmMDw0yR/bdoBN2usAVVVbTGl1kiRJkiRpnTBmwFBVM9ZWIZIkSZIkad013iMSkiRJkiRJ4zJgkCRJkiRJnRkwSJIkSZKkzsZb5FFaIyuuWsWcw08ddBmSJEmaJlYuXDDoEiRNkDMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgKFPktVJliW5NMnFSf41yZjvUZK9knx1lH1vmKS6Dk7yobZ9RJLX3IE+7pbkX/pe3yfJFyejPkmSJEmSDBhu78aqmldVOwF/BzwFeGuH/iYlYJgkdwNuCxiq6pdVtf/gypEkSZIkTScGDKOoqquBQ4BXpGdGkqOSXJBkeZKX9h2+RZKTk1yW5KNJNkiyENikzYg4bnj/SZ6U5MI2U+L01naPJF9u/X8/ya5j1ZhkuyTfSLI0ybeT7NDat271XNy+Hg0sBLZr9RyVZE6SS9rxGyf5VJIVSS5KsndrPzjJSW2My5P812S8t5IkSZKk6WfmoAu4M6uqn7VHJO4FPB1YVVW7J9kIODfJ4nboHsCOwM+BbwDPqqrDk7yiquYN7zfJVsDHgcdX1RVJ7tF2HQlcVFXPSPIE4DPA35zfZxFwaFVdnuQRwEeAJwAfBM6uqmcmmQFsBhwO7DxUT5I5ff28vF3vLi2kWJxk+7ZvHvAw4GbgR0n+u6p+Mex6DqEXxjBji63GKFeSJEmSNF0ZMIwv7fu+wK5Jhh4rmAXMBf4MnF9VPwNIcjzwWGCs9Q0eCZxTVVcAVNXvW/tjgf1a2xlJ7plk1ohFJZsBjwZOTIZKZKP2/QnAP7Z+VgOrktx9jHoeC/x3O/6HSX4ODAUMp1fVqjbmZcADgNsFDFW1iF7YwUaz59YY40iSJEmSpikDhjEkeSCwGriaXtDwyqo6bdgxewHDb6rHu8nOKMdkhLbR+toA+MNIMyTugJHGHXJz3/Zq/J2RJEmSJI3ANRhG0R5j+Cjwoaoq4DTgZUk2bPu3T3LXdvgeSbZtj1McAHyntd8ydPww3wP2TLJt62voEYlzgANb217ANVX1x5Hqa+1XJHl2Oz5JHtp2nw68rLXPSLIFcB2w+SiX2z/u9sD9gR+N9t5IkiRJkjScAcPtDS3KeCnwLWAxvXURAI4BLgMubIsjfoy//jX/e/QWUbwEuAI4ubUvApYPX+Sxqn5Lb82Ck5JcDHy+7ToCmJ9keevvoHHqPRD459bHpfTWiQB4FbB3khXAUmCnqvodvXUjLkly1LB+PgLMaMd/Hji4qm5GkiRJkqQJSu+P89Lk2Gj23Jp90PsHXYYkSZKmiZULFwy6BEl9kiytqvkj7XMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mznoAjS97LLNLJYsXDDoMiRJkiRJa5kzGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXlZctYo5h5866DIkSZKmnZULFwy6BEkakzMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSepsvQ4Yktw7yQlJfprksiRfS7J9h/6OTbJ/2z4myY5t+w2TVfMdleQZQ/W0129Lss8ga5IkSZIkTR/rbcCQJMDJwFlVtV1V7Qi8Adh62HEz7kj/VfXiqrqsvZxQwHBHx5pAvzOBZwC3BQxV9Zaq+tZUjCdJkiRJWv+stwEDsDdwS1V9dKihqpZV1beT7JXkzCSfA1YkmZHkqCQXJFme5KXQCymSfKjNfjgVuNdQX0nOSjI/yUJgkyTLkhw3vIgk17fZBOcBj0rygiTnt+M/NhQ6tOPek+TCJKcn2aq1z0vy/VbXyUnu3jf+fyQ5G3gd8DTgqNbvdsNmW6xMcmTre0WSHVr7Vkm+2do/luTnSbacih+GJEmSJGndtj4HDDsDS8fYvwfwxjaz4Z+BVVW1O7A78JIk2wLPBB4M7AK8BHj08E6q6nDgxqqaV1UHjjDOXYFLquoRwO+AA4DHVNU8YDVwYN9xF1bVw4Gzgbe29s8Ar6uqXYEVfe0Ad6uqPavqncApwL+3On46Qh3XtL6PBl7T2t4KnNHaTwbuP8b7JUmSJElaj80cdAF3YudX1RVte19g16G/+AOzgLnA44Hjq2o18MskZ9yBcVYDX2rbTwR2Ay7oPcHBJsDVbd9fgM+37f8BTkoyi16IcHZr/zRwYl/fn2fiTmrflwLPatuPpReiUFXfSHLtSCcmOQQ4BGDGFlutwZCSJEmSpOlifQ4YLgX2H2P/DX3bAV5ZVaf1H5DkKUB1rOOmFlAMjfPpqnr9BM6byLg3jH/IbW5u31fz19+LTOTEqloELALYaPbcru+HJEmSJGkdtD4/InEGsFGSlww1JNk9yZ4jHHsa8LIkG7bjtk9yV+Ac4LltjYbZ9NZ1GMktQ+eO43Rg/yT3auPcI8kD2r4N+Gsg8nzgO1W1Crg2yeNa+wvpPT4xkuuAzSdQQ7/vAM9ptewL3H0Nz5ckSZIkrSfW24Chqore9P+/ax9TeSlwBPDLEQ4/BrgMuDDJJcDH6P2V/2TgcnprHxzN6Df3i4DlIy3yOKymy4A3AYuTLAe+Ccxuu28AdkqyFHgC8LbWfhC9xRuXA/P62oc7Afj3JBcl2W6sOvocCeyb5ELgycCv6AUVkiRJkiTdTnr32bqzS3J9VW22lsfcCFhdVbcmeRRwdFt8clQbzZ5bsw96/9ooT5Ikab2ycuGCQZcgSSRZWlXzR9q3Pq/BoPHdH/hCkg2AP9P7pAxJkiRJkv6GAcM6Ym3PXmhjXg48bG2PK0mSJEla96y3azBIkiRJkqTJY8AgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2c9AFaHrZZZtZLFm4YNBlSJIkSZLWMmcwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6mznoAjS9rLhqFXMOP3XQZUiSJEmaRCsXLhh0CVoHOINBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGKZQknsnOSHJT5NcluRrSbbv0N+xSfZv28ck2bFtv2Gyah5n/LOSzF8bY0mSJEmS1i0GDFMkSYCTgbOqaruq2hF4A7D1sONm3JH+q+rFVXVZeznpAUOSmZPdpyRJkiRp+jJgmDp7A7dU1UeHGqpqWVV9O8leSc5M8jlgRZIZSY5KckGS5UleCr2QIsmH2uyHU4F7DfU1NJsgyUJgkyTLkhw3vIgkT0pyYZKLk5ze2vZI8t0kF7XvD27tByc5Mcn/AouTbNJmYCxP8nlgk6l8wyRJkiRJ6y7/Sj11dgaWjrF/D2DnqroiySHAqqraPclGwLlJFgMPAx4M7EJv5sNlwCf7O6mqw5O8oqrmDR8gyVbAx4HHt3Hu0Xb9sLXdmmQf4D+A/dq+RwG7VtXvk/wr8Keq2jXJrsCFd+SNkCRJkiRNfwYMg3N+VV3RtvcFdh1aXwGYBcwFHg8cX1WrgV8mOWMNx3gkcM7QOFX1+77+P51kLlDAhn3nfLPvuMcDH2znLk+yfKRBWkByCMCMLbZawxIlSZIkSdOBj0hMnUuB3cbYf0PfdoBXVtW89rVtVS1u+6pDDRnl/LcDZ1bVzsA/ABuPUteExq+qRVU1v6rmz9h01h0uVpIkSZK07jJgmDpnABsleclQQ5Ldk+w5wrGnAS9LsmE7bvskdwXOAZ7b1miYTW9dh5HcMnTuMN8D9kyybet36BGJWcBVbfvgMa7hHODAdu7OwK5jHCtJkiRJWo8ZMEyRqirgmcDftY+pvBQ4AvjlCIcfQ299hQuTXAJ8jN7jKycDlwMrgKOBs0cZbhGwfPgij1X1W3qPLpyU5GLg823XfwH/meRcYKxPsTga2Kw9GvFa4PwxL1qSJEmStN5K7z5YmhwbzZ5bsw96/6DLkCRJkjSJVi5cMOgSdCeRZGlVzR9pnzMYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktTZzEEXoOlll21msWThgkGXIUmSJElay5zBIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqbOagC9D0suKqVcw5/NRBlyFJkiRJa2TlwgWDLmGd5wwGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMABJ7p3khCQ/TXJZkq8l2X7QdXWRZE6SSwZdhyRJkiRp/bDeBwxJApwMnFVV21XVjsAbgK0HW9maSTJz0DVIkiRJktZf633AAOwN3FJVHx1qqKplVfXt9ByV5JIkK5IcAJBkryRnJflikh8mOa4FFSRZ2GZBLE/y7tZ2bJL9h/pPcn1fP2cn+UKSH7dzD0xyfhtvu3bcVkm+lOSC9vWY1n5EkkVJFgOfmcjFJnlikota/59MslFrf0vr+5LW59D1nJXkXa2mHyd5XPe3XJIkSZI03RgwwM7A0lH2PQuYBzwU2Ac4Ksnstu9hwKuBHYEHAo9Jcg/gmcBOVbUr8I4JjP9Q4FXALsALge2rag/gGOCV7ZgPAO+rqt2B/dq+IbsBT6+q5483UJKNgWOBA6pqF2Am8LK2+0NVtXtV7QxsAjy179SZraZXA28dod9DkixJsmT1n1ZN4JIlSZIkSdONAcPYHgscX1Wrq+o3wNnA7m3f+VV1ZVX9BVgGzAH+CNwEHJPkWcCfJjDGBVX1q6q6GfgpsLi1r2h9Qi/c+FCSZcApwBZJNm/7TqmqGyd4PQ8GrqiqH7fXnwYe37b3TnJekhXAE4Cd+s47qX1f2lfTbapqUVXNr6r5MzadNcFSJEmSJEnTic/tw6XA/qPsyxjn3dy3vZreX/lvTbIH8ETgucAr6N2s30oLc9qjB3cZpZ+/9L3+C3/9+WwAPGp4kNCeYrhhjBondD1tZsNHgPlV9YskRwAbj1DjavydkSRJkiSNwBkMcAawUZKXDDUk2T3JnsA5wAFJZiTZit5f+88fraMkmwGzqupr9B4nmNd2raT3KAPA04EN17DGxfTCiqFx5o1+6Jh+CMxJ8qD2+oX0ZmUMhQnXtGsYLXCRJEmSJGlE6/1fo6uqkjwTeH+Sw+k94rCSXkBwDvAo4GKggNdW1a+T7DBKd5sDX2kzAgL8v9b+8dZ+PnA6azbrAOAw4MNJltP7mZ0DHDqB8x6c5Mq+1/8P+CfgxPapExcAH62qm5N8nN5jGStbuyRJkiRJE5aqGnQNmkY2mj23Zh/0/kGXIUmSJElrZOXCBYMuYZ2QZGlVzR9pn49ISJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnMwddgKaXXbaZxZKFCwZdhiRJkiRpLXMGgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLU2cxBF6DpZcVVq5hz+KmDLkOSJElaZ6xcuGDQJUiTwhkMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6M2CQJEmSJEmdGTBIkiRJkqTODBgkSZIkSVJnBgySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHU2ZQFDktVJliW5OMmFSR7doa+zksyfzPqmWpI3DLqG8SSZn+SDg65DkiRJkrTum8oZDDdW1byqeijweuA/p3CsO6NOAUOSGZNRRJKZo+2rqiVVddhkjCNJkiRJWr+trUcktgCuBUiyWZLT26yGFUme3trnJPlBko8nuTTJ4iSb9HeSZIMkn07yjuEDJHlLkguSXJJkUZK09gcl+VbfTIrtWvtr2/gXJ1nY2uYl+X6S5UlOTnL31n7bDIokWyZZ2bYPTnJSkm8kuTzJf7X2hcAmbQbHcSPU+rw29iVJ3tXXfn2StyU5D3jUsHMOS3JZq+2E1nbXJJ9s131R33t5cJITk/wvsDjJ55M8pa+vY5Psl2SvJF/t+7l8qtW1PMl+rX3fJN9r792JSTab4M9ckiRJkrQemcqAYegG+4fAMcDbW/tNwDOr6uHA3sB7hsIAYC7w4araCfgDsF9ffzOB44AfV9WbRhjvQ1W1e1XtDGwCPLW1H9f6fCjwaOBXSZ4MPAN4RGv/r3bsZ4DXVdWuwArgrRO4znnAAcAuwAFJ7ldVh/PXGRwH9h+c5D7Au4AntHN3T/KMtvuuwCVV9Yiq+s6wcQ4HHtZqO7S1vRE4o6p2p/deHpXkrm3fo4CDquoJwAmtRpLcBXgi8LVh/b8ZWFVVu7QxzkiyJfAmYJ/281oC/OvwNyDJIUmWJFmy+k+rJvCWSZIkSZKmm7XxiMQOwJOAz7QgIcB/JFkOfAvYBti6nXNFVS1r20uBOX39fYzezfc7Rxlv7yTnJVlB7+Z9pySbA9tU1ckAVXVTVf0J2Af4VNumqn6fZBZwt6o6u/X3aeDxE7jO06tqVVXdBFwGPGCc43cHzqqq31bVrfQCkKFxVgNfGuW85cBxSV4A3Nra9gUOT7IMOAvYGLh/2/fNqvp92/468IQkGwFPBs6pqhuH9b8P8OGhF1V1LfBIYEfg3DbGQSNdX1Utqqr5VTV/xqazxrl8SZIkSdJ0NOrz+ZOpqr7X/hq+FfCU9n23qrqlPW6wcTv05r7TVtObiTDku/RChPe0m/nbJNkY+Agwv6p+keSI1mcYWYBag0u4lb+GMRsP2ze85vHe09FqAripqlaPsm8BvSDiacCbk+zU+tqvqn50uwGSRwA3DL2uqpuSnAX8Pb2ZDMePUtfw9yT0gornjVGzJEmSJElrZw2GJDsAM4DfAbOAq1u4sDfj/8V/yCfoTes/cYSFC4du+q9pawTsD1BVfwSuHHoEIclGSTYFFgMvatskuUdVrQKuTfK41tcLgaHZDCuB3dr2/hOs95YkG47Qfh6wZ1vLYQbwvL5xRpRkA+B+VXUm8FrgbsBmwGnAK/vWm3jYGN2cAPwT8Lh23nCLgVf0jXl34PvAY5I8qLVtmmT7sWqVJEmSJK2f1sYaDMuAz9NbD2A1vUcC5idZAhwI/HCiHVbVe4ELgc+2m+6h9j8AH6e3bsKXgQv6TnshcFh7JOO7wL2r6hvAKcCSVt9r2rEH0VvHYDm99RHe1trfDbwsyXeBLSdY7iJg+fBFHqvqV/Q+VeNM4GLgwqr6yjh9zQD+pz3+cRHwvnbNbwc2bONcwl/XuRjJYnozIL5VVX8eYf87gLu3hScvBvauqt8CBwPHt/fk+8AO49QqSZIkSVoPpWpNnhSQxrbR7Lk1+6D3D7oMSZIkaZ2xcuGCQZcgTViSpVU1f6R9a+tjKiVJkiRJ0jRmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnc0cdAGaXnbZZhZLFi4YdBmSJEmSpLXMGQySJEmSJKkzAwZJkiRJktSZAYMkSZIkSerMgEGSJEmSJHVmwCBJkiRJkjozYJAkSZIkSZ0ZMEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkSZIkdWbAIEmSJEmSOjNgkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnqzIBBkiRJkiR1ZsAgSZIkSZI6S1UNugZNI0muA3406DqkKbIlcM2gi5CmgL/bmq783dZ05e+2BukBVbXVSDtmru1KNO39qKrmD7oIaSokWeLvt6Yjf7c1Xfm7renK323dWfmIhCRJkiRJ6syAQZIkSZIkdWbAoMm2aNAFSFPI329NV/5ua7ryd1vTlb/bulNykUdJkiRJktSZMxgkSZIkSVJnBgyaNEmelORHSX6S5PBB1yNNliQrk6xIsizJkkHXI3WR5JNJrk5ySV/bPZJ8M8nl7fvdB1mjdEeM8rt9RJKr2r/fy5I8ZZA1SndEkvslOTPJD5JcmuRVrd1/u3WnY8CgSZFkBvBh4MnAjsDzkuw42KqkSbV3Vc3zI6E0DRwLPGlY2+HA6VU1Fzi9vZbWNcfyt7/bAO9r/37Pq6qvreWapMlwK/BvVfUQ4JHAy9t/Z/tvt+50DBg0WfYAflJVP6uqPwMnAE8fcE2SpGGq6hzg98Oanw58um1/GnjG2qxJmgyj/G5L67yq+lVVXdi2rwN+AGyD/3brTsiAQZNlG+AXfa+vbG3SdFDA4iRLkxwy6GKkKbB1Vf0Kev8hC9xrwPVIk+kVSZa3RyicQq51WpI5wMOA8/Dfbt0JGTBosmSENj+iRNPFY6rq4fQeAXp5kscPuiBJ0oQcDWwHzAN+BbxnoNVIHSTZDPgS8Oqq+uOg65FGYsCgyXIlcL++1/cFfjmgWqRJVVW/bN+vBk6m90iQNJ38JslsgPb96gHXI02KqvpNVa2uqr8AH8d/v7WOSrIhvXDhuKo6qTX7b7fudAwYNFkuAOYm2TbJXYDnAqcMuCapsyR3TbL50DawL3DJ2GdJ65xTgIPa9kHAVwZYizRphm6+mmfiv99aByUJ8AngB1X13r5d/tutO51UOYtdk6N99NP7gRnAJ6vqnYOtSOouyQPpzVoAmAl8zt9trcuSHA/sBWwJ/AZ4K/Bl4AvA/YH/A55dVS6Wp3XKKL/be9F7PKKAlcBLh55Zl9YVSR4LfBtYAfylNb+B3joM/tutOxUDBkmSJEmS1JmPSEiSJEmSpM4MGCRJkiRJUmcGDJIkSZIkqTMDBkmSJEmS1JkBgyRJkiRJ6syAQZIkDVSS1UmWJbk0ycVJ/jXJBm3f/CQfnOTxnpFkxztw3vWjtH+3e1VTI8mrk2w66DokSesHP6ZSkiQNVJLrq2qztn0v4HPAuVX11ika71jgq1X1xTU877Y67yyShN5/z/1llP0rgflVdc1aLUyStF5yBoMkSbrTqKqrgUOAV6RnryRfBUiyZ5vpsCzJRUk2b/vPSXJyksuSfLRv9sNtMw6S7J/k2CSPBp4GHNX62a59fSPJ0iTfTrJDO2fbJN9LckGSt49W89A4SWa3WpYluSTJ45LMaONekmRFkv/Xjj0ryfy2vWULAmjHH9XGXJ7kpSOMNyfJD5J8BLgQuF+So5MsabNAjmzHHQbcBzgzyZmtbd92TRcmOTHJnSowkSSt2wwYJEnSnUpV/Yzef6Pca9iu1wAvr6p5wOOAG1v7HsC/AbsA2wHPGqPv7wKnAP9eVfOq6qfAIuCVVbVbG+Mj7fAPAEdX1e7ArydQ+vOB01p9DwWWAfOAbapq56raBfjUOH38M7Cqjbk78JIk245w3IOBz1TVw6rq58Abq2o+sCuwZ5Jdq+qDwC+Bvatq7yRbAm8C9qmqhwNLgH+dwHVJkjQhMwddgCRJ0ggyQtu5wHuTHAecVFVX9p4Q4PwWSpDkeOCxwIQef2h/wX80cGLrC2Cj9v0xwH5t+7PAu8bp7gLgk0k2BL5cVcuS/Ax4YJL/Bk4FFo/Tx77Arkn2b69nAXOBK4Yd9/Oq+n7f6+ckOYTef9vNBnYElg8755Gt/dx2rXcBvjdOPZIkTZgBgyRJulNJ8kBgNXA18JCh9qpamORU4CnA95PsM7RrWBc1QvvGowy3AfCHNutgJBNerKqqzknyeGAB8NkkR1XVZ5I8FPh74OXAc4AXAbfy15mk/bWF3myK08YZ7obbTujNcHgNsHtVXdvWmBjpegN8s6qeN9FrkiRpTfiIhCRJutNIshXwUeBDNWwl6iTbVdWKqnoXven9O7Rde7T1EjYADgC+09p/k+Qhrf2ZfV1dB2wOUFV/BK5I8uw2RlogAL0ZE89t2wdOoPYHAFdX1ceBTwAPb48lbFBVXwLeDDy8Hb4S2K1t79/XzWnAy9osCJJsn+Su4wy9Bb3AYVWSrYEnj3StwPeBxyR5UOt70yTbj3ddkiRNlAGDJEkatE3awoiXAt+i9xjBkSMc9+q2WOLF9NZf+Hpr/x6wELiE3qMEJ7f2w4GvAmcAv+rr5wTg39tCkdvRCw/+ufV7KfD0dtyrgJcnuYDeowrj2QtYluQieo9WfADYBjgryTLgWOD17dh30wsSvgts2dfHMcBlwIVJLgE+xjgzTqvqYuCiVvsn6QUjQxYBX09yZlX9FjgYOD7JcnqBww5IkjRJ/JhKSZK0zkqyF/CaqnrqgEuRJGm95wwGSZIkSZLUmTMYJEmSJElSZ85gkCRJkiRJnRkwSJIkSZKkzgwYJEmSJElSZwYMkiRJkiSpMwMGSZIkSZLUmQGDJEmSJEnq7P8DMOvBEWbEP7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig4, ax4 = plt.subplots(figsize=(16, 9))\n", + "ax4.barh(disp_prod['product'], disp_prod['dispute_rate']) \n", + "\n", + "ax4.set_title(\"Disputed issue rates per product\")\n", + "ax4.set_ylabel('Product')\n", + "ax4.set_xlabel('Disputed issue rate')" + ] + }, + { + "cell_type": "markdown", + "id": "61b80521", + "metadata": {}, + "source": [ + "### Analysis:\n", + "Using the same visualization it can be concluded that loan and credit related issues like *Mortgages, Credit Reporting, Student loans* etc are more likely to be disputed, meaning our company should be wary and prepared to efficiently face complicated customer service with such products" + ] + }, + { + "cell_type": "markdown", + "id": "32296070", + "metadata": {}, + "source": [ + "### Disputes according to submission medium:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "fd3459f9", + "metadata": {}, + "outputs": [], + "source": [ + "disp_med = get_count('submitted_via')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "abdbe069", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 17.200000000000003, 'Disputed issue count')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAIICAYAAABTptJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmIUlEQVR4nO3df7Tn9V0f+OdLJhKSCIFkwqFDtsMKaoEaIiNLYu1qsQZNV9izcBxXDe2ypc2yatz2dElPW21P6YHuNnRpCz00sZA0BhDNhppGZaHRGBEy+SUhCc0oGEYojEKQasAOvvaP73tOvnNzmbkDA3feN4/HOd/z/Xxf3/f7M+/P3M+59z6/7/fnc6u7AwAAALP4uvUeAAAAABwMQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R7Ac/XqV7+6t27dut7DAAAA4AXw8Y9//Pe7e/Nq700bZLdu3ZodO3as9zAAAAB4AVTV7z7be5YWAwAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVNYUZKvqJ6vq3qr6TFW9r6peWlXHVdVtVfWF8XzsUvu3V9XOqrqvqt60VD+zqu4Z711dVTXqR1bVTaN+V1VtPeRHCgAAwIZwwCBbVVuS/HiSbd19epIjkmxPclmS27v7lCS3j9epqlPH+6clOTfJNVV1xNjdtUkuSXLKeJw76hcneby7T05yVZIrD8nRAQAAsOGsdWnxpiRHVdWmJC9L8lCS85LcMN6/Icn5Y/u8JDd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwLIDBtnu/r0k/3eSLyZ5OMkT3f0rSY7v7odHm4eTvGZ02ZLkwaVd7Bq1LWN7ZX2fPt29J8kTSV61cixVdUlV7aiqHbt3717rMQIAALCBrGVp8bFZzJielOTPJHl5Vf3I/rqsUuv91PfXZ99C93Xdva27t23evHn/AwcAAGBDWsvS4u9Jcn937+7u/5rkF5K8MckjY7lwxvOjo/2uJK9d6n9iFkuRd43tlfV9+ozly8ckeey5HBAAAAAb26Y1tPlikrOr6mVJvpzknCQ7kvxRkouSXDGePzDa35rkZ6vqHVnM4J6S5O7ufqaqnqyqs5PcleQtSf7FUp+LktyZ5IIkd4zraAEAgMPQ1ss+uN5D4Hl44Io3r/cQnpcDBtnuvquqbknyiSR7knwyyXVJXpHk5qq6OIuwe+Fof29V3Zzks6P9pd39zNjdW5Ncn+SoJB8ajyR5V5L3VNXOLGZitx+SowMAAGDDWcuMbLr7p5L81Iry01nMzq7W/vIkl69S35Hk9FXqT2UEYQAAANiftf75HQAAADgsCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpHDDIVtU3V9Wnlh5/WFVvq6rjquq2qvrCeD52qc/bq2pnVd1XVW9aqp9ZVfeM966uqhr1I6vqplG/q6q2viBHCwAAwPQOGGS7+77uPqO7z0hyZpI/TvL+JJclub27T0ly+3idqjo1yfYkpyU5N8k1VXXE2N21SS5Jcsp4nDvqFyd5vLtPTnJVkisPydEBAACw4Rzs0uJzkvx2d/9ukvOS3DDqNyQ5f2yfl+TG7n66u+9PsjPJWVV1QpKju/vO7u4k717RZ+++bklyzt7ZWgAAAFh2sEF2e5L3je3ju/vhJBnPrxn1LUkeXOqza9S2jO2V9X36dPeeJE8kedVBjg0AAICvAWsOslX19Ul+IMnPHajpKrXeT31/fVaO4ZKq2lFVO3bv3n2AYQAAALARHcyM7Pcl+UR3PzJePzKWC2c8Pzrqu5K8dqnfiUkeGvUTV6nv06eqNiU5JsljKwfQ3dd197bu3rZ58+aDGDoAAAAbxcEE2R/KV5YVJ8mtSS4a2xcl+cBSffu4E/FJWdzU6e6x/PjJqjp7XP/6lhV99u7rgiR3jOtoAQAAYB+b1tKoql6W5C8n+RtL5SuS3FxVFyf5YpILk6S7762qm5N8NsmeJJd29zOjz1uTXJ/kqCQfGo8keVeS91TVzixmYrc/j2MCAABgA1tTkO3uP86Kmy919x9kcRfj1dpfnuTyVeo7kpy+Sv2pjCAMAAAA+3Owdy0GAACAdSXIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMJU1BdmqemVV3VJVn6+qz1XVG6rquKq6raq+MJ6PXWr/9qraWVX3VdWblupnVtU9472rq6pG/ciqumnU76qqrYf8SAEAANgQ1joj+/8k+aXu/pYkr0vyuSSXJbm9u09Jcvt4nao6Ncn2JKclOTfJNVV1xNjPtUkuSXLKeJw76hcneby7T05yVZIrn+dxAQAAsEEdMMhW1dFJ/mKSdyVJd/9Jd38pyXlJbhjNbkhy/tg+L8mN3f10d9+fZGeSs6rqhCRHd/ed3d1J3r2iz9593ZLknL2ztQAAALBsLTOy/22S3Un+bVV9sqreWVUvT3J8dz+cJOP5NaP9liQPLvXfNWpbxvbK+j59untPkieSvGrlQKrqkqraUVU7du/evcZDBAAAYCNZS5DdlOTbklzb3a9P8kcZy4ifxWozqb2f+v767Fvovq67t3X3ts2bN+9/1AAAAGxIawmyu5Ls6u67xutbsgi2j4zlwhnPjy61f+1S/xOTPDTqJ65S36dPVW1KckySxw72YAAAANj4Dhhku/s/J3mwqr55lM5J8tkktya5aNQuSvKBsX1rku3jTsQnZXFTp7vH8uMnq+rscf3rW1b02buvC5LcMa6jBQAAgH1sWmO7H0vy3qr6+iS/k+SvZRGCb66qi5N8McmFSdLd91bVzVmE3T1JLu3uZ8Z+3prk+iRHJfnQeCSLG0m9p6p2ZjETu/15HhcAAAAb1JqCbHd/Ksm2Vd4651naX57k8lXqO5Kcvkr9qYwgDAAAAPuz1r8jCwAAAIcFQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICprCnIVtUDVXVPVX2qqnaM2nFVdVtVfWE8H7vU/u1VtbOq7quqNy3Vzxz72VlVV1dVjfqRVXXTqN9VVVsP8XECAACwQRzMjOx3d/cZ3b1tvL4sye3dfUqS28frVNWpSbYnOS3JuUmuqaojRp9rk1yS5JTxOHfUL07yeHefnOSqJFc+90MCAABgI3s+S4vPS3LD2L4hyflL9Ru7++nuvj/JziRnVdUJSY7u7ju7u5O8e0Wfvfu6Jck5e2drAQAAYNlag2wn+ZWq+nhVXTJqx3f3w0kynl8z6luSPLjUd9eobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGsmmN7b6jux+qqtckua2qPr+ftqvNpPZ+6vvrs2+h+7ok1yXJtm3bvup9AAAANr41zch290Pj+dEk709yVpJHxnLhjOdHR/NdSV671P3EJA+N+omr1PfpU1WbkhyT5LGDPxwAAAA2ugMG2ap6eVV9w97tJN+b5DNJbk1y0Wh2UZIPjO1bk2wfdyI+KYubOt09lh8/WVVnj+tf37Kiz959XZDkjnEdLQAAAOxjLUuLj0/y/nHvpU1Jfra7f6mqPpbk5qq6OMkXk1yYJN19b1XdnOSzSfYkubS7nxn7emuS65McleRD45Ek70rynqramcVM7PZDcGwAAABsQAcMst39O0let0r9D5Kc8yx9Lk9y+Sr1HUlOX6X+VEYQBgAAgP15Pn9+BwAAAF50giwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqaw6yVXVEVX2yqn5xvD6uqm6rqi+M52OX2r69qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrITxGAAAANpCDmZH9iSSfW3p9WZLbu/uUJLeP16mqU5NsT3JaknOTXFNVR4w+1ya5JMkp43HuqF+c5PHuPjnJVUmufE5HAwAAwIa3piBbVScmeXOSdy6Vz0tyw9i+Icn5S/Ubu/vp7r4/yc4kZ1XVCUmO7u47u7uTvHtFn737uiXJOXtnawEAAGDZWmdk/3mSv5PkT5dqx3f3w0kynl8z6luSPLjUbteobRnbK+v79OnuPUmeSPKqlYOoqkuqakdV7di9e/cahw4AAMBGcsAgW1V/Jcmj3f3xNe5ztZnU3k99f332LXRf193bunvb5s2b1zgcAAAANpJNa2jzHUl+oKq+P8lLkxxdVf8uySNVdUJ3PzyWDT862u9K8tql/icmeWjUT1ylvtxnV1VtSnJMksee4zEBAACwgR1wRra7397dJ3b31ixu4nRHd/9IkluTXDSaXZTkA2P71iTbx52IT8ripk53j+XHT1bV2eP617es6LN3XxeMf+OrZmQBAABgLTOyz+aKJDdX1cVJvpjkwiTp7nur6uYkn02yJ8ml3f3M6PPWJNcnOSrJh8YjSd6V5D1VtTOLmdjtz2NcAAAAbGAHFWS7+8NJPjy2/yDJOc/S7vIkl69S35Hk9FXqT2UEYQAAANifg/k7sgAAALDuBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmcsAgW1Uvraq7q+rTVXVvVf3DUT+uqm6rqi+M52OX+ry9qnZW1X1V9aal+plVdc947+qqqlE/sqpuGvW7qmrrC3CsAAAAbABrmZF9Oslf6u7XJTkjyblVdXaSy5Lc3t2nJLl9vE5VnZpke5LTkpyb5JqqOmLs69oklyQ5ZTzOHfWLkzze3ScnuSrJlc//0AAAANiIDhhke+G/jJcvGY9Ocl6SG0b9hiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMvWdI1sVR1RVZ9K8miS27r7riTHd/fDSTKeXzOab0ny4FL3XaO2ZWyvrO/Tp7v3JHkiyatWGcclVbWjqnbs3r17TQcIAADAxrKmINvdz3T3GUlOzGJ29fT9NF9tJrX3U99fn5XjuK67t3X3ts2bNx9g1AAAAGxEB3XX4u7+UpIPZ3Ft6yNjuXDG86Oj2a4kr13qdmKSh0b9xFXq+/Spqk1Jjkny2MGMDQAAgK8Na7lr8eaqeuXYPirJ9yT5fJJbk1w0ml2U5ANj+9Yk28ediE/K4qZOd4/lx09W1dnj+te3rOizd18XJLljXEcLAAAA+9i0hjYnJLlh3Hn465Lc3N2/WFV3Jrm5qi5O8sUkFyZJd99bVTcn+WySPUku7e5nxr7emuT6JEcl+dB4JMm7krynqnZmMRO7/VAcHAAAABvPAYNsd/9WktevUv+DJOc8S5/Lk1y+Sn1Hkq+6vra7n8oIwgAAALA/B3WNLAAAAKw3QRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVAwbZqnptVf3HqvpcVd1bVT8x6sdV1W1V9YXxfOxSn7dX1c6quq+q3rRUP7Oq7hnvXV1VNepHVtVNo35XVW19AY4VAACADWAtM7J7kvyt7v5zSc5OcmlVnZrksiS3d/cpSW4frzPe257ktCTnJrmmqo4Y+7o2ySVJThmPc0f94iSPd/fJSa5KcuUhODYAAAA2oAMG2e5+uLs/MbafTPK5JFuSnJfkhtHshiTnj+3zktzY3U939/1JdiY5q6pOSHJ0d9/Z3Z3k3Sv67N3XLUnO2TtbCwAAAMsO6hrZseT39UnuSnJ8dz+cLMJukteMZluSPLjUbdeobRnbK+v79OnuPUmeSPKqgxkbAAAAXxvWHGSr6hVJfj7J27r7D/fXdJVa76e+vz4rx3BJVe2oqh27d+8+0JABAADYgNYUZKvqJVmE2Pd29y+M8iNjuXDG86OjvivJa5e6n5jkoVE/cZX6Pn2qalOSY5I8tnIc3X1dd2/r7m2bN29ey9ABAADYYNZy1+JK8q4kn+vudyy9dWuSi8b2RUk+sFTfPu5EfFIWN3W6eyw/frKqzh77fMuKPnv3dUGSO8Z1tAAAALCPTWto8x1JfjTJPVX1qVH7u0muSHJzVV2c5ItJLkyS7r63qm5O8tks7nh8aXc/M/q9Ncn1SY5K8qHxSBZB+T1VtTOLmdjtz++wAAAA2KgOGGS7+9ez+jWsSXLOs/S5PMnlq9R3JDl9lfpTGUEYAAAA9ueg7loMAAAA602QBQAAYCpruUYWAICvAVsv++B6D4Hn4YEr3rzeQ4AXjRlZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABTEWQBAACYygGDbFX9TFU9WlWfWaodV1W3VdUXxvOxS++9vap2VtV9VfWmpfqZVXXPeO/qqqpRP7Kqbhr1u6pq6yE+RgAAADaQtczIXp/k3BW1y5Lc3t2nJLl9vE5VnZpke5LTRp9rquqI0efaJJckOWU89u7z4iSPd/fJSa5KcuVzPRgAAAA2vgMG2e7+tSSPrSifl+SGsX1DkvOX6jd299PdfX+SnUnOqqoTkhzd3Xd2dyd594o+e/d1S5Jz9s7WAgAAwErP9RrZ47v74SQZz68Z9S1JHlxqt2vUtoztlfV9+nT3niRPJHnVav9oVV1SVTuqasfu3buf49ABAACY2aG+2dNqM6m9n/r++nx1sfu67t7W3ds2b978HIcIAADAzJ5rkH1kLBfOeH501Hclee1SuxOTPDTqJ65S36dPVW1Kcky+eikzAAAAJHnuQfbWJBeN7YuSfGCpvn3cifikLG7qdPdYfvxkVZ09rn99y4o+e/d1QZI7xnW0AAAA8FU2HahBVb0vyXcleXVV7UryU0muSHJzVV2c5ItJLkyS7r63qm5O8tkke5Jc2t3PjF29NYs7IB+V5EPjkSTvSvKeqtqZxUzs9kNyZAAAAGxIBwyy3f1Dz/LWOc/S/vIkl69S35Hk9FXqT2UEYQAAADiQQ32zJwAAAHhBCbIAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVQRYAAICpCLIAAABMRZAFAABgKoIsAAAAUxFkAQAAmMqm9R4AAAdv62UfXO8h8Bw9cMWb13sIADA9M7IAAABMRZAFAABgKoIsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADAVf0cWADYwf3N4bv7uMMDqzMgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFMRZAEAAJiKIAsAAMBUBFkAAACmIsgCAAAwFUEWAACAqQiyAAAATEWQBQAAYCqCLAAAAFPZtN4DABa2XvbB9R4Cz8MDV7x5vYcAAPA1w4wsAAAAUxFkAQAAmIogCwAAwFQEWQAAAKYiyAIAADCVwybIVtW5VXVfVe2sqsvWezwAAAAcng6LIFtVRyT5V0m+L8mpSX6oqk5d31EBAABwODosgmySs5Ls7O7f6e4/SXJjkvPWeUwAAAAchjat9wCGLUkeXHq9K8l/t05jOWS2XvbB9R4Cz8MDV7x5vYcAAACsorp7vceQqrowyZu6+38dr380yVnd/WMr2l2S5JLx8puT3PeiDpSVXp3k99d7EEzD+cLBcL6wVs4VDobzhYPhfFl/f7a7N6/2xuEyI7sryWuXXp+Y5KGVjbr7uiTXvViDYv+qakd3b1vvcTAH5wsHw/nCWjlXOBjOFw6G8+XwdrhcI/uxJKdU1UlV9fVJtie5dZ3HBAAAwGHosJiR7e49VfW/J/nlJEck+ZnuvnedhwUAAMBh6LAIsknS3f8hyX9Y73FwUCzz5mA4XzgYzhfWyrnCwXC+cDCcL4exw+JmTwAAALBWh8s1sgAAALAmgixJkqp6pqo+tfS47BDt9zfG89aq+syh2CeHp1XOoa3rPSbW19I58Zmq+rmqepnvBV87Vvv6H2T/rVX1P6+x3SE/p6rqB/b+LKyqn66qv32o/w3WbsX59O+r6pUHaL+5qu6qqk9W1Xe+AONxTkysqq6qqrctvf7lqnrn0ut/VlX/x7P0/XBVuZPxYUCQZa8vd/cZS48rDsVOu/uNh2I/TGHlOfTAeg+Idbf3nDg9yZ8k+ZvrPSBeVM/36781yQGD7Aulu289VD8LOSSWz6fHklx6gPbnJPl8d7++uz+yln+gqo7Y32s2lN9I8sYkqaqvy+LvxZ629P4bk3x0HcbFQRBk2a+qeqCq/klV3VlVO6rq28anVr9dVX9ztHlFVd1eVZ+oqnuq6ryl/v9l/UbPenq286Kqvr2qfquqXlpVL6+qe6vq9PUeLy+4jyQ5eWwfUVX/Znztf6WqjkqSqjqjqn5znB/vr6pjR/3DVXVlVd1dVf9p7+xKVR1RVf9XVX1s9Pkb63NorMFHkpxcVcdV1f87vl6/WVXfmiRV9d8vreb4ZFV9Q5IrknznqP3kmHn9yPie8omq2u8HpVX1XVX1q1V18zhvrqiqHx7n0T1V9Y2j3f+wNHP3/1XV8aP+V6vqX77A/y88N3cm2ZIkVfWNVfVLVfXxcX58S1WdkeSfJvn+cf4cVVXfO36X+cRYIfCK0f+BqvoHVfXrSS5c5fVfH99jPl1VP18HubKAw9ZHM4JsFgH2M0merKpjq+rIJH8uScb3kI+P331PWOr/I1X1G7VYIXDWizt09hJk2euo2ndZ6A8uvfdgd78hi19Erk9yQZKzk/yj8f5TSf7H7v62JN+d5J9VVb2IY+fwsHwOvT/Pcl5098ey+DvR/ziLXzT+XXdbarqBVdWmJN+X5J5ROiXJv+ru05J8Kcn/NOrvTvJ/dve3jrY/tbSbTd19VpK3LdUvTvJEd397km9P8ter6qQX8FB4DlZ8/f9hkk+Or/HfzeJrniR/O8ml3X1Gku9M8uUklyX5yJiFuyrJo0n+8vie8oNJrl7DP/+6JD+R5M8n+dEk3zTOo3cm+bHR5teTnN3dr09yY5K/8/yOmBdSLWZJz8ni50iyuKvsj3X3mVmcR9d096eS/IMkN41z6uVJ/l6S7xnnz44ky8tGn+ruv9DdN67y+he6+9u7+3VJPpfF9x0m190PJdlTVf9NFoH2ziR3JXlDkm1ZfK2vSnLBOLd+JsnlS7t4+Vh1+L+N91gHh82f32HdfXl8s1/N3h8W9yR5RXc/mcWnVk/V4hqVP0ryT6rqLyb50yw+JT0+yX9+YYfMYWafc6iqXpJnPy/+UZKPZRF2f/zFHyovkqOq6lNj+yNJ3pXkzyS5f/yimSQfT7K1qo5J8sru/tVRvyHJzy3t6xeW24/t703yrVV1wXh9TBYh+f5Dexg8R6t9/e/K+OCiu++oqleNr/1Hk7yjqt6bRXDYtcrnoS9J8i/HbNszSb5pDWP4WHc/nCRV9dtJfmXU78niA7YkOTHJTWO25evj/Dlc7T2ftmbxfeC2Mav6xiQ/t3S+HLlK37OTnJrko6Pd12cRXPa6aUX75denV9U/TvLKJK9I8svP5yA4rOydlX1jkndk8XvKG5M8keT3svgZc9s4Z45I8vBS3/clSXf/WlUdXVWv7O4vvXhDJxFkWZunx/OfLm3vfb0pyQ8n2ZzkzO7+r1X1QJKXvqgj5HC0v/PiuCx+IXjJqP3RuoyQF9pXfUA2fiFY/j7yTJKj1rCvvX2eyVd+dlUWMzF+sTw8rfb1X221Tnf3FVX1wSTfn+Q3q+p7Vmn3k0keyWKW9euy+CDsQFb+zFr+ebb3PPoXSd7R3bdW1Xcl+ek17JcX35e7+4zxwccvZnGN7PVJvrSfD+L3qiS3dfcPPcv7K38GLb++Psn53f3pqvqrSb7r4IbNYWzvdbJ/PoulxQ8m+VtJ/jDJHUm2jBWJq1n590v9PdN1YGkxh8IxSR4dYeW7k/zZ9R4Qh4X9nRfXJfn7Sd6b5Mr1GByHl+5+Isnj9ZW7i/5okl/dT5dkMTPy1jH7n6r6pqp6+Qs4TJ6/X8viQ66M0Pj73f2HVfWN3X1Pd1+ZxbLPb0nyZJJvWOp7TJKHu/tPszg/DtWNeI7JYvYlSS46RPvkBTK+V/x4FsuIv5zk/qq6MFl8UFJVr1ul228m+Y6qOnm0e1lVrWVGP1mcgw+P7zM//LwPgMPJR5P8lSSPdfcz3f1YFjPvb8hiVn5zVb0hWawyq6rlm0H94Kj/hSwucXniRR05SczI8hXLS8CS5Je6e61/gue9Sf59Ve1I8qkknz/EY2NOq54XVfWWJHu6+2fHtU6/UVV/qbvvWL+hcpi4KMm/HjdT+Z0kf+0A7d+ZxTLDT4yZvt1Jzn8hB8jz9tNJ/m1V/VaSP85XguPbxgdezyT5bJIPZTFruqeqPp3FrNg1SX5+hJb/mEO3kuOns1ia+ntZBB7XWR/muvuT47zYnkW4vLaq/l4Wq3xuTPLpFe13j9nU940b+SSLa2b/0xr+ub+fxZL4381iSfo37L85E7kni7sV/+yK2iu6+9Fx2crVYxXApiT/PMm9o93jtfgTk0cn+V9evCGzrLrNhAMAADAPS4sBAACYiiALAADAVARZAAAApiLIAgAAMBVBFgAAgKkIsgAAAExFkAUAAGAqgiwAAABT+f8BJeOZKz7AJjwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig5, ax5 = plt.subplots(figsize=(16, 9))\n", + "ax5.bar(disp_med['submitted_via'], disp_med['consumer_disputed?'])\n", + "\n", + "ax4.set_title(\"Disputed issue counts per submission medium\")\n", + "ax4.set_xlabel('Medium')\n", + "ax4.set_xlabel('Disputed issue count')" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "5c033a69", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Disputed issue rate')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAImCAYAAABXZwdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqiklEQVR4nO3debytdV0v8M9XIEEGRUFzPjmWkmKBOZZe0xzTSlPDIjPRe70qXbuFpoamXRrUzDFMc8jUzDQcUssSh5zAATQtS46JooCKoKICfu8f6zmx2OxzzjrD2vt32O/367Vfez3z91nrt4fP+v2eZ1V3BwAAAEZzpfUuAAAAAFYjsAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQZWVS+uqqesdx3bUlV3qaozt7H8m1V1o7WsiZ2zvddyJ/b3qaq6yy5s//dVdfTuqmctrHwOd/U5ANjo9l7vAgA2qqranORaSS5OckmSf03yyiQndvf3k6S7H70Gdbw8yZnd/eRl7L+7D1jGftdCVR2f5Cbd/bD1rmVP1N233MXt77W7alkvu/ocAGx0elgB1tf9uvvAJDdMckKS307y0vUtaWOoqivEm7ZXlPMAgNUIrAAD6O5vdPdJSR6c5OiqOiyZ9X5W1TOmx4dU1Vuq6ryq+lpVvbeqrjQt21xVT6yqf62qr1fVX1TVvtOyX62q980fr6q6qm5SVcckOSrJb01Dd988Lb9OVb2hqs6pqjOq6nFz2+431fX1qvrXJEdu69y2HGt6fO+pxguq6otV9ZsLnNt/b7/yOZmm71tVH5+2/ZequtV2anlMVX02yWenec+tqi9U1flVdWpV3Xmaf88kT0ry4Om5+cQ0/6pV9dKqOms6h2dU1V7TsptU1clV9Y2qOreqXreVOjZNtRxTVV+a9vWEueVXqqrjquo/q+qrVfXXVXX1Fds+oqr+K8k/rbL/nX4+p3lPmurfXFVHrVj3hdNQ3W9W1fur6ger6k+m9vCZqrrN3Pqbq+qnp8e3rapTpuf5K1X17Gn+vlX1l9N5nldVH6mqa03L3l1Vvz73nDy5qj5fVWdX1Sur6qornpOjq+q/ptp/ZxvtYEfPY6d/HlY8Byvb7srhw5ur6v9W1WlV9a2pnV1rqvOCqvrHqjp4a+cFcEUksAIMpLs/nOTMJHdeZfETpmWHZjaU+ElJem75UUl+JsmNk9wsyXaH+Hb3iUleneQPu/uA7r7fFGzenOQTSa6b5G5Jjq2qn5k2+93pGDeejrcj1xi+NMmjpl7lw3Jp2Nreua2qqn4sycuSPCrJNZL8WZKTqurK29jsAUl+IsktpumPJDk8ydWT/FWS11fVvt399iS/n+R103Nz62n9V2Q2jPsmSW6T5B5Jfn1a9ntJ3pnk4CTXS/K87ZzCXZPcdNrHcVuCTZLHTXX+VJLrJPl6khes2PankvxIZq/BSjv1fE5+MMkhmb32Ryc5sapuPrf8FzNrW4ck+W6SDyT56DT9N0mevZX9PjfJc7v7oMzazl9P849OctUk18/sNXx0kgtX2f5Xp6+7JrlRkgOSPH/FOndKcvPM2uxTq+pHtnGeC53Hkn8eVvMLSe6e2c/w/ZL8fWav3yGZ/d/2uK1vCnDFI7ACjOdLmYWnlS5Kcu0kN+zui7r7vd09H0Ke391f6O6vJXlmkofu5PGPTHJodz+9u7/X3Z9L8pIkD5mW/2KSZ3b317r7C0n+dAf2fVGSW1TVQd399e7+6ILntjWPTPJn3f2h7r6ku1+RWfi43Ta2+X9T7RcmSXf/ZXd/tbsv7u5nJblyZqHncqaev3slOba7v9XdZyd5Ti59bi7KbHj3dbr7O939vtX2M+dp035OT/IXufQ1e1SS3+nuM7v7u0mOT/LAuuzw3+OnbVcLdzv7fG7xlO7+bnefnOStmb3mW7yxu0/t7u8keWOS73T3K7v7kiSvyyzEr+aiJDepqkO6+5vd/cG5+dfI7FrhS6Z9n7/K9kcleXZ3f667v5nkiUkesuI5eVp3X9jdn8gsYN56lf3s6Hks8+dhNc/r7q909xeTvDfJh7r7Y1M7eGO2/vwCXCEJrADjuW6Sr60y/4+S/EeSd1bV56rquBXLvzD3+POZ9cztjBsmuc40PPO8qjovsx6ea03Lr7PKsRb1C0nuneTzNRs6e/tp/vbObVu1PmFFrdfPts99vvZU1ROq6tM1G8Z7Xma9fYds43j7JDlr7nh/luSa0/LfSlJJPlyzu8P+2nbq39prdsMkb5w7xqczuzHXtbay7Uo7+3wmyde7+1tbqStJvjL3+MJVprd2k61HZNZr+Jlp2O99p/mvSvKOJK+t2fDoP6yqfVbZ/jq5bFv7fGY3j5x/Tr489/jb26hlR85jmT8Pu1IXwIYgsAIMpKqOzCywXq5nrrsv6O4ndPeNMhsq+H+q6m5zq1x/7vENMuupTZJvJbnK3DF+cOWuV0x/IckZ3X21ua8Du/ve0/KzVjnWQrr7I919/8wC3psyDQvdzrl9e77+zIasztf6zBW1XqW7X7OtMrY8qNn1qr+dWS/Zwd19tSTfyCx0XmbdueN9N8khc8c7aMudYLv7y939yO6+Tma9pC+suetFV7G11+wLSe614rz2nXrdLncelzvBnX8+k+Tgqtp/K3XttO7+bHc/NLPX/g+S/E1V7T/1AD+tu2+R5A5J7pvkV1bZxZcyC4/zdV2cywa6ZdidPw+X+VnM5Z97AFYQWAEGUFUHTT1Or03yl9MQ0ZXr3LdmN/WpJOdn1uN2ydwqj6mq69Xs5jxPymxYYzIbGnnLqjq8ZjdiOn7Frr+S2TWBW3w4yflV9dvTDWX2qqrDpjCdzELmE6vq4Kq6XpLHLniOP1BVR1XVVbv7orlz2N65fTzJL0113DOzaze3eEmSR1fVT9TM/lV1n6o6cJGakhyYWeg5J8neVfXUJAeteG42TdcxprvPyuwa1WdNr9mVqurGVfVT03k8aHpOktl1p53LvkYrPaWqrlJVt0zy8Fz6mr04yTOr6obTfg+tqvsveE678nxu8bTp9bpzZgHy9Yseexs1PayqDu3ZRzadN82+pKruWlU/WrMbV52f2RDh1Z6z1yT5jar6oao6IJdeX3zxrta2Hbvz5+HjSe5dVVef3jg6dqmVA1wBCKwA6+vNVXVBZr04v5PZjV4evpV1b5rkH5N8M7MbxLywu989t/yvMgtTn5u+npEk3f3vSZ4+bfvZXL739qWZXVd6XlW9abqG736Z3YjojCTnJvnzzIbKJsnTMhv2eMZ0vFftwPn+cpLNVXV+ZjfX2fL5pts6t8dP9ZyX2XWMb9qys+4+JbPrWJ+fWUD8j8xuzLOod2R2U5t/n87pO7ns8M4tQe2rVbXlettfSfIDmX1u7tczu0HPtadlRyb5UFV9M8lJSR7f3Wds4/gnTzW/K8kfd/c7p/nPnbZ/59Q+PpjZjaIWtVPP5+TL03l9KbMbcj26uz+zA8femnsm+dT03Dw3yUOm60d/MLPn8PzMhj6fnOQvV9n+ZZm1tfdk1va+kwXfLNkVu/nn4VWZvYG0eVp31btIA3Cp2rF7MAAwoqranOTXu/sf17sWtq+qNmUWcPZZgx5CANhj6WEFAABgSAIrAAAAQzIkGAAAgCHpYQUAAGBIAisAAABD2nu9C1jEIYcc0ps2bVrvMgAAAFiCU0899dzuPnTl/D0isG7atCmnnHLKepcBAADAElTV51ebb0gwAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADCkvde7AAAAYGybjnvrepfALth8wn3Wu4SdpocVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIe293gXARrPpuLeudwnsgs0n3Ge9SwAA2DD0sAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgAAwJAEVgAAAIYksAIAADAkgRUAAIAh7b3eBVxRbDruretdAjtp8wn3We8SAACAVehhBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEhLC6xVdf2q+ueq+nRVfaqqHj/Nv3pV/UNVfXb6fvCyagAAAGDPtcwe1ouTPKG7fyTJ7ZI8pqpukeS4JO/q7psmedc0DQAAAJextMDa3Wd190enxxck+XSS6ya5f5JXTKu9IskDllUDAAAAe641uYa1qjYluU2SDyW5VneflcxCbZJrbmWbY6rqlKo65ZxzzlmLMgEAABjI0gNrVR2Q5A1Jju3u8xfdrrtP7O4juvuIQw89dHkFAgAAMKSlBtaq2iezsPrq7v7bafZXqura0/JrJzl7mTUAAACwZ1rmXYIryUuTfLq7nz236KQkR0+Pj07yd8uqAQAAgD3X3kvc9x2T/HKS06vq49O8JyU5IclfV9UjkvxXkgctsQYAAAD2UEsLrN39viS1lcV3W9ZxAQAAuGJYk7sEAwAAwI4SWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEh7r3cBAACsvU3HvXW9S2AXbD7hPutdAqwJPawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJKbLgEMzE1R9mxuigIAu0YPKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQlhZYq+plVXV2VX1ybt7xVfXFqvr49HXvZR0fAACAPdsye1hfnuSeq8x/TncfPn29bYnHBwAAYA+2tMDa3e9J8rVl7R8AAIArtvW4hvV/V9Vp05Dhg7e2UlUdU1WnVNUp55xzzlrWBwAAwADWOrC+KMmNkxye5Kwkz9rait19Yncf0d1HHHrooWtUHgAAAKNY08Da3V/p7ku6+/tJXpLktmt5fAAAAPYcaxpYq+rac5M/l+STW1sXAACAjW3vZe24ql6T5C5JDqmqM5P8bpK7VNXhSTrJ5iSPWtbxAQAA2LMtLbB290NXmf3SZR0PAACAK5b1uEswAAAAbJfACgAAwJAEVgAAAIa0tGtYAYC1tem4t653CeyCzSfcZ71LABiOHlYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQthtYq+oqVfWUqnrJNH3Tqrrv8ksDAABgI1ukh/Uvknw3ye2n6TOTPGNpFQEAAEAWC6w37u4/THJRknT3hUlqqVUBAACw4S0SWL9XVfsl6SSpqhtn1uMKAAAAS7P3Auscn+TtSa5fVa9OcsckD19mUQAAALDdwNrd76yqU5PcLrOhwI/v7nOXXhkAAAAb2iJ3CX5Xd3+1u9/a3W/p7nOr6l1rURwAAAAb11Z7WKtq3yRXSXJIVR2cS2+0dFCS66xBbQAAAGxg2xoS/Kgkx2YWTk/NpYH1/CQvWG5ZAAAAbHRbDazd/dwkz62qx3b389awJgAAAFjopkvPq6rDktwiyb5z81+5zMIAAADY2LYbWKvqd5PcJbPA+rYk90ryviQCKwAAAEuz3bsEJ3lgkrsl+XJ3PzzJrZNcealVAQAAsOEtElgv7O7vJ7m4qg5KcnaSGy23LAAAADa67Q4JTnJKVV0tyUsyu1vwN5N8eJlFAQAAwDYDa1VVkv/X3ecleXFVvT3JQd192loUBwAAwMa1zSHB3d1J3jQ3vVlYBQAAYC0scg3rB6vqyKVXAgAAAHMWuYb1rkkeVVWfT/KtJJVZ5+utlloZAAAAG9oigfVeS68CAAAAVthuYO3uz69FIQAAADBvkWtYAQAAYM0JrAAAAAxpocBaVTesqp+eHu9XVQcutywAAAA2uu0G1qp6ZJK/SfJn06zrZe6zWQEAAGAZFulhfUySOyY5P0m6+7NJrrnMogAAAGCRwPrd7v7elomq2jtJL68kAAAAWCywnlxVT0qyX1XdPcnrk7x5uWUBAACw0S0SWI9Lck6S05M8Ksnbkjx5mUUBAADA3ttbobu/n+Ql0xcAAACsie0G1qo6I6tcs9rdN1pKRQAAAJAFAmuSI+Ye75vkQUmuvpxyAAAAYGa717B291fnvr7Y3X+S5H8svzQAAAA2skWGBP/Y3OSVMutxPXBpFQEAAEAWGxL8rLnHFyfZnOQXl1INAAAATBa5S/Bd16IQAAAAmLfda1ir6vFVdVDN/HlVfbSq7rEWxQEAALBxbTewJvm17j4/yT2SXDPJw5OcsNSqAAAA2PAWCaw1fb93kr/o7k/MzQMAAIClWCSwnlpV78wssL6jqg5M8v3llgUAAMBGt8hdgh+R5PAkn+vub1fV1TMbFgwAAABLs0gP6+2T/Ft3n1dVD0vy5CTfWG5ZAAAAbHSLBNYXJfl2Vd06yW8l+XySVy61KgAAADa8RQLrxd3dSe6f5Lnd/dwkBy63LAAAADa6Ra5hvaCqnpjkYUl+sqr2SrLPcssCAABgo1ukh/XBSb6b5BHd/eUk103yR0utCgAAgA1vuz2sU0h99tz0f8U1rAAAACzZVgNrVb2vu+9UVRck6flFSbq7D1p6dQAAAGxYWw2s3X2n6bsbLAEAALDmFrmGFQAAANacwAoAAMCQBFYAAACGJLACAAAwpG3dJXjl3YEvw12CAQAAWKZt3SX4wCSpqqcn+XKSV2X2kTZHJXHnYAAAAJZqkSHBP9PdL+zuC7r7/O5+UZJfWHZhAAAAbGyLBNZLquqoqtqrqq5UVUcluWTZhQEAALCxLRJYfynJLyb5yvT1oGkeAAAALM1Wr2Hdors3J7n/8ksBAACAS223h7WqblZV76qqT07Tt6qqJy+/NAAAADayRYYEvyTJE5NclCTdfVqShyyzKAAAAFgksF6luz+8Yt7FyygGAAAAtlgksJ5bVTdO0klSVQ9MctZSqwIAAGDD2+5Nl5I8JsmJSX64qr6Y5IwkRy21KgAAADa8RQJrd/dPV9X+Sa7U3RdU1Q8tuzAAAAA2tkWGBL8hSbr7W919wTTvb5ZXEgAAAGyjh7WqfjjJLZNctap+fm7RQUn2XXZhAAAAbGzbGhJ88yT3TXK1JPebm39BkkcusSYAAADYemDt7r9L8ndVdfvu/sAa1gQAAAAL3XTpmKq6XI9qd//aEuoBAACAJIsF1rfMPd43yc8l+dJyygEAAICZ7QbW7n7D/HRVvSbJPy6tIgAAAMhiH2uz0k2T3GB3FwIAAADzttvDWlUXJOkkNX3/cpLfXnJdAAAAbHCLDAk+cC0KAQAAgHmL3HQpVfXzSe6UWQ/re7v7TcssCgAAALZ7DWtVvTDJo5OcnuSTSR5dVS9YdmEAAABsbIv0sP5UksO6u5Okql6RWXjdpqp6WZL7Jjm7uw+b5l09yeuSbEqyOckvdvfXd6pyAAAArtAWuUvwv+WydwW+fpLTFtju5UnuuWLecUne1d03TfKuaRoAAAAuZ5HAeo0kn66qd1fVu5P8a5JDq+qkqjppaxt193uSfG3F7PsnecX0+BVJHrDDFQMAALAhLDIk+Km78XjX6u6zkqS7z6qqa25txao6JskxSXKDG/jYVwAAgI1mkcB6SpILu/v7VXWzJD+c5O+7+6JlFtbdJyY5MUmOOOKIXuaxAAAAGM8iQ4Lfk2TfqrpuZtedPjyz61N3xleq6tpJMn0/eyf3AwAAwBXcIoG1uvvbSX4+yfO6++eS3HInj3dSkqOnx0cn+bud3A8AAABXcAsF1qq6fZKjkrx1mrfXAhu9JskHkty8qs6sqkckOSHJ3avqs0nuPk0DAADA5SxyDeuxSZ6Y5I3d/amqulGSf97eRt390K0sutvi5QEAALBRbTewdvfJSU6em/5cksctsygAAADYamCtqj/p7mOr6s1JLneX3u7+2aVWBgAAwIa2rR7WV03f/3gtCgEAAIB5Ww2s3X3q9P3kqjp0enzOWhUGAADAxrbVuwTXzPFVdW6SzyT596o6p6qeunblAQAAsFFt62Ntjk1yxyRHdvc1uvvgJD+R5I5V9RtrURwAAAAb17YC668keWh3n7FlxnSH4IdNywAAAGBpthVY9+nuc1fOnK5j3Wd5JQEAAMC2A+v3dnIZAAAA7LJtfazNravq/FXmV5J9l1QPAAAAJNn2x9rstZaFAAAAwLxtDQkGAACAdSOwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABDElgBAAAYksAKAADAkARWAAAAhiSwAgAAMCSBFQAAgCEJrAAAAAxJYAUAAGBIAisAAABD2ns9DlpVm5NckOSSJBd39xHrUQcAAADjWpfAOrlrd5+7jscHAABgYIYEAwAAMKT1Cqyd5J1VdWpVHbPaClV1TFWdUlWnnHPOOWtcHgAAAOttvQLrHbv7x5LcK8ljquonV67Q3Sd29xHdfcShhx669hUCAACwrtYlsHb3l6bvZyd5Y5LbrkcdAAAAjGvNA2tV7V9VB255nOQeST651nUAAAAwtvW4S/C1kryxqrYc/6+6++3rUAcAAAADW/PA2t2fS3LrtT4uAAAAexYfawMAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADElgBQAAYEgCKwAAAEMSWAEAABjSugTWqrpnVf1bVf1HVR23HjUAAAAwtjUPrFW1V5IXJLlXklskeWhV3WKt6wAAAGBs69HDetsk/9Hdn+vu7yV5bZL7r0MdAAAADGw9Aut1k3xhbvrMaR4AAAD8t+rutT1g1YOS/Ex3//o0/ctJbtvdj12x3jFJjpkmb57k39a0UFY6JMm5610EewRthR2hvbAjtBd2hPbCjtBe1t8Nu/vQlTP3XodCzkxy/bnp6yX50sqVuvvEJCeuVVFsW1Wd0t1HrHcdjE9bYUdoL+wI7YUdob2wI7SXca3HkOCPJLlpVf1QVf1AkockOWkd6gAAAGBga97D2t0XV9X/TvKOJHsleVl3f2qt6wAAAGBs6zEkON39tiRvW49js9MMz2ZR2go7QnthR2gv7AjthR2hvQxqzW+6BAAAAItYj2tYAQAAYLsE1g2oqi6pqo/PfR23m/b7L9P3TVX1yd2xT8a0ShvatN41sb7m2sQnq+r1VXUVvws2jtVe/x3cflNV/dKC6+32NlVVP7vlb2FVHV9Vv7m7j8HiVrSnN1fV1baz/qFV9aGq+lhV3XkJ9WgTe7Cqek5VHTs3/Y6q+vO56WdV1f/Zyrbvrip3Dl5nAuvGdGF3Hz73dcLu2Gl332F37Ic9wso2tHm9C2LdbWkThyX5XpJHr3dBrKldff03JdluYF2W7j5pd/0tZLeYb09fS/KY7ax/tySf6e7bdPd7FzlAVe21rWmuUP4lyR2SpKqulNnnrd5ybvkdkrx/HepiQQIr/62qNlfV71fVB6rqlKr6seldqP+sqkdP6xxQVe+qqo9W1elVdf+57b+5ftWznrbWLqrqyKo6rar2rar9q+pTVXXYetfL0r03yU2mx3tV1Uum1/6dVbVfklTV4VX1wal9vLGqDp7mv7uq/qCqPlxV/76lt6Sq9qqqP6qqj0zbPGp9To0FvDfJTarq6lX1pun1+mBV3SpJquqn5kZnfKyqDkxyQpI7T/N+Y+pJfe/0O+WjVbXNN0Sr6i5VdXJV/fXUbk6oqqOmdnR6Vd14Wu9+cz1x/1hV15rm/2pVPX/Jzws75wNJrpskVXXjqnp7VZ06tY8frqrDk/xhkntP7We/qrrH9L/MR6ce/wOm7TdX1VOr6n1JHrTK9COn3zGfqKo31A6OFGBY788UWDMLqp9MckFVHVxVV07yI0ky/Q45dfrf99pz2z+sqv6lZj3+t13b0kkE1o1qv7rscM4Hzy37QnffPrN/OF6e5IFJbpfk6dPy7yT5ue7+sSR3TfKsqqo1rJ0xzLehN2Yr7aK7P5LZ5yw/I7N/KP6yuw0RvQKrqr2T3CvJ6dOsmyZ5QXffMsl5SX5hmv/KJL/d3bea1v3dud3s3d23TXLs3PxHJPlGdx+Z5Mgkj6yqH1riqbATVrz+T0vysek1flJmr3mS/GaSx3T34UnunOTCJMclee/Uq/acJGcnufv0O+XBSf50gcPfOsnjk/xokl9OcrOpHf15ksdO67wvye26+zZJXpvkt3btjFmmmvV63i2zvyPJ7C6uj+3uH8+sHb2wuz+e5KlJXje1qf2TPDnJT0/t55Qk88M9v9Pdd+ru164y/bfdfWR33zrJpzP7vcMerru/lOTiqrpBZsH1A0k+lOT2SY7I7LV+TpIHTm3rZUmeObeL/adRhP9rWsYaW5ePtWHdXTj9Ul/Nlj8Kpyc5oLsvyOxdqO/U7BqSbyX5/ar6ySTfz+xdz2sl+fJyS2Ywl2lDVbVPtt4unp7kI5mF2setfamskf2q6uPT4/cmeWmS6yQ5Y/qHMklOTbKpqq6a5GrdffI0/xVJXj+3r7+dX396fI8kt6qqB07TV80sDJ+xe0+DnbTa6/+hTG9QdPc/VdU1ptf+/UmeXVWvziwgnLnK+577JHn+1Ht2SZKbLVDDR7r7rCSpqv9M8s5p/umZvZGWJNdL8rqp9+QHov2Makt72pTZ74F/mHpJ75Dk9XPt5cqrbHu7JLdI8v5pvR/ILKBs8boV689PH1ZVz0hytSQHJHnHrpwEQ9nSy3qHJM/O7P+UOyT5RpIvZvY35h+mNrNXkrPmtn1NknT3e6rqoKq6Wneft3alI7Cy0nen79+fe7xleu8kRyU5NMmPd/dFVbU5yb5rWiEj2la7uHpmf/j3meZ9a10qZNku90bY9Id//vfIJUn2W2BfW7a5JJf+narMelb8Azmm1V7/1UbfdHefUFVvTXLvJB+sqp9eZb3fSPKVzHpNr5TZG17bs/Jv1vzfsy3t6HlJnt3dJ1XVXZIcv8B+WXsXdvfh0xscb8nsGtaXJzlvG2+4b1FJ/qG7H7qV5Sv/Bs1PvzzJA7r7E1X1q0nusmNlM7At17H+aGZDgr+Q5AlJzk/yT0muO40wXM3KzwD1maBrzJBgdtRVk5w9hZK7JrnhehfEELbVLk5M8pQkr07yB+tRHGPp7m8k+XpdejfPX05y8jY2SWY9Hf9z6s1PVd2sqvZfYpnsuvdk9mZWpnB4bnefX1U37u7Tu/sPMhuu+cNJLkhy4Ny2V01yVnd/P7P2sbtuiHPVzHpTkuTo3bRPlmT6XfG4zIb/XpjkjKp6UDJ7Q6Sqbr3KZh9Mcsequsm03lWqapEe+mTWBs+afs8ctcsnwEjen+S+Sb7W3Zd099cy60m/fWa97IdW1e2T2aixqpq/KdODp/l3yuzSlG+saeXoYd2g5oduJcnbu3vRj7Z5dZI3V9UpST6e5DO7uTb2TKu2i6r6lSQXd/dfTdci/UtV/Y/u/qf1K5VBHJ3kxdNNTT6X5OHbWf/PMxse+NGp5+6cJA9YZoHssuOT/EVVnZbk27k0IB47vbF1SZJ/TfL3mfWCXlxVn8isl+uFSd4whZN/zu4bmXF8ZkNKv5hZsHEd9OC6+2NTu3hIZiHyRVX15MxG7bw2ySdWrH/O1Dv6mumGOsnsmtZ/X+BwT8lsKPvnMxtKfuC2V2cPcnpmdwf+qxXzDujus6fLTf506tXfO8mfJPnUtN7Xa/bRjQcl+bW1K5ktqluvNgAAAOMxJBgAAIAhCawAAAAMSWAFAABgSAIrAAAAQxJYAQAAGJLACgC7QVV1Vb1qbnrvqjqnqt6yg/t5d1UdMT1+W1VdbTeXCgB7DJ/DCgC7x7eSHFZV+3X3hUnunuSLu7LD7r73bqkMAPZQelgBYPf5+yT3mR4/NMlrtiyoqv2r6mVV9ZGq+lhV3X+av19VvbaqTquq1yXZb26bzVV1SFVtqqpPzs3/zao6fnr87qp6TlW9p6o+XVVHVtXfVtVnq+oZa3DOALA0AisA7D6vTfKQqto3ya2SfGhu2e8k+afuPjLJXZP8UVXtn+R/Jvl2d98qyTOT/PhOHPd73f2TSV6c5O+SPCbJYUl+taqusdNnAwDrzJBgANhNuvu0qtqUWe/q21YsvkeSn62q35ym901ygyQ/meRP57Y/bScOfdL0/fQkn+rus5Kkqj6X5PpJvroT+wSAdSewAsDudVKSP05ylyTzvZuV5Be6+9/mV66qJOnt7PPiXHZU1L4rln93+v79ucdbpv2tB2CPZUgwAOxeL0vy9O4+fcX8dyR5bE0JtapuM81/T5KjpnmHZTaUeKWvJLlmVV2jqq6c5L5LqRwABiOwAsBu1N1ndvdzV1n0e0n2SXLadAOl35vmvyjJAdNQ4N9K8uFV9nlRkqdndk3sW5J8Zhm1A8Boqnt7o5AAAABg7elhBQAAYEgCKwAAAEMSWAEAABiSwAoAAMCQBFYAAACGJLACAAAwJIEVAACAIQmsAAAADOn/AzjDS5+ZZsZkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig6, ax6 = plt.subplots(figsize=(16, 9))\n", + "ax6.bar(disp_med['submitted_via'], disp_med['dispute_rate'])\n", + "\n", + "ax6.set_title(\"Disputed issue rates per submission medium\")\n", + "ax6.set_xlabel('Medium')\n", + "ax6.set_ylabel('Disputed issue rate')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "52069de3", + "metadata": {}, + "outputs": [], + "source": [ + "df_by_med = df[['submitted_via', 'timely_response']].groupby(['submitted_via', 'timely_response']).size().reset_index()\n", + "df_by_med = df_by_med[df_by_med['timely_response'] == 1]\n", + "df_by_med.columns = ['submitted_via', 'was timely_response', 'count']" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "06157da5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Timely response count')" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAImCAYAAACRopP3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA56UlEQVR4nO3de7xtZV0v/s83QCEV5KZHgcS85EGOUSJesrIoMK2wDh4xL1gW5sHSU57CbhhKYSfll8ejHRMUSQXykqQSkuQlL8hWUcRLkOIBQUE3Iqmg4Pf3xxgr516svfbasOdae+/xfr9e87XGfMZ4xnzGWGNdPvN5xjOruwMAAABT9X1r3QAAAABYS4IxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDTExVvaaqXrhGr11V9eqquq6qPrzCOn9dVX88h7bsX1VdVTtu6X2zdqrq8qr6mS20rz+oqlfdjvpPqqp3bom2rKbZc3h7zwHAtsI/AwBrrKouT7JLkh/s7m+MZb+e5Mnd/ag1bNo8PDLJzybZd+FYZ1XV05L8enc/cqGsu39z9ZoH39Pdf3Y7678uyeu2UHPWxO09BwDbCj3GAFuHHZM8e60bsbmqaofNrHKvJJcvFYq3VWMvuL+nt5HzB8DWwB8igK3D/0ry3Kq66+IVSw35rap3j73KqaqnVdX7q+rkqvpaVX2uqh4xll9RVddU1dGLdrtXVZ1XVTdU1Xuq6l4z+37AuG59VX22qv7bzLrXVNUrquodVfWNJD+1RHvvWVVnj/Uvq6rfGMufnuRVSR5eVf9eVX+6qN5/TvLXM+u/NvOaLxyXH1VVV1bV743HdXVVPa6qHlNV/zq+5h/M7PP7quq4qvq3qvpqVZ1VVXss0ebHV9VHFpX9blX9/eJtZ87/iVX1/iTfTPKDmzhvj6mqT43n+4tV9dxFx/MHVfWVcQjrk2bq7VZVr62qa6vqC1X1Rwshcvz+/ktV/eU4NP3zVfVzM3WfNl4LN4zrZvf7a1X16bHeuQvf/zGknjye2+ur6hNVdeAy5+DPq+rD47ZvnT23VfWwqvrAeE1+vKoetdz5W2L/vz+eqxvG83noWL7BrQAL53BR9YeM5/u6Gobu77zofK/0+nl+Vf3tuLxzVf3teB19raourKq7L3euF75HM/t7xFjv+vHrIxadkxfU8LN8Q1W9s6r22si536I/B1X1lPH6+mpV/eGi15o9B7c617XhsOvnV9Xfjefphqq6uKruX1XPG9t5RVUdttQxAaw1wRhg67AuybuTPPc21n9okk8k2TPJ65OckeQhSe6b5MlJXlZVd57Z/klJXpBkryQXZRzuWVV3SnLeuI+7JXlikpdX1QNn6v5KkhOT3CXJv+TW3pDkyiT3THJkkj+rqkO7+5Qkv5nkg9195+4+frZSd3960fq7buRY/1OSnZPsk+RPkvzNeIwPTvLjSf6kqhaC1m8neVySnxzbc12S/7PEPs9Ocu8awvmCJyc5fSNtSJKnJDkmw3m4Nsuft1OSPKO775LkwCTnLzqevcbjOTrJK6vqh8Z1/zvJbhmC408meWqSX52p+9Aknx3r/0WSU8Zwe6ckL03yc+NrPiLD9zlV9bgkf5Dkl5PsneR9Gb5nSXJYkp9Icv8kd03yhCRfXeYcPDXJr2U4tzePr5mq2ifJ25O8MMkeGa7rN1XV3hs5f1+Y3el4/M9K8pCx/YcnuXyZdiz2pLHOfcZj+aOZdZtz/cw6OsP3Yr8MP2e/meRby53rRce0R4Zz8tKx/kuSvL2q9pzZ7FcyfH/vluQOWf73wRb5OaiqA5K8IsP3455j2/Zd5nU35Rcy/NzsnuRjSc7N8P/mPklOSPJ/b8e+AeZGMAbYevxJkt9aFB5W6vPd/eruviXJmRn+eT+hu2/q7ncm+XaGkLzg7d393u6+KckfZuil3S/Jz2cY6vzq7r65uz+a5E0ZAu6Ct3b3+7v7u91942wjxn08Msnvd/eN3X1Rhl7ip9yGY9qY7yQ5sbu/k+ENgL2S/FV339DdlyS5JMmDxm2fkeQPu/vK8Vifn+TIWjTh1rjuzAzBImOg3T/J25Zpx2u6+5LuvjnJo7P8eftOkgOqatfuvm5cP+uPx+/VezKEp/9WwzD1JyR53nhslyd5cTY8l1/o7r8Zv++nJblHkruP676b5MCq2qW7rx7PzcI5+fPu/vTY9j9LclANvcbfyRBUH5Ckxm2uXuYcnN7dnxyHxv/xTLufnOQd3f2O8To5L8ObP49Z6vyN38tZtyS543jOduruy7v735Zpx2Iv6+4runt9hjdxnjizbnOunyyqt2eS+3b3Ld39ke7++rhuY+d61mOTXNrdp4/H/IYkn8kQJBe8urv/tbu/leSsJActc4xb6ufgyCRvm/l98Mfj8dxW7+vuc8dr6+8yvPly0kw7968lRsYArDXBGGAr0d2fzBDEjrsN1b88s/ytcX+Ly2Z7jK+Yed1/T7I+Q2/RvZI8dBwq+rUahjM/KUPv1K3qLuGeSdZ39w0zZV/I0Fu0pXx1DILJeKy59fEvHOu9krxl5lg+nSF03T23dlqSX6mqyhA+zxqDwsbMnodNnbf/miEUfqGGoesPn6l73aJ7rr+Q4TzulaHX8AuL1s2eyy8tLHT3N8fFO4/7e0KGXs2rq+rtVfWAmbb+1Uw71yepJPt09/lJXpahN/HLVfXKqtp1hefgC0l2Gtt9rySPX3Q+HpkhuC9VdwPdfVmS52QIcNdU1RlVdc9l2rGpds3W3ZzrZ9bpGXo/z6iqq6rqL8bQvty5nnXPLOoZzzLfzwxDzJdqx205juV+Du6ZDX8ffCPLjxLYlMVt+MoS7VzuuADWhGAMsHU5PslvZMN/lhdC0/fPlM0G1dtiv4WFcYj1HkmuyvAP8nu6+64zjzt39zNn6vYy+70qyR5VdZeZsh9I8sUVtmu5fd8WV2QY4jp7PDt3963a090fytCz/uMZhrQuN4x6cVuXPW/dfWF3H5FhiOzfZ+gNXLD7OBx3wQ9kOI9fydAreK9F61Z0Lsdeu5/NEEY/k2Go7UJbn7Gorbt09wfGei/t7gcneWCGYcj/c5mX2W9m+QfG9n5lfI3TF73Gnbr7pNkmbqL9r+9hdvJ7jdu+aFz1jWz6Z2Fxu65a7rVWoru/091/2t0HZBgu/fMZhpIvd65nXZUNv5cLbVvpz8btsdzPwdXZ8PfB92foGV/KBud+HB1wW0a4AGx1BGOArcjYU3ZmhnsCF8quzfDP85Oraoeq+rUM907eHo+pqkdW1R0y3Gt8QXdfkaHH+v7jZDw7jY+HLLr3drn2X5HkA0n+vIbJih6U5OlZ+UfWfDnJvmO7toS/TnJifW9yqb2r6ohltn9thh7Tm7t7qfunN2aj562q7lDD59nuNg4n/XqG3rpZfzpu9+MZAtffjb1sZ43tv8t4DL+T5G831ZiquntV/eIYuG9K8u8zr/nXSZ63cP9zDRN8PX5cfkhVPbSqdsoQgm5coq2znlxVB4xh6oQkbxzb/bdJfqGqDh+v2Z1rmLhpRfeuVtUPVdVPV9UdxzZ8a6YdF2W4fveoqv+UoWd5sWOrat/xvt4/yPAzdbtU1U9V1X8Zw+DXM7wJcMsmzvWsd2S4Rn6lqnasqickOSDLD9ffUpb7OXhjkp+f+X1wQjb+/+G/Jtm5qh47XiN/lGHIO8A2TzAG2PqckOROi8p+I0PP3Vcz9OR94Ha+xusz9E6vzzBZz5OSZBwCfViSozL0cH0pQ0/d5vzz+8QM9+deleQtSY4f7zFdifMz3Bv5par6yma85sb8VYaJtd5ZVTck+VCGCas25vQMk2Ntqrd4Ays4b09JcnlVfT3DkNsnz1T/UobJkK7K8AbCb3b3Z8Z1v5UhoH4uw0Rnr09y6gqa9H1Jfnfc5/oMky7997GtbxnbdsbYnk8mWZjNetcMvZ3XZRjm+9Ukf7nM65ye5DXjMeyc8Q2d8Q2SIzKE0msz9Fj+z6z8/447JjkpQ+/zlzL0tC/Msnx6ko9nmIzrnVk69L5+XPe58fHCJbbZXP8pQ4j8eoahyO/J8AbARs/1rO7+aoY3PX43w3n9vSQ/391b4jrflI3+HIz3Ix+b4ZxdneF7v3iW74zbXp/h2F6V4c26b2xsW4BtTXVv6VFrALBtqqpdklyT5Ee7+9JVeL1HJfnb7r49swCviap6d4a2v2qt2wIAt5ceYwD4nmcmuXA1QjEAsPXYcdObAMD2r6ouzzA78+PWtiUAwGozlBoAAIBJM5QaAACASROMAQAAmDT3GI/22muv3n///de6GQAAAMzBRz7yka90995LrROMR/vvv3/WrVu31s0AAABgDqrqCxtbZyg1AAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkza3YFxVO1fVh6vq41V1SVX96Vj+/Kr6YlVdND4eM1PneVV1WVV9tqoOnyl/cFVdPK57aVXVWH7HqjpzLL+gqvafqXN0VV06Po6e13ECAACwbdtxjvu+KclPd/e/V9VOSf6lqs4Z153c3X85u3FVHZDkqCQPTHLPJP9UVffv7luSvCLJMUk+lOQdSR6d5JwkT09yXXfft6qOSvKiJE+oqj2SHJ/k4CSd5CNVdXZ3XzfH4wUAAGAbNLdg3N2d5N/HpzuNj16myhFJzujum5J8vqouS3JIVV2eZNfu/mCSVNVrkzwuQzA+Isnzx/pvTPKysTf58CTndff6sc55GcL0G7bU8QEAAFvW/se9fa2bwO1w+UmPXesm3GZzvce4qnaoqouSXJMhqF4wrnpWVX2iqk6tqt3Hsn2SXDFT/cqxbJ9xeXH5BnW6++Yk1yfZc5l9AQAAwAbmGoy7+5buPijJvhl6fw/MMCz6PkkOSnJ1khePm9dSu1im/LbW+Q9VdUxVrauqdddee+0yRwIAAMD2alVmpe7uryV5d5JHd/eXx8D83SR/k+SQcbMrk+w3U23fJFeN5fsuUb5BnaraMcluSdYvs6/F7Xpldx/c3Qfvvffet+cQAQAA2EbNc1bqvavqruPyLkl+JslnquoeM5v9UpJPjstnJzlqnGn63knul+TD3X11khuq6mHj/cNPTfLWmToLM04fmeT88d7mc5McVlW7j0O1DxvLAAAAYAPznJX6HklOq6odMgTws7r7bVV1elUdlGFo8+VJnpEk3X1JVZ2V5FNJbk5y7DgjdZI8M8lrkuySYdKthdmtT0ly+jhR1/oMs1qnu9dX1QuSXDhud8LCRFwAAAAwa56zUn8iyY8sUf6UZeqcmOTEJcrXJTlwifIbkzx+I/s6Ncmpm9FkAAAAJmhV7jEGAACArZVgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkzS0YV9XOVfXhqvp4VV1SVX86lu9RVedV1aXj191n6jyvqi6rqs9W1eEz5Q+uqovHdS+tqhrL71hVZ47lF1TV/jN1jh5f49KqOnpexwkAAMC2bZ49xjcl+enu/uEkByV5dFU9LMlxSd7V3fdL8q7xearqgCRHJXlgkkcneXlV7TDu6xVJjklyv/Hx6LH86Umu6+77Jjk5yYvGfe2R5PgkD01ySJLjZwM4AAAALJhbMO7Bv49PdxofneSIJKeN5acledy4fESSM7r7pu7+fJLLkhxSVfdIsmt3f7C7O8lrF9VZ2Ncbkxw69iYfnuS87l7f3dclOS/fC9MAAADwH+Z6j3FV7VBVFyW5JkNQvSDJ3bv76iQZv95t3HyfJFfMVL9yLNtnXF5cvkGd7r45yfVJ9lxmX4vbd0xVrauqdddee+3tOFIAAAC2VXMNxt19S3cflGTfDL2/By6zeS21i2XKb2ud2fa9srsP7u6D995772WaBgAAwPZqVWal7u6vJXl3huHMXx6HR2f8es242ZVJ9puptm+Sq8byfZco36BOVe2YZLck65fZFwAAAGxgnrNS711Vdx2Xd0nyM0k+k+TsJAuzRB+d5K3j8tlJjhpnmr53hkm2PjwOt76hqh423j/81EV1FvZ1ZJLzx/uQz01yWFXtPk66ddhYBgAAABvYcY77vkeS08aZpb8vyVnd/baq+mCSs6rq6Un+X5LHJ0l3X1JVZyX5VJKbkxzb3beM+3pmktck2SXJOeMjSU5JcnpVXZahp/iocV/rq+oFSS4ctzuhu9fP8VgBAADYRs0tGHf3J5L8yBLlX01y6EbqnJjkxCXK1yW51f3J3X1jxmC9xLpTk5y6ea0GAABgalblHmMAAADYWgnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKTNLRhX1X5V9c9V9emquqSqnj2WP7+qvlhVF42Px8zUeV5VXVZVn62qw2fKH1xVF4/rXlpVNZbfsarOHMsvqKr9Z+ocXVWXjo+j53WcAAAAbNt2nOO+b07yu9390aq6S5KPVNV547qTu/svZzeuqgOSHJXkgUnumeSfqur+3X1LklckOSbJh5K8I8mjk5yT5OlJruvu+1bVUUlelOQJVbVHkuOTHJykx9c+u7uvm+PxAgAAsA2aW49xd1/d3R8dl29I8ukk+yxT5YgkZ3T3Td39+SSXJTmkqu6RZNfu/mB3d5LXJnncTJ3TxuU3Jjl07E0+PMl53b1+DMPnZQjTAAAAsIFVucd4HOL8I0kuGIueVVWfqKpTq2r3sWyfJFfMVLtyLNtnXF5cvkGd7r45yfVJ9lxmX4vbdUxVrauqdddee+1tP0AAAAC2WXMPxlV15yRvSvKc7v56hmHR90lyUJKrk7x4YdMlqvcy5be1zvcKul/Z3Qd398F77733cocBAADAdmquwbiqdsoQil/X3W9Oku7+cnff0t3fTfI3SQ4ZN78yyX4z1fdNctVYvu8S5RvUqaodk+yWZP0y+wIAAIANzHNW6kpySpJPd/dLZsrvMbPZLyX55Lh8dpKjxpmm753kfkk+3N1XJ7mhqh427vOpSd46U2dhxukjk5w/3od8bpLDqmr3caj2YWMZAAAAbGCes1L/WJKnJLm4qi4ay/4gyROr6qAMQ5svT/KMJOnuS6rqrCSfyjCj9bHjjNRJ8swkr0myS4bZqM8Zy09JcnpVXZahp/iocV/rq+oFSS4ctzuhu9fP5SgBAADYps0tGHf3v2Tpe33fsUydE5OcuET5uiQHLlF+Y5LHb2RfpyY5daXtBQAAYJpWZVZqAAAA2FoJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEzaJoNxVT17JWUAAACwLVpJj/HRS5Q9bQu3AwAAANbEjhtbUVVPTPIrSe5dVWfPrLpLkq/Ou2EAAACwGjYajJN8IMnVSfZK8uKZ8huSfGKejQIAAIDVstFg3N1fSPKFJA9fveYAAADA6lrJ5Fu/XFWXVtX1VfX1qrqhqr6+Go0DAACAeVtuKPWCv0jyC9396Xk3BgAAAFbbSmal/rJQDAAAwPZqJT3G66rqzCR/n+SmhcLufvO8GgUAAACrZSXBeNck30xy2ExZJxGMAQAA2OZtMhh396+uRkMAAABgLWwyGFfVqzP0EG+gu39tLi0CAACAVbSSodRvm1neOckvJblqPs0BAACA1bWSodRvmn1eVW9I8k9zaxEAAACsopV8XNNi90vyA1u6IQAAALAWVnKP8Q0Z7jGu8euXkvz+nNsFAAAAq2IlQ6nvshoNAQAAgLWwksm3UlW/mOQnxqfv7u63Lbc9AAAAbCs2eY9xVZ2U5NlJPjU+nl1Vfz7vhgEAAMBqWEmP8WOSHNTd302SqjotyceSPG+eDQMAAIDVsNJZqe86s7zbHNoBAAAAa2IlPcZ/nuRjVfXPGWam/onoLQYAAGA7sZJZqd9QVe9O8pAMwfj3u/tL824YAAAArIaVTL71S0m+2d1nd/dbk9xYVY+be8sAAABgFazkHuPju/v6hSfd/bUkx8+tRQAAALCKVhKMl9pmRZ9/DAAAAFu7lQTjdVX1kqq6T1X9YFWdnOQj824YAAAArIaVBOPfSvLtJGcmOSvJt5IcO89GAQAAwGpZyazU30hy3Cq0BQAAAFbdSnqMAQAAYLslGAMAADBpcwvGVbVfVf1zVX26qi6pqmeP5XtU1XlVden4dfeZOs+rqsuq6rNVdfhM+YOr6uJx3UurqsbyO1bVmWP5BVW1/0ydo8fXuLSqjp7XcQIAALBt22Qwrqr7V9W7quqT4/MHVdUfrWDfNyf53e7+z0keluTYqjogw/3K7+ru+yV51/g847qjkjwwyaOTvLyqdhj39YokxyS53/h49Fj+9CTXdfd9k5yc5EXjvvbI8FnLD01ySJLjZwM4AAAALFhJj/HfJHleku8kSXd/IkOAXVZ3X93dHx2Xb0jy6ST7JDkiyWnjZqcledy4fESSM7r7pu7+fJLLkhxSVfdIsmt3f7C7O8lrF9VZ2Ncbkxw69iYfnuS87l7f3dclOS/fC9MAAADwH1YSjL+/uz+8qOzmzXmRcYjzjyS5IMndu/vqZAjPSe42brZPkitmql05lu0zLi8u36BOd9+c5Pokey6zLwAAANjASoLxV6rqPkk6SarqyCRXr/QFqurOSd6U5Dnd/fXlNl2irJcpv611Ztt2TFWtq6p111577TJNAwAAYHu1kmB8bJL/m+QBVfXFJM9J8syV7LyqdsoQil/X3W8ei788Do/O+PWasfzKJPvNVN83yVVj+b5LlG9Qp6p2TLJbkvXL7GsD3f3K7j64uw/ee++9V3JIAAAAbGc2GYy7+3Pd/TNJ9k7ygO5+ZHdfvql6472+pyT5dHe/ZGbV2UkWZok+OslbZ8qPGmeavneGSbY+PA63vqGqHjbu86mL6izs68gk54/3IZ+b5LCq2n2cdOuwsQwAAAA2sJJZqZ9dVbsm+WaSk6vqo1V12Ar2/WNJnpLkp6vqovHxmCQnJfnZqro0yc+Oz9PdlyQ5K8mnkvxjkmO7+5ZxX89M8qoME3L9W5JzxvJTkuxZVZcl+Z2MM1x39/okL0hy4fg4YSwDAACADey4gm1+rbv/avxc4bsl+dUkr07yzuUqdfe/ZOl7fZPk0I3UOTHJiUuUr0ty4BLlNyZ5/Eb2dWqSU5drIwAAAKzkHuOFcPuYJK/u7o9n44EXAAAAtikrCcYfqap3ZgjG51bVXZJ8d77NAgAAgNWxkqHUT09yUJLPdfc3q2rPDMOpAQAAYJu3yWDc3d+tqi8nOWD8SCQAAADYbmwy6FbVi5I8IcNs0QuzRHeS986xXQAAALAqVtID/LgkP9TdN825LQAAALDqVjL51ueS7DTvhgAAAMBaWEmP8TeTXFRV70ryH73G3f3bc2sVAAAArJKVBOOzxwcAAABsd1YyK/VpVXWHJPcfiz7b3d+Zb7MAAABgdaxkVupHJTktyeVJKsl+VXV0d5uVGgAAgG3eSoZSvzjJYd392SSpqvsneUOSB8+zYQAAALAaVjIr9U4LoThJuvtfY5ZqAAAAthMr6TFeV1WnJDl9fP6kJB+ZX5MAAABg9awkGD8zybFJfjvDPcbvTfLyeTYKAAAAVstKZqW+qapeluRdSb6bYVbqb8+9ZQAAALAKVjIr9WOT/HWSf8vQY3zvqnpGd58z78YBAADAvK10Vuqf6u7LkqSq7pPk7UkEYwAAALZ5K5mV+pqFUDz6XJJr5tQeAAAAWFUr6TG+pKrekeSsJJ3k8UkurKpfTpLufvMc2wcAAABztZJgvHOSLyf5yfH5tUn2SPILGYKyYAwAAMA2ayWzUv/qajQEAAAA1sIm7zGuqr+oql2raqeqeldVfaWqnrwajQMAAIB5W8nkW4d199eT/HySK5PcP8n/nGurAAAAYJWsJBjvNH59TJI3dPf6ObYHAAAAVtVKJt/6h6r6TJJvJfnvVbV3khvn2ywAAABYHZvsMe7u45I8PMnB3f2dJN9McsS8GwYAAACrYSWTb31/kmOTvGIsumeSg+fZKAAAAFgtK7nH+NVJvp3kEePzK5O8cG4tAgAAgFW0kmB8n+7+iyTfSZLu/laSmmurAAAAYJWsJBh/u6p2SdJJUlX3SXLTXFsFAAAAq2Qls1Ifn+Qfk+xXVa9L8mNJnjbPRgEAAMBqWTYYV9X3Jdk9yS8neViGIdTP7u6vrELbAAAAYO6WDcbd/d2qelZ3n5Xk7avUJgAAAFg1K7nH+Lyqem5V7VdVeyw85t4yAAAAWAUrucf418avx86UdZIf3PLNAQAAgNW1yWDc3fdejYYAAADAWljJUGoAAADYbgnGAAAATJpgDAAAwKRtMhhX1Zuq6rHjZxoDAADAdmUlYfcVSX4lyaVVdVJVPWDObQIAAIBVs8lg3N3/1N1PSvKjSS7P8LnGH6iqX62qnebdQAAAAJinFQ2Prqo9kzwtya8n+ViSv8oQlM+bW8sAAABgFWzyc4yr6s1JHpDk9CS/0N1Xj6vOrKp182wcAAAAzNsmg3GSl3X3+Uut6O6Dt3B7AAAAYFVtNBhX1S8vtbygu988r0YBAADAalmux/gXllnXSQRjAAAAtnkbDcbd/aur2RAAAABYC5uclbqq7l5Vp1TVOePzA6rq6fNvGgAAAMzfSj6u6TVJzk1yz/H5vyZ5zpzaAwAAAKtqJcF4r+4+K8l3k6S7b05yy1xbBQAAAKtkJcH4G1W1Z4YJt1JVD0ty/VxbBQAAAKtkJZ9j/DtJzk5yn6p6f5K9kxw511YBAADAKtlkMO7uj1bVTyb5oSSV5LPd/Z25twwAAABWwSaDcVXtkOQxSfYftz+sqtLdL5lz2wAAAGDuVjKU+h+S3Jjk4owTcAEAAMD2YiWTb+3b3b/c3cd3958uPDZVqapOraprquqTM2XPr6ovVtVF4+MxM+ueV1WXVdVnq+rwmfIHV9XF47qXVlWN5XesqjPH8guqav+ZOkdX1aXj4+iVngwAAACmZyXB+JyqOuw27Ps1SR69RPnJ3X3Q+HhHklTVAUmOSvLAsc7LxyHcSfKKJMckud/4WNjn05Nc1933TXJykheN+9ojyfFJHprkkCTHV9Xut6H9AAAATMBKgvGHkrylqr5VVV+vqhuq6uubqtTd702yfoXtOCLJGd19U3d/PsllSQ6pqnsk2bW7P9jdneS1SR43U+e0cfmNSQ4de5MPT3Jed6/v7uuSnJelAzoAAACsKBi/OMnDk3x/d+/a3Xfp7l1vx2s+q6o+MQ61XujJ3SfJFTPbXDmW7TMuLy7foE5335zhs5X3XGZfAAAAcCsrCcaXJvnk2GN7e70iyX2SHJTk6gyhOxk+BmqxXqb8ttbZQFUdU1Xrqmrdtddeu0yzAQAA2F6tZFbqq5O8u6rOSXLTQuFt+bim7v7ywnJV/U2St41Pr0yy38ym+ya5aizfd4ny2TpXVtWOSXbLMHT7yiSPWlTn3RtpzyuTvDJJDj744C0R/AEAANjGrKTH+PNJ3pXkDknuMvPYbOM9wwt+KcnCjNVnJzlqnGn63hkm2fpwd1+d5Iaqeth4//BTk7x1ps7CjNNHJjl/7NU+N8NnLe8+DtU+bCwDAACAW9lkj/FKPpppKVX1hgw9t3tV1ZUZZop+VFUdlGFo8+VJnjG+xiVVdVaSTyW5Ocmx3X3LuKtnZpjhepck54yPJDklyelVdVmGnuKjxn2tr6oXJLlw3O6E7l7pJGAAAABMzEaDcVW9rLufVVX/kCXu0e3uX1xux939xCWKT1lm+xOTnLhE+bokBy5RfmOSx29kX6cmOXW59gEAAECyfI/xU5M8K8lfrlJbAAAAYNUtF4z/LUm6+z2r1BYAAABYdcsF472r6nc2tvK2zEoNAAAAW5vlgvEOSe6cpT8XGAAAALYLywXjq7v7hFVrCQAAAKyB5T7HWE8xAAAA273lgvGhq9YKAAAAWCMbDcbdvX41GwIAAABrYbkeYwAAANjuCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABM2o5r3QAAALZf+x/39rVuArfD5Sc9dq2bAKtCjzEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJM2t2BcVadW1TVV9cmZsj2q6ryqunT8uvvMuudV1WVV9dmqOnym/MFVdfG47qVVVWP5HavqzLH8gqraf6bO0eNrXFpVR8/rGAEAANj2zbPH+DVJHr2o7Lgk7+ru+yV51/g8VXVAkqOSPHCs8/Kq2mGs84okxyS53/hY2OfTk1zX3fdNcnKSF4372iPJ8UkemuSQJMfPBnAAAACYNbdg3N3vTbJ+UfERSU4bl09L8riZ8jO6+6bu/nySy5IcUlX3SLJrd3+wuzvJaxfVWdjXG5McOvYmH57kvO5e393XJTkvtw7oAAAAkGT17zG+e3dfnSTj17uN5fskuWJmuyvHsn3G5cXlG9Tp7puTXJ9kz2X2dStVdUxVrauqdddee+3tOCwAAAC2VVvL5Fu1RFkvU35b62xY2P3K7j64uw/ee++9V9RQAAAAti+rHYy/PA6Pzvj1mrH8yiT7zWy3b5KrxvJ9lyjfoE5V7ZhktwxDtze2LwAAALiV1Q7GZydZmCX66CRvnSk/apxp+t4ZJtn68Djc+oaqeth4//BTF9VZ2NeRSc4f70M+N8lhVbX7OOnWYWMZAAAA3MqO89pxVb0hyaOS7FVVV2aYKfqkJGdV1dOT/L8kj0+S7r6kqs5K8qkkNyc5trtvGXf1zAwzXO+S5JzxkSSnJDm9qi7L0FN81Liv9VX1giQXjtud0N2LJwEDAACAJHMMxt39xI2sOnQj25+Y5MQlytclOXCJ8hszBusl1p2a5NQVNxYAAIDJ2lom3wIAAIA1IRgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGmCMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAk7YmwbiqLq+qi6vqoqpaN5btUVXnVdWl49fdZ7Z/XlVdVlWfrarDZ8ofPO7nsqp6aVXVWH7HqjpzLL+gqvZf9YMEAABgm7CWPcY/1d0HdffB4/Pjkryru++X5F3j81TVAUmOSvLAJI9O8vKq2mGs84okxyS53/h49Fj+9CTXdfd9k5yc5EWrcDwAAABsg7amodRHJDltXD4tyeNmys/o7pu6+/NJLktySFXdI8mu3f3B7u4kr11UZ2Ffb0xy6EJvMgAAAMxaq2DcSd5ZVR+pqmPGsrt399VJMn6921i+T5IrZupeOZbtMy4vLt+gTnffnOT6JHsubkRVHVNV66pq3bXXXrtFDgwAAIBty45r9Lo/1t1XVdXdkpxXVZ9ZZtulenp7mfLl6mxY0P3KJK9MkoMPPvhW6wEAANj+rUmPcXdfNX69JslbkhyS5Mvj8OiMX68ZN78yyX4z1fdNctVYvu8S5RvUqaodk+yWZP08jgUAAIBt26oH46q6U1XdZWE5yWFJPpnk7CRHj5sdneSt4/LZSY4aZ5q+d4ZJtj48Dre+oaoeNt4//NRFdRb2dWSS88f7kAEAAGADazGU+u5J3jLOhbVjktd39z9W1YVJzqqqpyf5f0kenyTdfUlVnZXkU0luTnJsd98y7uuZSV6TZJck54yPJDklyelVdVmGnuKjVuPAAAAA2PasejDu7s8l+eElyr+a5NCN1DkxyYlLlK9LcuAS5TdmDNYAAACwnK3p45oAAABg1QnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKTtuNYNAGDt7X/c29e6CdwOl5/02LVuAgBs0/QYAwAAMGmCMQAAAJMmGAMAADBp7jEGADaLe9K3be5JB7g1PcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCk7bjWDQDmY//j3r7WTeB2uPykx651EwAAJkOPMQAAAJMmGAMAADBpgjEAAACTJhgDAAAwaYIxAAAAkyYYAwAAMGnbdTCuqkdX1Wer6rKqOm6t2wMAAMDWZ7sNxlW1Q5L/k+TnkhyQ5IlVdcDatgoAAICtzXYbjJMckuSy7v5cd387yRlJjljjNgEAALCV2XGtGzBH+yS5Yub5lUkeukZt2SL2P+7ta90EbofLT3rsWjcBAABYQnX3WrdhLqrq8UkO7+5fH58/Jckh3f1bM9sck+SY8ekPJfnsqjeUWXsl+cpaN4JthuuFzeF6YXO4Xtgcrhc2h+tlbd2ru/deasX23GN8ZZL9Zp7vm+Sq2Q26+5VJXrmajWLjqmpddx+81u1g2+B6YXO4Xtgcrhc2h+uFzeF62Xptz/cYX5jkflV176q6Q5Kjkpy9xm0CAABgK7Pd9hh3981V9awk5ybZIcmp3X3JGjcLAACArcx2G4yTpLvfkeQda90OVsywdjaH64XN4Xphc7he2ByuFzaH62Urtd1OvgUAAAArsT3fYwwAAACbJBgzF1V1S1VdNPM4bgvt9wPj1/2r6pNbYp9svZa4jvZf6zaxdmauh09W1d9V1ff7XTAtS10Dm1l//6r6lRVut8Wvq6r6xYW/h1X1/Kp67pZ+DVZm0bX0D1V1101sv3dVXVBVH6uqH59De1wP27CqOrmqnjPz/NyqetXM8xdX1e9spO67q8os1VsBwZh5+VZ3HzTzOGlL7LS7H7El9sM2Y/F1dPlaN4g1tXA9HJjk20l+c60bxKq7vdfA/kk2GYznpbvP3lJ/D7ndZq+l9UmO3cT2hyb5THf/SHe/byUvUFU7LPec7coHkjwiSarq+zJ8VvEDZ9Y/Isn716BdbAbBmFVVVZdX1Z9V1Qeral1V/ej4rtq/VdVvjtvcuareVVUfraqLq+qImfr/vnatZ61t7NqoqodU1SeqauequlNVXVJVB651e5mr9yW577i8Q1X9zfh9f2dV7ZIkVXVQVX1ovDbeUlW7j+XvrqoXVdWHq+pfF3p/qmqHqvpfVXXhWOcZa3NorND7kty3qvaoqr8fv2cfqqoHJUlV/eTMaJOPVdVdkpyU5MfHsv8x9gy/b/yd8tGqWvbN16p6VFW9p6rOGq+dk6rqSeO1dHFV3Wfc7hdmehf/qaruPpY/rapeNufzwub7YJJ9kqSq7lNV/1hVHxmvjQdU1UFJ/iLJY8ZrZ5eqOmz8X+aj4+iFO4/1L6+qP6mqf0ny+CWe/8b4O+bjVfWm2sxRD2y13p8xGGcIxJ9MckNV7V5Vd0zyn5Nk/P3xkfF/33vM1H9yVX2ghhEMh6xu01kgGDMvu9SGQ2CfMLPuiu5+eIZ/al6T5MgkD0tywrj+xiS/1N0/muSnkry4qmoV287WY/Y6eks2cm1094UZPqf8hRn+efnb7ja8djtVVTsm+bkkF49F90vyf7r7gUm+luS/juWvTfL73f2gcdvjZ3azY3cfkuQ5M+VPT3J9dz8kyUOS/EZV3XuOh8JttOga+NMkHxu/z3+Q4fueJM9Ncmx3H5Tkx5N8K8lxSd439hSenOSaJD87/k55QpKXruDlfzjJs5P8lyRPSXL/8Vp6VZLfGrf5lyQP6+4fSXJGkt+7fUfMvNTQi3tohr8hyTBj8G9194MzXEMv7+6LkvxJkjPH6+lOSf4oyc+M1866JLPDZG/s7kd29xlLPH9zdz+ku384yacz/N5hG9fdVyW5uap+IENA/mCSC5I8PMnBGb7XJyc5cry2Tk1y4swu7jSOivzv4zrWwHb9cU2sqW+NfzyWsvDH5+Ikd+7uGzK8q3ZjDff4fCPJn1XVTyT5boZ3ce+e5EvzbTJboQ2uo6raKRu/Nk5IcmGG8Pzbq99UVsEuVXXRuPy+JKckuWeSz4//uCbJR5LsX1W7Jblrd79nLD8tyd/N7OvNs9uPy4cleVBVHTk+3y1D6P78lj0MboelroELMr4Z0t3nV9We4/f//UleUlWvyxBGrlziPdadkrxs7BG8Jcn9V9CGC7v76iSpqn9L8s6x/OIMb9glyb5Jzhx7hO4Q19DWaOFa2j/D74Hzxl7fRyT5u5lr5Y5L1H1YkgOSvH/c7g4ZgtCCMxdtP/v8wKp6YZK7JrlzknNvz0GwVVnoNX5Ekpdk+B/lEUmuT/LFDH9jzhuvmR2SXD1T9w1J0t3vrapdq+qu3f211Ws6iWDM2rhp/PrdmeWF5zsmeVKSvZM8uLu/U1WXJ9l5VVvI1mq5a2OPDP9k7DSWfWNNWsg83eoNt/EfjNnfI7ck2WUF+1qoc0u+97ewMvQU+Ud167XUNbDUiKLu7pOq6u1JHpPkQ1X1M0ts9z+SfDlDL/D3ZXhjbVMW/92a/Zu2cC397yQv6e6zq+pRSZ6/gv2yur7V3QeNb6K8LcM9xq9J8rVl3thfUEnO6+4nbmT94r8/s89fk+Rx3f3xqnpakkdtXrPZii3cZ/xfMgylviLJ7yb5epLzk+wzjphcyuLPz/V5umvAUGq2RrsluWYMPj+V5F5r3SC2GstdG69M8sdJXpfkRWvROLYe3X19kuvqe7PHPiXJe5apkgw9N88cRyakqu5fVXeaYzPZMt6b4U2zjCH0K9399aq6T3df3N0vyjDU9QFJbkhyl5m6uyW5uru/m+Ea2VKTI+2WoYcoSY7eQvtkDsbfFb+dYdj0t5J8vqoenwxvulTVDy9R7UNJfqyq7jtu9/1VtZLRBslw/V09/p550u0+ALYm70/y80nWd/ct3b0+w8iAh2cYNbB3VT08GUbAVdXs5FxPGMsfmeGWnutXteUk0WPM/MwOd0uSf+zulX5k0+uS/ENVrUtyUZLPbOG2se1a8tqoqqcmubm7Xz/eL/aBqvrp7j5/7ZrKVuDoJH89Tm7zuSS/uontX5VhWOVHx17Ia5M8bp4NZIt4fpJXV9Unknwz3wuizxnfQLslyaeSnJOhV/fmqvp4hp67lyd50xiE/jlbbqTJ8zMMx/1ihhDlXvWtWHd/bLwmjsoQVl9RVX+UYQTSGUk+vmj7a8fe3jeMEyslwz3H/7qCl/vjDMP/v5Bh+P1dlt+cbcjFGWajfv2isjt39zXjbTovHUcp7Jjk/0tyybjddTV8JOmuSX5t9ZrMrOrWUw8AAMB0GUoNAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAsA2pqq6q02ee71hV11bV2zZzP++uqoPH5XdU1V23cFMBYJvhc4wBYNvyjSQHVtUu3f2tJD+b5Iu3Z4fd/Zgt0jIA2EbpMQaAbc85SR47Lj8xyRsWVlTVnarq1Kq6sKo+VlVHjOW7VNUZVfWJqjozyS4zdS6vqr2qav+q+uRM+XOr6vnj8rur6uSqem9VfbqqHlJVb66qS6vqhatwzAAwN4IxAGx7zkhyVFXtnORBSS6YWfeHSc7v7ock+akk/6uq7pTkmUm+2d0PSnJikgffhtf9dnf/RJK/TvLWJMcmOTDJ06pqz9t8NACwxgylBoBtTHd/oqr2z9Bb/I5Fqw9L8otV9dzx+c5JfiDJTyR56Uz9T9yGlz57/Hpxkku6++okqarPJdkvyVdvwz4BYM0JxgCwbTo7yV8meVSS2d7aSvJfu/uzsxtXVZL0JvZ5czYcTbbzovU3jV+/O7O88Nz/FABsswylBoBt06lJTujuixeVn5vkt2pMwlX1I2P5e5M8aSw7MMMQ7MW+nORuVbVnVd0xyc/PpeUAsJURjAFgG9TdV3b3Xy2x6gVJdkryiXEirReM5a9IcudxCPXvJfnwEvv8TpITMtyz/LYkn5lH2wFga1PdmxpVBQAAANsvPcYAAABMmmAMAADApAnGAAAATJpgDAAAwKQJxgAAAEyaYAwAAMCkCcYAAABMmmAMAADApP3/V/7Lgfz5Cj0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig7, ax7 = plt.subplots(figsize=(16, 9))\n", + "ax7.bar(df_by_med['submitted_via'], df_by_med['count'])\n", + "\n", + "ax7.set_title(\"Number of timely responses per submission medium\")\n", + "ax7.set_xlabel('Medium')\n", + "ax7.set_ylabel('Timely response count')" + ] + }, + { + "cell_type": "markdown", + "id": "86c3e653", + "metadata": {}, + "source": [ + "### Analysis:\n", + "Quicker, digital forms of communication such as *Email* and *Web* clearly have a higher dispute rate than *Postal mail* or *Referral*, however it should be noted that timeliness of the response does not hold much weight for digital forms. This could highlight the possible complacency/bureaucracy that these companies may have that causes them to give a clearly untimely response, and can also warrant further delving into the structure of customer service in such companies." + ] + }, + { + "cell_type": "markdown", + "id": "a6eae2cf", + "metadata": {}, + "source": [ + "## Sentiment Analysis/Prediction:" + ] + }, + { + "cell_type": "markdown", + "id": "05f5c8e9", + "metadata": {}, + "source": [ + "### Setting up data:\n", + "Since the key data is categorical in nature we can use *one-hot encoding* for it as there is no ordinal relationship in any of the data that is being used." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "c380bd0b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
date_receivedcompanyzipcodedate_sent_to_companycompany_response_to_consumertimely_responseconsumer_disputed?product_Bank account or serviceproduct_Consumer Loanproduct_Credit card...state_WAstate_WIstate_WVstate_WYsubmitted_via_Emailsubmitted_via_Faxsubmitted_via_Phonesubmitted_via_Postal mailsubmitted_via_Referralsubmitted_via_Web
0735110U.S. Bancorp95993735114111000...0000000010
1735110Wells Fargo & Company91104735114111000...0000000010
2735110Wells Fargo & Company11764735129110000...0000000100
3735110Navient Solutions, Inc.21402735110111000...0000100000
4735110Resurgent Capital Services L.P.30106735110111000...0000000001
\n", + "

5 rows × 181 columns

\n", + "
" + ], + "text/plain": [ + " date_received company zipcode \\\n", + "0 735110 U.S. Bancorp 95993 \n", + "1 735110 Wells Fargo & Company 91104 \n", + "2 735110 Wells Fargo & Company 11764 \n", + "3 735110 Navient Solutions, Inc. 21402 \n", + "4 735110 Resurgent Capital Services L.P. 30106 \n", + "\n", + " date_sent_to_company company_response_to_consumer timely_response \\\n", + "0 735114 1 1 \n", + "1 735114 1 1 \n", + "2 735129 1 1 \n", + "3 735110 1 1 \n", + "4 735110 1 1 \n", + "\n", + " consumer_disputed? product_Bank account or service product_Consumer Loan \\\n", + "0 1 0 0 \n", + "1 1 0 0 \n", + "2 0 0 0 \n", + "3 1 0 0 \n", + "4 1 0 0 \n", + "\n", + " product_Credit card ... state_WA state_WI state_WV state_WY \\\n", + "0 0 ... 0 0 0 0 \n", + "1 0 ... 0 0 0 0 \n", + "2 0 ... 0 0 0 0 \n", + "3 0 ... 0 0 0 0 \n", + "4 0 ... 0 0 0 0 \n", + "\n", + " submitted_via_Email submitted_via_Fax submitted_via_Phone \\\n", + "0 0 0 0 \n", + "1 0 0 0 \n", + "2 0 0 0 \n", + "3 1 0 0 \n", + "4 0 0 0 \n", + "\n", + " submitted_via_Postal mail submitted_via_Referral submitted_via_Web \n", + "0 0 1 0 \n", + "1 0 1 0 \n", + "2 1 0 0 \n", + "3 0 0 0 \n", + "4 0 0 1 \n", + "\n", + "[5 rows x 181 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Converting dates to numerical values instead of datetime\n", + "date_cols = ['date_received', 'date_sent_to_company']\n", + "for date_col in date_cols:\n", + " df[date_col] = df[date_col].apply(pd.Timestamp.toordinal)\n", + "\n", + "analysis_cols = ['product', 'issue', 'state', 'submitted_via']\n", + "encoded = df\n", + "for c in analysis_cols:\n", + " c_encoded = pd.get_dummies(encoded[c], prefix=c)\n", + " encoded = pd.concat((encoded, c_encoded), axis=1).drop(c, axis=1)\n", + "encoded.head() " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "44062878", + "metadata": {}, + "outputs": [], + "source": [ + "X = encoded.drop(['company', 'zipcode', 'consumer_disputed?'], axis=1)\n", + "y = encoded['consumer_disputed?']\n", + "X_tr, X_t, y_tr, y_t = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "markdown", + "id": "b0de514c", + "metadata": {}, + "source": [ + "**First using Logistic Regression to classify one-hot-encoded features:**" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "25a11427", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classifier accuracy is 0.7980160443197353\n" + ] + } + ], + "source": [ + "classifier1 = LogisticRegression()\n", + "classifier1.fit(X_tr, y_tr)\n", + "y_pred = classifier1.predict(X_t)\n", + "\n", + "print(\"Classifier accuracy is\", accuracy_score(y_t, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "a3ce0650", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEGCAYAAADyuIefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgeklEQVR4nO3deZhcVZ3/8fenu7MRFgkJWxCIECN7EAhhD+APwurggARQQcMEAUGccWTRkWFmYPCZcRAUkAwgILKETREkglEI8LAkhB1EIkQS9oRlAoGQ7nx/f9xTnepOd3XdpCpdVf159VNPV52659Sp9MOXc8+593wVEZiZWaaptztgZlZLHBTNzIo4KJqZFXFQNDMr4qBoZlakpbc7UEz9m4KBNdUl68HnP7t1b3fBcvjbnFeYP3++VqYNDR0YfLK0vIMXLvl9RIxfmc9b1WorAg1sgZ3X7e1eWA4PTn2gt7tgOey28+4r38gnS2HseuUde8+8oSv/gatWbQVFM6t9oqEn3hwUzSw/rdQZeE1zUDSz/Bo3JjoomllOEjQ3blR0UDSz/Hz6bGZWpHFjooOimeUkoKlxo6KDopnl17gx0UHRzFaA5xTNzBLh1Wczsw4aNyY6KJpZXvLps5lZO68+m5l10rgx0UHRzFaAR4pmZolPn83MOmncmNjIW0WaWdVI5T16bEbfkfSspGckXS9poKQhku6R9GL6vXbR8WdKmi3pBUn7F5XvIOnp9N5FUvbhkgZIujGVPyJp05765KBoZvk1lfkoQdJw4FRgx4jYGmgGJgBnANMiYiQwLb1G0pbp/a2A8cAlkppTc5cCk4CR6VHICzMReDciNgcuAH5UzlczMytfuaPE8q5lbAEGSWoBVgNeA74IXJ3evxr4u/T8i8ANEbE4Il4GZgNjJG0ArBkRD0VEANd0qlNo62Zg38IosjsOimaWX5PKe8BQSTOLHpMKTUTEq8B/A68ArwPvR8TdwHoR8Xo65nWgkM1uODC3qBfzUtnw9LxzeYc6EdEKvA+sU+qreaHFzPIrfzg1PyJ27OqNNFf4RWAE8B5wk6SvlGirqxFelCgvVadbHimaWT6iUqfPXwBejoi3I2IJcCuwK/BmOiUm/X4rHT8P+HRR/Y3ITrfnpeedyzvUSafoawHvlOqUg6KZ5acyH6W9AoyVtFqa59sXeB64HTg2HXMs8Jv0/HZgQlpRHkG2oPJoOsVeKGlsaudrneoU2joc+GOad+yWT5/NLL8KXLwdEY9IuhmYBbQCjwOTgdWBKZImkgXOI9Lxz0qaAjyXjj85ItpScycCVwGDgLvSA+AK4JeSZpONECf01C8HRTPLr0K75ETE2cDZnYoXk40auzr+XODcLspnAlt3Uf4xKaiWy0HRzPKRUJkjxZLnqTXKQdHMcuvhUr92Dopm1ic08B6zDopmlk+2SU55UbGt50NqjoOimeWj8k+f65GDopnlJJqaGvcSZwdFM8utgQeKDopmlk92l1/jRkUHRTPLx3OKZmYdqYHzETgomlluHimamSVCNDubn5nZMh4pmpkVeKHFzKyjBo6J3nnbzPIpXKdYzqNkO9IoSU8UPf5P0mnO+2xmdacSQTEiXoiI0RExGtgBWATchvM+m1ldUXbvczmPHPYF/hoRf8N5n82s3uRI5tdt3udOJgDXp+fO+2xm9SPnvc/d5n1ub0/qDxwKnFnGR3fmvM9m1vsqMadY5ABgVkS8mV4777OZ1ZcmqaxHmY5i2akzOO+zmdUTSTRV6DY/SasB/w84oaj4fJz3uT6ccthxHDf+CCKCZ+f8hUk/PoNRn96Mn55yDgP6D6C1rZXTfnYOM//yFBP2PoTTDj++ve42I0axy7cO46mXnuc3/3E56w9Zl5bmZh58ZianXXwOS5cu5fgDJ3DCIcfQtnQpH368iJMv/AF/fuWvvfiN+567Z07nu5eeS9vSNo4bfwT/fOQJPVfqgyq1S05ELKLTwkdELKAX8z6rh5HkSpE0HrgQaAYuj4jzSx6/Zv9g53VLHdJrNlxnPab9+Dq2n3QgH3+ymGvP+glTZ9zHkeMO4ae3XcXdM6ez/0578Y9HHM/+3/tqh7pbbfpZbjr7Urb8evZ3XmO1wSxc9CEA1//gp9x6/1Ruuu/ODuUHjd2HSQcfzRd/cDy17KOpf+ntLlRMW1sb2xy/H3ee9wuGD12f3U/9e64+4wK22GTz3u5axey28+48NnPWSkW0ARutGRueMqasY+ecMe2xnhZaak3V5hTTRZUXk02ibgkclS6+rFstzS0M6j+Q5qZmBg0YxOsL3iII1lxtdQDWGrw6ry94a7l6Xx53MFPuvaP9dSHwtTS30K+lH4X/MRXKAQYPHEQV/39lXZjxwlNstsEmjNhgY/r3688Rex3EHQ/9obe7VZMqvNBSU6p5+jwGmB0RLwFIuoHsQsrnqviZVfPagjf5yc1X8Jdf3stHixczbdYDTJv1IPPefoPfnnsF//kPp9OkJvb+xyOXq3v4ngdyxDkndii7/dwr2PGz23L3zOnc+sDU9vITDjmGUw/7Ov379WP86V+r9teyIq8teJONhq3f/nr40PV59IUne7FHtatO411Zqrn63N2Flh1ImlS4sJMlS6vYnZXzqdXX5OBd9mWL4/bhM8fszuCBqzFhn0OZdPBRfO+y8xj51b343mXncel3zutQb6dR27Jo8Uc897cXO5Qf+v2JjDh6Nwb068+47ca2l1/221+x1Te+wA+u+C/OOOqkVfLdLNPVVFK9jnaqSWrskWI1g2JZF01GxOSI2DEidqRf7V4htM/2uzLnzXnMf/9dWtta+fWDdzN2i+055guH8esH7wbglvvvYsfPbtuh3hF7HcSUe+/sss3FSz7hjof/yCG7fGG596bcdyeH7Lp8uVXP8KHrM+/tN9pfvzr/DTYcUptz3L2rKrf51Yxq9rq7Cy3r0ty3XmPM50YzaMBAAPYevQsvzH2J1xe8xR7bZpPO40bvwuzX5rTXkcSX9jiAm+5bFhQHD1yN9YcMA6C5qZnxO+3FC3NfAmCzDTdpP+6AMeOY/eqytqz6dhy1DbNfm8OcN+byyZJPuOm+OzlobJeLoH1ejtv86k415xRnACPTRZavkl0fdHQVP6+qZrzwFLfd/3se+tmvaW1r5cm/Ps8Vd93Ak399jv/65vdpaW5h8SeL+daF/9JeZ/dtduLV+W8w541lswiDBw7i5n/9Of379aO5qZn7nniY/70zu271xEO/wt7b78qS1lbe++B9/uHHp6/y79mXtTS3cMFJP+SQ70+kbWkbx+53OFtuOrK3u1WT6vXUuBzVviTnQOAnZJfkXJmuMer++Bq+JMe61kiX5PQFlbgkZ9DGa8Wm/7RbWcf++bS76u6SnKpevB0RvwN+V83PMLNVr5FHir6jxcxya+CY6KBoZnmpbleWy+GgaGa5FK5TbFQOimaWWwPHRAdFM8vPI0Uzs2IOimZmSQU3ma1FjbuEZGZVUUhcVYkNISR9StLNkv4s6XlJu0gaIukeSS+m32sXHX9mSmz/gqT9i8p3kPR0eu+iQhrTlLrgxlT+iKRNe+qTg6KZ5VbBXXIuBKZGxOeA7YDngTOAaRExEpiWXpP2Y50AbEWW7P6StG8rwKXAJLK8LSPT+wATgXcjYnPgAuBHPXXIQdHMcqtEUJS0JrAnWR4VIuKTiHiPjgnsr6ZjYvsbImJxRLwMzAbGpIx/a0bEQykp1TWd6hTauhnYVz10zEHRzHLLsUvO0MJ+qekxqaiZzwBvA7+Q9LikyyUNBtZLGfpIvwsbInS3R+vw9LxzeYc6EdEKvE+nnDCdeaHFzPLJt4Hs/BIbQrQAnwdOiYhHJF1IOlXu7pO7KIsS5aXqdMsjRTPLRVCpTWbnAfMi4pH0+mayIPlmOiUm/X6r6Piu9midl553Lu9QR1ILsBZZqtNuOSiaWW6VmFOMiDeAuZJGpaJ9yXI4FSewP5aOie0npBXlEWQLKo+mU+yFksam+cKvdapTaOtw4I/Rw36JPn02s3wqu6v2KcCvJPUHXgK+TjZYmyJpIvAKKW9zRDwraQpZ4GwFTo6IttTOicBVwCDgrvSAbBHnl5Jmk40QJ/TUIQdFM8utUrf5RcQTQFdzjl3mgUgbVS+3WXVEzAS27qL8Y1JQLZeDopnlIuo3U185HBTNLDcHRTOzAtHQ9z47KJpZfh4pmpkt49NnM7NEQAOfPTsomlleXn02M2snQbOz+ZmZLdO4IdFB0cxWQFNfPH2W9FNKbLETEadWpUdmVtMK6QgaVamR4sxV1gszqyPqmyPFiLi6+LWkwRHxYfW7ZGY1TY09UuxxvjRl13qOLKEMkraTdEnVe2ZmNUlAi1TWox6Vs4j0E2B/YAFARDxJlmzGzPqoCmbzqzllraxHxNxORW1dHmhmDS+7o0VlPXpsS5qT8jU/IWlmKqv5vM9zJe0KhKT+kr5LOpU2s75JZT7KtHdEjC5KcFXzeZ+/CZxMlirwVWB0em1mfVJ5o8SVWKHu1bzPPV68HRHzgWPK/jpm1tBy3uY3tHBanEyOiMlFrwO4W1IAl6X3OuR9llSc9/nhorqF/M5LKDPvs6RC3uf53XW4x6Ao6TPAhcDY9AUeAr4TES/1VNfMGlOOUWCpvM8Au0XEaynw3SPpzyWOrZm8z9cBU4ANgA2Bm4Dry6hnZg2o3PnEcsJmRLyWfr8F3AaMoQ7yPisifhkRrelxLT1EWjNrbJWYU5Q0WNIahefAfsAz1GreZ0lD0tM/SToDuIEsGB4J3Fny25pZA6vYbX7rAbeldY8W4LqImCppBjWa9/kxOp6vn1D0XgD/3lPjZtZ4VKHb/NK6xHZdlC+gFvM+R8SIPA2ZWd/RXKd3q5SjrP0UJW0NbAkMLJRFxDXV6pSZ1a7CHS2NqpxLcs4GxpEFxd8BBwAPkF0gaWZ9UCMHxXJWnw8nO79/IyK+TjYHMKCqvTKzGlbeZhD1uiFEOafPH0XEUkmtktYku2boM1Xul5nVKOEcLTMlfQr4X7IV6Q+AR6vZKTOrYQ2+yWw59z6flJ7+XNJUshuvn6put8ysVglo6YspTiV9vtR7ETGrOl0ys1rXV0eKPy7xXgD7VLgvfG7ECK689rJKN2tmFSWa8uyWWGdKXby996rsiJnVj746UjQzW47U2NcpOiiaWW5N6oMLLWZmXVHldsmpSeXkfZakr0j6YXq9saQx1e+amdWqbKml50c9KqfXlwC7AEel1wuBi6vWIzOreVVOXNWryjl93jkiPi/pcYCIeFdS/yr3y8xqWCOvPpczUlyScqsGgKRhwNKq9srMapZy/JTVntQs6XFJd6TXQyTdI+nF9HvtomPPTIntX5C0f1H5DpKeTu9dVEhjmlIX3JjKH5G0aU/9KScoXkSWUGZdSeeSbRt2Xlnf1swaT0pxWs6jTN8Gni96fQYwLSJGAtPSayRtSZZOYCuyZPeXpAEbwKXAJLK8LSPT+wATgXcjYnPgAuBHPXWmx15HxK+A7wH/CbwO/F1E3NRTPTNrTNkuOeX99NiWtBFwEHB5UXFxAvur6ZjY/oaIWBwRLwOzgTEp49+aEfFQSkp1Tac6hbZuBvZVD+f+5WwyuzGwCPhtcVlEvNJTXTNrRLn2ShwqaWbR68kp4X3BT8gGXWsUla2XMvQREa+nnNCQJbZ/uOi4QtL7Jel55/JCnbmprVZJ7wPrAPO763A5Cy13siyB1UBgBPAC2RDWzPqgHEFxfkTs2E0bBwNvRcRjksaV87FdlEWJ8lJ1ulXO1mHbdOhVtnvOCd0cbmZ9QIU2hNgNOFTSgWQDrjUlXQu8KWmDNErcgGxjayhKbJ8Ukt7PS887lxfXmSepBViLLNVpt3JfXZm2DNspbz0zawyCiqQjiIgzI2KjiNiUbAHljxHxFTomsD+WjontJ6QV5RFkCyqPplPthZLGpvnCr3WqU2jr8PQZKzdSlPSPRS+bgM8Db/dUz8walERzde99Ph+YImki8Aopb3NEPCtpCvAc0AqcHBFtqc6JwFXAIOCu9AC4AvilpNlkI8QJPX14OXOKxROgrWRzjLeUUc/MGlCW4rSyQTEi7gXuTc8XkCXL6+q4c4FzuyifCWzdRfnHpKBarpJBMV0DtHpE/HOeRs2ssTXyHS2l0hG0pCXsbtMSmFnfVO7dKvWo1EjxUbL5wyck3Q7cBHxYeDMibq1y38ysJtXvZg/lKGdOcQiwgCwnS+GaoAAcFM36IEG1F1p6VamguG5aeX6G5S+QLLmkbWYNTKA+GhSbgdVZgSvCzayRlb8DTj0qFRRfj4h/W2U9MbO6kF2S0zeDYuN+azNbKX3ykhy6uXjSzKxC9z7XpG6DYkSUvGnazPomIZqamns+sE45xamZ5dYnR4pmZl2R+u6coplZl/rqJTlmZl3IlY6g7jgomllujTyn2Lj36phZVQjRpOayHiXbkQZKelTSk5KelXROKq/5vM9mZh1UIh0BsBjYJyK2A0YD4yWNpdbzPpuZdaYyf0qJzAfpZb/0CHo577ODopnllmOkOFTSzKLHpE7tNEt6gixj3z0R8Qid8j4DxXmf5xZVL+R3Hk6ZeZ+BQt7nbnmhxcxyEbkWWrrN+wyQEk+NlvQp4DZJy+VZ6fTRyzVRorxUnW55pGhm+agyCy3FIuI9ssRV40l5n7OPqljeZ6qW99nMrBILLZKGpREikgYBXwD+TK3nfTYzKyYqdkfLBsDVaQW5CZgSEXdIeogaz/tsZlakMomrIuIpYPsuyms377OZWVd877OZWRHf+2xmlhRu82tUDopmllsjbwjhoGhm+XiTWTOzZSp4SU5NclA0s9w8UjQzayeavdBiZpbx6bMB8OaCBfz7z3/Ogvffp0ni0L335sjx4/nZddfxwOOP06+lheHrrsv3J01ijcGD2+u9MX8+x5x+OhO/9CWOPuggAE7+j/9gwXvvMaB/fwAuOP10hqy1Fq/Pn895kyfz3sKFrDl4MGefeCLrrlNylyOrsLtnTue7l55L29I2jht/BP985Am93aWa5NPnFSDpSuBg4K2IKLUdUF1obmrilKOPZtSIEXz40Ud841/+hTHbbMNO22zDN488kpbmZi6+4Qau+e1vOXnCstsrL/rVrxi73XbLtXf2SSexxWc+06HsZ9ddxwG7786Be+7JzGef5dIpUzj7xBOr/t0s09bWxmkXn8Od5/2C4UPXZ/dT/56Dx+7LFpts3ttdqzE9byBbz6q5S85VLNsSvO4NXXttRo0YAcDgQYPYZMMNefudd9h5m21oac7mV7bebDPefmfZrkT3zZzJhsOGMWL48C7b7GzOq6+y41ZbAbDDllty/2OPVfhbWCkzXniKzTbYhBEbbEz/fv05Yq+DuOOhP/R2t2pShdIR1KSqBcWImE4P+5bVq9fffpsX//Y3ttpssw7ld0yfzthttwXgo48/5to77uAbX/pSl22cO3kyx551Fr+47TYKOxltvvHG/GnGDCALqIs+/pj3Fy6s4jexYq8teJONhq3f/nr40PV5dcGbvdij2pRtMlveTz3q9TnFtD35JID1Nlqvl3vTs0Uff8xZF17It7/yFQavtlp7+VW/+Q3NTU3sv9tuAFx+661MGD+e1QYOXK6Nfz3pJIYNGcKHH33EWRdeyNQHHuCAPfbgW0cfzf9cfTW/u/9+Ro8axbC116a5uXFX+WpNV9vs1etop6okmlSfAa8cvR4UI2IyMBlgi+1Gldz8sbe1trZy1oUXst+uuzJup53ay383fToPPv44Pz3zzPb/iJ6bPZs/PfooF99wAx8sWoQk+vfrx+H77cewIUOA7DR8v1135bmXXuKAPfZg2Npr85+nnQZkwffeGTNYvSjwWnUNH7o+895+o/31q/PfYMMh65ao0Xc18v8sej0o1ouI4LzLL2fTDTfkqAMPbC9/+MknufaOO7j4Bz9g4IAB7eWX/vCH7c8vv+UWVhs4kMP324/WtjY+WLSIT62xBq2trTz4+OPstHW2DlVYdW5qauKa22/n4L32WnVf0Nhx1DbMfm0Oc96Yy4brrMdN993JVaf/T293qyY18kKLg2KZnvrLX5j6wANs9ulPc+xZZwFwwpe/zAXXXMOS1lZOO/98ALbafHO+941vdNvOkiVL+M6PfkRrWxtLly5lx6224tC99wZg1vPP8/Mbb0QSo0eN4p+OO67q38uWaWlu4YKTfsgh359I29I2jt3vcLbcdGRvd6vmVOo6RUmfJktHuj6wFJgcERdKGgLcCGwKzAG+HBHvpjpnkuVybgNOjYjfp/IdWLbz9u+Ab0dESBqQPmMHYAFwZETMKdmvHtIVrDBJ1wPjgKHAm8DZEXFFqTpbbDcqrrz7sqr0x6pj+6FjersLlsNuO+/OYzNnrVRE23L05+KaP1xZ1rE7Ddvtse6y+aWkVBtExCxJawCPkeVrPg54JyLOl3QGsHZEnC5pS+B6YAywIfAH4LMR0SbpUeDbwMNkQfGiiLhL0knAthHxTUkTgMMi4shSfa7m6vNREbFBRPSLiI16CohmVi+6Tnzf1U8pEfF6RMxKzxcCz5PlaS5OYH81HRPb3xARiyPiZWA2MCYF1zUj4qGUlOqaTnUKbd0M7KseJkR9+mxmueVYfR4qaWbR68lpcbUDSZuS5Wt5BFgvZegjIl6XVFjtGk42EiwoJL1fkp53Li/UmZvaapX0PrAOML+7DjsomlluOeYU53d3+tzelrQ6cAtwWkT8X4mBXHeJ7UslvC/1Xpca92IjM6sKUbk7WiT1IwuIv4qIW1Pxm+mUuDDv+FYqb09snxSS3s9LzzuXd6gjqQVYix5uKnFQNLOcKjOnmOb2rgCej4jia5+KE9gfS8fE9hMkDZA0AhgJPJpOtRdKGpva/FqnOoW2Dgf+GD2sLvv02cxyq9B1irsBXwWelvREKjsLOB+YImki8Aopb3NEPCtpCvAc0AqcHBFtqd6JLLsk5670gCzo/lLSbLIR4rLdWrrhoGhm+SjXQku3IuIBup7zA9i3mzrnAud2UT4TWG43roj4mBRUy+WgaGa5FOYUG5WDopnl1Nj7KToomlluDopmZkV8+mxmVsQjRTOzRHiTWTOzTjxSNDPLyHOKZmYdeE7RzKyIg6KZWSLqN6dzORwUzSy3es3pXA4HRTPLzSNFM7MinlM0M0safU6xcScGzKxqKrHzNoCkKyW9JemZorIhku6R9GL6vXbRe2dKmi3pBUn7F5XvIOnp9N5FhYx9aZfuG1P5IylBVkkOimaWW6WCItlu2eM7lZ0BTIuIkcC09JqU93kCsFWqc4mk5lTnUmASWYqCkUVtTgTejYjNgQuAH/XUIQdFM8utUomrImI6yyeS6tW8zw6KZrYCVOYjy/tc9JhURuMd8j4DxXmf5xYdV8jvPJwy8z4DhbzP3fJCi5nllmOZpce8zyv5sc77bGa9rdxR4gqvUDvvs5nVD6lyc4rdcN5nM6svlbp4W9L1wDiyucd5wNk477OZ1ZtKBcWIOKqbt3ot77NPn83MinikaGa5+TY/M7M+wiNFM8up7Fv46pKDopnlkl2B6KBoZtaukecUHRTNbAU4KJqZtWvckOigaGYrpHHDooOimeXU2OkIHBTNLBevPpuZLcdB0cysXeOGRAdFM1sBnlM0M2u3Urtq1zwHRTPLrZEXWrxLjpnlU8F0BJLGp8T2syWdsQp63yMHRTPrFSmR/cXAAcCWwFEp4X2vclA0s1wK1ymW89ODMcDsiHgpIj4BbiBLXt+r1ENiq1VK0tvA33q7H1UwFJjf252wXBr1b7ZJRAxbmQYkTSX79ynHQODjoteTI2JyaudwYHxEHJ9efxXYOSK+tTL9W1k1tdCysn+sWiVpZgUTgtsq4L9Z9yJifIWayp2oflXw6bOZ9Zbuktv3KgdFM+stM4CRkkZI6k+Wk/n2Xu5TbZ0+N7DJvd0By81/syqLiFZJ3wJ+DzQDV0bEs73crdpaaDEz620+fTYzK+KgaGZWxEGximrxFiYrTdKVkt6S9Exv98V6h4NildTqLUzWo6uASl2HZ3XIQbF6avIWJistIqYD7/R2P6z3OChWz3BgbtHreanMzGqYg2L11OQtTGZWmoNi9dTkLUxmVpqDYvXU5C1MZlaag2KVREQrULiF6XlgSi3cwmSlSboeeAgYJWmepIm93SdbtXybn5lZEY8UzcyKOCiamRVxUDQzK+KgaGZWxEHRzKyIg2IdkdQm6QlJz0i6SdJqK9HWVSmbGpIuL7VZhaRxknZdgc+YI2m5rG/dlXc65oOcn/Wvkr6bt49mnTko1pePImJ0RGwNfAJ8s/jNtDNPbhFxfEQ8V+KQcUDuoGhWjxwU69f9wOZpFPcnSdcBT0tqlvRfkmZIekrSCQDK/EzSc5LuBNYtNCTpXkk7pufjJc2S9KSkaZI2JQu+30mj1D0kDZN0S/qMGZJ2S3XXkXS3pMclXUbX9393IOnXkh6T9KykSZ3e+3HqyzRJw1LZZpKmpjr3S/pcRf41zRInrqpDklrI9mmcmorGAFtHxMspsLwfETtJGgA8KOluYHtgFLANsB7wHHBlp3aHAf8L7JnaGhIR70j6OfBBRPx3Ou464IKIeEDSxmR37WwBnA08EBH/JukgoEOQ68Y30mcMAmZIuiUiFgCDgVkR8U+Sfpja/hZZQqlvRsSLknYGLgH2WYF/RrMuOSjWl0GSnkjP7weuIDutfTQiXk7l+wHbFuYLgbWAkcCewPUR0Qa8JumPXbQ/FpheaCsiuttX8AvAllL7QHBNSWukz/hSqnunpHfL+E6nSjosPf906usCYClwYyq/FrhV0urp+95U9NkDyvgMs7I5KNaXjyJidHFBCg4fFhcBp0TE7zsddyA9b12mMo6BbNpll4j4qIu+lH3fqKRxZAF2l4hYJOleYGA3h0f63Pc6/xuYVZLnFBvP74ETJfUDkPRZSYOB6cCENOe4AbB3F3UfAvaSNCLVHZLKFwJrFB13N9mpLOm40enpdOCYVHYAsHYPfV0LeDcFxM+RjVQLmoDCaPdostPy/wNelnRE+gxJ2q6HzzDLxUGx8VxONl84KyVfuozsjOA24EXgaeBS4L7OFSPibbJ5wFslPcmy09ffAocVFlqAU4Ed00LOcyxbBT8H2FPSLLLT+Fd66OtUoEXSU8C/Aw8XvfchsJWkx8jmDP8tlR8DTEz9exaneLAK8y45ZmZFPFI0MyvioGhmVsRB0cysiIOimVkRB0UzsyIOimZmRRwUzcyK/H/msrqeshyIlgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(classifier1, X_t, y_t, cmap=plt.cm.Greens)" + ] + }, + { + "cell_type": "markdown", + "id": "141b8875", + "metadata": {}, + "source": [ + "### Analysis:\n", + "As we can see the classifier needs a great deal of work to accurately predict a disputed complaint as the above confusion matrix shows that a true disputed complaint is not recognized by the classifier." + ] + }, + { + "cell_type": "markdown", + "id": "730fb665", + "metadata": {}, + "source": [ + "**Using Random Forest Classifier to better prediction:**" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "fc0a33cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Classifier accuracy is 0.7119846751564861\n" + ] + } + ], + "source": [ + "classifier2 = DecisionTreeClassifier(random_state=42)\n", + "classifier2.fit(X_tr, y_tr)\n", + "y_pred = classifier2.predict(X_t)\n", + "\n", + "print(\"Classifier accuracy is\", accuracy_score(y_t, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "0435bfbf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/aryanvakharia/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.\n", + " warnings.warn(msg, category=FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEGCAYAAADyuIefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAk70lEQVR4nO3de5zVVb3/8dd7BhTkfncELyikgooKEUTeU0lNtLAoS/JwwvxZ1qmjeesepZWZdsQy9Yh38ZakeQsys0MgKIagxiTFNe4gys3Bz++PvQb3DDOz98YZZmbP+/l4fB/7uz/7u757bZQPa33X97uWIgIzM8soaewKmJk1JU6KZmZZnBTNzLI4KZqZZXFSNDPL0qqxK5CtjRQdnKeblf0PO7ixq2AF+OfSZaxeu17v5xz7qlVsIb+7Vlbz7lMRMfL9fN/u1qSSYgdK+CR7NXY1rAATf3tXY1fBCjD0rM+973NsJTiHdnkdexMbu7/vL9zNmlRSNLPmoUR5Njab4W3QTopmVhBR3IMRTopmVrCSfK9KuqVoZsVOiFb5dp+bISdFMyuYu89mZokooPvcDDkpmlnB3FI0M6skUBFfUyzmhG9mDaDylpx8tjrPIx0saU7W9qakr0nqKukZSQvSa5esMpdLKpf0uqRTs+KDJc1Nn92glLUl7Snp/hSfIemAXL/PSdHMCtZK+W11iYjXI+LIiDgSGAxsAh4BLgOmRkR/YGp6j6QBwBhgIDASmCipNJ3uJmA80D9tlY8WjgPWRUQ/4Drgmly/zUnRzAqSGWhRXlsBTgL+ERH/AkYBk1J8EnBW2h8F3BcRWyNiIVAODJVUBnSMiOmRWUrgjmplKs/1IHCScvT9nRTNrGAFdJ+7S5qVtY2v5ZRjgHvTfq+IWA6QXnumeG9gcVaZJSnWO+1Xj1cpExEVwAagW12/zQMtZlaQAm/JWR0RQ+o8n7QHcCZweR5fXV3UEa+rTK3cUjSzgtXHQEuWjwEvRsSK9H5F6hKTXlem+BJg36xyfYBlKd6nhniVMpJaAZ2Atbl+m5lZ3gS0kvLa8vQZ3us6A0wBxqb9scCjWfExaUS5L5kBlZmpi71R0rB0vfC8amUqzzUamBY5ljB199nMClZfrSlJewEnAxdkha8GJksaBywCzgGIiHmSJgPzgQrgoojYnspcCNwOtAWeSBvArcCdksrJtBDH5KqTk6KZFUSqv8f8ImIT1QY+ImINmdHomo6fAEyoIT4LOKyG+BZSUs2Xk6KZFaykxvGL4uCkaGYF84QQZmaJZ942M8viSWbNzKpx99nMLEsR50QnRTMrjGfeNjOrxrfkmJkl9XnzdlPkpGhmBSvNfUiz5aRoZgWpnGS2WDkpmlnBijclOima2S5wUjQzy+KkaGaW+JqimVk1nhDCzCxLETcUnRTNrHAq4quKTopmVhDhgRYzsyqcFM3MdhClRXxR0UnRzAri7rOZWTYV9+hzMd9uZGYNRHluOc8jdZb0oKTXJL0qabikrpKekbQgvXbJOv5ySeWSXpd0alZ8sKS56bMbpEzalrSnpPtTfIakA3LVyUnRzApWgvLa8nA98GREHAIMAl4FLgOmRkR/YGp6j6QBwBhgIDASmCipchazm4DxQP+0jUzxccC6iOgHXAdck/u3mZkVIN9WYq6UKKkjcCxwK0BEbIuI9cAoYFI6bBJwVtofBdwXEVsjYiFQDgyVVAZ0jIjpERHAHdXKVJ7rQeCkylZkbZwUzaxgJcpvA7pLmpW1jc86zYHAKuB/Jb0k6RZJ7YBeEbEcIL32TMf3BhZnlV+SYr3TfvV4lTIRUQFsALrV9ds80GJmBSvgiZbVETGkls9aAUcDX4mIGZKuJ3WVa/3anUUd8brK1MotRTMrSOVqfnm2FOuyBFgSETPS+wfJJMkVqUtMel2Zdfy+WeX7AMtSvE8N8SplJLUCOgFr66qUk6KZFaw+rilGxL+BxZIOTqGTgPnAFGBsio0FHk37U4AxaUS5L5kBlZmpi71R0rB0vfC8amUqzzUamJauO9bK3WczK1g93qb4FeBuSXsAbwDnk2msTZY0DlgEnAMQEfMkTSaTOCuAiyJiezrPhcDtQFvgibRBZhDnTknlZFqIY3JVyEnRzApWX5PMRsQcoKZrjifVcvwEYEIN8VnAYTXEt5CSar6cFPPUq/+B/OcdN+143/2A/fjdD3/GtBtvBeDkr17AJ3/0Lb6x3+G8vWYd7bp2ZvxdN7P/4EH89a4HuO8bV+0ou9+RhzP25uto3aYNrzw1jcmXfHvHZ4M/cQZnXPF1IoIlr7zKbed/eff9yCJz52XXMHfadDp068y3nri9ymfP3HIfj1z9K34y87e079oZgCWv/YN7r7qWLW9tQiXim4/8ing3+M1XvsvqRUspKSnl8BOHc9alFwDw4A//h7/PeAmAbZu3snHNOq596fHd+RMbhSju624NmhQljSRzc2YpcEtEXN2Q39eQVix4gwnDMzfQq6SEq8tnMWfKkwB06V3GIScew5pF790V8M6WrUz5wU/ZZ8DB9B5wSJVzffb6H3PXly9l4cwX+fIjdzLwlBOY9/Qf6XlQX0797y/z04+ezab1G+jQo847ByyHYZ8YyXGfO5tJl/yoSnztspW89vxsuu7Ta0dse0UFt39jAl/42RX0ObQfb63bQGmrVlRse4ePjvs0Bw8/iopt73D9eV9n3p9mMPC4DzH6qvf+wfrjHQ+zZP6C3fbbGlsRP+XXcAk/3Wl+I/AxYADwmXRHerN3yAkfYfUb/2Lt4qUAnHPNd3n4qgmQdf1226bN/GP6C1Rs3VqlbMe9e9KmQ3sWznwRgL/e8yCDzsgk24+c/1n+9OtJbFq/AYCNq9bsjp9TtPoPHUS7zh12ij804X84+5sXVPmb/erzs+h98IH0ObQfAO27dKKktJQ92rbh4OFHAdBqj9bsO/ADrFu+aqdzzvrdVIacUWOPryhJymtrjhqyFTwUKI+INyJiG3AfmbvLm70ho8/khQcyg1tHnHYy65f/m6VzX82rbOeyvVm3bPmO9+uXLqfzPnsD0LNfX3r1P5BL/vAIl/5xCgNOPr7e697S/e0Pf6HT3j12JL9KKxcuRhK//MIl/PjML/L0zffuVHbTmxuZO+3/OOTDR1eJr1n6b9YsWb4jebYE9fXsc1PUkEmxtrvPq5A0vvJu9y1131PZJJS2bs2g005h9iOP0bptGz526cVM+cHP8i5f47+eqYVZ0qoVPQ/qy7Ujz+HWL1zE52/8KW07dayvqrd42zZv4cmb7uLjXzt/p8+2b9/OP2bP5fyfX8k37v8lLz/9Z177v9nvfV5RwW1f+wEnnPcJuu+3T5Wysx+bxlEjj6OktLT6aYtSfT3m11Q1ZFLM607yiLg5IoZExJA2zeCP8bBTTmDRy3PZuHI1PQ48gG4H7Mu3/vo0E+ZPp3PvMq78y5N07NWj1vLrli2nyz5lO9537l3G+uUrgEyr8eXHn+LdigrW/GsxKxb8g54H9W3w39RSrFq0jNWLlzPhjHFcddynWf/vVfx41Hg2rFpDl7170H/oINp37cwebdsw8PhhLJ733jXCe666lp4H9OHE83ceyJz12DSGfLzldJ2RKC3Jb2uOGjIp1nb3ebM25JxRO7rOy+a9xqUHHMmVA4Zz5YDhrF+6nAkjRvLmip2vOVV6898r2fLWW/T9YKYLNuyzo/nb408DMOexp/jAsR8GoF23LvTsdyCr//mvBv5FLUfvgw/kJzN/yw//dD8//NP9dN67B5c/ejOdenRjwDFDWfraG2zbvIXtFRUsmDmHvfvtD8CUn9/C5o1vVxlYqbTijUVsenMjBx41cHf/nEalEuW1NUcNOfr8AtA/3Xm+lMxNk59twO9rcK3btuHQE4/l7ovrejzzPRPmT6dNhw6U7tGaQR8/lRvO/CzLX1vAPV+9grE3/5w92rRh3tPP8spT0wCY/8yzDDjpWL4zaxrvvvsuD1/5Q95eu74Bf1Fxu+1r3+fvM+bw1roNXDFiNKd/9XxGfOr0Go/dq1MHTvyPc7jm7C+BYODxwzj8hOGsW76SJyfeRa+D9uPqUV8E4LjPnc2IT58BwAu/m8qQ009stoMKu0IU9ySzyvHEy/s7uXQa8Asyt+Tclm68rFUPlcYn2avB6mP1b2L5nxq7ClaAoWd9jllz57+vlDZwzz3j3r3Lch8IDFr0r9l1TAjRJDXofYoR8Xvg9w35HWa2+xVzy9hPtJhZwYo4JzopmllhBJQ000GUfDgpmllhVH8TQjRFTopmVrAizolOimZWqOb7XHM+nBTNrCACVMRzhzkpmllh5IEWM7Mq3H02M8tSxDnRSdHMCpNZ4rR4s6KTopkVRm4pmplVUczXFIt4YN3MGkLmMb/8tpznkv4paa6kOZJmpVhXSc9IWpBeu2Qdf7mkckmvSzo1Kz44nadc0g1KWVvSnpLuT/EZkg7IVScnRTMrjPKbYLaASWZPiIgjs6YYuwyYGhH9ganpPWnhuzHAQGAkMDEtkAdwEzAe6J+2kSk+DlgXEf2A64BrclXGSdHMCiblt+2iUcCktD8JOCsrfl9EbI2IhUA5MFRSGdAxIqZHZoLYO6qVqTzXg8BJytH3d1I0s4KVSHltQPfKhenSNr7aqQJ4WtLsrM96RcRygPTaM8VrWwyvd9qvHq9SJiIqgA1AnQuqe6DFzApS4HIEq3PMvD0iIpZJ6gk8I+m1HF9dXdQRr6tMrdxSNLOC1bTwfU1bLhGxLL2uBB4hs178itQlJr2uTIfXthjekrRfPV6ljKRWQCdgbV11clI0s8KkZ5/z2eo8jdROUofKfeAU4BVgCjA2HTYWeDTtTwHGpBHlvmQGVGamLvZGScPS9cLzqpWpPNdoYFrkWJjK3WczK1g93abYC3gktShbAfdExJOSXgAmSxoHLALOAYiIeZImA/OBCuCiiNieznUhcDvQFngibQC3AndKKifTQhyTq1JOimZWkMw1xfefFSPiDWBQDfE1wEm1lJkA7LQqaETMAg6rIb6FlFTz5aRoZoWR51M0M8vimbfNzKoqLd6mopOimRVGxT0hhJOimRWuJS5HIOmX1HHnd0Rc3CA1MrMmrrgnVKyrpThrt9XCzJoNiUJmwGl2ak2KETEp+72kdhHxdsNXycyavCJuKeYcQpI0XNJ84NX0fpCkiQ1eMzNrslRaktfWHOVT618ApwJrACLiZeDYBqyTmTVlUmagJZ+tGcpr9DkiFlcbgt9e27FmVvxa+i05iyV9GAhJewAXk7rSZtZCNdNWYD7y6T5/CbiIzAy2S4Ej03sza4kqZ5ltwPUIGlPOlmJErAbO3Q11MbNmQqXNM+HlI5/R5wMl/U7SKkkrJT0q6cDdUTkza4LqfzW/JiWf7vM9wGSgDNgHeAC4tyErZWZNXBF3n/NJioqIOyOiIm13kWPhFzMrci3xlhxJXdPuHyVdBtxHJhl+Gnh8N9TNzJogteBZcmZTdfnAC7I+C+AHDVUpM2vimmkrMB91Pfvcd3dWxMyaC6GS5vkIXz7yeqJF0mHAAKBNZSwi7mioSplZEyZaZkuxkqTvAMeTSYq/Bz4GPA84KZq1UMV8TTGfNvBoMssN/jsiziezJOGeDVorM2vainj0OZ+kuDki3gUqJHUEVgK+eduspcr3HsU8W5OSSiW9JOmx9L6rpGckLUivXbKOvVxSuaTXJZ2aFR8saW767AalpqykPSXdn+IzJB2Qqz75JMVZkjoDvyEzIv0iMDOvX2tmRamen2j5KlUnmbkMmBoR/YGp6T2SBgBjgIHASGCipNJU5iZgPNA/bSNTfBywLiL6AdcB1+SqTM6kGBH/LyLWR8SvgJOBsakbbWYtkcgscZrPlutUUh/gdOCWrPAooHLm/0nAWVnx+yJia0QsBMqBoZLKgI4RMT0igsx4x1k1nOtB4CTluCBa183bR9f1WUS8WNeJzax4FTDQ0l1S9npPN0fEzVnvfwFcCnTIivWKiOUAEbFcUs8U7w38Neu4JSn2TtqvHq8sszidq0LSBqAbsLq2Ctc1+nxtHZ8FcGIdn++S/Qf0Y+I9N9X3aa0BlZQd1NhVsEK0ro8x0oIGUVZHxJAazyKdAayMiNmSjs/vi3cSdcTrKlOrum7ePqGugmbWgtXPLTkjgDMlnUbmHuiOku4CVkgqS63EMjKDu5BpAe6bVb4PsCzF+9QQzy6zRFIroBOwtq5KFe9t6WbWMOppktmIuDwi+kTEAWQGUKZFxOeAKcDYdNhY4NG0PwUYk0aU+5IZUJmZutobJQ1L1wvPq1am8lyj03fsWkvRzKxmgtLS3IftuquByZLGAYuAcwAiYp6kycB8oAK4KCIq14u6ELgdaAs8kTaAW4E7JZWTaSGOyfXlTopmVrh6fqIlIp4Fnk37a8g8MFLTcROACTXEZwGH1RDfQkqq+cpn5m1J+pykb6f3+0kaWsiXmFkRKfI1WvK5pjgRGA58Jr3fCNzYYDUys6aviJNiPt3nD0XE0ZJeAoiIdWmpUzNrkQQtfOqwd9KjNAEgqQfwboPWysyatmbaCsxHPknxBuARoKekCWSGta9q0FqZWdMlWnZLMSLuljSbzGiQgLMi4tUcxcysaLXw7rOk/YBNwO+yYxGxqCErZmZNWAvvPj/Oe88XtgH6Aq+Tmb7HzFqayltyilQ+3efDs9+n2XMuqOVwM2sJWnJSrC4iXpT0wYaojJk1fWrpq/lJ+nrW2xLgaGBVg9XIzJq2lj76TNXJHyvIXGN8qGGqY2bNQkvtPqebtttHxCW7qT5m1uS10FtyJLVK03fXuiyBmbVQLbSlOJPM9cM5kqYADwBvV34YEQ83cN3MrClq6bfkAF2BNWTWZKm8XzEAJ0WzFqnBJ5ltVHUlxZ5p5PkVdl4cps7pvM2syLXQlmIp0J5dWA3LzIpYC+4+L4+I7++2mphZM9FCR5+puYVoZtZiW4o1LhxjZtYik2JE1LlgtJm1UCru0efivTBgZg2nHhauktRG0kxJL0uaJ+l7Kd5V0jOSFqTXLlllLpdULul1SadmxQdLmps+u0HKfLmkPSXdn+IzJB2Q66c5KZpZ4epnNb+twIkRMQg4EhgpaRhwGTA1IvoDU9N7JA0gs5j9QGAkMDE9igxwEzAe6J+2kSk+DlgXEf2A64BrclXKSdHMCiNAJfltdYiMt9Lb1mkLYBQwKcUnAWel/VHAfRGxNSIWAuXAUEllQMeImB4RAdxRrUzluR4ETqpsRdbGSdHMCiQoyXOD7pJmZW3jq5xJKpU0B1gJPBMRM4BeEbEcIL32TIf3BhZnFV+SYr3TfvV4lTIRUQFsALrV9esKnmTWzCxXKzDL6ogYUtuHEbEdOFJSZ+ARSYfV9a01naKOeF1lauWWopkVpnL0OZ8tTxGxHniWzLXAFalLTHpdmQ5bAuybVawPsCzF+9QQr1JGUiugE1DnnTVOimZWuPoZfe6RWohIagt8FHgNmAKMTYeNBR5N+1OAMWlEuS+ZAZWZqYu9UdKwdL3wvGplKs81GpiWrjvWyt1nMytc/t3nupQBk9IIcgkwOSIekzQdmCxpHLAIOAcgIuZJmgzMJ7MKwEWp+w1wIXA70BZ4Im0AtwJ3Sion00Ick6tSTopmVrh6eKIlIv4GHFVDfA21PFEXEROACTXEZwE7XY+MiC2kpJovJ0UzK4xa7oQQZmY1Kynex/ycFM2sMNpxD2JRclI0s8LVz0BLk+SkaGaFa4lTh5mZ1UxuKZqZ7SB8TdHMrAqPPpuZJR59NjOrxtcUzcyyePTZzKySR5/NzN4jino1PydFMyucu89253d+ydznZtGhaye+9dANANxy6U9Z+c+lAGza+DZ7dWjHFZN/wT/n/p17fjARyMx7fvqXxnDkicMAmPXU8zx5ywPE9ncZeMxgPvFfXwBg7fJVTPrW9Wze+DbvvvsuZ138eQ47ptZZ3G0XXHHocNq0b0dJaSklrUq54vnf8/badfzmvItYs2gx3fbbly/eOZF2XToDsGTuq9x98WVs2fgWkrj8z4/Ruk0bfvvda5hxz0NsWr+B61e+3rg/qlF4lpxdIuk24AxgZUTUte5CszDszBM5bsxpTLrq+h2x//zJJTv2H7r2Ntq2bwfAPv3255v3XEtpq1I2rFrLhE/9F4cf+0E2v/U2j1x3O5fdcy0dunZi0lXX89qMlznkQ4N44jeTGXzKCI791MdY/o/F3Pjl7/PDJ5wU69vXn5hM++5dd7x/8tqJHHL8CEb+90U8+bMbeeraiXzih1ewvaKC/x13Meffcj19jhjAW2vWUdq6NQBHnHYyJ1zwBb496NjG+hmNSxR1S7Eh0/3tvLf2arPXf/BA2nVsX+NnEcHsp//CkJHHALBH2z0pbZW55vLOtnd2/P+zeskKeu6/Dx26dgLgkGFH8NIfpgMgiS1vbwZg81tv06lHV6zh/e3xpxl+7mgAhp87mpcfewqA+X94jt6HHUqfIwYA0L5bF0rSdbQDhx5Np7JejVPhpqIeljhtqhqspRgRz0k6oKHO35SUvzifjt0603P/fXbEFs79O3d955esXb6KsRO+RmmrUnruV8aKhUtZs3QFnXt15+U/zqDinQog08X+5YXf5dl7H2fr5i189dffa6yfU7Qkcf2Z5yKJY8adyzH/cS5vrly9I8F1KuvFxlVrAFhZ/gaSuOHMc9m4ei1DRp/JqV+/sDGr34TktdB9s9Xo1xTTOrDjAfYr65nj6KZp1pN/3tFKrNT38A/wrYd/yfI3FnPHt25g4Iij2atje8ZceQG3fvNnqKSEAwcdzOolK3acY9iZJ/LR887ijZdf4/arfsFVD95ASRFfu9ndLpn6MJ3L9ubNlau5/uOfZe8PHFTrsdsrKiif/gKXP/cYe+zVlutOH8P+Rx3OISd8ZDfWuIkq8tHnRv8bFxE3R8SQiBjSI13gbk62V2xnztTpDD615r8sZQfuyx5t92RZ+SIAjjhuKJfe9VMuueMaeu3fmx77lQHwf4/8gaNPGQHAgYMO4Z2t7/D2+jd3z49oITqX7Q1Ax57dOfLMkSycNYeOPbuzYXnmH6YNy1fQoUdmnfQuvcvo/5EP0b57V/bYqy2HnXoCi+a80mh1b1pU1N3n5lnrJuS1GS/Tq28fuvTqviO2eukKtldkFhlbs2wlK/+1lG77ZFrBG9euB2DTm2/x3OQnGPGJkwHoUtaD12f8DYDlbyymYts22nfptBt/SXHb+vYmtmx8a8f+q1Ofo/eAgznitJOZfveDAEy/+0GOOP0UAAZ89DiWvvIa2zZtZntFBQv+PIOyQ/s3Wv2bnHpY4rSpavTuc3Nx22XX8vdZr/DW+je54pRxnH7hGEacfTKza+g6/+Ol+Tx928OUtipFJSV8+vILaN+lIwAP/ORWlvx9IQCnjf80vfbvDcAnv34+d3//Rqbd/TsEfP57F6Nm+j9VU/TmylX8aswXAXh3+3Y++KlRDDzlBPYffCS/+fyF/OWO++japzfj77oJgHZdOvPRr3yRHx97BgIGnnoih4/MLDD30JUTeGHyb9m2aTOX9f8gI77wGT5+5dcb66c1jmbaCsyHcqwLvesnlu4Fjge6AyuA70TErXWVGTLw4Jh5z00NUh9rGCX9Bzd2FawAQz5yPLNefOl9/Ws75JCDYsbNP8rr2FbHjZkdEc3q3rIGS/cR8ZmIKIuI1hHRJ1dCNLNmpB6uKUraV9IfJb0qaZ6kr6Z4V0nPSFqQXrtklblcUrmk1yWdmhUfLGlu+uwGpW6WpD0l3Z/iM/K5I6Z428Bm1kCUmWQ2n61uFcA3IuJQYBhwkaQBwGXA1IjoD0xN70mfjQEGkrkHeqKkyi+5icxdLP3TVnmP9DhgXUT0A64DrslVKSdFMyuYpLy2ukTE8oh4Me1vBF4FegOjgEnpsEnAWWl/FHBfRGyNiIVAOTBUUhnQMSKmR+Z64B3VylSe60HgJOWomAdazKwwopCBlu6SZmW9vzkibt7plJlu7VHADKBXRCyHTOKUVHkDc2/gr1nFlqTYO2m/eryyzOJ0rgpJG4BuwOraKuykaGYFKmg+xdW5BloktQceAr4WEW/W0ZCr6YOoI15XmVq5+2xmhStRflsOklqTSYh3R8TDKbwidYlJrytTfAmwb1bxPsCyFO9TQ7xKGUmtgE7A2jp/Ws5am5llE/Uy0JKu7d0KvBoRP8/6aAowNu2PBR7Nio9JI8p9yQyozExd7Y2ShqVznletTOW5RgPTIsd9iO4+m1mB6m05ghHA54G5kuak2BXA1cBkSeOARcA5ABExT9JkYD6ZkeuLImJ7KnchmZm52gJPpA0ySfdOSeVkWohjclXKSdHMClcPT1tFxPPUfM0P4KRaykwAJtQQnwXsNG9rRGwhJdV8OSmaWeGK+DE/J0UzK4zyG0RprpwUzaxwbimamVVSPo/wNVtOimZWuCKe1s5J0cwKU9hjfs2Ok6KZFcjrPpuZVVHMs8I7KZpZ4dx9NjNL5NFnM7Oq3H02M8vigRYzs6QZr+mcDydFMyucB1rMzLI4KZqZVXL32cysKidFM7NsTopmZhnCLUUzsyqKNyc6KZpZoeptNb8myUnRzApXxN3n4k33ZtaAlOeW4yzSbZJWSnolK9ZV0jOSFqTXLlmfXS6pXNLrkk7Nig+WNDd9doPS3GaS9pR0f4rPkHRArjo5KZpZ4Sof9cu15XY7MLJa7DJgakT0B6am90gaQGYx+4GpzERJldP13ASMB/qnrfKc44B1EdEPuA64JleFnBTNbBfUT0sxIp4D1lYLjwImpf1JwFlZ8fsiYmtELATKgaGSyoCOETE9IgK4o1qZynM9CJykHDPkOimaWWHybSVmck93SbOytvF5fEOviFgOkF57pnhvYHHWcUtSrHfarx6vUiYiKoANQLe6vtwDLWZWuPxHn1dHxJD6+tYaYlFHvK4ytXJL0cwKJimvbRetSF1i0uvKFF8C7Jt1XB9gWYr3qSFepYykVkAndu6uV+GkaGaFq7+BlppMAcam/bHAo1nxMWlEuS+ZAZWZqYu9UdKwdL3wvGplKs81GpiWrjvWyt1nMytQfoMoeZ1Juhc4nsy1xyXAd4CrgcmSxgGLgHMAImKepMnAfKACuCgitqdTXUhmJLst8ETaAG4F7pRUTqaFOCZXnZwUzaxw9XTzdkR8ppaPTqrl+AnAhBris4DDaohvISXVfDkpmllhhB/zMzOroogf83NSNLPCFW9OdFI0s0LV30BLU+SkaGaFc/fZzCzxzNtmZtV49NnMrJKXODUzq8ZJ0czsPUXcUlSOZ6N3K0mrgH81dj0aQHdgdWNXwgpSrP/N9o+IHu/nBJKeJPPnk4/VEVF9Zu0mrUklxWIlaVY9zilnu4H/m7VcxTuEZGa2C5wUzcyyOCnuHjc3dgWsYP5v1kL5mqKZWRa3FM3MsjgpmpllcVJsQJJGSnpdUrmkyxq7PpabpNskrZT0SmPXxRqHk2IDkVQK3Ah8DBgAfEbSgMatleXhdqBZ3Wxs9ctJseEMBcoj4o2I2AbcB4xq5DpZDhHxHDnWBbbi5qTYcHoDi7PeL0kxM2vCnBQbTk1PzPv+J7Mmzkmx4SwB9s163wdY1kh1MbM8OSk2nBeA/pL6StoDGANMaeQ6mVkOTooNJCIqgC8DTwGvApMjYl7j1spykXQvMB04WNISSeMau062e/kxPzOzLG4pmpllcVI0M8vipGhmlsVJ0cwsi5OimVkWJ8VmRNJ2SXMkvSLpAUl7vY9z3S5pdNq/pa7JKiQdL+nDu/Ad/5S006pvtcWrHfNWgd/1XUn/XWgdzapzUmxeNkfEkRFxGLAN+FL2h2lmnoJFxH9GxPw6DjkeKDgpmjVHTorN15+BfqkV90dJ9wBzJZVK+qmkFyT9TdIFAMr4H0nzJT0O9Kw8kaRnJQ1J+yMlvSjpZUlTJR1AJvn+V2qlHiOph6SH0ne8IGlEKttN0tOSXpL0a2p+/rsKSb+VNFvSPEnjq312barLVEk9UuwgSU+mMn+WdEi9/GmaJa0auwJWOEmtyMzT+GQKDQUOi4iFKbFsiIgPStoT+Iukp4GjgIOBw4FewHzgtmrn7QH8Bjg2natrRKyV9CvgrYj4WTruHuC6iHhe0n5knto5FPgO8HxEfF/S6UCVJFeL/0jf0RZ4QdJDEbEGaAe8GBHfkPTtdO4vk1lQ6ksRsUDSh4CJwIm78MdoViMnxealraQ5af/PwK1kurUzI2Jhip8CHFF5vRDoBPQHjgXujYjtwDJJ02o4/zDgucpzRURt8wp+FBgg7WgIdpTUIX3HJ1LZxyWty+M3XSzp7LS/b6rrGuBd4P4Uvwt4WFL79HsfyPruPfP4DrO8OSk2L5sj4sjsQEoOb2eHgK9ExFPVjjuN3FOXKY9jIHPZZXhEbK6hLnk/NyrpeDIJdnhEbJL0LNCmlsMjfe/66n8GZvXJ1xSLz1PAhZJaA0j6gKR2wHPAmHTNsQw4oYay04HjJPVNZbum+EagQ9ZxT5PpypKOOzLtPgecm2IfA7rkqGsnYF1KiIeQaalWKgEqW7ufJdMtfxNYKOmc9B2SNCjHd5gVxEmx+NxC5nrhi2nxpV+T6RE8AiwA5gI3AX+qXjAiVpG5DviwpJd5r/v6O+DsyoEW4GJgSBrImc97o+DfA46V9CKZbvyiHHV9Emgl6W/AD4C/Zn32NjBQ0mwy1wy/n+LnAuNS/ebhJR6snnmWHDOzLG4pmpllcVI0M8vipGhmlsVJ0cwsi5OimVkWJ0UzsyxOimZmWf4/sLuj4Ay6ff8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(classifier2, X_t, y_t, cmap=plt.cm.Reds)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "2862af72", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.81 0.84 0.82 88733\n", + " 1 0.26 0.23 0.24 22459\n", + "\n", + " accuracy 0.71 111192\n", + " macro avg 0.53 0.53 0.53 111192\n", + "weighted avg 0.70 0.71 0.70 111192\n", + "\n" + ] + } + ], + "source": [ + "print(classification_report(y_t, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "52f413a8", + "metadata": {}, + "source": [ + "### Analysis:\n", + "The decision tree model has a lower accuracy but because it deals with the categorical data better it manages to correctly predict some of the disputed issues." + ] + }, + { + "cell_type": "markdown", + "id": "c04cfc62", + "metadata": {}, + "source": [ + "## Conclusion:" + ] + }, + { + "cell_type": "markdown", + "id": "ce1b2eb9", + "metadata": {}, + "source": [ + "Since both models are very quick and dirty, detailed parsing of the data using the *nltk* library would be ideal in getting a higher recall and higher number of true positive recognition in the future.\n", + "\n", + "However, the visualizations and insights provided by the dataset do inform of key areas for our company to be wary and cautious of, and with constant improvement of data preparation and more robust training models there lies a higher scope of predicting disputed issues and even company responses." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/main.tex b/main.tex new file mode 100644 index 0000000..8144cc6 --- /dev/null +++ b/main.tex @@ -0,0 +1,34 @@ +\documentclass{report} +\usepackage[utf8]{inputenc} + +\title{Future Hypotheses} +\author{Aryan Vakharia} +\date{September 30th, 2022} + +\setcounter{secnumdepth}{3} + +\begin{document} + +\maketitle + +\chapter{Current Project} + +\section{Optimizing the ML Model} +A Logistic Regression model and Decision Tree was used, with both identifying true positives(actual disputes) with low accuracy. +\subsection{If a package such as XGBoost is optimized for the data set, then the model bias will be less than the Logistic Regression model.} +\subsection{With deeper analysis on the data set, then the ML model will have greater accuracy with respect to consumer disputes.} + +\section{Data Insights} +For the following features–product, state, submission method, and issue: +\subsection{The more commonly used the financial product is within the company, the more likely it is to be disputed} +\subsection{If a consumer is located on the West Coast of the United States, then they are more likely to dispute.} +\subsection{If a consumer uses an digital form of communication, then they are more likely to dispute their resolution.} + + +\chapter{Additional Hypotheses} + +\section{Data Exploration} +\subsection{Interactive map with highlights of different zip codes.} +\subsection{Robust, accurate sentiment analysis on product, sub-product, issue, and sub-issue and even narratives.} + +\end{document} \ No newline at end of file diff --git a/report.pdf b/report.pdf new file mode 100644 index 0000000000000000000000000000000000000000..40ea274c73fe95f9d5cd0ceeaed16b2a67c617d6 GIT binary patch literal 260552 zcmeFa1zc3y`ZqqHsDOa9fP{1pFr<{y-3Zc1OG-B=BGMAlDF`B6g0wUeQqm#a-TmJ) z=uz*{bI<+VbARvqzwhBQe}j>SsH=mbd3ybNLYZw3ScQ+3nOX+3kGFH8WOOgt+kz=t&+8Y zfr6!_EeR_Ztck3ht(l1h(1R5M+m_a~HWjxpv;@RLzZ&S10No7u_`uQzwz~Sj7$nT> z(6JT3cTEf&46Nm>4Gaye4J`Bk5zOqcVfpw_kPIyJVcJ1={GcXGJ+PpqorNt41T1Ny zZ=+5E8<~WK6)Khl!Vdk=B>7$nw88JB05b)~wf!TAQ8p50&hu~VBrHtOZ@_eg9c@JwZFOx8070UP%uFP} z3n~lv&P)Ql&ReO<-hW`A2OUh@9KfB0g#>t=ACj}S)KfIDRR;r>11lLg+MYKNIR6kl z{}6}H6M$CVL|4GlQ61>YM8Xc}%E85=Ndll`VGGOE5>inw%T{94#9Xrtg7;3jPYLh>4l4fi+mf z44AZ#fu5zl0a(hw!pPPbm=lBp+RMh)+CbMF1<5h4K~3Fqm>tWVbco!H*ni#6o!K<=Z&K<_r3ErBV6x}%7 zX((@9qPv-{xG}q^aLh&2A~va=R`k5~J*1^*0BfqtC%66qkFyPgNYgd_NyOx=JC6dB zI1)v;ZAcMm2#Z8fsnhk~&+pJ#3Vd1e_pkU@dE}->snpzQdzaz5b+j=b*ig_L)mH0YMTqy}!m<|Flx{TDi4X1C$T(EGn zAZz|rD!d}pdR}!})7x)K>G~vR^R&%S<3&6Pjk*OJ*Zk!&KBI?cFANKEc0II0ULlnl z1nI|Jcbj4xMH#AOIG)9E=tK=s0c^xyA}#D zwwSQNZM=h0NlD%B$sf0~3C-wYN`+;z~A3``_~hp%=Rf zr}^Bi!s^7ljNS33wd^M9SPjWNwoNR$?NDSt6pRde)~y+`PW76iV{AJTW&J=p6Z}w@ zn(cx?-@dl@7D`6Zf*s1sCuOyGlRQ^#>CF`oI@a*Zn&K!{k!?CW>X13`5^0lfyED9nr>%ULAiPDG{*6^Z%*Fs;YJj;J3oiIsEoLoRp%V0jY zKe=Oni6Mtdf~&Yo@nG#Uxj6D(l)%9Ud@=6!+Ys4tC6!S}yg zU+ZOikFf#1o}L6!1i9`eD2=bHo{@S9<;G7x;eM<1d=dP(%pziNCd9OuFU68yhOs!cMhKjb>d*R5YIG`oz!Kq5|Rj1N8aNhHrOLX^&8aAhd zX$~c?hYenNV?te!?Vj;eKAlJ{(I!HijfJ=2-l0(6E>|BaOAp)<-OvW@HhOQ2Ty=QK zzMKEX9SW370Ye7P%`AMM1UI^}lyTr4CXZjB`}^}?j77QZ-TqkLdxl7o4x+>!qZzb1fDTmzFQgTuAj3GIZd45Y-V1~`h~*eK z4@~!Yu-*OPMsX?Dl65>Oa6D|Jl>PA&jgwSFacVE^DvHYVh|pfG$nHs zJ;SN_580-(+85;JEfMaMCxxTXk9vK+tX}=}!p5G8yXGl6_wJ?kDxLCGbKi`>?tWhZ zSKn0W`WDvE%b_pl{6(Gb+Vb=g@y=j64$rf@2AEheDMfjn)mUj}T=Ex;+=jf4<$OYG z{!$sl$<|@&!?csfo`$J}y-g{NP+D@u?ab5eMkn_bl=-i8J}eRXqZo_-(zj9UhQegwU6dKABHMGJ|oX^nUZql z6u0?Jn~-MzBR;giN>$8ezFE#AB~r90%`!E4By0y&Qn_+?c=a~Xye>sv(50YD0trEd z&34}WO^-)W_Iq7sjLeaZ>Kq+6I!dpu;G(_Ut8td*Gf0|}57HbPyU~zdpxQzE#8TR4 zSYX5_8jYA({OMFP@c1OJwrc6b+rcLUYxczk$DKae`pSc&%^DE$d7~zEWQSz1-9D5 z7?#!vyE%gVms}lM65mx0Slo%;ZTZOW+lfX>+;My-wN;|2IVDpv$mMd1m13Kqun|7( zTS`6@cnfST_B)n#cW{dbB+=!3@y7MwT;Y0=)*kDq-Fy?{aaS=-{FNihHabXCfxeS9 zKdA?YN&2`9rH76NZEA8w=2ns?ck^S9NUt#}wT<@MoWT&n4BIQ(d!#1;+Q`l!7FboM zkW`0ew7_lD3-nISdki-oA4!Li;mIU74$m9nXa%3#Ik3lk&^k|+)S2%t(y7+N#)g|< zE)k`8b8YI5w~C`P#Up1Li82|%*ESs@mx`E|XzIAlCq82UtwGW0tDW(+Er_5b)?-#_T8m?ZGiZSIh42W-TMO&sEhb#17@^RHNX2|J# zIkAb>e$DYVjGKOCGGA#blqY`WK`?p+rI27nyZg3KY7O1P1QyV>F@WtB5EK#?7N!%_ zH8Z(yZNeaBVq|O!7PbHwlZk~9SX>{VY$mo&3}OHmv(W=a(6z9I_Ol^5=bK8F$`&S2 zdPTy__JwVJG!z{msu---GTus$$=u1f5ztjr9|p+x=%W(pnStDxU3@=XUA z$CuGHHvs?C8UTqkvLS)6fW?7Dk%`_N3nMcF5+?8+s6A{+IM|rJ*v6KGfd$wQ)U^^b zfSM6@=#IUSiitkJd)Zi+fJKnw`35s5umy!r<-8>Xz)JN?FQ^Pf0J6J47g!qs7@KEc z0~QL<0Z5o3Ok7ae0I7$H0I0SBuqI*qvW)mf3_}}OOR~Wl{xHqoEdzg){ew^ZUc>+2`o#B( zwBJJETXOo*PLLn$B>K%x-!jxcv(T4C^Up2B!v4)dux05F7W!!({bv0iEcCr@f0b>R zzl&E6RtRjoFY(IyXX2F!@+DqbSebqjuP|hOnDB4;`s=#COfa3zes*8EZ{wT)SzuD@JwTZ5ow9=mr zD3c3Mhz&}xEX^#f6|Hpj48EP91Phqh+Q=DL3tF06Sz17O z87EjAIN@n+WeGh6Nn)sLW@7+Wl-9K|C1Lr>8h&+(l9`EvjUDPWUzxpQ-11;o_KJjs za978~3GwBw_gu_#M%BXA&4OImDJVCe-AC{&u`9>K%QAP{-1MFIOHDhMRTKB{kCPY41%H!Euy zdd3X`kqp{~6{9SEp z8!(-kL12RI|BmGUw-Vge z-X4crWY%v0OTnJ zqki(OZEiFGc% z!J;T2H+Xn>^fp}Bt}(M(MWSkHO9ONn>~fuvs=Xpu?#ypi-nU+%#cEFL0Q zZy>YGcC^Le>rin=KW_5E`4ZV9(LnB5)~8ZjckI0XC09WQ@Qh#9M6vrIPQn8T~l_xZjoOrrkZ(RlS{v|?Qey{jxPkuUG}wG7Jv4d5MB1`{r2>tf3j-&MY}QWvq= z-gO4#@g8r{`)J>nqJ~jHmh`8V_x2MQe+L6mC>NV+Ywe!xM94thcV$lM;okGMj0ts| zs&wSwdZO=(qF=cWK-R|#)_FA@$#=gmp^78Cwsm-l^wVL|Uu!2L ztF|A|)y>QQerIiy@2n3?H^pJAae}#d=l$ep!d+c9A zU~yw1fTpzemk0!s#WN$Q?EeaY@`tIAw9iPtoIgj9Z6lV(#IJl{tudq{>M`9fU0{^6 z8&A>7`^W8ItnYMiy_CaKbW#p`0onia2RaErep>o{@$#2)c0 z@%L`yKT-4d1uI4U}ELsYSNIzUg`w2@R0cvwV7b%)C+9h{pcbktD zDoB6?{R4%;0h@9;=fBue_r5X#|9C!FDyW^hPBL{EW!Mx?nN-V_b)N}&j^2ym)NUq;7+5Zv$$3z^qt9mu6f*s_=)mt8fPWx2XHM z=6?(SsX_lMVVNo2z^Js!NA@W97CkJ3CG+lzJP4X9XSB8-Zq#8pxa+%wS|P+`Q6U7@ zSgswnm5rDgpam&|B0D6-P`+s7_c4Y1?Pw%jUSB{S| zs*f1Z0w`&_1k5>RbwFIjJl3TSMJUSElKXvwhu6{`5q@O<-K;2@`8ag89 zy=mY_9er_5`@pK-6as=N{kLG!@}px60+^cRDK5A6OWd?8wo?>p`|8y?-zIG2s*o7* zRevX%oKntOJjG+}BRks}rYjfV^3HN{5lH%+(LTCzhu~gxmx!3>5qgA0Y-{xlY429j z`is-@5~G5q>#J3>L9&ZQmhLq0si)OG&B?0y*C&FoS}@{$sGm=Ip`yx9XkEst>h{>% zmD;^tH`xDgbvVq_k|)Y372ama1eF$@{h zyXv5gSqeeUozWaWR=6m}Yx@jIaU{gK|Nawh1#(H-w~8df$qQJQeO_DTUU+&pqx!;J z#sB_bC96S#=-;%wIF!*zm~mmQjAzqD zuoxxuA+<8X(P}NPI(T*EN|9nRx5DKPJKaT1fAm$c5c;k`nMYXOX^J;)ysWK6y{`7^ z6g6(^+y-UbsKTE+=qn-|+_ogquNkKcIHaP+E!Fmx@#RWU-&e(yhFkEK;ktZ#P@fSy1!4i`gMGkeD$*^DK$5b2ewJ2WL<8Hx7p-^_tJD*TF4l)&Oy>_7LO-y4+4 zyZ4Oae_+m@PP&useD4f2SIAC|mpv`kGb_+eX6w(8N?vv_Bl4gfe>(w+fTTM zz7MWHoGk0MM76D%?&5`Usmdk5ObDbSUH`-R$6sWTPXJ@Uz53p|OP}_YAcFoUnSP@r7 z9z8;)eeUc`c1!Z2R)&6V-3k^pbEU(h-bYx1XJ>kT$t5xFd~&4Gw-li|02cov8SoTH z+JH+G#xo9--(I}!mwa}{+|a2m%}-1nA{9@=%<$ZK{>6u3s0>cw7hfU~0aaMnw}$X~ zX%c)!ItQuTOCWnv;3T4jUjZ-Y)WY;2rrv0keVTw4E|%629)%;uyDc%Zg2fbmEAHio z^TfOa@AEQG=rih74Y^0XJp|~~@}>QcF#JDWmUx0|uc8an1ucAkhDs3FMXqQhA%&bu zMNdC!l_4=Zu>UOU7)B%F3)7LBWdV7yDV|M8I}y} z3eA8}q#-DvRVp}fBV2ujn*Mt8ODe2Mrlvp5v&-r49E zgpq>nlK_P2E0O?L{zof$)8HhYQ3&gD6Q(A(p9W!E{%%r)V(6*^XRA<%wTV`dVk`3M z-_vPY{Yo2R>YF5Nen|<+>H!*LaeP4_a0l)?R&OEw)P*bH=CDp&L zT`eQC17^BA8RVS}wM&%g)AAa51|HEz-iNcbr{jTF(t&nHFz2Ynf;x(r+Z|so?@>F^ zMdaPXLS%KoC$9drms9>vq!I02rnyEi47))0>jj}-f9eIhl=QE=kX6)L*9rL1fvv5< z`LFk(Kk@lf7q|8%y%DOU&=%_UFu4co5>EF^#Lpb`P}`EIf0UJ#mv3|F(C zI2vK&C&IqT(>1O+$X+^8BL&>?RV7XOCao%q$vbzCo1Ktu8MR<~dNFO1ThBUFGu3rF z?gp9rE2h#~e%kddUUppOclyksy%tT;ewJ@As&j-QN@gw7$ie6=XIYP3+$z0$h> zscXp2(cW@P2*F*;#GdX%Zg@}jy9xRy42F6{gz70Gk)BH4vSJ=*$*KuiR6;a#tGR=3 z3Nr0{nURCh62khN*C^Olb6(?p>^Td39dcwKX!=r;D|3J90aSMI-p!J@Ehq;F9 zM`V_TiTP~%`0}ZC#T9i<)Atea+S2)3MGu1WEylS-cZonr;V;rV#^Z_H(w=nCpgdj5Zd0GpqS|cl?O>NzdA`kFMXUkVQagiog^dW0ES|sps_MYq2UYLP zGq(>N_m;cB{s998Q)Ub5Wu|o(6IT&Ihl60z6Kd2YUPX}Am1#szg=s`s7~ViUf+InE z`7k1-1O^nh>*R^= zXEt+l-E?m$`pD3Vh-Dk5-XyWMFpYRyf$;cqN05R}9Zi=Fo~cj{A(f3axt*ye51d%q z;`9QKp8V|C3;!~)U7ireLW&Uq^6mjO=DfVlHBFF}?Hic{tx`$y>=4@_x$45`^m_`1 zvl-|g6F}sOY@6YSPRK4rOtD_vAWy;Qs61i%Cu~ zd0h0N)ihWiuv;>z*J!&lita1j?oLyoZzl(k02zaluS#6c^H)4YzrbB>GKA`kPQh6a!o0kd4ZMIbYjoh6x3ov z!Qi9E8t=@rwiD2`r}r2^oVNg%ROCM~oC;KwkTk^i#V4X!qx^r|o}2YCq5TA6vsH4& zSz_tke)4eQv0C}8VL+h0@tR$z2ogzPlz!1f9NCt~R!C1J*C}m5NLQI2294i!uX1Bx z?SsJ^nJ+Ru^pJ&0RH5WjGp48ho4W~yJ0WeAbhvgQ%TA=4hLWY;VyXE%8DGt*Xt&9F zyyKb57Aixq=)k_kD*2&}hi!5Y+E*mukRd}a7{}1Y>hkAjT(${}>YwU4`^l-Z*~1pi#A zf&mkn_Wt+Y2|S}({7hBz3Y!;eJQ8@YCHtcZ{hBdBXHJ_+q#x}gUjWLS@i@io?+)GC zxeKJ=)2(TmS9%vrdJ}ly))T2@x2C9oCe;|5N_3T_y3WqC51^6|oyy!st7-eQ=}yU< z;6L+!d_S60M~4Yak#)==FmbDVDYyEI07X8>(|2R~uc!RQzDDtNn$w?dE@~G*K zdAxjDNc!g07V5~KB`4I=Fm8w}cR=v)ALJ)RyDiqnHpPz}h6#q^(b4H5JTCChrF=Rt zFFSx-C)yQT{a@KvKH=eImU zBZkvk?lT2s5Xz6vecGYfbSZS~i*L^Lz2K8A25QFfoZAXbXY%x}@OeDYh8|gBxm#bp z4JVs`Gvn4v-%PxPkmN}v+rGL?N~I+Wj1jE;04_;MAYm+QwA_AWsL~(sD`KFuQw#sY z`^9srtvP#2mcyA#Iuz`$Tls>IhvVH+7`~i9vKLp@CiHy z;-k)uPW^QOj zLv6e2|U@aZH}MzYu^M8?p0PtaLrq+RrhvNVj-=Rk$EUm zhtq|s$d4(fDw;IB2Az9#cH2Q-e7O4>qQZJ%#DQQt#N5B9fb`D22u$jE5g;dp?Y-KF z-V@7QJG=8javYai*2#&~#+s$?nFeOjpHXYj zr+7FJV0kZ{FRAj3W9wgo{%mVkj?DCJ<=D%SZ04Y9C$8K=t zA2~j3)%9SSCMBi!=(YK&+?MO`WKouwT*S;pq%t5WwJ5cFm2)uWZ-xJZ<+Ku5`ujiT z(nfd6iR_`{jnla#h(!*<5T}!E%9_6^?L~to`<&S@!Py=lfvtzVHMIiO4sbPH8Gs8h z&&eEdDMfu*s9{AN2Rw|q$)X?g6YEtEX=5PG$j~rEn~*TH}^&&fCT!II3hici`2;pz#Zcxk7vhOK6T9) zSa$ikt0v^IY;DIm0U{quFw1(<3;Be8C2%6ktC?zT_bpDh$0^HgCW<%9rT1DEU3LyqM2_dQ%G z_=CaTk4^QdiZsZ$H+q=Ye=-OLa7IEjZ1qT%O~&J0b*2lcjW#t_*%&W6&by4)x|2`l zFftp{$b+c*tr}@kYG1V$#%-84qCDA4Gz^TD_Rn(8EWUcMsQNH)xN@s&=m@@}?J-zz zxX*hwy3SJ2puqv3!+y4W##Ac{lUO^ir?lI@K?@zpK#Pg{t@p0gS>S9CDjQYIX|{Dk z=ql+)i-M9tqCJlB+i#hMV+Qq(jRLlO8guI6o>{(R>li7q-YIaOOn5j-H*0l964G@t z75P!q<$kPp@~5+@7{@uBkU|LsJr0r%%9TXY(6WXRZ;pu4rjwE^4eq(PCy07$LuHK} zTI5n(DQiRiPayH?r3L!Z3om^8OBX5kC}KJowRR#PMAwkqH1VC=;v5z9jjNh>CJK}V z;~$=;bq@7sjT=}|3M603$$wY+Cg0I8uIn@`(8a~W-fR+ni&5-^hpcL{n*t8;X@f&0>qC$jw9aeDoY-%t#9uHSu#yO=ML2 z!>c)pJ~$>t6I6D(?vHM`hFP9o8>V!b&CYXi9Dg$)STk5LV8IE|-81$e(A#bs?Wpfh z_aEWC>rQJ(-@zdx%9t>nAm$h)Om!H+ddflfa;n$Cg*?D(O=B(~_r%4o$aua=JVaFM zE#Jk65qfJ8+#ZbTo+m* zOoWCKsHxj}C$!+S4!ItWm_;^Ux~OT^t&^6u1~NtDt|i~|BHf>qswIw2NX9{$HQOw- z;8>+Yq>)2>H!F)_RG^WObs+CnD;qn~Q?)xSN515<>JjP+r8*t^9((diBBoPuzHwP?)dcqQz`YKrfrw{Nuw_W z*gY9*9Grdhx%R~v-k#Nnv`j*o68=X;$y;2BC6pHNj!TaHFkA3+OHz*OE!PHq5 zFy6PT#VsW+loiO!OJW-61c9oI*<&mYq_;MDc^f0o_HwZCLhP{@W={;owPi$$XL1GzrU7EZw!zG%87&4!ZF%cTH@2T~p#tfjcqw*!S9IKXY?(X=9ODbd~4d zeNoidr%9yI|2}~Q2ER~XDEEiurLEbFt_ao^4PsSS!-kE?gcc;Ks~7TpJPV!jN1uHx zLM<0vQ6U)LUwa2;N*NER+EnZ^s&MU;cW2W+?W<$cB^RKzTfmT0I+OcVY zIHiU>#65+hoJ{4hP$h11E&oiL(kt;T--wI0#HWWH`!rjz>TmlUvc;Oi%q$OwutS;N zqOQsm7zU)g>!+Cb+;Ic-bm|>uw$GhqB<*E&4@DHC<&H2Xp35JXs#d zs%~G54!!KS8DuR8jvM(YtCegjy=H%NG46(RDDTRd7M=cTZ3Sbtq=ud;SuVYmbkt>s zV%{mNoad~%%-YJeiIyl1F zY>D9W+imR0*!8r@s}2kZ^_R_8eP;=9n`IkgBbz@{>9s4gs>P#W!E zIb-l;S7hTBYnr1|yX<0%X|;XhNfwWtpLYGxGEJ55?m!tDJ`t-d%R5VYS?vz@zT?j0 zryPB$@2D&s$0|cMq*r#%mLW#T-SM>w z=wx@FWSQH{NbMns51OJ_dVJtPLGj~v@sp;{oqv(1W7Japa{OWAnNvch(weC}Ov@fp^MP@Sfn@&1=IvMjZDcyTX&P9&0HXi9~Y=&s$VlWrb7Rh*iv0 ziI2?$KQ*~5a$(-n{pgov6}GvAK~;fV#nC}sJ%Sh8)FhZ_6L`cR9;j90yvwk1rmVcv z;?l9dH~U^Q6D0?GoV)a>b%JQ5rD8K_$NWBF8(U79tEKX%*~s_}OD$%;@S*_i`YH-^ExhQN{^$7bc|0u3Z})Pzt8DJlj5mDQLDq?~ z9uhRuQd!T2&)N4OjMsgTr?g!6!(J{kpKi=(4{y*MP37Vv*LyekOADKJ-;e4*(;B_( zD)xr_O7PiD`-CjSgVqZ@Id-|vc!w(nT&!>tjVmXrF>s5cc&Vn>)JZ@BOt}1_D zUelb47Jac1nsqkkczimgWh^)_(coD7)je0&d7gNiS0_wY=qrV%>)&KFa=4DR+f7cT zDYuiC^H8{>%O(&7TE66EuSRF_N8Rl%Wsb|Q@-U0ivQN>tD;VQ8)W$Z^qUahHpzA-} zZmtzd7OFfE(7rRL4h}4*6yljuO&F2XNQuEtG-_-z%4!d9^Mh1*1a9~uFNsxtijU8y zlV!1XtD44P4=Z{PE!ECy(2gUxK;CrmhAfUU$55FH4CRb!^jDHbgxsFk!8l$D%ZY59 z!i?vL4=L4Y?%gNU^eEiGvcFxM>E5^i?(csV*zr1!s$jCPaq>`OxplZvtXVKcR3?iC z&n+%LznD#=OdCJg(!`cDZyEz{+mDyNLadwrR?7|wge-i#arvXy-aEsQak<$}6G_`G z8C!d@x9@j_D+^m_f)v+$v6gzlz<+=P+O!VLBNbNWh`> zqVzTo?iDNt-{Ai2D?U`c)_nXAU8qkt?{49R6mVqkaYTVVMViv%s`4r(AI*QfyBxhw zXj&Db^IAS6u3;v#>6348c7MV$g?;cY-f+~^)oisvG_L@Yr3i-kl6F_S$zs#{Q>N2? zFFRcbDcn(jlR`G^UHIyj^j3@d9rbJ2zB3th4kuG8jeF2r;bjjON5?DxD0 zUDrh1O9@L))1D;=er|PdU&hF+D*yA&+fXKe#g_r6*jS8+@TaQ;jx2&_Tgnh<5-1Tl z@Y`x2_=oAgz=_|He1~o?1=K!XZPIn z^5?hTzX|Qf@4s;mU2EtQ9+)0XL)=5+{KzPdkjLs}758`MvA0rRP&f!<9tE|2ohaM<2Ib?oZlSz{4pAwBrLESAf7)Y1HwcCyr6fDg&l>k0QZdjZj+S+xaTA6hJ4_^ z@|hdJZ3>}7{xuKX_~CZFFv(x9K>GD%K+LSnkRLAts=PM}Jayxm2k_L5N5PZVAd^1i z52$ZtiL2<}_Ow9h^wCB0%N~F~4pFuDKi(_nmUxRVDMkTV^12o#db%3xpkjXzUFqWB zRzBqXfTYPRxhu9+?Xe0 zI_r02Rh7U_6JYly@1lKVog;8rlwN-ySDcAEi>vCLLQqZ%w@SgCeFqWe7D?FvQ#@qz za!#W$xvac+Y63>P^}zHyRWp6Q2hp;&phmR#M@E<3q#UNNSEK4lB{CU4N=Xb)aI2`i zpM_3PU}P4Tq>_)Gu9kW-@#)>V+Ee2rPH}IA$_YCU$3Y}w(U;ZhjkwOKLLP%;+VexG z&v|#fb6&y~P*rul!ZPV47;}CctnlpMbUg#?Xeu^rK#tIUH}s$TpV|spi(m)eH09@ou{7F%sz6Bid)}z|HG`R z$1Fu_XNSQ4`5*2c`N>mtxpnltei5T5d!tVa51+b8 z%X&UM_S5TS?r^{9nASMWNB-35dU6>#)NggXkI@@$sphI~eRyIP@*?je%i9spBpIu` zAV_f`oL{MSzk+t}2hO;Qj#C!uAXR+*qC^!2-$y|g8HLGWBSmnk%){t>dGyYRt6WR6~+APTyi2EX|O5@ z)0X1p)J~R`@!5pmMf(OmPv?<&N<+#A_ek_LvYzAI$>b}qzPIY3xu5Nj`SLl#UT>yy z=n(q8#&ksLx)bGc9L^;q+j5taYEb8y8I8~!C)v$6T<)6~uSrt%m!A#ry5F3m^}Yb_ zZ$pfKq*PMo>c2%aWIz#!F%lccuS`a?vp8{J%%dFMW5N1EzRK>2BK#kM`QoAa|P0p-!|h$h4lGi|`RN`Lb# zzNBu>e0JgqwfQjXLF=6am*XryGC`6=p@YREi>*=kjD?87M{WHTgHfv2M-6;csH%)) z`DtZ4O~@xp{4xqf$&t!zo;jL-BB6-qCC%8-TcSwgjPt75kwIh_8p)efA!cw0*@l=Qgr@cI3>ngU(rmNTO%e3oG%yhFtg?P7p`Sl3WR{7 zlGWhX!lhYDH0s_RZ zw4JCW%b%Ch-`xfJkM51i!N&IW)~FCJj(`8ws9$db{i|D}LfBbg<>%{#u#RynBdwWn z4seYd3C5wbano^OD%NicuRWx@@>o*Ek3bmXA;n8-5e^(RzwGJBV)kcu$-152t78}A zW@gNMdaFanSmf8|n6CBOPfabef%er)|3NVd)Ofy4&bbp;$5XFy?lsrwNGEXFm4DzP zKiTyBRA}@uAv-(U2n3>7!5L6y=itb#I$Y!ic|Nt7>nK*&QNeqvd!xw%9)uFivnf`N zV2`bP0VG^YDLDYT9g^3A!48rmH!FC80>VO!rT=#hE!8Av_g8JD7&RthIWz^Ibyj78 zk^~3zvo&3f=VmNpHQjSc6}4}Tf7y*l0HVfVzgK$+NCls0(ehU-7vPRb(}#fiU^** zf2_C*>J8^vy78U39_{$G0)nb>K3!1MHQlhCCwl`G6NhU>ve!YBLVtdqKSjs%h{HZ8 z9_M`WU(6T$@?XO5r*dVv^A46(DvzAjO5LhB#%(Q+p1|n{Jdy5Wx;n-ARu&sXDe;Gz z6OIhI9~CE7?u?C}%n>%s1O z_!=O#vJPC#w5)dtR=f~AY5v%M{%lMXzqNFm8=yI#wyF79V@G}u(3cj7CsFx-JFK(n ze0;#J8zXhWe0_YXpeP_d|7-vd#12PRt|=xS&*rwZwJi&jZ#8*bW2e(SC5j!KnSP7xuO-KsW5^ew>`fLkmyzc+k zkMd1nKQ{t(aMkki5}#9Wbab?)vC-P`yS#gdbxZ+M`~0`)L7%JtjMw+|^m8O09qv`E zS899I=9Dj0?aE)MS*0>7VBCIORWg2<@^$;)$=X@PCj{J0GROp=*VowZnI82y1jR#( z0gy_0{NVow+4zTu{F=j|Qy<_{21QZ-VRkQm=eEC`Zc#C(f)*|9G=8!pxZ*;H={DN$FB1dS}K@h5ebq+p-HGPIuFkIuibTCQ?fj=qwJ{6JaKfxisvS! zs|TWhA%zF@ov;kpG1+eiL+hp?MEAn>6`*G7{bjqd{Lw5bC+mwKZ0(3yk+o4@)5h3O%bEvP!wUW(#`S}}`T z_kvU$6oS6^JUB`qwf{`qd40<9C?C}S-2lNa|D23}LnU)_;;K~$$Ju&`2YcqS1KL@( zny~;p{HO+CjbO>S@E9wVcG$d^dCWnlMVU0{eCs zGsctSy`g?e5Rb`ULrD980N~o~bB?$|07?@dc(S6-Z@sO=D+wgZ9)RWk6^V^-WTa|y zc_*=Y?o@fa#Qi|$Xy~FRmGqwnWOt&je|-Pd5wUYGW!3ocLf5Vjfeyfd`*NIu19=;G zj~Ggd`A0yCP*xt;PGttG=Xv=DPf%`qLxYYzF%J%!vTGY>G1;MnM{;1mwf0hy05lF` zWd}e?u%xtwNZ^SC4OcTh-3!pH{(E7F!zJ$1^BIRFZ$6z5(>HYL#SQi_JyHL(crLp& zh5BC-`7i5NY^k>-9O?d(A~wt3E|=dRJ%n^L6g;9vk%UtaJYZzntV?=VbfwlSzZMoHjv!I+_yxVq4Z|CaOY!m1qw$&V%F2d@ z-eeEq9!YBx@p5KY_e5I7dCuWw5uP;1QIU1jf~#0GnCW=K^-M>fj%m|?G_jjU%0o4bdZ`{(kqwuV9Ro% z%9AO+UFRL=u}lkx64!DC$1}FQi=5a~GXWdkbcVRBV;l+Wkj$yzkN(|@&(>}?R=W+F z4s94q-F)N5x|d<`5#?3?SRv!XhLm!+N4x^nS{X~nbx7#t@9hs45X8H)ewGGGd6kYlGHZ|G$o$`k~>DlG| zYFTrss2A?O$)~D(akk`7X;DpX^)@gP6T|hR9f$Et5i?o7HTKF7WiA0y4s4hA$2m6_ z8q&hmXBj+tR}M1Tt&@db4a(C=PpUL@neMjUizqopWLC?@&g8K;dazcSbvZ14AbgzL zaI`mmX4r)ysBHR7BeN8@pVP3HkNT|t;w~2{Z=Af@9K~6evOU(!_JB>L$cC_gou1xK zTC1&3?}zI~PW$)VUQ`TQ$Q{1_bZwI-s>s$YtfFPiWmvSIzy)tS*w)4UL0JAftnB&m zl|uKBit%)ZlC%7PYd)G(0;D;3vHTmyvCbm!C8$m;EIcO0;h4)&`k2u zgRF(}d>T5Q60*(C;OpuK#9W0A$8J$NImXF-V_l8Y9BD$4t|3X4R0sI-$08;b*jr3W zd4n&V_0j)7_TD-!u4P*ng^+|0LV(~9Ab4;K7A(OD?he5rNaHRcxI+`%f(LhphTx4R zxHnF4XtdGSkhS-|=bW|A-uJGx-u=Dvd;fHG&pE4V)K}m5#;Be(yS>z!qkFJ|AqR^` zsP|0g&Wb@`9lfl%FTEL3YOCp1Pj(s``AMcBuL!i>h3jtbMmkQ_*PS5GrKL~f=p{_5 zI-*%(*KbE!L0AiuHb|=UTTmD^_KK^M5;T9Zf0*CA7?}X0Ga2LR;m?kxj@>lb*ox!W z6qhoOpKYz2GS502$I!%=L=5%zom>c-M*{|!1Z?|f@Lwu1^mp5zMr}V0Rda{#EH$6)PUA~;Np4*%Ey6$$2(@pINeZ3S5m7k$N|l-GN~9Cw zZY3F2a7iG5iqIN4{0hm2elcDKbbW(pv)RHK%_qOw5(j^M07f#7;*)>)#|zmwK0|W= z1&aYlqsq-Sw8x>PSd>f*`rb@7u4%bzRiF@YiYpXdZ=Srk;q*Q+`rErR9@C;?E63=` z8Ce~?kh9_aJ!4&^_|&W1_<~XIx{Xq)d2?6ARc;TC5J5IJfbYsTgcJtXLiY=m+*3vu zaZ2m5EagMqyp6V#>lB&QiisLt-b#YVc~w(gHWWJbGIzqX5vic{OF+HA`!91SEuI`t zL2(BWw65utPjnBS@gL0XSjkH6;5`YneqEu}J;G^JLeI+Xd$H?2jyS^I=Zna#0j0z1 zlo*d_{8_T~{k>8(1i~XNIz35!Tmfc&fI793HGYNquve1;qOhk48+zf&f4$Q`ed&vF%Ad%2k^@k$)a8#$b4Rx zdZaJS5cc3PDhg{n5s}79E!nT@EBd`kF0;VdiS`E=8YwM<)PTf>!DB?E9eDo(KR(zm1=t*14_DS914HbS%AILEX{ts(*>b{i z70KnRN(EJ$*O$tuKA6U+Q5V^Gw!UeMNn72L5naqO;#4R(;>KQa)RpZ?-A|VwSVXG; z*P3GKc0E|LI6EN?QBA&G+uEW& zSin;G!s`|K2>;VaBNIUBROv(r+REC5{owOk=oEXY+*jFuGTLOeUBiUav4Z% zm~%~=#WW%iJXgGKf0MROz(uT`y!G0!gBnna&5mP*r8Kj-FS-(fPUexNT7r&m=Df6W zvp%L8pFeOaJd#wxGsl7BZ8qF^qM`d<&J?r@_}Js6Z)-I;UaV5fKb#~PsEm^L?o|JD=#}gI2z=EatrY@&t(7`@;2)7X4c>rq9`jckodYJH&HareBRPt_1SV zOg5iUNT2&M=I+A%5WE!=ua^%XEYCl#C2_nwF@GbmRz!UXzig`I%y8(0SB_BZl!cHI zJz(V+oTs}G%4B+V&NqiC=PJlm z+hcBB8#P2dq)Z}RSTU}O6v9c(rE?~A;A_I~&e(gs!%9Jk{&3+KJfVUytjmUB?m57m zSNzkdeQsgMG4G;F+iqn)O~KxW&D&_;s^)cRaq(x&c-7?9Qxf$GFlyZ4cDDFjj8gS- z(~)X={TJ})+h~?^^L8snvKnKqx?Au$Pul*U!hD~2{w7SwzO~F~lf*@$uDW;>a+h3=0=AZQSvV%2tLu{&H zY@Ug7hC8j!T^(<=i`Ib3>FuW~I#OqJV|}j_$xoP=B5Ks&?aDq0x)7}hdg{V`$ea~sGEpvS49jH`323R?$}+xBaWS{B0IrbQ8n zk%eX<4SUTgD!e@yLokTltu!i03#@&Uw}OFiToYbPXEH@w@j_=CyqC;%)QUPk52cHV zqdFYAr>y!I<|Q2E7ysnbO7!U2Rs7;S7lvd^RTbDqf!wDeQE4WL_P071;0hI^6>zBkdpR#B*&m&fY8qc#f>r#JA|9 zfswksKr8-)1EJ2JX%y9}FIP1w(Vw>$mj1i)_(M)$J|GG@F%hz|$nafCVE+q!iy0QU zeJVHJqr=48N(BQLSSiEoNud0UXUg1x?sttH2onn#GME})*~PnYi!@D7(n`(w83K> zebtw%WKxf(PKSbEa%w-ZCa6h5Vnk2|Paru`eUdrO)Acw)4LaA{nk5HJ=ECDJL^d1< zM13r@@~u*vl;yiDGwesAuYYq17xj%%(+3xN2a)+ij^wQA;B%Xwb4}L?YYsxsYb35e ze{b-z9XYAjQ81i&fUd8TaZ?%Hh+`Q0DW8+~L>i#w(Rv$akATjb1&*Pqu7=Q4C?tF? zWCLqrJzOLSur~OWIBd8Kai6D-qL(Q}52|=$}EKMzZFsxuk8k5E6`r zk8oA*VHj-HTFphnjA}bsL0Xy&B?@MNRO!((SJDK=pZTfl$qkt=#zs0p92zJjcOzb= z$du4m5f?H#5(KRqV>7{SbBl8@FS>4OxQi0>o)fwThFt0<^O0i6r~B6CU}_^K;2e2a zh*JGCW5uQxh7>@tlhgzuPoc{oZScErDy$TeZ?}OBbhv4uZXR;Uk#qC2@{9RT#}>35 zVNIux2l170@pWIxw}2;=6Plk(zHP9v9MwQ_pfl>blIU?#lEj2^eYp2neAH zp@&y^-Mn&heT9B~bWI265Zaz3%D)-%6PKyH4fotCrJaRczXf50x6D%qTIY=euFY|n zdsLz_grM&wBH}MGqo35Uly_c_Z~1G4pz_Yp%z_Q}CF8b+b{NtZF*|Bp71>o)nI`fNbj#*mn1rbeZULPM1}teAh@_7j z?7*fB*_An20vB)B&@OX7z4Kfc*z6!)eNc(oMS!;F-uiYnC}yEC zao&^_^NdoP)o@Q>6FPgKJ?7H1iE1ds0GzlB;4?I(nhF)*p{YFP^%a<0L&K0q%q6n) zxR_JTvJO#YdmEv?^R~~98W<8~QnRfQvknh`-)3lrEC466VJQmr%nt%)9981x-p6?V zq#bJ}E}xT?k6N9x?=)1%Du+J+H=c_nDUii9L6um1EHmBG+41nnH&&2m>}RxB)7c4Z zZ~2L9o(`-luGWifFmn2hK6^GYQqZI@vPKTx4qL&)Kdk0Yx-XjX2FrSQ{F($EjvDvX z7PJw!RNcJNxiIB+Y2-rt_@(cP51RzZpHbvRH?i0obFR#EvIR02f80iPAJe$)B`=CE zhEsoM0g!*fGVaoIwwu-m`f%uL#Ay@UHPbQMtz@>eW}bO4=`3=afRed>d&727Zr@U0 z=UvwWDBMy5(f<&q@bS~*oL|J96o`IyQN?Olxupcp`WCQ(cu&PENwtP(Ng?hmyixSr z`#QD|8*&lWjX}ed(9~z-$XeXzjX1m_4}p}CwsFY9HiQt+>u|k9S&JULI7ZnV*X?jV;}}4CC}mSq zC+pDl7=6PE|7oBgd`bOCmcq4bbWrRA1BHQwmSI{>wc=Nd9?P&vg2>qLj-K&ZZOeD~ z^z>4Q@Cg2K>(5%Z{N`$j%alXhxj7Bc`MTs@074OK`@yD%gh)sMS|Z{_@>j}yHA%;+l?Y?-*>2}xm);h0^A(Tl^33%W!!8x8uz zppfc@=MuVCE4ifCG~q6$kJQ8p|>j-Zt#rGfRs#MinQLbF2ykwX!`onzBz}q zu{4UnJKhnpk*&OSfZ$ZS)Y%a=1x%Z6S`0zn)Scbre0BSmSZwiQMZpf1@w;qnp}F?pD(yOQ7fTUOyY!R~wYKf_rTRg;ID)?Qip7 zwe(f=l-KkseaPwgBq)c3^xkuAxI+%xUTKx40}?cs_y3J@3NOSu?R1FL1rCSqMLo;QE`nrfjx zz0+A1=DQUvn~X}@Br$)UN{dC_&`?P^K{Zr3H+x7sIp1R%v(9xRyVg{KKfPI&IH@^$ zt8%5%Y0*KVPbhGM@yQksU>;&UY2E(tKSsd}b`6v0Fm#yl-$p}>#4O{Q9Jp8h@sXo5 zZjk>IIm)%e`+obPex8p68UvWecl=g-?CY5RjPEr5moN;=i4i>YzM1=Yxvp17;*-{L zNi#w5{ggD|RZ`1k`iMu>jvgnh&4(L_ZLZ_^(NRkJs@wf@Hzr&Dd;AZ0^I&F(Etb%F z^Oo)P3)|{N?Z`KB68!M`@!GBMizmZv_&;FH0ZkI zq7n>cw(SfkKP`B0kq`9%Z8#GQ+4Si3I9FYs)DRB^J7wlczP7XOf;dBG%bMKwg_y*B z^@ZLMx*v8S(}%Co;cAn25xK9(%(a7`hX>Rd*VZWOJ|AS)VbUv?AThU4b*Rx@vkb`s z@jU0Bnxfqh6vWI(D@l~c)+1zC`@qtT!`ph)ZOiwtYbmOTCwcamkd-l?seqH<@uX@# zCqaZ*yCGk0I^AlmulRj5*fCG9KE#n8LR%u%&aHaNul&-w^9h?L?Ob_HJW@$Q_o>}0 z!sVKPMGewrcWVmVDKrg6;B^q1c%>Gf^+S709<*%M>;qF8X)aH_U&KQqh~B#?x*J$h-&@Bi z_k131vb3z{4U3N723-WPZFx9V)^XYO%^&TT?l6=#sn$`iyFAI|Nf%v>aIWg@DloZs zMN=p?FnIhF+vXKM_1@L&$F^vY=CXh0gNd)@4PLHN7gQxoYL7n+6EwB4ts(j_J0H5#exhPvcp=)<$z6_Z&eydQ)WyWFq9bcI-|Iul}T$u4A=8N~T z8uh$i%}yzaPWsfiQg)w@#cqeIw;W*Ivk8?+n|*|jqAADjd^uUv1oJ5Atb^c)-^>^n z`cLQxM@;JMHcID!RRRT|2_zb(!%;s3%ix`{+|X0azLU5H=v9D9M)59QuJ1$4rb(6(wY%x0fE{hUWBf!T!0sc zB|{{xkng1UmA9OiEw_9b>0$O-`zYtUJdTbx1)HpRq%pmHHMB?*;seT)`)Fsw=g5 z8k`P(!NXg9Ig#B0K~mJ!c3w$@GF^{habsO`Q2-dcxEY=5kKk^ zpcDL=MPgyZ?AZq3N(iW|pMEvCoFg|eNPwQ`IYA!o_`u#<8S#Y#e% zKOGjBb8Es|V8MWkdeR?0IOV*regFuh+^8TxmtrSj<5eT2z21qU)Ztv#H}4YeGDMXu z`0cGrRQ3mUk~kASqcG$@|6s)4JT%5s7f7ix*}ksJK0rWRCNt!d@HFCk)B1mK*)39DBQZzU>?AMV^BJ8G^Qm6u(rjFr z-Zkf9N%qIP_#J}}zqQi{z<=gY>O*s-Gr#6J=aU^)61I_7u^Ir{PKCmf3#*C^$JA;_V_Mwai7J8CKBharc+xzOdCtw?~5ZF)E1 zIcy{^;WL7d4t!_KC;y9$vGAW?;l2ZrF81J!?d|kLDbp?cEZsqzuiS;y`5zkOMUKF2 z@sS{8zq_P=kYfVxA0NZIasNQm|Glj|UWbgQH*3tms;e}&#p+>kFV87}*)Yc9$qhj_3n<^nd#Tr>D;uuU(@kH*QS$Mh(}KwnDw(ZJoEk8{MB2`m=h8nDgjE zPrt6Dl#D$c_m}Dtrph%>y3#~=gLO-Dgx0cuQuJ4MJGD4K*nw4>@!n_d8#6qXxAG*2 z4jjLjHynxwrM92kab?)83rQI6#c&QEham?T-1*xU0s529JAWHzC&3T7qgSyh9}D)K zziAG+ynlJ;Z&hgrt@3yNX3oFtlkp!KeStetbQQD9~MlilL?{|V|qEg;a6Lf6`n0-3AbD{|_WTXFWf{0zPW!#pc2FzwGgIK^XAb;hLtB>dIIRQ=ld5=2Du!^`Ci z8n`j=NI3o5TX-Z4XCra@HBo>1LD_Vk!*PFSO3A(QTIOc0Us#wVHUpi;9wBX!B(kY`FU=|6Ksg#$_k@O{=OC4q6$0 z33X=}vWfm3>ljV=SWxd6_JMWT=a-Zzh7zFPDh^!w;ezuX_l|a>23<&%|Dj2ECK0g2 zg(x}w>aJp9D$)c_3yQ>W?yuVLfSCWM^aIa={;TOvi6PC)J`hPot!CG2#SOzixHSJO zwc1VRqeL@&B)M%ImoneuzgUDeSm7+?X@8L-(&Cd;S`9F-9s#FFBk!cd-(h6W@00 z(WM{W0c*amgKm^Ja%}E$wJ1s}vRkk5r8Gw+K<9@~nWR?Ft>eCsoEGX5mV=`@jCXx2Rs(sHF5EDUj7n`N^(;G-X5=-p4#6(kZAp@y8m|f zF~Z%>fR-B#Ng(ddJk5==8?81xl}gObKgvP+$o5a<{Wt0FN8|F`PSb0CAz4s!kydcP z?=Jv{2t67{D(EFX!NHFxwG_2g;UrXOEXaBUd^k1+oob%Ny zmjALXTusaLQ}=m5?`Puuc!H~P^ubq#BQtUSn*&R;LiR3^!$Ys(i^FU;o~r5U8PHY4Hav&7Gv= z4fXvyBp2lQJao@61bY(e!=s@sg9!aa|D>`8WWAzH3*?AVEOzq%jsRiOMWoM8o=UY8fisf@$BhV7^J6POc>JVV< zl*GWxG##vA#Ux;&WH_%9Ca;8$QC-xCCorN^dBjCz=KtgcjK6*)HrM1O%Bq zwHeJ1$xU#f$sriT+Nbp?Wge#qR#kjG0VKWv( z^N9**nb@t-!M$Nr=uR)Qm-R5q= zF=-@j++cRy=1ZigmLAi20@`DqzogR>1zQHPWDR7V<&c~3o)qUcR6eGLh-UPKj|UUw zmAJjW>QYzRaVUVEn^Qy3iF4vshNibRQv|SChExU0$&wpnQu{oSE0V5#QrEZUdB3g5 z9ywu?k+H=3%siNzV82#V23z_mp&8do0i9iuxqE2f{Ip~IB5u3JOzGiH z@pK$u^Gv55XC`E7J_1r-E1iDxs$ueTa`yay{lWcIepz1E%qBXUXxZ4b zKt;RdkqtTDK7U#%g?InWpyw*Zj{^_=k9d8rbB(`#{dk&sQK5Z}8gU=tEaF7wqhak) z2=r>~2Jv~LAi3U`i5B<^9`r#7ncf%tKTr@0=+(#Y-%N?S^`(1$2(a0ssI&C%!PE5- zUf*(YtPuTiI3SLrp#z#qC+eCF^C#DHdGIt9Fq)#Bdy%(F>8q3_JaQ!7d)BGHE@imZ zTAXfrnBbwrr~|yGR9kjf0glHgU&1P(c}(*o;}C~YubHxi5nO1SE=T0xNn^RS%gM}?!F+QoUu4p8X52WK2s^Q3MMp}+eqx*;S=sM9pLab)feT7-Y$@iTIn~Q;1(kuv z1GFASJ3>N6X#6?7hnYd-OW5OQDRvd148)Xv>v+qX_?Qe%6Zh-H;;V11$At3ZHM5kd zj;mHacW4=Vj;UF{0y)z_stP?0Xmk==k1Z%dfy44DT3*jLKSE z|08mIZTe-!EnU}=_6&0g9ZYE3kA+1g9k_43iD!`f4lsC57wz5xZO=bPNVxHz3Hod^5{ z^&n@F_=)2mQ`rn3UH$YL6<&Ve!kd&1laqp*vjVRyI%Obn?V=~-?zSvpus?G-+M7-< zy^G5l1K6$`-Het$0QFIHlkk&m0$bMIGHsp_Q$ZqQnu)eP;EAls>~X{n5KY5A*KQ}r z(VYzTX*f0=G{HXWeJzdI^bnc_f)?(oSRK64oTgFj$w>yne~rRfSgnwR{*&P0w7W>P za{03w%>xUFMRvjaJ#_|>j}OGbTp<{u@3K{GGJrI)K|wejon1j~)W&k8KeF9WGnbZ) z^*h>eVE3dV78?LYrAt#a1}|4&$Ygr&5$9_V{-|=mg=aDp8apntcEGQ_U152;ql~u2 z=51rtHG=+{{_0zI(t`(ZpP531;y8THe`xQnDO5sf?#DU(KHvRgsr)d1?&Dh2r_ReT z(Yojt#bQQSMX~;&R}^zWov|2>*)$MA?Tmf&r_X|$o91%JGM?o<5?n#GbbSkALVfp) z$C@=~cDv>wZfykNxvFC4Np9ztV!zsC)9uIM6d|Xt)!GWhdbNw0M7vOksP)Rn5>md; z&&D52Pt`x#u~Cuil*n;D?bP6aK8S02p*O)}`t0?5R9=exR?l3$ZE-zw_>{#fZtKo) ziS;pxIPtd=vjwQC9xi-^7yIY#*V3SS_7?jcsg6=k=)rrIvVwYceQ|y*7W4cv5|^9t z+H%;knRqMoiPCEvqslmR-8!1~H0^%S-7^4m2WKc?4%mX*u;G&7!X)&fDgZDuk7@wL zd7U%6*-sWh5Z>W=0@{H+3l$V>rHr0l*hXb={Sj$hkiX+JQ>egB@pw$eWnz zf4Z_Ui~TxgVQt<9=n z--O5T&7b`b1&sd~Z-~V~X`({9<)>;hLe6ARf3;O^D92@JCB)R3)qh_~oE8A?@MT!`S9s3Uv_T~=fn|l;yVY|%0=5%3X-&Tt6pRT6uBXx?XYq6itKX>y?hUFB=3Lr0jf!sxN? zOx)AJuSq^H41UT$Ln$N$D7R0;qq|TKQpbjmpaRuO_JHqM8tKEkEXVcdJ!zc0aPqju zm9pi1`C7KW3ec+KODNggwPKP={F*kddt7T&>YuzVJ=k$VdpWk^>_w*VMjQRr>EfVhVE`YvTESxUg!WhqpDUsj%0eXjfd5Q0u-crc`aACXRgA zilit{(KPD3e5sx=QQ>@Q)M}=FBdwGQO1`g0V*hOlPrU+gP*&og=>nUc=-jlB_}Q$U z%CD@_Gc%Ud-e!61y$a^D8EPqe$C<~a67KI(;vy2h78bDT^gxu#5##134>4Q;w)<-J z-70og0faL~SWB1yrJ47n1!ORCPpNX5v+a2$yFy_hN%ax`1tUDyfZXzNG7Z{Z^MQj9 zD%Rq4Q8=y@%zBYPdx56-wF_b3F}vW-8#qvt@q3nX>z|H3!mf?r*OW2q6~?r)c^M;{ zRe104@*GfD=&hi7Yk~&ixt4YYrc3$YO4$yo+}k-hT;;yFCj%Oo$Sp6Zdjz{DleSt& zn8fvXG6X*B^zaW{ZcLT6N1~wC08^OBjuSt@PvDC?Y7t{CVJ$6dXbHgELKL8U{1P5t z4d6ukrv>t$nzBa9^^sgic6opJDX3+~0p(=>#w})@4l@8AAZL6ItGxw_8{;2!2(31V zbZAv9$29YbP_A`4uWPRacX*g+4VPeA1j{qL-$jK-*wqD?F2!&llNGAPykK&3@r5O4 zP*Co8m{0OJwAmvoPiFOPVc*mqAlI^yDG9kvS8o!Noo1t{W%VxfQR_k7#v9ill#uwe zMjI_5iPjYPN%!epF*|43x!6WtXZOMV>@1&eIA6LG_|3 zC@9=9-Tkmur%~-wu+8xF&z5Q>LP)GV>u{3-!F$cf!pdx`dIs$sG-4{H9=ypYx)<(zIU45jJp%k zG7luxM54Kj-Ta|4-In5sro-fC$>Wyv$#*rK@+dE9$$ey;Pn)Ja zp%PHhr~x58JQ%5F!$oiXgmnEg_v@atN;-8x!#IM9urW|`UDG)r%7Z}COb~E-CRG0N zOSOCg6&}Hd%(f+u?Fy<+#>g|ckJ+W*4N42n8qWY|Y2Y6}ZT&ejWB|&nGD!WI%nQZv zPcMdE1d1%8ulg{G_n#W%WvJ6)K=0opk;C9FQV!%gK$&Xn!`nyEd$E8T=W&}gn!ySf z`t!Md`ucBEDQQBh3kw@EGUO~!nC(5mjUJA(GgYe9O=tIE_p~D7N+C^AU}vd1`_uVR z8-sqJ^-KLIjO2qiJ}mB6?RBf)i%h`8)R40==3g0k-^BcqObYy;Bcv1F45#nQfNG>c zBvQJ$*$R*%lLO)uPq>ZR7u1&4M`>x4w5s-E!_{cikOf}H{v~}wS{vIP9csP!99TD; z({`h%rXB*3-R|c@6UqHu^Ez!ajZ!DqWPcutaBnI1UF&m3e@%56ZD^Si&D``1d4S6x zw^Hk>0?CCBI2z%x7|Z=0lnKHnuPLrRd5LFITwy1rXO{YY+R)CadP6h&;wvq?x!0sV zvz~6Wqlm5XW70f@2B6^%CzO;lld!*R zF4V2rnlR5bg}zF%q;O3t9VUNSFc*|ef@MLI;hE&L1SBSI_kEs z;^kw2qemN4cQ~f$T#scRrsMK8(l82dh(m%=Ex7Y8dvp9_%l&_3Z=w0Vwr{tNud zs-Sq$jm5*I?pNjTDL+Z^h?yat&_;TKxfC@*;3VcNjzKm^>&6?+B()j^WH{xz|Cpjv zV0W6`{Ap@vzpre-{kKMzEa_&I?XVvY{D~1)>%v<7!n7y0@qjE*Oupu z8^2$=rXQc=KR4_YAtx*72W^l3;JfLHdos4^KZOu#C^Nsb+LxmvrAgkPU5{TsGPq(f z5E*IBSoiGIL{)q(Klt+89_e8zs3`+qXekb~avL`I_qJ#BErwrNd8Bc>zk__Z{2C=5 zlZ#lSFG}fYd3F)AIas) zymH)4S&gHLNnZPMOR9)TI*V!gqS{e}fc?#Lnt2D7(MYO;S?BG}6L`FlN{a#XFxsaM z)WdkJax83g#gs)DBmEe|kFrGs?ed`rAJ2Mh*Wr{Ant z{=8YWTv6jWBGpp>5h14J*L6&NuLP%{d8SrIS8J787kyFtytheDxXv?(ZOiEpNnGo&+gR`d4@fUV=J1ze|JIycBrxgi!+r(-?8)7Y)qD_vx5YN*7Jce3CCD z*k~vkHQIVN+0MD~6TLS}vhpe_B0@8W0-Ldzx7K*@lSCsJcb+r8?KI9ByC*9Ks)Ij^ z!oAYt^*JU(oT)HWOo#`c@b(+?>m!M<^~&uW2n_Ph*t)5-_Jj%8(XyZa zK_C=@*DAMgcCt}}D2Xv7#sr+4MiC(gy(-cfH05-4;smfDi|kvjl1I;qy;zmJFT_hk zZ53QBO&5<6H|O_^hii}Q9^a}kQf8|2#Z3hRR&P2D9v_^^llHF3ndQU02q(&~?vSvXRO{ zz-kvsy$p)s)o5{kvbduUbjQ#nRPP1NDJM*fcyy9v6>~~*0rPa!M%I)KSTP+sX|1Oi zr~$lwvZy)aC8h}8UC&#}it-v5kr^%5Pjn!IC`}D+?WV=N;0guo299f7`&J8|&_)vH3drNpI!K0l?TswZhhg`XFr_));_dTx>opa`k;TNL~v z{Qq!K7{BS&%8F6tRMSol;sVPK&sKbVJZK#8J!a%S!mG2(DK){1{nBoBJ@_hkDXik@ z8(+EW$dFzMcUBS7_c!AdM#LW1~emnp>agB z7h9O{nn)Uv@cs#V-2DE(TE$>Uqot|ovm=5N*sUY2(#y`SV#-pL;a+Pv^%f?{;{Tk1 z{%=j%HqRCw9^TB3QztpXtXTy~`Fc@$TADRyGEOLhO%~YAPu%7I)3g4+1;+1?e$sw? zZ?3WSA53u{Jiod)t)1Bk5k;u`VZ`4?!S_GSQ~o{7g5ctFbmUMuRiu9ZBazHF#YxI> zXlUq;Q=-vi_KR1?k=Fc=&|BlkCvfh+U>7&ZMrfCVnVf`WoA z4Go&*j}W+$ip1gCV`^$z@wAocpONK#K66^j*}$?~q^T~*&9hk;E=Wa4495q8H;3b> z6+^Bks~i?ow*ji`a}oNllT=&6cd<+gd>(Zh$66ID1StRiOBn8Oxs~_SR2?0iV)gr9 zVs0V34TWA_pgC(bhI`*7#{=&a?XSkHZ0k6gi&?i>0O&f?E#UFn1T}gc=S4!!^}GOw zmz{;Ro_k0%zvi+`Y8(Z4Om>@sOj2##|7~KofsUVyJSA?^7bo!Rw|{HI$a5)lo!QI# zc#@i$wsZfo4}@z3q(TmiPT zEa!c67#U&Y1#N86zL2jF_`88#%3iP^m}8sWEnXfw!r*_{cdif(H|-z85~RDe?;l2r zi{1|F?_<0AdW**2AnDLIx*AINxDFM(-jP^CpBXCgyo2^{1BQo600eZkzt~Qi?Rhn` z=ee__CC-)yIomx(KTb7#J=!=SINI3l@D*L4ZY_5H;`#z`)xBpw@BDQmqr^3Tk4L%f zE;n}k=ZW+`I}`Ek29bTI?dJDaD7TA*KW&Bb7wkvlU}gDF|Ln9g2U8ny26Z3EaY_h1 zy5DB~u`KjU58aCk>KFHVGasoNjeWAL=%u!hP`{_ICxZAuyU@uxZzs`wFJ&W@$KGvd zmVLdS`S9>ca2KscX?Wh-%zW({#zC{ilL&HM1dg3{9>5P9c$bDAX`jU!mnb;1a z`$|IhBAb^k#frx#jqcu1>Xm@UdJv+NIDcKqucD<3>;qJz3za<%W9DdFf2~ zqy=Q%pnUye(D{AX;f?c)%Ze3e)CZE0*dvRk&Q67{q(eKL;H1N;0pOtbHf86$yE6Q_ z9UFUh!9gjslI6&56`n?3|E2ZuUCr94jX5SQL)yhY_gW*g$X(I%B9uw-lYzq1iBaMk zn1aXhyh+qS-S}!Ck@fI-pqBpj>9p}OM_YC3jvu=(aNm4m@NB;B)#;Dk5ojke&1{}F z{V54$W3k|F<&I3e+^$UF&h=MsMYE>)eT`IC9YJV8kbmj+tKNI0miz@LWBFojo$NGr z1RP4#pg)Pr^z*h*r%Vns9tK-uNMv3L>&9sf~$3;v1zf^b_N+?{McnfpHp8K^5Vd&S}fLSTk@5- zztw~QS(#90D=zID4ivxXQ>)U2j=jsm&EcIW&SOJ$vIJO7PeA0ET}nD7SM%L0{LQ!v zZ8{2;B1R_Omb2G{!J40jpZ7v8C<+HKz(&LG6OXN{TfP~xy=!`&a-;2K-(6A^x|~k_ zJmiX-KfRGz?7_fn%L^A*?NN77Rzmf5_r_^_bF(+k>2T^Cj9T_WYi8#u>tP}7Fr;@Z zpmj)a>Y^fu^|->(K0q(i5wxbiN+}hZngRiz}=m)AnuTT7Wv5>G68S$ivh4aYXirE^a*H z(b9x{`}9)MJ26WNs?@Z!l+#U5wD=rP~Q0Z_&!$#>Zn8s}J%Nw1bhW@!+{1 z#u-#!!gpYm=daC3u2iuJkJJnY{8Nx~&^7`K;E7=4Z zqg5U{huM-~>5kP;_Bdq)Rx+VWNL{4p_FO_bcuJ2vzTHpfwS4esyC|TvrzXs{psRvk z5PfjZ5bxpSl)1HckPSB!qXD%>IqQCfjL;z z_Me4!GWyKOnKVzQZ^wnY>oU%&iS}qQj8KB~eAPU{fhGOuF_riUQd;@E+r zOeXsR)%Ko75LS;+${SpG4Gfwne{LU!4iqE!sjU~Xx=s3RTvi!x3w~-nHKC=q5(0l$ ze7SUg@OcNVh7+y%bNj~VM5P@T8ohE0S-Scq{WmGCiN4$qVrOO&**{fnu9+>md`_eC z;NEPX!Dh#0*{7PQ^rP5#A*+$z@D&h{t~o+THQFIve)cdNZ_kHS7E~9wrO_7cfRR@@ z&tz;gTYv81<$sl8FjgZ_+|+7?2-s>Rh^d9Ici3qT)m~dY=ddVe0C>K!WUt1J3m??*J2Tu5k42b!_^J zMssbuWbu?%f)Q?hF`?^vbcG|qQ!*e6HO8qOzZ5r6dRZFaI0yMwOr^=~W#WxoTMlrx z+3J33-TGjJ+x;1K65s@s5?^YtC$*3ynbM}uD(HDIeqHj7Mx*ybvOHT8cEJBd7;K@D zf%LKZx*qy(>cXZ1FW7Y7Cp@>kXDYoE)~rPQ<2&byrw7!Du{6uEm+C!q5Kh1po}dvS zyd?)qMW^y?Hm%H4O)NycqZNI(rt!S{jNpN65Ei%Z#qW5-UqYS# z;CaT+)>ktSyHUt4gh{3-eRFbhmaCzp!j?V^u?Uf*$C{2)Knu=fce8Dj&txk-sAC#J;MCCR-_vvXED0T3Z-{7=o_KmgvY1Hcpz%jq0Z4jSxr6<9jKr!7*G{Ec$U&W7UDE;#dw0 zx#n%DR_d&{+$Z9<=m0m6$**&$n_03d4vHk4r&|>_1Ma!ZkQb%2#`iF}$HEtw?tH}QiVu1xjBIZkk z>f^EG7S0<=)Z)Qs55~GNXlx#y^878N|HUl(&*_88h)V9)8~L_py#Eh-?*SIovZW1! zsEA0AAd*3%L;-;&XONsla?UwtP*KT2q7nrpNY0sV1ObUnkeqX-iA`vl{u}h1J7;F@ zH}}rmJKuc&oagBWcBmC<)w@=$s$F}R$;ZVurduMw<052`u*6<;>(?=@mdY_NQKt@H z>`3i?H1~=Ntppi+O%G~H^h{FlHsD1#FO(ztXC0TP(O(0NmbOZWD4nnRNFe2!X$O>z zuzXb^G7To_fKkfzO@*O@T74W8(Z+%=Z6T8k>SjqJ4q~z!_y2y$@h+4Cc2ewEcTXK5sUu8u9eDfWT z0^&Ns$k^38wHVLltKjuWX})`EQP4d&K_8i1CDgVPd#4Z*K0!L#eg^1-2;en|g!my2zcr_pdbx(KHotF!&1%W@0}<== zoOiVmgdVWEeSgn^{vw)`jGfD!m(#sNODha#U1KIUE%gf2ks{E(D!lOP12f4#gjih; z>Y6BHttrJz?%n9-dK0=PtWv&raPv@aU(i(1yL=@xv3v~g(9ohluA6-OIdL4Vem4%Q z0JS1hIKdkV+lWBK;pY*)C~sJT*<Fc9gvhVotCPCTMpd2yC@zO6WP{h2b8EvHqoJ-Uh#&{fK2I=+BU zM%?z});!q)&RM|x9uT*2_XvvwC8b8$Py}(Ol;0L~MI@ic-Ozld7x?ny5`lvhFRzT>VC?M5NyBo7=9NN@ z&-)cqe)!aEOcuhzA=K^GdVKn;?uO&zm#hd}X-D7jr6gyGQTKCUf#Iy<%2`Ig&m*uD z^L3DQPZ;Kelb5NM&E6AC!-3`i{JhcKNh!-T%jiq*c<)68#F6nyImo7(_$T0(G#M$RYTUjJTxY%r1D`eTt2TZmBwt&DzUdKhU zN@lQoa>$0OHos|ZLZ#A|@W#BVsxEe+8d}00-eo&=n?_^%?>wHVT9;0bPD(XvS&MR_ zC1R(%L;_GeiwsFSUi;E55NT)lcdoydkrLfCo{s!-V8Qe5Rp=)R=M~w*=zw;Bg<1ON zX_~14YS@6{5Hriij98>eIF@c%R4-JhXJkrdSqoPV6eM^O2g=XISawWs13ax@ufvoG z-!>tzO^wt8HcgvMTAA-9!FZ;&zRYgq#~x>SeR`Wr zf4;#SE60Kk;dHe0aWgKY-APBvmm)z3^{5+h9 zT%yrc2cL+b*MWaPB8P7x(S`R}`GeD5UCOeZ=p6js-iLWsY@e6RoMoiu1?7uJzQDN` z`i6w<)oq7Z#fDP=LcRiMLjpFb56Ea5&^uCWwzZ8)W4>@Vr5?PZYHw~)9eq&kaJaN~ z!;2xk^7;NdQ*tq;W0M2swW%-7mX(PTlLRAL#nZ|sJ}k|l>Ki&*#Ygp|#R8gB`g#lk z^kz}FwR96koA>qPrH3r$aU03)_o(2(etYuEbwyiyxP~gcHsSuy8&hsl1ob6UBwKWn z*hkWWYWY5JXo}T&3^YGer;8^3(uF@WF!E4@?UoJycAT_)`)pe^cW2nR_nb=P*(Jxl z7Mw5cdSH}!M2pB9ki*aIfkeU)w~fuv=l}gl%d0Kz|BgvZj=wCc;Q6mFtKj+%mQ`^7 zo4x3F#uW=o*0ehpVq?+(PP@;@zogNkky~jD45-mPC?a@VR=>w8 zJG9bTODmg%d3BNP@4wi92!MND9uWn?Fu`pB8-G8G`in4{p9uYAFR??WJ^2k5+B z#CtVkw|R#hu`ri@+)Oue#Rx~hPkxdZ7`y;84tA6kXghi0C$hcAYHfK+@eUG94y4<; zhZGAhYpea7_LI?RVilJkPTNTv_FSyTJBaaV!1#jhQ2&3x%tIe2a=OP_3;1MxrW z&xn&djrtv0Y;7mSZJt-2b`5P$VxS{A(Dcd$;ccE|z@9z-tv&K9--J*Cm-h7EL3D#5 z4}SwAgwt=1->>s`A4yt(jV=gWdFHH$U*|&Oy}4TK-!;LWGd~5o|0(*f7~BKL4|Fsn z@7R1isvgJ(ls{!#&{gKRGH$Qo&j|F7wJyCM2#L7BrNh9>)a{hHb4a89Ur>W=D}0~` z{3A~K84O}?i0BBM+4&=CuCalH1C3wOo_;G5Ky-h=0TRIGr$}twzpe-p5_o?A6?rfc zI>`FmL6RjQ@#Xmk(a6Y)#32%TZ;)j2NW?V0`2*&zk!5}=+=?W-5_>KGF95!VDW@Oh z71@ZF_>9_Raw-gElhyLqZtDT3x^4ULAk3Tc6UqdYOKNHPA^Xp&p zD#-E3KVVof;eHmd@RrEHcc(hTce44ioENm?8+htH?iqj}^#l%`zy~@ru7*?@r(cwj zLn@K8E@h#^&bcYz8oG$b8hE2Ia6Z!V^3r!o8PN-#MHaZk&+uD~2Gus7XJ^zMt{st= z!pFG+5%BFPk#ia(N5n9xW0SKjknZo9a{NC|P7b}h#Ho)FqW$;hd9S8g|6%jI|AfV< zPq}#h&EiyB6%EVum;1w5eQ<2nr$m{r@~6e{Q60U+MDG)dy=U|iyN|1S??xCZ?VayZ zRo0@YSX3mEeaP)K;(F=0K6dx^D~vdd>^|RdFt@d|u?209!GTjBSQITpc9;q9gL&XIv2*{Ashlpc97QwG&a^N*FmnvGhMi^or}rY|i+7fxghB!ZOn z3hf1<^rUn8uskuRI`fDK4yWrbc~F}h8_S=hh;}|luY;|vH5~`Rd42 zQaQNuRU2-!`0D(}S1RQb=p!QV{M14%Cswv>WLn8gePuXTz2VNjO&{3dWZIp(uW0TN z)7-1r+}t{-8(fhk-1UqEs&>|i?)xFqrDy!Et44#hneBI7F=2IQUeju2i|pxh_F?7S zyeMB{3V-62uqfYPeH@^-(2?C2mx7AZ!;OtD75R9G7yojE@WrEkJo65au-}2h08qfc z&?386(?j1H?sh)d7ZYtknO3(vS5K_3md)ozz0IJrqGPc|p*ZERwpB`&f5OKz@t~;z z(wAmjOOqQJHO5Jb89&)p8P2TL-EUPO-+vKsp4P}$ti(K5E2*uQS462X%dr`3c$d<9 z_7z(|NI`ei*VRp2*B>rxg2Q28HT;e?Sgqt`#|tlQj#(_XyZ4Br6%iNK@jXE^V}8rT z%d>_~+gZUIy^{fyowz-jCN20lAl|XJa6x0sU_2ocC(gQHKy9Keiz;wo)Ng&jTZ>4d zCE60_@yxvvdvjQckB1&MjHMkBpkSMx%MG!PH@FQM?8P11ktnZi3$6_6j3qfF?3o>} zsKf8xA5PvJD&lR@3sMVCTnV%Z4Ytv;=&1>ss#c|EX2P1=#$Ed*X+B9ua!UlluTAXRW(pPNs0*?`M` z$v?-j8Zz*sn!?=0TU6QX1t_{fL})z2_yP>R=kM82(#J!JDgRJaoGdbK^-SwL*R96) z?wuB#ukwi7exS>8?{`BL_BUVBQ-XXChHAA62mzJZ}Gq5 z1`9zB8!~+I@G!_p#H+N4tNIY`k}Czky@Etk#j!A@z6|o~6$&o+afqp=YCR}u7H8qZ zq)@jR@;QlT!g?IGSbrEh$^0$0(kOl~jYC(dUO#MUm(=FP-UpY4M!?E(<#B){1~*d3 zRzsDBqp1&LG%)jSzxsc3CI5R2xl$uTR0TiLc^!&Z@Pbheg50sQCv^L9X6!8pP(8V7 z$I}+hqKjG`XH$wR-~ULJsU&$RcwAka5L0R+X0+hY^D+A)xqOpM#xbl2kj|X?s$9Iv zt-Lo>e={V?rN8*|4ReJtW(wQJld^qC^9jM*td#!PIJ3+n8n2SU-TggR`8E`v?uTV0 z=hH{jZmg=}{;sNgc)OUo-2{4-^=>y2{-> zGlf14P{u$lQq3*3t@ls3zOTB#A4G#>Hp<8awYub#&H8o%CRypgq3@gwy;9-J;lY6m zgIs>}n7VkXw`v3H@aDB@#IutNuF2OdytU~gKQd+ly-Nj4lPBkpb-naq2a^r{vGr>csC z*R>QHC9sgey=s)4sfAWiw7``6H+rS&pK4BU{ddEAd>}{JuZ6v_j7FFpRYzU;bpkdeH*D5|(z!#sO z9rA;PxtCF&NqA#)FJpa;`I>csBEb|2Mmwf0SANWezjxyNDMcGg>d)qmMf8XE4mF|}1Y@hm(fa8~vWk>$zMC%XyLlgHbEG}xb~ zoSpK@sL)fe63r{$KPYEupXC}y@G#zI-WGlfca*ftpUFeHY&aF+sFv=7oqhtpe=-He zyBOD4F@YI_T#V~{+jmEx56`L>($`CQ^oKJjB2Q$3 zPpa(TqyJteXL~q^j^@giR`4D9%2Nt{wmyhsSR$o{W}2P`=V1kjM8#05goj;pS{H^+ z2L8qXk|!VMz_)Om^2osFawab%7w=04*tR=S)Qz(c)xSk4$b1mZH?lxN6gQYI7s9<(tY z7d!PJ!57HZNui4TfUAc_YGjj+8=XsTlW?G-;w~YtZiFCiQ(^t(dJb!8!fFS2`Hdah z`iID&FDr{@nTv@rBYctj?YC+|IhXXdH=2nIi3QSh^i@dDoCjw&QVDgV5=iYybC%3{ zKdyfEBz4(ZqWtlLtbAplhQO_7MpIxT%`msVwrJ$yL>L-6G!EJIAG+wdw`LsI56zyV zXf!G64Qr@6%aYI@b+S5G>2dt%gH`j;`&3ESC1Y*1JGRib&1d??6gpzVI=*^qi2deM zS`BQVx={*asZ!tvt-ZmPXLkBS^(VbE9G-$|r0&jX_$OKuJaRcT8!fZ_U4|cfZPBxD zz;^Zmjq#NsK!$10B&L%Z9#}wrt$O^7+;X*f^VCuUEGs>5$Ifr;>gIZcm-hK5|^_KQ6-f^$2^}?%d2W#OA}UwH9BdQ zY|*?JV`+mSWWBpzVhvt*JZq`$k{KkImE&L3r_iVGQsb(MK7uzqLr00%n9NgO-YQL+yAB*t;8{^%U($TnO6H33O6eUitSYbe{e_6FR(nyuU5nd&Q9W^*Q#3s>EVJDu$zt4wL8@tZ2H`n;6fqB?k&BbdD?u zC6!xT`|pHGQpHP#GpdUdD^_Z3gIR*l4D|iBr?u9m4Gq|ZmFGQYrcba{ zzB6ej#A%`o#AsG9F%+VFqAoPkRC8g~DuvUz?j(TQgP@#WzNC%WP!YOjGtb>bBVP;y6v$I88e3 zTV?3l)k@F%6rU%U{YmhrmHr9PXz)##s{ExoIZN@1FWP_Np8k z-*1&LBaFZDIrpxv-yQoCZQ&?6ZDGJk(ur{3;jKo?Qsl7b%#ryIJUnBHd{)2^z0)AQ zR`_|eV+Nw;H%IPbV*JI-#_CtBxMF!7Dl&fsjGt;CYH0_=B8L?ss? z2fIIu|AnZlz@_46k$+mjBScpL?;LEtdMdEC@nm#PSP)@sjvSzKKfUUDe*V?;SbYptTd5B7XsrpnBzVPev4sIL!_sQ~(4Rx|lh z`&GUP=^p_dOLSstw+VlxerhO%UBBJ`PNwsU*S!9{SOt*K*sCS#y&4$eOG!EDqLsD+?&t`Q^R{@ff(t?qR8R7z0NGx6wQGaYVZCmkKF)8bYf`qkGUjx)zyqDYgefLoIh99;D;q$T?zG=tW-V4Hu96 zNU8l~L(2NGZ42bahTX^YjSz_HYv^0PRIf<^buBN%rB0qA-=m^6hgWfz1eLc zAcB`vmise4lnc7Q+eJKnuyy!qHp2ov-2iez+hG}&xvAxR zXc%Sa$}Lzb@CXLV0|$`t?I<~k=EDa4f$cl5^fxGsqjE{jFX=@-TLz6WV4~^rO!|8Z z4~X6Gw=WbDpTSIdO2Odz6cOOJ7@FNNI%P)mOi9ICF=_riNp;D=@FTIQv3$7Ej# z`vd7C7A~MLM`pH(5%w8Kw)=cvW#H{dea+@yX~Ql!A4UF&3J$GP7E%xWlBgn{0F z^nqL5J|rL{h}DPN67k9%^le|E?l_P6W8U;;^xZ!Aa(6f}aWg5A9*IcV>SxGKdjng> z>hvp2v_{QbKuv~*TOjs>k;d1C1ZG8-kyCG3g5SB{SB^w06zs?U!p_M_!jD$6`wZ%y zU!-ZvR$|wu<;%<774Yb3v$Zkr!CHgl^h9j=rj%LRs~;_|mM(gGs0$J-iRN_URp*wW zjE+VE*elf&naLT8rw%0{0rqy2MQ?ymLS8OK=g)5J(cGs;_NkBsy+*!cAg->h|87or zQz2Td{#dpZf`Ca*4i1|AP<~-(%D*JJZ5j?Z{{hr;i9h3Y%RcPs6sghT7}T=yJ+d#1 z@8ZqkJb$|nC3_z*SqYTOhgeX+t8!PJE?#>as%zahwEY$)FR?W4BA$=v)72nQK9|r{ z>~jEPYHv#QnWM>Ui%%=x*9Mh*`J$hf(Qsl`s4kTt=kKB4X_K%PYCh2{KCNe!QHJpA zieJmKv8io*N5I32p5hSiP5rETc{AE>>%{iY#4Ru-^S0{%Xc(<{k=iRX_#AI94=#6UTZf^Ib~}j zx5RHM)hnS+)-S_*2LWbatuHzdPNQBu;*aWvP$1?F+Q+s0{1x5nChPZH!vQ4eXYImi z@nb8c>GQx(ePqFhNwT|ZHE;r%ZOr2sfFGEp(lb@iNtD9lEJfqcpc`&>f6uyVlB)&R zJmVlpeq`p;z?y0!zYsnfm@J}=Yg`xsG#s`mRlEy0OI}Q*JyYj= zBZ=HVqE|hViy>&H=?<2wQ)_*FPb(K^ z*H*>8D76VtqCCXlw`@s-ljjMhAa0D8A&xz_>+#U-CNr=Q-Z#I!;s^zxU@W50hM>hz zVT->0k50^-*V&GKoR&fwD+aq%Tx^?zJh~!vEH$SmdR{%+TQ4?SYM;d4$_kBY)f!U9FXjsX{)8S6tnjBe~|IiFm-Vgk69L-K|rWNn3qwH@>CQ81` z9Lghw80M9drku_#P}!wDz8~DYc}*6zz7iGV4IFuDk_KT89t7arL>WwVcJYtudu~+> zI4|NZUg{kWvJsibI4G3~~I^8>e)$NbSvHO>h~h;wL&Bl&^suwn8OFV6TNSs4- zE<5OebX?H~!E@#3QQ9m1BlXz$;2N?+=TaL1BJ&qx6V(a{qoZo(GDtV8034MR2$6Pc zB`1zP*ovZ4+;Y=XC($6{xJ;Lqt*H@+KsNAlC)xRAJE37!uiBVJi2fFrZF^NoK7IB< z`*Oub7L)EB^PPH;2C$-iLSAV!}qt6$mP1204IaRxn;ivlyC z&MoS?WP7F=w=y2IwUO24kf*UBVjO#Cu{-A6C_0Yn z;9YC-HGM-ro5aJ>f(F*jb{WrFn^3eG!3>TeBjO^u2XO#ccNuqOI1IEI-1lh}v=44&O;*!O5*e%S%%JIdXH zR^dHJ&G>r&tDZ$>wRcaEJe@m9NJ%O}(4JHx`@T^#GG`QvL}vwN_R{8>2mlIK58z%v z0RD4FTI`lyPV8!>wK^A(>mn>ZXPe#v;OD48@0!eJ+;xi9V6|doW%h~A5$q+50tCo9 zBf0ZQy+SSYyi$v}bCH~)L>`KFbsTKyZmDbgLsNeV+qaY-gi;Wf3%=7ImYSr@xwyi7HN8;g^-hbiC{obe-O66XT-%wMKt@XM_Kpj66?cvj9IGHQHyV(0{3}uFY@9m?*HX4Y5+-&kY8ptF- zHr6}8mR6EuSQ4`N-4mV7^yWbIPol1|Ll2n*nsYg$1iee8#!&*_9lLIQ88>x%b6>ol zFq-fqjC@SPJ1NL|owX-Cv0f{_W%O`4fZN~}29~Cjz z+!L1z6XN}mdSRVWZIoP?Gla*bg`l1G3;-6RczGxs?e-Y3=h-EeoDS968S0xHNxq?y z@-7R?I1G$*m|u~3->=wK4=(3K$RXk+f zuHozp(_3}vMZHIIKyjd%H2q+g<{G!5+#sPqKBT`?QbTU0;vZA9chg~y^Yj4J?l!ye z0~H@UG$WRQ<|Qe6EZ;{r;#scNR9Ey1MSHSTn236n>aZ-`3G<}Fp0|_`#;(e8jYLP9 zjAdz{P9|Ph1h3!`vKEg1mFfx$BVpCZnHw@b=ayXU4vtFW>PB2|2;7VfdEOiy5lpS93y*Oop9*1hwQlW^|7}t zTO<4Gu*^%bMCY5&;kBehG{~SpdN3%c#8K%lGQXmEjf-G#L2M9u98!0rbJS9EJ$~%v z#8*u#r7+WMpQ%c_+vP%FEHLJU0lwIYBgoqpawSBjUr&}{d^~{5il({}u_DN`aOb^E z10OfwQ2D~%U3f#AZsEOshQwn4K6(dA4}e}D2KStUkn4?Fepnp0%)_JH(JE#>3N)hB zS{ozG1TEE?r!}wzA#;Tn9pzc4eS>weqf{<1N96EAo2}xc!;s(=IX+Cky)Qp#!^Cx= zg#;K^dfii0M9?hF_kMqt!R!3+2hjav<7jA8+OR{&Kq5wMQvz@x_N~cD@+(3Y8zAvj zI`DLv`A)+oGjkkYn0FNF>-ci((3z2)1r#ON!_k*v$^)dB??x0kjq8f6n@RB9!H8Ylphwn<}KAUAv zRD0OwK5wJ2lE*EnuTJ ze`Z^BR~8u(mr0EWTl>;Ne$L_z;7wLaLwf_ znZIpA>u5>}h;*pq-zb8meGgu8H*;a{6r|!4&tW=qWO7q?%wVLjnOwT~2ivzvmrDw;&+(2D>U+ww2Tf*?_>RV{Tc5WI!T@5s!2&wG6 z;D0Gi`vcPdu_uVPfQxW!MH=jJAWpOdpUQ{fWpU&ffs!H^vj5~HtR5MbPZpftP++*R z=`hB}c=IBb5cdiZr=YgR=97JdbilLS+>v{SGZ&Omlq51n5@qt%$ttlPAu~l_mr+5AQtsdWY=k>^l$kU#r9@;~Dcd}$XuhM{Q=EWgpVjn-Bf27KF-Kp)7frl{q7k~ z^(27Cakuku^%i!02is7+Q1>}n;71;INqeLKc)%>QA|IWGV<D^Uq)(GPC%E`KSVH&Hl%bgm8Wvtbt#0M*Xp|fq*pi`tdV_zt5m$hz||LeGG-t;iMJLKE`P|sjl<;lT4$ml#@f;2M@G$=%v|D+HK zbaU64J2tad9){o8`8;|VyAZfO*=!KM`@*}>v*KhyK!^+IuTS9L99U^gg?&6!IHr35 z!v=us0vbg@Mr%%;&Wg)C>xqVq+_oDaU~0wb^Ao?uJQ=x?=hbWl5J%1zT-bDtgQW|J zJ+sN9vv4+d@>&w<%kdGpRd{)$z~g$$)?MAG>IvvzB|DwB5XpN05ICAZ{4g$1r}ys?tXNnHVXxo0pUV3&`~H$Y3m=||ePO-74V3`1-X;!&}-N$lCgc=QcFE#{B zoO`XXzi)7}SqoVo%S2HsAkGDG%MJ<~`wSivTQ(Cos*{PqrK=0!L`qo#YRgId zRf#&>*hvTMc`*2Z3$=u^Q$gX7!`uOM7!^^p3jfmBIKKwS6%>X~480F;TlzLqBG0A# zE^owF$GgmMagVvq8&1F9G zr^_0p+>5vkg_s@&&E+!$!4@aSwz{dvdBqX`{aE)U6-VC(i|0iy{Tqd>>YGaX!h91x z5|J#`aoO3=vk7wpt2~&3z8d8L7#r?;k#v2!Bej-4W_uK-W4VJEx!2UB?u=_woaOw~ z>WzVULmX3cw(+TF)Xt7V;5hL;rs|;V*{V;&0DeFLcf%{&owrKGR@}L^M|DeA(IZTE6%o!@MaSH-=oM*RnU$W4_7`}h-xC*|I_bPWU$Z3`VbnWWb9hlO zS@F3NZkb+cZD6FOwI@%OqK8dnb>0~bz4>ae!hU#lt+FT9f%f!Nz@uNSd+aP=dxm1g zAjOY%%6Ux9nbod};Z8)NeTp8}Oi%3dAK+*E+Ab`YP>Z?fv?v0zBL>Q@N7xbehl_8Y zn7y&Ni=A|PvlcQ%Zp%`IGY9h3v{L%a;6`=z;axR$HFH--cNbH0S3yB`X-5aQtAAWn99N6`)!3zZs5qbe zJmRL}0Q@}Sq~f?H6&7Zf@^X_=cQbY~M^Yho40%F@{9Vx@k2$E2Kjbm8)C*-38*|eu z&a(DM`CI_xmdMw|u1}vnp+f$CmQ-sgQ3LIJhBe=Ss!Jdo4r8#nIgfDO$tZ$(;TAgk7Co z!^POa)#=I%rrzul>gp&5DYXi}zn`$y}|o6+Oj+hXA%*;#|1A z)EEzYwyAyOQ)f2(w0Vm>w)KcY566k2D1i+ z&8M=MkK1?P#|dx5GGiWTishTUf9H*xv*>XvX!e3$V!teiupJE%4_!;yDvX|;^MBl& zM(Mjam_a|=iYTpvubgjk7a<^9g_XRqGGcyJI9U$XBn!$3=tm}yN~FDaLh|FiVjRz&hTFRnvr{?VK<+^T;5HKy{P&?HnQDrCvP^+S&9P;5*^y_4X7i^rof}2jGv8bUcq* z&K{->>G;OwE=`Mb!13r%y3XH7y0c8L)l+4FA%@6z`sDUog^FA4wA<-Umy%6|E7gT` zeV76rnz^s5!0MRZ#yaunH%#IVn4TteVkhhI)x5ah>D-4z0RE&+%yxisCA}I zV2lcKQ(&xvhj~Q6HYN96ZXK*ATXea&M5NQ=NVm8eaeN|X=_B`%dEQkXE~=@C&M~Dc z&v8q@r~=K0KSp_Iv@JQT*G%+P3Y}Azx`NcE0E))98@aK}sY@pn1&W$2cq9XgYJ7IR z*s@isrj_)Xrh3%*ee>XC^6spwMLKqKkZ zZ}Sf(XwG6(Sa_)bCLimlqpa`5eRa3m!75dmw;>Butts2V)ITvJ^}VR{o8JFoTrf^JyQF*WZ7LCRV0D`N@$il{ zrx(H#;5_xHtjYK0fD#6{>()jG2eX_F3rS?z0k^D0UeFHl8Q{@DjQE-%cL>GVg<8?r za`nY+vb11#Z)en|+0P1JT~qylb*C>?<8ZR6_|q=h(eKF%zy9QP`-Et%f&1(!R_t)J z*1@9Qr`(K}c>+O~?Sr3kDT6Kd0}Jvfb4rIrH-|SeHaBH9m?OImyNOcY57)WY z4Y#T7^M}1%uo0UYYh%if4j;-V^AC#+jUgZusU34hD$^uOQyR(_31K0K&!cF!^o6sz z&5inRwfi!GUDbQ$JM}j_qsj0ETD6jK03HjZu4_{(PpHPUmsy*Z^)GfC`3t|_TpGG_ zXh?Y3USb%Gp_8W6<{F_~&&0L?z=)+d!x;}^sV@TPO6-Dfk-UQASu@w$XX+DZi04dF zjk((ST8N`r+DjP>w3r*qYkpq!6(otb*mC{&!B#>;$%ivUSXD!VF?Xf$sogD)w<9V{ z;F?<&$p)bWv+sVOUtsp%`39aA?l{0BYR`zdp=r-BV_H9MWS)4(kBP#ru*=?GQ-(iA z=qtPGdPc-4PAvVBZ@u(BH&m1N>*cMYOhUO5v`dM3ddy8ODoTscmD_d%tuLMhCeYqD zMs+wW>Uu78AEBpQ1ApT_Q&QM?@q*OsOic_sX@-5y9>M+V? zWpxVYVa0QHFy-zN-vdzh;0aDO%R>)Z+Ql~?XZRX%sP>nI#ph;<(IVXs?=$J`RjU}P zY)w3mw8yBi1l!q`6r9VgzJwzx?-1PKKa+mskMMDJ(OtUN8X+8X`K7D)wVzW6up4j7 zV*XAYp)qdzmxym`mMbp~Xs6GjME56k)!xj-QM+g{WII}>NBU01slG;m*X#(zJ@B_V z9cG++de`KX@V2!=6$C_zS5SB!DQEs^>l2m$f%*&V6o@Bfb8QKkR5H%c`S>Z#(YA$d z=X0A7tuzNk-yGx6`%U@Z`=_wWzpPJ6d^3H}uFe}ka<6cvjB7paF^j^@8V2k4u{I$; zzL1H@rHftw?;HsQ>UL630#+= z#_P9~?2Coo-Fl!!eX4_5BbGLkIYc5M8Hicp5b><9V~j?WKP$21V>m;%Zw=3lD6`wS z&7$w>Nir=Q5*5clXl+=zUN0Pj>cHen*%7(E47Yp_9(s7VZ%(L873~Bh7iE1$ex0Tu zi1^z%hs`3J1zFIo#vj_sF_;p$Ef`w00!sG7H5qfwWvWHVg?QvGeZ7P3H!h=;BU{$7 zW?^AogT7j-PjUABeyqiCzep~Sh20%uVXo{K(`U2|qrsEyuG`^#?^j~1m3XqNyPLROrGMA?CcBok88SQL;^hAAg;Y)+&j0!gseISj=3mbSp8`0ZTqTjN zZZ77=_E>klQgdud=m z*6IAmA3V?8w}aV`2l}R6Bg8`aMW*=M%Q2DWw=Ne+h^Og1Ye{;Aw7#trmxrjntz?7A z8MBkZYUw;K^p+7%Q!~J;nqxBE!_xiB5$|JNg$y4nlk&xJNz3&g`{xMSFDvvvv<84; zW(qSi;`1U?yNGG%)}$|gk;kW!!sNXtzkf{S7;@^*m?@Nf`Fo+-8=rrYKjs6GGp<`!tv=l+Ee&KJM*c<1_+%mDJ{*{^#p4&;x1G3ctd&;KO? zYfYT5Y4YuF3|t&2>3=UIQTMwZN(;Z&6?5%qQ%~;qx{lrXy{;y4VV{#1qG{}U27Bpbx?Y$PG=quwAu1)iagx#;eMH9MeAGcK382!njyho${%7EF`7}|_PJ`f4Zs?yhU|Codq-C-q~;V*@*@3$ z5=8r#`$P}bw12xl8d@!Nfpe!2snXfLVX**UZE91#Al=~q78(57~oW~RRgPkN}Y|CiFxv!Zt~s1LW_ zbMcveo=>m(Lr;r>GP?26{aKo_`az`9qec46a2vbk8IAAmwqm#hpAZTHHn)?Onf5g zhba#xFIPT|GtuBLO$Tsj_fG`cDPC#pioS-&YO2OY)-yr%olj{T0NSZD=>#GEg4?&iYLjp?MFPSe_YSFX*Zbw0xdw$Wxt zDj^T~F!Mq(Z(zHCXw@Px?=*4?sa;bfCBX?iSLmc~y`?Dp`%u112Xr^1iRH2%?B>09 zck}Kk%86=q*f&=$6=PYHID^;BsOtm_t=MZPfiBRWM~gTpv4MSQNjp7;YbW%ytN>wA zVQ@gG9~HRARv<~w`kDOb&d>Lk5+0{&Fa90$c9aBn`hzW_9MRA zLg?E^Yait4Nf+|8luj#(l6I11K%e8b^r+7>5uk&G@|Yf@y_IT^JOm(^uNcElD;~%h zUu`KCgyN&$QKm^R(4_Sj1+K;`3QOKw(2F2Zzt~`nx=}(qoe__Wv?>?buk71OI&2M{ z-y%SXDG@8B^I(_NzJjr`#=QZ)q3*Q42~e+V??o?Xx($ErX^#d9tef74%M$TJg2`84 zeIpLy_ufTR{=$6OJzMT>zFv~xRi@?Y2;Im{e$#>3qN$pgi{YvVRb8<|jey=sXFsMof@@2s@0>K+Ld{ zJKTzA$|$n{E>6DnQj=Qm%Zmvf>3SSZeXwgvdI}~HsY$=o@{S+1#{@srPqvx=^Y-4S z++Tz@j(|Fs2m1z+@8E?)>OeyV!NSZ-1b-V__jZ7jA=ks3>eNj(x4eXmqW#lrvt{J( zb60~~t;1m-`FRx`+}*tc*g?%N=Pf8i^n01rtR!3kl zo*kAJ!5c&XhL)z`f+2$MQ3j+IuUxs5zx;mH%K^A+Rdr+;v@*rI@x(Q+ETVb7&f?yv z+hlbA7JFy`1eR5~pKp{lWn{|=Z{Aj8@!6%}R^R+Ek`gT5roQHOmCtRmU+bo8SRQJY zceF#`5snlL;qjrkuARr{1(}*szEz!gdD;sg3MbdXKULS4fOSL9eA{8$SM>1KNEcNg zyTs@5iK?a2aJ)60txDG&6(;qFsK>`BM50C5AotH%5PCI9L5ark6Bc%nWSeVV<{A4} zViA;5_zS@_8s!WWy|4_1*Z!?nufCHh7>KGJC3YG8o(q67HjdPPzC+)Ig;KFWN3u#l z61?_;koTwqCBjumzr-z>_mJ8(9QztK7m!*mY(`k_y0xkU3z3R(&sN|2r#~q!BPk6& zIK~7LhI8Ej#>}js=5=)#u_g%MhV^m!ti|^}3-HDm;6V|`Q~C$jtfGP%Kl$X6B+5oZAi$*DiE8)Xe`e3<_M}47e7Y z6l@>q$9&BUBOh|YL57!c!VNN@gK;GsnkR{J-+c_n)^U6q3rpzyH5;Kp1b-}jD+)|u zy2iH3*C($CXVe)8{!DjEowA>saIgCt59r^G#3FRw0H-vk$6~RQ>;acLVlSp_56(3r zILb*(zK;&&y33z{n!Ed$Z_&~M>N4E$Q7qK-{92o;4w%e@r2@8ja9RuXJhsVjXpV%a zbnAx`T*zkrryQ@(1MqLL5*W$^X9XYJ-`4`tN+`E#acfBzumAbQ=%xp?$^Li53REi(+YUgrf72EFoM}pf$}0Q1jtYUrm}$H}_=9KJ3b(!y{O2i? zD#%FGz<~9#OYNG*eLbFKGp^4Mkw@tBG=e_&Lc#9G_rdygLxc_YL7>yRbw!WKrSO`^ zNU?xi9#VxO?vJ0=-CzHpp|3Jj9dS}>EET)d##FaQbEd}(GxcbiL9}nK4m2=>F5C%| z2dJ-+D|2vQu4Ot;@@tM3tW>wYFA`x0R@hWdsj(aFc=~u-LuTPfG^+;zryzc1CJ2*$%=q z41Fj66Yq{;=Bo}basw9Hf16gd5DwO?Ba?1`=#*%xD0w^%TK3{B zn62{XZ1nzFkE7V(@^e4Pzh#`ciQqLz8PZ$X;sLHG{9ApXQ~QQFW?hAqIA1!u-ncie z_*%f1yGOA@vuRZZdQH21UY6j`W#t|3suqR+b=if|)U=v;({ENMc*O&GJIGwc- zC9RqMp%xXhcVG**m=M^j5TjLS*TyOU^0ME!Wvh_sF~)0KW#mhYcv1mfW`WyZ8~^roaV^21qf(up&NZa!5D~`WHrGr9C){y7?_Va4bhSc6 zkBQj(gbaoUB2sX7Q##?bIOV{hTO~|QxwpJ!w3crJ#Wg#Od@^m420rd8*Hi}`8xQ}) zz&+xE_xYUZH3J`j8Qy=zwArK0kn1{j!C58 zQ@<&ASch@94RwSMmO)3~KOMr?g2}eji0>Ce>#uy=rG(LYuoN|HZh&YGrrm{3G+&y@&NOr~r99B5sl(^l#KPYBQ3E6~v}64kIUPviOLpvgJTraT zh>RotfbxA&?a2a9rySN@74}ZKhG**N!RU9RDJeMaO9sCAiH%Kkk4oa%>j(egAtS{_ zCGFAH(XSSIEM-ca(E(r4fwW#yUDCMfs)d(G*ryuU_8aNXwxRp+;!nJj%@7}Q3Z|)N zZ1PnD(`Te3w-Jq-9?s{fYaI+8I?LIAc3BU$DjkZ%J%3&2`&N&THST&q+Y>7aRNm-5RtD@$#IMcf2?*N(fn934BY>C#v%`5Q6O=1xH@|d?xga8EIaf zBA;TpL8?5Lq^^tx&>Fxj8{y{Lpe_2XUcBr8K|V2-n1CO%=%e{QLig!fpb2p_4;j`4 zqodVk=Y)Dz7U*zE675}@DJF4KakdCr@OgDv@5BE`Z(R3V503p1*XC?f^OSZBe^&b5 z6nak@Eh8n%`D3FOw6dkD>~3@u$4{3*rRtTf@6kqsaM;}|`9F^IW0FWB_)Js$ctZ8Eje77v|g(xGfj0hdsHh8DEaPsWMd$X(QUS$F=OJ>lSb zDiSt(ePj~Q3=bruxg`g25T4XU2To;E4J^da0Oc^?5l%8L#}?~bxgbaPt2^#g*7D6^J!!?pC}P;A961< zWpJgte1x1`{ESV!>@&Q|*2gQg--Qu^mjU2DtvbE05qDLb#|J!GbcUz-7a{!EQbw(d zvT6rS+fT&E>HTkKurYD$RO{DMFr7 zCj9czb}V`rOeG)OJ9>ZR1jewoc){oP&Ip35;?F`ZgNAn{qldEr?NdK9BFBksBMBXS z`Cx?T1%pykQBGH*(kr~IU=ISncn-SD%E}IO?Z7yyDchV9+I3;q&EDLhs{KL`JV14_GK{4KUR=DR z@*1TiE6dotP3cm^^g}#%R8&+USfgh`x_ZXyFws6uYpY)BygoQOVegnN;i!q{JY0%xfBOiBojHJx#0UGTnPX8CkaQ6N(L20z;Z?yMRh_Q({Wa?{*3YYjpTTb2j zd;urmXEbsd%CSm4KVSyNpEYoC%C;Fxqn-C?W?gi=F=vk>_9B zbJPn*Zu%~k!k@Jesk4EPyPUNgpx=$H!}8NX2&}?0B~>~m9bkwPDt>TBkEsYV1q%Wv>f=b5k&T1 zy1_R;qwdX@9!7{$baBWyyPDD7H@mA61G_;TBOupXWpuql6?VR%G^xUV+5ZpAW z%4t4vi-Ohz3)wuQZ9!tu5@8)xtFhCFcI9ku$P;Q79GT+*Rd1?@-Rw_ClC4`k{S2Zy zAQ(gqT8eERzx z2o=v;o6fiImE@Pu8bSxPd@3xRyEEIfIXi^1tf9qI(9WE*gSeI69{!E`%)Vy|g7LC> zl&QjQL;E}vItp0(Xszlg*g&~+ro8GfE5GMxkztOl@+q1rzl*5zg)%Lt<*UxZR{D_U zCF;VhF;e$Za?_G?OmWWDDC{2Gzo-aisbP>$JrX@%t7MOObke+BM0fJrcVRGrz9krI zo8!W2OfTt`-XKR1_Ozd3mhv>EBy_Qi=3;Kl7Ms1viex$ksJ5U0wX$$y8T+ygYNAe& z(H$LfDiIWQdSm9hnS0S;>BH!gAQK_@hVPAgFIsPNtu-vPYG|x{FP$RiQ>fyxl+WF? zwVKW)f9YNP0YQGgIoIbT!QD}9A)2d82+x9p?u#jDK;8tTVis2HX`-w{OOkm_cA{` z^2C-5c_0`129J_z5Yh6ha}FWS1KNEm9KBz_?;=h>Z*7-tBKvB3t)DKvejI%s{Pfh+ zqBF7g$;l%Y`2P8K@ru^RTiiROjH$pV?Y?V(20H3dnV)C2kM|Ok^>PQqx104S&P40w zRyxK8Dj*BGkumckW4_R*3%=wK0I?E&y|wfSI)S5Zaf6Opn3;bns3~WFNANQ!I~35PCx41Y|t(U<$B+S zDsMr*^*&Y49-&gg@kQ(f;fur9bBN&lMqgZnn+K%e&byiL%I^T&hD~{Ijo=R=_R7Dr z!Bx_6yl@-x@O*W%5B!@1yq<`I$8x>0h3!D1qrw-&uw7jY%v+E-q6}PDsGwn=a}l(N zTdFiizA1hJy4ZUn4d1;)1?@Cm>@nRuAO`tfpovq#MI;3WP)6SpAS+4^4!r|lh(g;a z<8Q5eX)|v_pE6Z$RaO**E*afCh}aAH2FqUmJw7{*GyYMgH8*hCREq-W)jBF%y~bn@ z74Wo}=(cSbH80F=<$OW(T0P`WL!0_c8W5)okI|HL?pUmz^kvZa zdcvZ2*@)u|yJMKw(NM&&J-1b@>4w*_=-fP6aa|J?Dj|6I@4ov64C1nGG~c1x_Grn8 z^rY2yv+B@fHMd{&^P`Id$VpaY8x}*-Wke4bca64dTYiX~)0cY|-SI<1{5kGoJPteq z%1rwdw@h-cX@OEZ!XE8?Z-H)BsObnd)GPO$X$`K;eq%mA|Iy~5C>eHXfA~+qtTGWP zyFZw=*s_jW4AH$ON$-Pv)_JGd%_|{7-&QwM&3hbz!qq+t3~X(`Z;($!Z`fhW0k zVx;s%aM96V-!riUtI`3oE>iKhXZsgB6s^yvp+Hw5d_mp}3jM4j!b{6FGTn?u2(G|k zzZxH)&o9Mr+&e{Arr!FHw&d5V3cQ{z{bb7|*#$i1uHF&lQ_k4J#5`zcRMS00bPZMH zEAuk1dm|?mTjoVLEn2g49NxVLa5a>13yp9yhkV^)TG_-E`P10dfI{vG;0zLmeoo04 zG;-?xjJn2~wE+ALZepR5zH~jPf40tM8kj5nc)CeF>3F(knmWW>JxZ0+W-5ef>({pV zp>wI5OAG%!qIvJ#17J)SA)?#HEH8!?OL_atY|;Zb)xU) zxGY~NGvi|q+HyHIbXwd?-qJ|7A0-q3JnH zR-M~GUd39I!*Msbz~!s5&2-%CQC4|XM1f&yh3mnJ3{;b%De>LB&`Bfmv{u~~S~zG< zLu-Hizzb9q?|%X_FQ>)Nq7a~$`&!1H;UC6XYLHA`RgAqV^5L#0 z5YYKhZ~=C{1fGGbgS}6G9h}sG^1is_@T3+a-zcNDlUpwz+%>h-sCNpZ4Bv8z4HXNw zAfFFAa8mC8s(CS|>%ZXMmkTJLC={hGaTBdXURLG8qt$P{D(B7uPi{Cm3^2zhOx`cF zH;$j&@}>N()*}p8DTmA4p{j!ti`v?e3ksZk#NLPYid(o!KPgQ|!DAn6x7IEO4#5Ov z(p^&+5`ec31k|X`POHmYQ-dWweGXY=;pH)Vg`IF95O6#=UNwx%@z?pHs5oHiFgzrw z1G`_(4m^V+awsy)?18v(!*{6TfZKMr;(vzq%uPIZz+~{+YFvklK?>f3%-&2@_(jJg zuMrPAU_SM_$b_8(_&cW|sH)PxtVc{xzzt?gGQ-+42*mYZwD9BR;@ zUZHT^ES@bE!uO{`0LSFIGw^t9$*1)cYVy_W7GY)OS@^yrc64klSep9z} z3O$>ehBplaSOjDko_&SaUjPo()?7l|1^U!(LxdZsb^9&at^wQyhTDA?tG3w0QG2@$ zaMoh>m>?+EQ!`?a(OrJqEy8QHr~?rI6T&pk2hCTf!f0s0qhtivg;N z6oOk-9v|{jju73okumbSdFov!cLyCJ9(1klzK?o)b@0PKXPyK&v}u2frFCWaY>^lg z-ON7?Wx2uBG@yEoN!7vbk@moz854ZpyQM}|O1aM*o{gmi8}z|(Jpoasi$LjbP(gf@ zu2I35LfzT-GPs6S9Wf8kEtqfWHXX#k8J;5{T_ZXwg~RhC%N}*%aBxxRNCVDM=W$vk zT(m%dLbdrzubV;-cjO!3csk-%%_WDvU?n&l0(fu!+We-jhq@LVXyNA>vCrwHVpF?Ww&W>WK>>Zx&~l{;kycJw>rx&?v^^0VMiVQ zcA$BDGG4jpc-O;#3;0#aD;MM8H5>>0+(dm{*OITJ&7C9gfxgexDMcjN&f{34Tio@` z!GREfY2RmRxFRvYYw^NmGVq})2LjAoj?;#FbHIz=5~T04)D|8#z+PfoPoLqA(bK2? zS`)d|HS>YGLCbUa`2<@v>?=9eNc$T^hV&IWo2!L7p2a|*sLP9Nx(4eJmr-6U@)vRZ zZiT@9GS}=G*-=R0>@Q&yXd=8PeVJr4cG-pj6r_EX$r_HDiUD)z^b$aSQZ6qE_AYbR=98?hI4ABz90ef$KZ>$gEocPqU zJw8f0)e$x-P~%U3s$Sf>j#;R)3W7!1WnaGu(nA(~C)YmSfFyu-f%(OwOZ78-;hm&k zR=U72?`v;MYxzo&#?20GTL93zp4guI1Qom&qmOM3U4!gJ zNuo8YaQMN(8#oyoz*_&)70}i<+J)E>=-w~##!3f(0o#?`IPlf!y3S4II^9?o> z`&KxAf%G2M;Fk#mX*d=;mCNwd0gigBmJAx*AO-0wMO94X(fr5fSv@tnHk%@yiYFu1 zwZ=yeAm8+#sn4)B5IouxVIgC)n8Ga#fvsv#AwHv?zHS^f>5n+wk+-IyBhTvfIt^ECZxWK+1AyY;!) z=PNS<4^Pc8t$w|pm4P~f^=BGlA$3Muhdxft>f3F0D#Lv&oeZVGy^{i6EP4pUzH&6z zkME+>yuL4aPkQZ#h~?;gaDF-~-POQ-0A{8}!nARhm}yx^oK=VJmV2lP1ZaW`1cuTY zbf)XJU_&>eC*?Ot!oGf~JAK-Tb+&bSXi95VDt0fDK0=Q#VM!Rh`eMYE(;Q?m$-b>? z1REIDEyo4tTeg*T++L;14S;pSs@JdesDX*zG?!L~_`_pgxK~a52`u~TYg$xC)o4n&`gVLl*#6zl(SzDE>cYZpj3*4; zh@j)v%HA#EN+#~ixhY;R{o1pJ_2#OnAz_wIADE#Got6)qw4d*)<-ZR!_?^h&hfojr zbVL}c;XpoZ+wj84K;UYQb=3E~=q_kfni$0W)gwU}|Heybc|X1O5_xT z4(DKJ|ChbfX&(g*7m|*h?M*6?-w0XisZthHNRkGaLsm_kJ@zR8x1ccQt>fWyA&ZT^c++maC*Kepf(vSi!8&HVJ>6pwIij()~HB%2US zu#f@_*<@K(^jhn4Im_(5eNEx|gzUqXNn%ri;&}03&hP#>0$z>Wn!}z?^dmz)f^Ww1 zg55i`e#J@3DwZ1~s%YyBR!Kta`^jJQFv8xv3EmXRVCCFzR_y*F;RoTwe@f>`Z*l^b zER*}PrJ9wn^Gsdvp^38oukfRUx9)uyNb`32yx1LgRWKZz&EF4cC!o$BB7e|aCrlW% zDD^e6bWs~t7)|%s&+#=nem3pkKpk=9h(1ugE3t$k$enVfmdxY23qb?r*NGo zpL}|g-}=|Q(f|7#!1KH8jVqJwTs`!1s?WS3I3eL3-dV7W`+#kG|3jn{Smt#?ID_w# z6X2DJ9#AShM_$7f@m6o+u^t>&yU|XO=GCXLl-8l4;#W-*5fxYl8qZL1 z=j9dB#jX-q;<7gwkdjjNmhamXb6!ca>@$)VmZo^MSqP4IOl@d%R9^{o?H`j|CFQF7 zpY=eut0GD_q*_;d-aHygdH5KJ-ujk%`<1*>l0B*Ec-UAUtoYw5`X3J&DJn;;M1EML z(cnv(SfFIP#Hi!2hf>3m_>SvMJbo^8cIWi+bIjfUiT&7$Vp1acu9`BlGz|h_^*0oMm zVZxTG7Wmp8;l2smNn=6G`uWhoCD!=?!Fyk2d z=!-)AHeP(h4$dNz+^&oPBr7X4vJ}kymaZ>9t9;mY+?qFiSA}L7H#FBn4iAjWR6Btz zsRD`S^CLZ=Fcx9ASq^3;w-Y@)C4i}#L*~~|q~xW}rCMQQh_)5*vw|;?ZVHz1r){m8 zwaO{cxa4Jj!Noi<5qZj24*fEx>^RU7WN4!Ut5iX6N-t8gk@83PvXdRDl^!5oJ+!vM zIu8fqdX=7u5C6K%oBLJtVZm@p7LV3>>k?s0jTmfpcXw-Zp$Ahj1#bk0xuI&H=1NLVrzDdhja}Lu|V2i{V#?$=KFD@C&-J8nr8F*QvB?kSOQVJ5wy)}~1gWs; z(9148e|_m+{!>~zgkoMcBYuL}C%&yiWg5WNlWtC$v>8 z@=@8kW1l@^Tun^iiRvJvmUWd48`tl7=KHALN?i+a>cZYnf`W*~_b`ed%cO-eRK4jc z&LKKQ;-4o{?2bH8$Hpi9RbDALA|$yV{nmX{)8wlWKzyj2I=fswE93rr{;NNU$`Hfdtd6ZEGg37{WtjRW{>%BsEPCJbbWQa$vXPD8cU3 zq2RjucIN6*np2F?{;^6qNDDl7u!zjIQGIhO{>@TX9 zml46P1G?2Q|G1v$iYhGk?_~cPcJU5O2Lk^UInKWX`-|LPUj_b)+|~6z{~&kyQ>R_^(KDbHLEUCA*U5@BaM1b@q=}(XU9s?j-zmdkXrwX}RJu38;biDfrWC+{|DwD4?ic9u7RXT02CyJ&(8nUZ?^q>(7RG1|1a zLOmAaHU9YX{L0rDjO#y#ThX(F8|XW7_+y50{He@;TF{wy-j@JH4<`VTvF_Z>W>dYu zJ5H$|SR4pR5K?1Hug`rD6_l-mxO-O<$x{`TMFQjT9dRM_C-z3vMNF#1`)_55io_6^ z;;QY(v4KqM?3h9Zb0Y5kfr!d?7~b((Nj#93LXS|;TYsj~GH=G!NiIJG*a*SlH3F0JL(7IxIREVR?xnnAcF+0y`&ALw_JgR$f8 z0!R|bISR#!(aW{E#i_Y9KXwHtWIv~VsQxy+oqU)1oZ%#JhI)h`qyv>5saZTU%R@Rp z`mXtVltE`q0pGJ~frR`ot2qLNO2sLr2U~~vg-WNxz1mRk8J7G7w8571QFT#|-BWw7 zX9i952hm$mURgXOJHnFYKX;M{nect7xJ8l}%zo|Agr>i*Ut|ws{65wq0T{CT^{AbE zi;e{I17dXEiG!$>p6t*gmhTE*Uy*PYz9TFPP1Vp9PJ{TJ`HUBw$T;)YZPkTplpTFL z`{q4jkWpx+bzY#W3K((=&CN*T-aBU2FYk68-rqdV;95?QAACt6!ksU&v4*m@T)cJW zipQJ(%zm_5D?1-!GGw$P4O8Zzu7#4Ut$8*|PTBFiL3O0Nf(4Uq0MW6pvug*< zNX1qSwn2UT+A`WP8xMT|9~x^cGG^_w$tAWJ4h>xo8OM{VbErIIq%KN{5}up+P&o&Y zqhtQ~!yr9V@1|Zdb5DIp3K;VZ(b|olJ3wh#^D~wk=5nE+OxI6=pYIeV?}agaKf0%o z)DD|0i!O0h7MIEVDxPp1&^r%{eI@H;EXznRY%hEF>kjJ7-t-Ygzx%=Faf&DQ7fDF| zYujPWCFQ0S((-`>hIgTr`wyl5U`mDgLFXRI{;8(vIr;j%Y-_`8faP>Rkt=OhFD*Bu5!@m)noc^7(U!cw?f_`$b9` zEJ}~yP6>rSNx#`Wf8t)1oYsW1#d*|@uhXF3MrZU37ig%XMir84?lBefV>6vl6%ZKGCIBK{_$g% z5Li%%LE6xgy_mCpvX+xtWxu0P;@`bitu5y0q$N_(jgOORAiB1_MOI;WI=accs&IZ! zue-?pEA=tN+rxL(BPcVYws_dmYeb86a=BjrQ{}6XO|9-@oAGo5o`;!w?zQ(NsFf?H z3=hisFo-3#GwcqQ)JA=3ig9Y3e8wvq?vHEPrBI``Ea4Rm-P4P-BN*jN>axd@NLcDXw*2#Fy~XTDWQvs6xrj?g(<(Ft)%Rs>&BOIx zR3)j4XquuOs|)2d-u0?OuaTXWTA%8LDJ@9t#Pm5yRibO|>nigPP*%B<$wFzmW7abj z;Fo_p8{)kkVU<}GECJ3}|CC%VBfF)YIja)v)ZOhM$UtZdG z9gF|-i9Sy5e|bm4G^X3mpAB0I;vJBuX*ds3KN<;D_=wJmU7b9R4T-62aAh;NS>lv>MUv$4kfU zdVLG`eP}0}nNa7OQs?5E#>$kQJhg5)kj*n(5mTc1^N9MM4xk^9 zZID71ylt~Cm*mOYYrRnOM8ph{##wr z%~IKt2)92UQ%$Ba+Hm4G^?E!R(bkyW-E%B!&1nZ|odRyY7eqaU22V5wDgD)(!brJ~fa>f$mJUb1z!^xG? zmKol%{(1$S*`s{6e0!(COh;}qIkENdG=r%#p$un5_he?su(8%$6uNh64<@0{z>$8y zI2S6Gj-Mv=NqIk^{tY(S+rh@S0~gHp7yEGpnUgcmf-hRWAGvx>e`dm>Dz_FD|FzJf z%M)&QJmlkrLySh<+SssqSQj`ea@>bST|OH20-Q}Paqe%kR6}o6F#AJ|{T^Z$upElC zU@k5KcQ!kuP!8GxuQg3yqi{4u zDiQ6IFo1vG4=b#XB>RZLmeN%|(Y~Y9C$#&^<`vC;XB#}Dq<)(fr=|2wM@i5s+;i%j zQ}J`(FuEcQP(?ZEd1IGq|HBtS#;uWnQ^`iwQ z5g$t)_qx%-){kKl84dS>Oc@+{MMUCiEkMF6pZYk#E*{!m6?&@_Rt9mR0n&~AW2ybW zE4tcBoCexfQaiOb$X7&Xro4YqIJFJ+nEY(>MX90bhz@mp8aEp}R+MV(#$4-!$w9Dp zA)fp)L~mdB%Ur%Mzt*WZgBN>x`{(}b3~t_XkDbuUyCQ}P!0jgnyT#09>y^rnLIrBv z^(MmJjjmC98awhIFvm4m^pr8AqOh>kEl>3a)&!Tf@iU~JZ<$xo+rF6vi+r8##rAoy zWT3HJFXH-5y16J%>6iHVy~3OyUr3t*o$_Q*wNK7tmit?Z34WZ$ToXc# zs(NvOvbYyT2t_xI6$x#hean&O^lMkt#MZC(z9+Mgtek30%>L-JU%U<{F6$%Bch_~6 zH21fl0udJ{9};{HMd)S!t|H%q^#W=rfRq;SbDB9zM4EJmV+~sXTX~@n&5}=)^i^YJ zlrjugTn-H_<6mw5r=QTsA@d8SY-kglx%KgnndBKgI2d=Ybqfjn_mj`yvQ8;hWpo-HA8+d0`6mGYEXKQEbYO zdsK<0Eb_$PgWyYCL7-hGxkSYmoUbMLpBG5#9~QR>yQ6P^UvOt_Bo_^i{7t_D`6GBl zKNf&if~7U5**Y(ZW^#7i)zpjV@#HYEp2689>k5%y_@$AgA;i=$&LgzueGqs)Nf(szl15Io0Hd#J+?*|y4f0~!{nV-w?K94B?=2srHRVUbBKr@RwryLWx&=+S&X&XDD%`8-CJ{#oZ|5o2!?Ha{{MY?~dT}Jrn|p%M&C4LWO!)%cm$TT?J_scSb6L64KN1@( zON-gND2PJ0S9~#Qz#<`W`s&A<_Ckss|y*db+>rCttvJqP1RVxmEt(>yX`Wk|nu zTimb;DOKl(=cXcG2?Via_oI!tO0Bz_lsY*kw9Y7wuW(E1ym$rqL1<`*fNzDJ7)ATA zu(-s{+bE^TqsLV3r6j^-5S{|-R5^EBb+Pm_VkCd|tzR?&x<;LsT!%G9# z7D(yh20CpjN`#}Jvk`=?l<>5^((6t0_v52 z_L-*^e>v>uei*3*F`>B>g_l6`$2BKqPJGeX_|JL`pp^Ll+-h|(c>#$=Nt z$NY|ho#onNZSnTs=l-$Y=5FDNuWU6S29qot@dOp~BSj~$TOx%HaLCBFg5Cejfhwkp z^C$^Ow$?#eHCeN*J=&@vFC8)7**v^W!sfFUgu~;ML*cIE%v~kVEx4*{x*u7 zFCzK{-G@XYE(c&pLf(QYUL5-XN8}6X2Q;tA?s_+m@{A*YusJLsO5V_wc#1|O7V*cw zC8=1-D5N<2RY-i$r?VG6FWX0BcLh`p2${`gYaW%~d(8fEoa;wN$$YBxNl*l37=}RO zlXua%S$CvVLlT%AG4lO`ehgRN)1busp}VjDfhj`6ahtg~K&ZX<3u@(kv5f#X-1^6J z(|5K#-C2XGkY`-}u)K4ltVjEu7WvLX^u9d$EHhi6s7{dP_veq!$tEPew0FN?7mACT zxYy_FF7hrY*$a);ODb=N>QyN^alDuYktY_}*r*Y2X-gS-UF5)S){>LnJ^#Glss85Z z={|qF5fe#p^ZFh2R*sQIpij6u&N(VsXy6?+)F|KQf7Hw^!2_zlCKW$dJOx$MvTxGp_~=^vbL3w#R1757Vaws}dWmrzIW010N`O zcj7;o)2*P?GgX^U7yaJKu6w8JI@hv}iG)Qe{Adx=cj-4L@~Z#-$nUP5Mn@}>hi>SR zNG;jbZq7E&vkbzhw3DN@7^er0%s3NR>^x`T--L? zx6)){`b8rP^EDcUMx9+QM&5kDVcAAuQtOtDIX2WH{ZZ29qfG9Og5S)w_gNVhoA#Gj zv&&CL9CXYf>?h;qLu;eufsokp4(c56b7HYr?#GoiMY*XEqtd?SDRw zP2$Vf>Fs#do3vDJ3eE!_Y<{Fjk=aWtL9-pBi)*2o?9>9@-JP+Uc@uSHIl$oKeTY-a zPQYj`Qhhw_ckj3#i7O&q;%k2;>n~C1EJvDb>R?(wQoU z?xXT0o<08P@f(TH4m>CySzhX5A7oATPe<9m-IwO;E&u4^pgH~)^ZV*2{ONlKEf#oe zV?m85eDwjosKWmJ09>Fi-A6E`^L^pKh^(P6$Qa_?n-;t&?*Toj7Wb!77N$eVBqJq! zlx=|9KfKU@?+>$22U=ESzgPwea4eu&G~u=a45a+JlcO%h)Od@^B$5NiosSJKweS9WcxY5pARXvS0$_|}VkXahOPhp38@ld+e03_08hU1zlQ-JRSPy zELp&vYhukxZ+|Wb%o?Sx5`A*dTLj3$(o7sA?Y=K3_jIJpTbfcMU0-v~HE~3B$y7;1 zLKel;6hFSAypAg^>tH8FNA71v&6Kj6!3C#_^78H$NAv)NhMZK`@JCkd^z7A{Bz-L# z!XaZE=9pl>lgA{AEf_@PC33OS)|w>+T?NBQaUatNp%khH`No)fwW&NKHh=ycZPOTs z;IOOF`4{%b);Kk^f6P=S+i5lI~Cn6!%zAp9GPiAld#D$9V*>!)&ceb501Q->|RM`zUPpgdcl8kb6 z@Bx}sCYkDVL}`?MGi1{|5Jqak@n?~x!YAsBp1L)yXSFRJ;-j5F23B9;B?5I`z}7vF zZzpE~fbW(G2Ay;dfZVNkZ@vVIWhmh&Ql4=*h2X3Uox35sp0B(eiN}JvLt+LFd{dJ$ zEq+U{Zoy{ETRQ`$8dbi4j|)Y*Pc#Z7C4)?LKIwtGLmp3^TQY&BLi`45U;!MU6i_ZHX!#<+L^aMA`MY=>8@r#Q|hMHqSHuBWd-@yF13- zAO;;IJ)#Wp0*<_jSBNLaIDWXwC`?G}kRM+(U++K1pjQd8il4hb8L-Ckz2AJ^M34iB zW`Y*_sUb{~C7J)LOQ~F0pu!tJWJHB{)#8Vf9Lb{#v3e7fnvaafN~ykAB2{=g;kC8p zW>HyYj@t+)Yf~l4D`)kDU?z{}FmNQ|mFg)W6Nat(r4cyKVr&4Z^I2D#ay_-9AD0U| zt_nq1x$`U&c0TKO-JtVi{ni)qGG6v8lEoKoVlIQvFV^rM3Z;f*>LFuFEdCnN1zLKd zh&=gWFQ=Hm6)q}OoWM+R6fa-J@!Qz~C#iXqbvl`WDVb8=ZI#2n2eaXQHP$?@^GA(h zHlZ#_{x35oys4#2N^RP)xVs#m_n$hMeOfYA?rdHTDyPnh{?bc`V~*--C*mfire9d7 z>G#N|B_`Z6L9yKGbJl{>VpjId2L!7RrU{~XPDB*|LR<#Bvie|4~U;e6(vAnjt{c!H~hMm>ad0O;*#arUgBr~;_ z+OFsA?IR7=a`IkV+BNkZv0t(8&SO0;AP|}E7di$t)+zhdXrv}smZabdz&6$=62pAF zhW?bfsZW-X7N{yaVENnm-4P^Uo_~=qlP4HjFvPgbxb)FhuKa_=|Do)gf^%VlZDaF` zZQJIKZG5q9TRXOG+qQRX+ctNylbpZm-k0-uo_f_x)x1r0_e`&~ItFe-Gf`KcN-<{kiHdDPaig**a%y%> z>=pkCKcGeamBh>~Wp~PY0B-=*FBd{&YO!@+_xD+Z9@_|q8=Z5K99}w9VRlwI?4uByq|F#i~rzj1^C&HL{Ey7mdw~h&`76)lb=+W#k!;TZrt1 zuGHBbgedFmf)S7tsRLFQP^`8{q%+eT4$B6nBP)DwC{08Er8;Yj@qCN+k)PpvEMgze zA)sfLC&5$IeDW_v93tQN;(}uMV`((oL>LYQ4i~0O1s&~*w6?lpnfuTh_8N!XTLb?E z*GWF~LJPK--kJch=I2sLe5Tf*x71kY;5qts*qD|F(0#j+i9J zqLyO7QqXE(K@;ZZ&tzZ?1w<6lEL_Xr$CVf3AL;IEMTjk_yd(@9ypSr}`vO_KhFiL- zsfhanlm;rM#B^w=ykR-p=ugxNG6;I%T{5M87v;$sjirP}ZDnEjyei&iE!}N{+HHr$;EoPLvt6r1#BX$Igd9 zgUMKCQ4TUuNJ94uq1M$lVXQgRm)y@w1RjYF<>pFqgWD`YGq^gmD=Jf=jLVK&tgAMvt)g0a_-et+ z3LYeUI*k^26*v>`oTm5UQT^1_-L03BmWui-rE!06{8Z2gf1kj$!2tZHPAGbDPKH6X z%E(`)`z_b&U%Rw_m!s^@WOR>;7GF7Gnc^c{hCNSwy&>(BN2eGyFxhXS@WM6R#aB zPOPga_Rbh>EpM$fMd4ayGaWEJmPsr)8t)eAv{bVNvkcRmNA0TQu%9d4!`r~K?IBGj zyWpZljHEZ?j!7|}K~YyP&ciU0Z(XS<>8W(eMX)uaBEI=5+O8S7B-JbO4rba9jD>-y zwFpkp`m3dRTDwdxTVnEXX{EJ%30JJn=%SnV$x7Mw6Ko32o%yV&&{V`>y<=A_zV_)a z9WovLOLbLj_@?Yyd)L9Tv~rCa>CD^fN(z+CU*7;lgLt9-_cXg$9=glu;uioXg@v|7 z=9G>x-TmA1+dI5tl>>c3b#p0gsdFqoij4G>92*u#2OQoukJs(kcULKRAAajZQ3`FV zbEz^#qZ6l#ers{ZL~gpyVnbdH9|rj~80=Q!3Yp||i}GkixowDw$d`=MLS-h~!+bA_ zIOY(k?UXLu=(YA?kgEg*e5KZVnLlHRU>lIhAp>iqJ(L*Q2jNi8=rx_#Trniy2{pS# zk?g2tnWu!XY1FpqRwi55aht_P?w(?aBfG!tHBHjKnsl-Voan-KM^}??F^NJ2mxHoc z^f%GgcdI^a1j`c(z3|>XNHnt!DheqT5i7pZ-EZ!lr_} zTlnc6uhOq6lKI0R)v30SQ(V2MtdgrPDXnJyr#xell$tLaBA;TMed5(teS%&Gg=6~ownxoxR9A6) z4pFj=;{~KpP^A7Sv-q0(osB%r?w5^N$!U!C<<(~nEa^zNW=us31E;xf3>>sMuD#u9 zcEs@rchBp(j}q&G)#WkL&{0bhXwrJc0{v}>rHeSAW&?mC9S9=fHXODe;8_?IZn1O< zjX=OHKF@RTiFho7Q#T2{a*xu!>sSt>iyZ_)v?FU)&MdZZOOW>7qvchWUM-SQG$fyi z&ELtWvI)*V)-C%c#~WE6yPGXJ08qwG7wxwuy8SMIu1n)Y0mJsaQof0_QCG~VX6p(9 z(QWo$@qfmFO|EwKGdt^iY%Brlj)_IA*1T}pn(1_E-d> zS;!O;r;JrldP#A`J&N@eakAEXg5%gV>y)y{Zq05n?lb54)(Eq;M(dGUudQ&Vul@XO zvbXS67@x|+;5KnZ0rdq|Zua-I%E~ZQ<>zK(oo32EFt5~(i{MVvA<*^|aE!8G{Vbri zlx-KWodsTay;iWw)rgz_W(oX%a)WZBjWd5M(=n~KWHv9w0-PT$PSU1DWskyew*+K3 z$Py#(q#0g1b^BCwBu>r}(EMTsJjW-4|LynH$=8UMH)xp)ZuoVpF+!4QX3#r#s^whl zElN6J!gp$E?acSn$5z`i)#$VzQ&K?cKXTr~y#?ClRN%^c9;fnnlflKL6VjK$4QTfn zi`hXQS9Od9ZjL=6pQ`d$gR`%jj?zFy2gxYw{KsxEua2XhdYnd}(rF|MRzP#jM zIai?X4yn@Qgcg$zA3Cv=F7Z6ZlVG{0vW(-O{GDTwvsV7I0hX1M2#|sFfGs3ztAxUq z5xOR^a!kX6@Yo=;b*Za%OPH%eQ9@aI<7;J$=K-RkSFFLc^E(rY5y zbN7f{39RipWmNGQFj+0&Rcza0Oyt5_v0l%|Aj91t9j)Te(M%6*E-8e|U%{b$-2%7n zZ}?=S_-;H?i}!)bQ$@kV+OZy)Q1 zRu73pXT(K}Ml@@QYc+Y#y`MsVn1V|Kj%lQ`sT!cOEWy~1hDEDKz!4+g3*DUqmnvr$ zQ5O$8{PCeYkbL!I=4vhhcQPiW8OHf5x@sphX&z`$9w1&ZJB1f5y7Ij(Y%R=KgOa8t zLkdR!l=6x0BxrwdkJCMn>4ContUBtdrlhKXs5fz>M`tstlruhrSK-5(mE4*B+i{d{ zXIiX@{#0-;Km78S&aOwn%)XjPTVou#yjl-~Cu0rc? z(0TMmf4_EyltSvHA_K6bV$0O>ftxz~Mak8&a;`t5#gM6qoCd=Qvqea;EzjP~zjFH~ z!<4cEvOSzGx{*;7XN8D#_M7jCa}-!-ptoenUHI8y9?* z{0Iu4a#92C7i3t&RBYAz%YDz_?iriu3(s_LnO-$=T|4SAMo~w;gI5bh8y}!)wJ9#D z>~rgo6x^w-!v@0Xvb?y@ly@+&?w)pylbG`6!?^RH4wjrzu`_SPVRn}oDrorvTI7-! zT})QsmGW7D1`F1GoeX32FTr=4QtVtFQI*nHZN<Oupw7m4@i#G>%k9wf%9_lx ze1zdb+>Y>V!3FeamTNMN9v!C5gbvv%dX&R&xn;%?8XA>Q4SV(|Rr38Ixgm$@2xxCvVGHCOD_YGu`gN=L zO)z=P5fBS$wf%SbixYPWpA0Kx z+w)Q|g(ceEg+s&&q0CZ%35`=|W453R6 zW!M=duF=eUjQ*n(5jaVA76Adw*r*Z zGX};=%p@sV?-E)3Jv?O3sIUB=t9lsn0=D`}cogwrN|4e8f5ryE`aH%! z8gCjTYy!xocQ4;-3|yIiyoR~C`)dw>tGU9=XmOH1hiIoTe~e*j?~lEJq`&y%C&R*y zckQ{NuvZ>ml^n9i?_Qa-jp<=ZKY$7Rrq9ho%3&}d33X^~!NCX$sHm1l{Z>6BHIY8X z<1=~cjdwtw{pm0@VOFE5>FS5bj;=A}GTE&&ON+`&-P9_Y#kbtf>mZ=TjRwKr{2uOBZ_TdAm5a94V766nQn zbiPe*g#gW0z3;8Bt+rHz@Zdi80GEnIpL+RB0@?>Yu#bVl1g#DoKtZ0zl-t6W^ibo^ zB;w@1`bURd90OV0d_}2innqegLpu;Hi|o4k4>7}8?=9mXv#NW%9>=W4Dd|uM+H28J z+K+pl4rS_Eb2H7~Y(apl1vYggRtyc|| z1FfVf_s+@e+$wGv)4vJ5=_l)Trp@|yYVLZoX*DlOpWi<_+@4m~ldU=#RGi;GU!Pwd zKg~Kv-Bo|}n*Um3b#GzW?L&EVj}dL0n7`LP`?sKAb-nqu^npBGruld+l`rL`hN)zM`1t*P0VODHy|83n`ifNp= zsa$LDjq~dld3u1dcpART=T5C**(eqW2=F$ktMqz7R$0sIJzV3-?p!S^+oY{K8TuR- zAX9HqssF0Rv$<)ud&Q$8u-LrTtP|?_k=2|p^n85?#Y?n){gsLt&|`Bc@Dv2huB=_% z8Kcg)+zt2sNP3!iIe4mdEAQUKe|-pB(%ilc|DT28wXxV}@L-=jZ|mqT0YR9U=H$A(31KWHes=q;ozHLnzP-P<3% zkJ#_1jn-vEWY+AS>*!p}_jV5rd3-7RDBMtlqhs6b`jmvPI%XaIcndh1^)1nxSlNEY zqOFBVu1e?yT|87sYOPvf6GXn3ST}1}s6-<(Tyxj&_2DYvPUFS`8CHNTD#%cxPmwP;J=S(=oE z2w3JPd()tn^xeRxE%3(m691uN*2LR#kv?_BX!gWs!w}@KHO8mQ0R?$!Tq~fT2@Sjy|g+_@d;u;JqO=UrUKu*;d&f!P!w&i>qS(CzyDA1CW-tTDpi ziEqLeJZscvB#GVF=1I)vr&!h0=@(huzy|3sspNmQ2!t1X%-bc1Gm2u? zbM|qo=yEkq`+<=Jj5HM|!)Ij#GsAst%KfOe4y<>Q#B-Rm{QD-^G4e6f0MYLecWhFq zGEnmJ?O%5vYGjhu4V{nGBGfTUggVr1C@hg3l+YZ@&vd?SGixy<3^cuXuWuLUQ__&o8gD%S2^$ejmVb=xQ>q zx%^I^1AzZUeog=5$jChOZONK}m#^i*TP=V>zsQ_Bj$dTN+EV6wy_GY`)eOwis_P}D7* zNnK*2)z63|r9_&7=E4uhTk5#POC8die{lir!VkLfhr{1bJUO)ZuZ7d&@uU#ys=Ga3 za?X|qRO94nq+Q55BId4EAI*a4I?q9&+tsYj3a_NY+!Ump-ru(Mo+}^J*~9$O83Ypa zsekCW+gBD=ckTo&o$?0zZmr#F%Oxm+`xr_&s!N?iw>P^SFTcx?wzkK+$p{hYR3}Si ze1{&c`2xm$F)ZU$=)lYK@w)}a)^}PK<+E{sBl8DBPMtuYTAYBIItStQjapAZ|7PZ` zsrid*d7rAo#TFvpNS_mYJ=gx-0Ot*!=T#wvYrR@z5wxJd<4PI)T|Nv0LO4C#NK{kd zkFJMfQ}q~Lo)8z&YZoP_g-tkbuQ|XL6hG5$ zL0;jm5cBp6)kCz;!E@e}h40>x4=~%E3_m_R7Ff$Ntso#H-^&DS?#8+3@?>Cr7}7=A z*S)gXSsR)dk|=hb|kOFu(}^xF*lnoLUw>RAN=9EYd=mA@r> zL(2>aX3M8OFY4VhF~>Xf0+K6htR!1)ADIR`JWQ@C_XpIpF6uA{$ZS$wO>%h&=x&&@ zYU5(rix*$e+$ldHmMRo0S^mZu5BeH=XihcXLbbjW)SkG(3KvkR^xI}j;Z<##&}Kg? zpqb!b0 z^*gfHYmw=-iRFB1p75zBq3ZX&U|cjlSGf}KRTwk~SPr|FrZps_k$cZ0hx2SQtt!(b z;!`IJ<}*qP{fqHci`_fNA%v0vAFh+8^HxT;(Dai zau`*ExQ>SDiHZh!>XG=LT^if9gUU*2x9QVe7CKaDvwyREQf1d`qZ~2W{-|;?lgn)V zvdSqRQ|Mo_d`z*3)*IRZcn&t#L?N}I3s%EQTJ2}`b+0yW>+S*ERZn-XZIbfcFRIQ> z`CqsY@Vvh@BNu#OV6ljnzF#2UOVra1xReA65^Bl}{I1t9A?J$Eql@lToUDzAvEgi9 z|1F)pEr(pnfK=`D3(HFmFYM~u*I32i@YO%uwMillJc|!TC-@aMD_TDLVKI1PY^)D* zU{4j+UKhVJ<$$aaoj4RR$+(*CRIN1{=#dja!}2i2=>nK!`gU}<3qTnw zmFYZjFd`KyS1Z)3j($tZLVDf(JX-drA_eY!Be|Ir1h8GnK+uc7cnC(0BpY}6v z*s*Ku*n*ymsBE3OlkH>bEL-=peqOL-~W68Ri|^n;-$F7ceC@!JG!i`18T*6WAe!ETFVcLmh_GcK+Wqk$REspw33+p71j=`nvFDzW7<% zI@6$TbHG6H{MJj1;##fAy|hH;Vn}%=htJqpg(OXzxL&A>)NwB;JN(fcF#)fi>wboV zq{RXLVzF_oxP`Flq{TyuN&-~>6a6awI-O|q#7cP`tJ~kwte-YVM0tVCp+_kBzlP@S zIG#?*F5vR8TWPU{caF|L#x*7P@w}ryn8VgBQA?3SU znExhJNH!dQ(^{bdETZ%L`|bpwjW^c**;`C!;lhypxFy4I=tG1>)1pF&?GSlNZTdTX zM8=g|3;szfJfbb)C6%&Ro?`chtQ3=gsdTtTV$ysNYr=aoz=8pnhfd}EL5F$joB{h4 z>7+aiI!1+yp;kz9?)=qS4kX1#F;39PNJ&YRW5A$5A34OK)prR9(KFb{>U; z_1E3=ZH?n~dY=6I~S7TBPJN84u!3jS~VLp5B_; zo5#-ozPbUW8Y^C{9{0Z8ZgvYo^M;qU_Bc;00kulBDFnAr(LX8WP8|!Em9S305FGS! zF0~D7-f_I$>b6c=Fi;1O3rqZt=BQdVG%v{}e@Ua=x~iSkUBhviUQg${|xok;s+t4wF_ zEgDgFCu(hS1p-v4Om)%~J8RpnJ40fG%Zo}ZYOVP!Sg8$w%~OI81G{0;?uJk8D6Y?Z zn9`zmD-DlftE%T6a-1>ZOGFVpcw|kEvsHw`9(WBev~6|6}ue^EuJl#y}P(I^YT?XXnU&U@`SlxSF=qIX;G&yec&u?B{;&^KnFpt$2d*x%5cjLzqr-zbTx!G~Is~K7?l#OxhitEI-%L>f=T|-x0@L4i;>U4t zhEqT;IubN%x?R@S9w%p9Yqvr>HwJ6v>JqkX)%*Khm!#&tO0gx?UH$q{)JVGN z*hF)@5slmp^Mwl2qP+lfa*mUyI9+R1#knnT0R>YA!Be*n3Tcd$Aa+A$CEO{6kZz5( zos^oLHe0R|+U6{D!p3c~&%!sITg*6_V=C;lV)sivI3K5HSz#19`zF3ihNeB0D)p#w zahYTV=tBdgfqqCEM|M*y*2$5W_i&lmm<21FtlV-r^JuHRa9)NI)DNMIg5111HaiUG zOu5Qpt*Ti6>`s`byJE^p$%<(3S_{Dw4&O3Xh!4L={!OxX@hhg`3-yx9K*o z>o!hmGd?w1`+fKESeN$B?4hmtd5pc!?_T?F;&(hD>W>HrfA}Lkk5pbHJKDkg=lL># z7y3y?H0?%@_}#URr4wRC3NT=Y>T99R+T!@b)3maG@~+l>RU?C8w(l>dWbxlP(TAb^ zi!7yB_l9_zss;C)%lDEwC;Kk1`D(1MSZxctYPh)8^;X=_VMBLjz}WF+g&T64#^9fn zr%)Sqk?iVm>zilDaUcPp@q#V4Ja$%C+#-KrqoH44b1K3HjMJdEuZeJDl=6w!MK8E0 z!eQW=<64c@qe7;4t!m?SuVSacd{o;gxupA&fN10@9HIkeZN;JvxXG*01YS|a-al~f&YWWA{ zhrgfi@j}L0Qu#?bn=!U><}MB!d0|Dnh3`?*Fw;8-w^y1*MYHRQAoaywGKg>tG=wB9 zXo`+8dj>L~XS#w*#N3m}M6z&eVCK*-W>~(@E8zm{70iQQk+x;!J56M7wGkvDIq=62#OVXWOVSZ|m9{{55-43IJGS5v!fnDni{qmJs1gTqpm}3d6Q?&N>JYu;x$&NM2lf!H<)*7U9We+>sBV) zFu<|T7ua`ju!sh~Z0lp+QKJjoPul|$^TAWyYwyEr?_~`vT=?H*N|2aTwPXY9+23+# zT6@?mHg(?edBx}{lVd3IKxt!9eipj(`P5$GhM;=wcG|e#_V4`NnddwylM^RiBAWgG zjg6eQE_5OK4NK`zFItN9pVc=xgsNKL3ZPw)g-mP&Ivjpv1XPu$U1cG0D!94W{Q2f0 z!4*Vo>8Mnw@)}THDp_aoai?}M?0yX^qERCQ@GW*_*YX>^?;QAqLjD}BemprRKl*T( zH!aTb&%782njwGS(L%5ZgG+^%-pK3?4C}Qa%IkTAIMlT|VS3bG>m)wAhHR^u?EZA# zFTkCiN!1X~rj_l>8Lx9~=wMxbx!c(2&2c+`K399@XmAzOx2kRubRY7}{Z~78^4iT} zuD;&wapW|#DXJ+7%8K+)HUJXkN}F-rI9l_fj6Yld3NRM8tAL{8xRmZt6-KJEDetyZZH5!5VHjdGL7ZEqYiYxe%w(%TV?)-Bb@aAmedt9H9o zQqLW?cYit1W^#Pfey}hkgz5!R*F4%_u}~OWCS}=fy3l(VA{>4pAmaZNOq&^s_{{&tS&) zK|n_B+gho$IKee$s~0^p4sOI2L-g7~Qg1D;Pj2pO;h4b)OaAKE0_*2DX4YmGX-Szz z&b%s6IyGwBrOk#$0-WlQr9Y8JjTR8XOm!NayvJTA&m0p@cC|{h^mLN^Pjc0qF0%ZOc z-zykmi@aM98a5yiy$cpJumdZw&QIri*=kF{1k;6z`MA0_c<3&0y~wF!6e8y+vl)?9D&DVBAC@Nh^{YAGt1>lL+KYKs0aXr`fcbAyupO+uP3IB44?3*C6S`UB? zDAiSi)MBO3N{b&>!Ma~7>i=&qx3Fsy<=;&|l-BvBhre{dFJD6M03tIyC7}Mnw1HaG z6+tpD?efnl7qUCJ?SZL;)wpl~p-!4MgGO|#d-FtHDs~BF`OGc5OsPcq&MCx=J_;uG z`d!tt464+xmjGP4D+cGz(!QoeyR@kp`+eJ=-2UQr@iS)mIMCD+zMQ{qrFEbcGD^b9 zx3?jxFCxniWN4bv9PY`DqGZalFY2K#)9T(dcIhZrX$=~o8jOG`jwpjnT5d5!O`~dY z=tP^KDoqiU?CWIDyIx~qkxYGMwY3e(Q6TLz@W;l}?AkG)Qb=l^5@yu?OiraTvUw}_ zyq$fni$IJxj`q=K&sj?}-%v9%8zndK_cb`}ldQ~{tYG6X!Gid}gZ{62o`4@IPy*`4 zjLd4|RFPU1>QRl(T_a}R=fy7z*(iRF>*AqJ)UW)joJ1&-^ zcjRqfq8B$eIiI3A^|qp`C}|;{xDMp;a}$V}`Ys0<^705jQTlEbJNVJi&^`l#0y3^R1gU!*28Etw{|R)+H4uqsejyjq`OTc<;{Uj$ zQ?dF4v~3dQe!!lE`ykNXL`sw=5OrrbG{?M;t3j$u3$X5Ut-m0JPS$NMT+v;tmFilj z-zufd*te_mww-V`tCcEQPAghB(F>&@6y5<_ANN{q>}p|lBn_IE@Xl}3ir8UBMFlGk zon#(t4szLXn2R0sSsZ9$^i@NFLoqi2=3=H!UI;RqjCIajYSQKxd&PRwTS$mxNs;}p z>ZPJK7Jape6YLgmLV+J4Y|{qJ2IxNw)16t+fpU{yJ)0l86rZ{cfPu4ZPW}@gg*3XJ zjM%r&UvIZbdcoiZD8@CGO~CcM)AUe=X)FrX&bwvXrELcT>x&2hjyv27SZh;2^7aPr z?&gcs`pf%FTI4IRQ+Et0bHI$Q=3{kquiMv+Z=sTPV_Bt{$FjDGbNX~F-*5Jk*a4J( z%s2Z2tsgcGC}fzRO1pq$25_iW<8|*ogw<=i?@U~q*Ec)xk&h59&x6o9P?h(i9sM>~ zbc0JZ``$?{?6Ht!hb@OLfmXKLy z{WodQ@CoGNvUWy6^0+fdm^x-Xb$Melj_kE&)8xAgNVcl;$gq3kqyEUPmm)IWUOb~o zOS%dA{0+>`(k|b?FZEP6Tf$W zjaVl$1U|cgj=UEe9Ug!)tAfR24l@z?tA`Q0-g*?Gh%jMtZLAV4W1eEY9`R>yGm5;B`S)W#j z@B?xm3V8nn^Ys47JeXijIrwq7=iS2~gnTCf%Lo5O6lS)UKBW}Kno@{hM*RzC^8W(w znIQBThWlL$sH;Ld>H}Ml(PAOn{Q5C`6BdWl~&d8O_Ps_v4W~fdlmn;1!D5Bg2bcU8fNE;t{}28Dh5sFZ|Jh<%zq2nuN?%dSe`^aEUKR){ zI;p{XJEUF)FQcaxq*WlK7B$_si=GtN!l>ZT#@4e?OAFIVLmnt(0HOCQc&K$sSNHWX z&kpbL!Z*1Nx)3;4ma$7P3&|CBf^pdb8IZU!D;RPPE2IZ{AU(O9qOTHwqbZK}>A}1@ z_cilS>E)e~)}bkU`Bx=i9bednQor<&He*HjV8#J%x%GTVogCES9$Z0vwt4xG)QX0L ztMR24kW)d$P$c~@9!gdSvV|#n2A);}P!)2(J$daCzdVIx1rS#zw?V2Tsc~Z;z0qCxLa9Y5Q|<{yTz(!gswoTms! zgYidQn#4IH8@fTk4fZO zE*Tb!<^Y$T-#pTfgyGNFqd=V?fN5j4){u4#*X$K-kQZgsq;d6x@f|5Ic+GoIK-^pm%Z)|AGk$Be8hB7o8811;l7clS1O zT8d6=PCAe2a4)*UJm}CkE@62$B%e&zAl&y}iT}ya77u$EGi{jiZhZ6+vxaR##~W%( zCT`7{(_z@D#wIRa9A==j^?y2}9M!u(86n(?|sLbz?pJ;g{FMFDx(mcii` zva$3@!6+dugd_Yflr3E=Q~1XRW{3-hnnLv$*wI)9YH@7MhQ0(!*~U5(A`x9IYnb=A zs6uV}5cV|o2bBY!k`Vay&B*QchMtJC)5is=3I-{w$ad2a7m!cts`S%hjmDL-MunuF z7ML{d{P+h<-0??wLnK(Y=nN#0IcPGOxPV|S{Zpk0nY{1;@E5fa$+Si}mma31?~oR} zKkY6F;Kr)$4LNBI&;%6CI{f9Z+h{dM8H(Oz!%dQNC_+!7eg@LN1#tNa54ck8oc>WZ z#vK)_BiYzjl3U{+7od(`7_MG%$0 z(;Y;Wa5eTPe7oTIxCP&R!Vs#t5J-j{*`>s=CiR%ZtwSP9qmQn0;Ew`&auzCn#eP0< z&xN2kK+>cG-9T(8! zg!gWbdfQPL;2M<+PSR0amsPip_-rl1PIYWy;O;T4*s(R!06V;-c9 zCkiE*nK>1p(qWIH{Gil8Iol#t=9{<@2=to0FD5hEmi3NQ*Pja}K>6)(8iI@pK{&=-26E&Yh`%nFQ#=dC_yhJr zINXrlewirU(cd1y#PM_}{Q3rqb3%<8_DabP{8$Qv7vK}k9k+`CY4g%`K|0C{UX*?( zIJhdL3M)9KKUVfemlRptW#<<^?NIJhBu`-!=1D(mNU5T>S1z!Hb9M;~i0Q|J+E$K1 zUWng}-+y+^n}t!d!k&ULlHd*xERxRoRcdkIfq6M|^g5hjA$r4pN&@x<%S4s|w(Oj6 zmb(1w(JP`q#P#=iHUzaJ#uzL1@G|-_7es%vFwc+>oClU8G7GpOl8M4us?fvaN$SaM1j8k2CZDU7Mfa7C}r%R8slon`dKXeS262kj+%% zY)v`}Q^|CtMVq2fnIOi}H#j>5RNHjYb79Smv2h(uiM(j}vY_>k&XgQYgx0#|WXIT* za=L7LTXQsyFqAIp;5XJtk3+or}e zdDCM)owoe5qgC&;doKCRG4hA!VtF8 zqncc6CYj-fne^TzWb2DVdk!OSp_9ToF;iy7QxCCPr@ZMvlIP>mt}JQ0GUW#qYcc{^ z%EOKQm=ZA;2jTJhFIu)M$(Emrs#Qvltzj4fGX-{_9a@oLBQsjd9 zGifKBb5K?1I~0GWZWtx2bOF~NahGiw{k!D>=q+q$@g4j~qz$yC?;a1s3_L2oM zyzHw^F!5J}-_ zX-oKZUAY?Lk&;5)e*!$7+)e_7=p$DX&UlT-nC&gF8sg^?0NLO?HkN&g*@;z8pXDS2p@*^rS;CSoAb|fN9wWF-UTKs6bQzwf8h4ZyK?ZJ4#gu%q$ zO7?WQz?qRn8=b<^Z5i6ksYmrSu5@E<-M~wXl=L0B@-;L=@pJuz?u1Q<&GruYhI0HS zU9}h~AQ;KnA*el1qI?Jk+Cmu{Y)3bQ`hRs0c+eOdUZgJ4JcGSa9^@88kw{2oOoEmO z0|e3*z|z#qg$7GF%n2R@DiKW; z61GB7S_irofhBSF6nR>N6%3+bG>YSkF{~%rJe(F)6djJ~@KmMF#EY73r zYd+stX|ZFfMexSyCjD`PHuoJf*46L$STA%4SZV$ zij)|RXCF{Kz?Q`F2aX*s-lbAJ!dIF+1v_ptI9GrhE22P)GaD!~lHf;Qo<{6R?!p4l zMY|%#VH(mJV&Iw!zq$Kh7N6o~L>0i-MwaAP(>1jR-Q7lc8M=9aSf{bVJD5zchX)QQ z{N_d|sL0Y1>35<}c&21d(HlmBufXC;d@@%iaiAD5g2A2}Q*MweMI&z`kfn9^K7nxWAv8X099^FARKClW zJ4u*IXvo^%$0xK{bPtHccHTb^LE2Leg_bipqAgq;{5RI-?{07E zpO>9^RHWLRynsp_t$-|_M-ZnF?;LW!{fyxHsC+Lb+{HXx2<4@=km&W>*4otG5~1l} z@Z8k(Kr}E~466)v7KRwnrTL&U^n89};vS#N$KBrD+#e!~2&!di;o=W|3o9!JYcELd z9(#%t8L~)NHW9p{!eQBvMbHP2+}`~3b!g}L`8pUECmRnxSZD~Du(qe8^KW)YIYjxe zVpULkZhj0xf43_Jn|ET~~kd zfzY#}Cn@5@&di^!SvN_J)RsGTZ?3?I=lLu7b5i15;$C>#-bh#}Xgmlj6>(k})hsD2 z@e6rWwWx@75LEG!sEP>cJ$c7Ow;hMKPm{TC|1&8CsohK;i__VjyQk@C7l(nv$Q{@` zBQaVC{y8O^VsvB8r+@Zh1HU5LLNiz2+AOUrFG9>RQ5AQ+8_0L|3Y7o`GCbWKyn!w- z($EHX1qQTZOc+N2=Ue{)p>kuTFNoPw!*4L(XhW){*f^hLsmroWtZy6N`wN!psY7^ z+~X4Nj@TK=voR1dunp@yT3-Par5_{C{$cakJ7`#Ve9_KT4(UNbyjY*m>dIm< z?5qK)14)X)JI;sD*O0KVB)3lzZ;5aMf=`hTWjIi1R(dXv)ehT_c4zAHZT1TF!RBj9I#xr#H(*s*mJ zNxBhep@!gEzcQ6s>Eh*Ddn?ageUaXE=`>bIbf!Qu(2(~fut9u4ZSxfJG)l(W1*oa= zhlQ?1ynMV-R7?9NNcvQ=ho$hv7m0%vXkZD!w31bWounlsKtoBNK?Q{0xbOnSZ@-u1 z8C4(|1%FCSg+Qcj>p_CggZH9-tA3-zI~Jv1XRI#;F05r@+F#o**Id`?+&rW(EKB?Q z?CAw;3}Tq<+sp*i-S@sA_}uD2r=#l=Jbr3}X*aUCOCIf2%I0+z)qLMdTV~|}f9cvM z%IZ5$&lJxB6l*a4-IdZQTsOA?gnYtAKUT|~_kyB+7Y&N%`9X9x+ibvG7ITr@@sJxQ zZ%BeyBG}3sjJMCVNu(^J)vS9@uAMQ#n9r~0)lbIkKQ6$JPdhvA;^-k&WIk!dC?g+- zy$dN#0!Q-<^*s*KVoDkt_H?&sa~lWeBUme%!%#eXjTqr>W>5GVW+LC@X|HqKpQp(8OGTe>1gzuMlk zVJD8teV1$y#YWkN@xHD7JIly#PH0cg0)ekpL>@;Ol*wNZC}9F}Ptgo&z9&C$M`X3v z?)#p9{6m2&o?mx%S0FVFhiI;i)?)A!iD{tMmq3_X=654nuNSk-XeC|8CQ>~v(+NA@ zm7xDB;Tiubr+GR)2Qym=bLl4N`<;~SoQ|?3Yjpb-fzDCBfyJeDc$%QyR1CL!sxQ-g z0#pNOtK~ucQ*wjY@wLE}%Hc@dMsk8_1~G@P8F{@$c5~#P&|40jpO=Y)^nu$Cv?r?F zcFpY`V(BftQgc%obu3-?dzx#Czay0PA8i%%8EJkaHw)b3E{?pN*O6+k`-X(uNdG+V z!{=N3nmiRB`8=S9y8T@=p}Msd=Htv$*xq-JNtRr?T2Ah(uK1JQgSwJ>?xL@U@dSE+2c7bSma-TS<@6k$Jwr%3%{lq7Fn&RnQQweL^ zUu&lw#!8okf=&cY&rfP zJfrqORCWBJLTD7UMs3bQ{da9iQdTxOb)G>aVnAKw?Nw9=!=e)dXkFJYKJscONhtk! z)TUt}JIxp?Sx7_~LCH-D)W%lszO5<1^3>_W6#CQ9O%y?xNtQALsYZ#E5DYdHjO)6T z%elkEI2tl-12!|wJ|S};Rxa=K&$cxel~(hqCGY-8hSIS#ZE})al=%>>=B6*btGxY+ z5{j>PgwiTQz1i1)HNIPdL`50pF&RF zS=@A-`$_kbiXOCF-^^S;zQSb(`YXn@KFR2gr5iIwmDkj=dlb5Aljv(-sn@NFAdN2z zdd(tb1aAiAdeXH~zN9^ed8yftKC;RDy4tO}IJ)|Sz#egzudahwb+!uH<``(HtZzY+ zzLuBhYm!?VUQ@eGF^Q2Ul(xEtJ4S9;$-&RqF>-S0zx6oev5l8XE_suK-Y`Mdmjq2i zG^bK2lZO~m-k{7J9E~xoFFn_L7Ppix{>j;2<*MpakcBpg zN4^^$GRxSs;t|3VkW)Xvj~)=~1UT{2@&w#=AqW7nz{K_R1E2~C)K-nZFN|MqBhE!Y z70f6N`ZJm)_NHfZt8Hen=eU9``y_s^J1ot@3$flHdv{%7xxIquLUYnaRz)U<<;Nmq z_2GA=CqnMf`_c$`<%>uh{%1e}GK9F%aN?^XE^*5H8v0Yk1uy%%-R%O}s?nrjMhtfb zyL9Wp5Q`vA;`)z2CIjOP{Bk^5x@WK#45M;946?>upc5t8@__~9Pke!H?R-ltctTwl z(S*@e*p5LhswwH%W@{Xmn9lrO0Tfg&m}Xc(3v5hGo61> zyeKV~QdPg_SJvlE?0zRjP+SskeApKf7YE}zTIJh#ISSsqS(Bv*lnKBuTi-ju2^ z1MVJuyK&M={wb^_IYoXR8+3@_$)!A!*CQn|z{_fidV`VDXD)>Ut`AkaUml)Qi^l~V zainhYpPBG;t?rNO9^d2cJmNSkp64@}7dXE>Wz~Hbo|_yKy2fiy^y5`PWU%`383zoO zzkcIU)-+N0Vb4f_Sl~Sr3VX1q-5vrVE(rp>n~ANGlLqcnD6%oAL#lG!kTUK~0j!Da zDQ$_yd3~qPvmo^Id*crPcEGUu_3ah>@U2%_B4tzzo$n+p~^43u`@oB41bgn0RJqEL_q3t>PJ*d?xNRX#EuGI%J;7S4|j%gzH(@uLPvG)@4dQpKacB4#JCOOgKE$+K(I$wrx?JDCP6lGZ7m!5wM|AdwF0m`m@f2s zG{19O4Gjf)SKkI|i^(lRL7KUw{voKEoYS)@Eh}TPJ04TkMMl~~8r28a(k-#&9#~87 z>0hp3q-9&JEd3$oX$FN>OixifY-@V`$06H{<=S(ct^&kB!tVfj1Y1k6`j#5?IC~^C z#P|sQS@q&^ASXeRD|ETFJ?#&E`6HLf6hTn)>5@|hvqdVilzNVXuEFcq^Wo-V!UAf+ zJtHBDm_Lb%#qa?`7S~fRi$p*%lGn#P24LI+&oYN!LhCO@-qs#wEzyRWy{c`ZY&soA zmi`vrX5Gzo^n!JvkIiyi7te?o7n1p_sp4~~%)5@<@!U5N1hPJXe=>^bkO%jg+V~@@ z_R@&>DfCS&3mXy)51jJK72@hS1Po~^5CSGjd4(8>GbR}3_g+W40ZHfE00F}n*G_>m zFvD^y``Msqp=wVkpWse2Vn@TnVpiMoCmH#1bG&WI+a36mPbcBA1hrb@JG{0wc-iVo zX5(Kgj#NCsj73Y4u%)vF`bxry!ODpZA_6b}WNKYN@k z4uZ5HbquAT8^opK<#F$4Ep)gUrYPa==^cIMLw___`tTiB--X*l?+?3~E@tKMki!H& zf3TjnV&`Z5sN`=%p=J`9PYXh{l9AVWc=bYEQxe!3==!k3DO+-+} ziQ9A?E#bW4H_s?qu#k9_etM-X3#;8*v`Ry?b`P=dYJ$W<^0MXUYR(SO zu*Hot&U1dx6OQ^P?kxv!evtR>_r*yrbLvG`Jy@{ctnvx7bliya7$!fLYWwlnwjz=) z@R}PJSub%KRk=zqX6obqvNkH2=K--U&TXPGoiX?E&*h{q)=iA*-+txso&!TbPXvaI zF72t5^OiWIn@J*bbFuR@xWZE_grU<>@tt8l9n~5}X@}1g1*z=cH9)~5bfotbRw%S_2P`090JuY7YiiQltZTP%9o+Jh6Y z-7{&Qy21(Tuzw?aaL(=i=A>P1cnxKO?Vk{eYaklq%tCC@u|LZnbv1_(8QDvR%_Y9g z#hko(&ED5A0a=KR(`gd0@|(L*)E&nC2Wi#&Gzb~HL2t&ttGS7y3Nr7M0UIz%u=33j z!yGjN7j?3GXq7*jV^6XT3ecD z7xi@~=K~bC`?Eyz^QJFvDs(3p4jm#gxiHbUmok(be-kl<2{!b3y@{(=5Oj+b)m98o z8o%c6CR!0pldx3S8p$=HOULbDkhr18SzKCChKnad5?j$|pNxW*aej{}7}i^z`Yo$- zq(Z37;V)N0*))v@BZO(>#xw~o!V+sM#&4;fR#9H`{Vl6URiIa8T^`*+x$hxH9SUpe z97_E-NjV&hr=FUMoD@*EpWRz22I+acn^aLiv`gM8RhtHsIM#P*&&4f978!-bg$1m0 z!Kp)#wz1J{IPEJb4>FooPSQmk;x6Fya+lQ#X65gT+)qPNn>UD%9>yuap(OpY&xp&t z28q4A%W2eVB1fq+r|iSjI&(Z8-2m$x<1$~)FTLK?9_nVsN}gDeVxpt%*siUrm#iHT zyhb}Ba`O5Z{!~+)@u0f7jo0hmSbQCt{<;uIoikMDrV0Db8OG{>X>mGUhm*^ec;MU% zP4>Pk!u0b#GDlHcWj+U1{x`z!d;&VBHKEZn&(W`Ge?x~}2eOHYyv8-Zd$+qQ*qnh{S{OR4jkiC2+4EXdJcFnaN6`11)@)yjoczvyDLhDql7kOVVp59b!O6aV01L)80O53m3qDur5sCq zE9rrLCK5OWm%<+(ta`_w&!cxFWk2`EczQ`^g2IOPHme*n>FYE%=~%B=YWQw1tu1)2 zznx;&>~p$Mzu%FO+AF&btwkUc@ntIOcPO|NJO=zoIBF9eI@T@bRXu(TJUh1Q;51#g zOf?=yueVP1$vPHHZBzWMe7f_LTsOBm2yD+NP%q~?V>)D}9fpI8%s0f~iL%=*T2>}$ zo`m@tGT5;P?^x7RQcsZo=%oJ$mBhfoyZO#1x?=_r1}$aqrOBkbqaNkGX`;T592v|? zQ#)p_Meh?d_4){j5OWk;L_WBC7>lTk=$}1g!ohn9?QeOHIz{E?k&G(qe>kt}r(TdH z$#N>(OxKmOnhvKnO6mvXxjiuAn;mb+rF0F+ax^l_TOJrAhiG1PH0MNu-M5u9&zEw%>ML5^4 zK=;CYyw!fpPip33(tgLUiYgJVKQ>TE--b~lbg0J5rtMm_=T`DY$t=rMzLYH{((x7l zJY9{Z&{dJ^I7W}&;rh2S52=^}`07p7s?6H}CYI)Pv`c7AU*%$sABwTe)AZrX2r%Gs zlr!4~S~*^0zJ)Ms6HqV60iV8G-rnSmwjl0!X(AY(;tbhSg53sV8>?&y?`(ND*u$*e zf7Hr{Awc{NzVjel`+v(w!pQnxWFeZw44T9rv=Q3G#LSw+OiXOVtZd954MvU+H8bm9 z^@qg5_QAPD%)roWa<93LVp(_d324z>?1=RdZbA0iVc z=ZBV=`LCAkACcul{MVM5h4b&sf1NS2{hi`pk^Lhcc236sVZ_1s*ZvCpwP5TBg4#YZL#6 z6pfMfzX(|V#`BlJ<^SvJ!{`4p<^$0Gru%^MzqS6~`u~9XZ$kf!{DATw`2(?k+W%hv z_I@DskLClLzo7g@<6jv5dyfCbY4<k*^{?(9OSZqXYyWw%vVY9{ktr+lUr#I?e|y=O8Hw4LnE!{jk9b)=&X2c(n2qHx z)*m!~fB*i&q{s3R{adH?^rOxGw{%#EnLfDb zn3y>~`1byl**X8UXJz`x;U6qN5Mtr{CVLZ9-any}R98bmQMbcV70^b<3jtP3 zRQ35+n+VEB8Ni9seEm~MA|m}=s_Ag`X2mSVm=#q~y8N)MA+>j92bAidSP^{1>$pY$ z#oDxY-*G?e+VS3gk+z@gYO==6Y-%!A3jG}=ng9z;86%RKin^)w5*(0eO?KqsaoK2y zKri8TMF${S5jA==Um98In&)A1qmSl5s4KQeP-0g(Yo*CBv*(L`%uPX4ZFXU6j}~(Z zkXqMWZ`2!XcD>yc4yXH)YAV<>czYal_ULyocm7+)T1QP)`*~aOEEAO;<}#4>XOD|m zN|^3Xr}JNuD&<37uM1!E_(?Q4+Vst(Z+n#S$fDI+V$2TOfwLvJ&*S5`fiJ%(&NUPo zs-NPi*SIoz{noy-r^&VDmG4HcK7REN7Y>NQO)OViJj+5lh_vb`v3J)tY=Ca_Kq=$J zY$1aX9?nE$@0Rwnx??Hg(5dav$%2DstvKMe537R!;qg+!((s#o<__0V2I+jAn%z1=WSVJn z`cWk4bm&HmGomQ|=(a5=tcNAVt(R*zZf-Xt^`JSoecgMgGAw&D=rJ=}{|P6EU)2j0 z!&$sT!ZG4bhu{=XLiOOfXzRN>s$^03)n{T3BIA*eQ-n@FrsdYhKRV3X1;U9e!y`cDSy!UeC6yBbI>i*U7R^nhV{SY;31g zsJA8V%C!xSxS3T?IB#oCnI@p&w`ptUvpR@#l#Rk+`s~}zqn;NXE;O~*ilNtp!;TA6 z6yC_ON8a1FSd-?YJ#$&tSF4haF;jG2w~N=v@g6i^?v|PG{AQGSrw4d*zxrSgr{IPt ze#m3AOB|iY^4!Bt5Z!KhE;LETbEXB+m@!(ftoF8f!^O)4U0#RW*%xrnK z=Or)FkwU}IW3xxtaYZrh@;a}p=(GDDi2E&YFcq(_nfBe7_3x)99uN1gi~Z43&lyv- zk%v61-I=^~%LhDz9;nI(HHSR*2nBV#P8or<=5Rx7m+eJus6#Cw5zG%9OwP4sNgn2| zuCI=LA z{|x)@k^Pr8Nb|YP#|fd^MF|uX^{3-Ikn=!DOOI9V9by=ZbG3kI_f`sG>EJ%1huO$8N1 za(;c%AblbeCKtv!T}Mj>+^QeUzW!0=+S@<=qfI(c?7bYa*48HaLy1Vp{Zxo=ec{p4 z_73)%|KTD4=_>Rf;P&d6_mR2g@m}bWTRT4ZFv#IH*#f8=p`plq_h5RImhl!%~q=0Wbj!1C!d_goWuJv=NH1! zvBmy)swStYi%8SDDx0I|;f=Xs0Y10;R4?4NWJoA{fA}qC7^lfiVKnJg5c2Ra!32MS ztcr=PE4`_NK`ZYVCINMQ+S71t3vR@bOhmCSLU~NN zF+@34Zc>S*IK9Lik;2q4u#EutYn3%c^nTnPqea`#G<2n$Or5qZ#2i=V@QgQi;WgMJX$?rAqk* zhZHgUmXdI>IC_@M7H@(%w8Ro}TJp6|BqA)#p-1eOXsK^L1B!mH18s~o$Wg0|vqfXf zx@P)?N>-|@rQRcgKT9=NAyj8&s+tky9PY*$3;L=2jR9J_9AT$1Gz5~6-CsIm(jF3( z!E|Z0JmDNJ-1Yo5r=;LxGXbNe4suFkEbc(KM+vm0K+GH;9Gq&}{aSZ(K7ikz0)K%v z%R1^;+wuaQEaky8Z7T9Xa>o>98L?X`*FaCDKIQClG%OHQ%6`k!zTQpvxs)gAI>tmz z@!mX5oR;?d79G`=J@qwgs|d>4k(_R*ChT60r!xju)%VXrMf_36Hi%!F`|ZIww61Vy zQV!XRe-=Xn5FnM5(TXt!Xz5~39WWY{Fzg|XX(^xlYXogxi4K7sYt^NYoFW382(uByGZd;yFLoW*BW2K3W`)0rK$pEhB* zDvuoGg*3cq)L48-`iP01A(Z7{(youI&Swtndr_{ zJqxa*JxhL@{G5Bq{9;K^vfGAcR-L59_Bopccm4>|G``-WPo0_ih5NGDFRjZ301+W9q3e7*O2(goZ);z zJKm|00;%)>8BN%_GLjrCXVWT-v9b+0$~s$3uyZ}!jGByQIaEcbEP$Sj{ag6wfE-jD z1>@1cZJ-2elI5(8Pjb6g0^8K+4IcX-ZQjm?P+<8E3nPY{}&Yn|L zebB=sWsWy$SJ6F3iDxYwBH+@Qz*&WB%U(`|6v?ftTt6huz=dwe{)5zL+>qgH0kE`W z>ztW3IaujB(2$wtv$GKVOJbKchzp{I_tmj9$iq6YCBM&t+X0%8zN9PwsUSg}bRAxg zb2IF5k1C-;;yzEsy0~9Y-){IT`x>zZ23fOPo5`C8Q0 zK0b+jVTwNF8enCXrGvg$wJ=0b*9f?0pn&R*PH0p00;*Z(h?2+-ntfg4$yv0GJ0n$O zVqv$?ks4;wTavTGB+Go`%QfR7YGqz=ex3-Syk)Ua4`#FC29#`Klo}R9EUcfAE5zuu zw(@Q{6~44c5kF~<-|Q!s+3mEW@`MWi!BNnkL zJjdQL@OfSpO7fJ&qb9@h{<&8`#;V7apRC4t>vU4?Rg+bqxrVAedmM;M z$6}^>vB;bJ15~gf-CcPCC z(ZhP3NS(r+G7ga!+`0W;&-Of}y)w7;*M;ps-J0*L@YemFB@S}thwS0ar4{(o4zNi-;XhJQYE!+g~21Y0v zBmnq;Lvcw(y@)`G_@we)79fa^TsG9NpJu9CzJTZW2a({+ z_=SRA{`d#+V50a3!Qk`w2bo~o_=h0CI>lujK$r3|AMhjo;al){{DV}mZ2W_8aAf?$ z_uvld%WMD<#U(p%P1PV0a87wy4mhW{R0Xc7Y|#SOl(vw7I;vZ&Kpo{R44{t677(bT zv;_^!P~GALW+-pr05ep!D1jMDTW~-^)h$LKp|U{(z(;-y6-cOJkO)Agyvzb1Q`mO^ z?kVjn0Nn9riUvV|dkXsoz;gToNLVgd1qdOrlHZ#yv69`Z0<5R7ZvptIY_S1tl(#T} zHY!_WKpUkk7+|@oK@DJ@(!LBZPhnpNP^Glb2dGlmHvtkU?TY}36!ujBEXqrAAf3_{ z1aM4siwDR?X)`IiH{&Es)Msi4__~%JmawNAP|l`0q5fLVGn*bmyu;t_P3Bx+hI8U7kU_Y^hqKt5DUv$&=QR|tQ}tBM6c+rVq^Yx>Ix3`I~ccCqhs6`{5=hFr{~jBrvct5D-aG!_b;& z^wvh1gDZM5lzmd_FVXUxgyLlVvkU=dJc{BIj5td8PWT8^22@74{qBZM8Hq){ z$Km>1f#xiU_pNXEF`@-WOu2Dk%V4#_ZfZEsSXQiLFHDX-)w z24lwq8jw`PV(Q@NOsJ44LsMf$Y!SI4mm+R#03~Y@7sgBgB`}E#X(pXAIbB>T_~hhI zTqpXty9x2}mt@Sz9@t8w63YP{-N9b}r6Vd4=I$}@Na#Z6@D5q2mKT9xwIjES^6 z(g$fvA=|G7NFi5VdxM^n&Wx7^XZ`?P?T!dREy?xF)(B)+zW!Z1i&-iluxV{6SEkjj z+IVw>>C-NwlliT2{9QJXCg(XOC^gx}pgH;w26UYKag)5it9+MYoP1BuNQLgGed` znJe}%OizLLzzH<%FU}|D$N-mG#lf1yf>;}2POGZhb1S2-K_FEOojx+F%9!5k^hFVE zS^|WD@4>06`)3AQsu-MhSC8Co5GaKt)zAF59B(n1Xg3mO9dEfn8g%MCESW_qMIq*d z(^_Xvzy_<&(^h9r&_Q(jc#p{u+k0bMc#j+sIMY%f9I5;+VR|zU2KhC84F-9c^P;X^ zW&uV2;8($Zhv-46SpVRU6$-&=DV;1C>A72?|hjmm4RmD8nx7c7H%1?DlJxe%AxM9O3>)b@FdM!?hFn5&53` zoo~EjKEPhJ3qDzHP;W@;(ZA?|Ws;sV=kY`Hf%C!eg=lZQ{5bixAJhrkx$b+vxeV!z z?1tqAd)VQ>4zmWa2DMg6aPGOvHt>l1psX2ijiH%vZM*?Iz_KRXN9ernbR6)(Y&W%% zOp_JjhkpHfgI3=+)^8n}7P*MYMN~&?cP6^pLA*xV+2h;bg;kCWjtqg^OXIjkRI}o) zI|9Go#z>vc?Z>7E`*IKFN@~k}Ro{gLrQru=r+PCu#-01I#{Rd?_6ly>ToceE{n}+? zywkd~tdq8Lbn-Qw-Om=vMj-vTD>XOLRR`9K_J*}{c0!e8F8;SOw1M{Lb>q(bPGDzW zr$}d}-1)cO7GjIy>z6|FvFjX64t9~%6CU;>m3$_Vsh)BD_6k@xV6l^bgIMpTMew|RtZQ$kt!qzt zd2By=p;~W!kyu}$jc@0C#AsjCr1IQ-^j^28;HT~w*LfRRaPLLXu#2alD+#T52S=VuZC~n8m5zsKl*^wHtpD>%$(Z#4Xarqye8G zzr6+UGsD?~$Gej?sGI-U@pXPW@#Ub7;#AaW%f|p8RtLXQ9=U6Px7TU9v;{x}UlGM) zAKs?2$v-s?`rRbIWwpCIJ~dtq`k559=?FDQN>eDDCAZ|5|LQ;I4cxl#^&zMr=QZ+K zEAQ(IZfv~c7{v?v)8EHs$m(t$Ionnh5SZAzn8qfpvt;d2Jr5IkqU$npQytT2W?H*P z{W}A*%sm$YUb1!a6*d8XZrr*$)6;Z(sHt&8yK2hNlT?{5#b}DO?dnILMBc7yY&6-p zEiM-1s3y2(Q5v;R%iQ}h+1mlk%RSz^WJcBLQnFG>I(XXWG#D1h0*GVZx=!2;bUju( zrb>7YI1W@Z2o(rwUt=;Bv?_;B^8>3`B)6#lG&HT3LW3 z$PpMSUx!X)eAp2PPXQbTv?TC2h-p9bP9;5fI~oR@Bq%8;GO%qwKo&Ly1iYVpr&=ch zI+&raq3>iTh2B>NhymC@$R1xFJqiXWY(zu|7>K4$uq^&4NHV@C|Gw?B(F$gvYJl|U-?s|2- zSArUpiW66oxMVW9&x&1doiHrj(N%{MXxczS zaP(nGAobvj$L}@JqZ7;wMs2c9Hou}TA&C6&HupuBUd$L)hV5g;xEHK?A)fqm`&}EX z4fxVXRXPtA$?WJ3*MWIMgOB^~^I=G=x@F{AbpXXsq2;uW|Gj2ahZm7f)At7CSaWMq zr!@KP)ZdoKE6y8pLVvR2sLa?#vn7giEN(gyFsHtRja<$MNFG3uIzwDxZfHc#@WgfB z85{)UCn%6srl}~PrT?xFJ;2D08__h$OFj7NS(X!P&YJ$s(#-n6BW6=QAZ=FE1EVtH zz2;(NT)$C6=A(rY@ueJ-KFmFGjo=G3#imIFdV8cPNXo-Yq=omU)69^#gE9@~FB96F0MQCiOIWcpr5V9btp zh<8ZVj5EHaB1CC2PCL;sWv#Z{FpaqsQW4NxW6&OZ#*m@qt3mmF*^E15hqpFh3Gv-_ zmte4ib_dzT&1I_1iO6Iipca99l=ML%19syF#m=hr1IO#9S7>wf5XH#J?S<@&oPt9f zj|@VQBhKw7C(+Zp5;>!% z{B@Z#Z?SxSMZh9?dcC{5V!FlUK^^j6tZm-~Ga=7v-f6G9A=ztvL`+Un zsBaQ0hY!&ONzLG;^M@ghdEcG~0~IBh!qHvV)0LErPKhpwWr%T`>;kJ|P=2j(#F{Ke zr)X@fMVl_>^~+kJy*6M8TXi3{>bT4NcLS8&{5Xye*eRw!z9`VjIE8%hpK9Pc?L5#+R59I%8&^XMEQq7aaHQ9c&{pRcGzfD<@TRATK z{cw}Fa|2bvO2W%Y$;)T(zPz{K_0G`$re$XF@My5gWFaGH`+7xDVp6TP-lV5c(N zDs8lJQFLPe;aSc4g@g|zJDK*17c*rPR-5-VqRt0CaC)_Uyml<@dmBaQ8&$s-`K`^n z(T^}~{9_x0;L`fLiUu(uVQN(9P3d^5X}SuwZCpdGHZNh&$XGC@qDM;&Q%7iUg!p0n zSwwZPks@N>f?;jT3UX7X>+u=3tJJrrFsRH$F=%LLI8xD_Jr$Kdu0*KFIQ+fsu68d` zf{?!om~QUw-SF2kKHHEH-hJ@raNJD1zsG(E+<{ZkoAx}I>6SNm1LP`cpveJ^SMS8fAo z4`Hc1Z0C)^@0xjo_{ZPbpmPn&nr*^E*J|I3I=xe`guF+tv{ag$lRkdcSO7u6r3Vx(nt~Z2f8_{?LI_DdOl&r=kk_pO3P0f z(`<22K5evgy=(zK3z&u%!@h;---9PUbH&S?q;$bva*dXc^FOw;$aw z8ei~scMN&PU&u_+Wu$CuvHMd=sL0$;r2DkeF8|g|Q?-=@&HU#^(!nHEX53{jt}KHo z%gWRHo6=es8cXyKE1e}jiTgtH=XIPzqEnuzOg7KJ7oy48Q{7a95#FkG>>s1`EV#RH z;W^|iAsh5N6#gA?xd$K3eL?F_E{o{Vk~nc6Bu1+yDQ9S}6p=6?;APP@m5;5}s^505 z>=t#G!%;0qznh~qE#opZ8`lM=og%H8>?JP=cUU92M?>!Fa@>eQ;ITcqP1PiBsZQNUKfnC-t;M6W2we*l$xv>h1dW2oKbJJ zR4QH9b8SJF#A_^aIMMiwQ?;F-GeZziL$h4KUp-VzO_7 zW$WfPN{O7t#YW9O3|Lo;z}l;BhjHW#I*Z$$O-UiZEjyVoGY;C*axoh-4icqqkq*5V z6?JiRc9j2`Uk_I@KbHn{F%HJ67FJ2f4|<`d&@^W&oSkBXq)w#mzu3h+ULZ^fc0jBN z1Diy`zBeMMv#x%+gV8J!f%(Ly_F3lRb1bz`Pay%@>k7_g(08wJ${~|gpXfAajkZ}6 z)>L~=Jybzzl?FbkfG}20}G_bJ^pBD2qrAh5_93sBPAk zSIKFrno#%y0>jmUg8aVxf!VY#s*WLAqm=TD3i@FRJJ^c{*;boFcP6UF$BXvali>*A zHdxNieZV$YZcd&aMyy+rdXb`ZfLVUpNioK*7Wde!ON=6A3g&$EMq>A zdVxt&OL)+;kW@L0b27&m_h<9WJ-wDrnvEqpwx7Ryt-n8yO%7C|Nn>&FP+3kjtMjmt z7O0Zz$%^gtYKXLwZyQj4(eWSJ!$b|i%fTE}`+3J7X&BNRZQvegyXw>*sJ;H^1hRc^ zDB$``L!AK-kwADkOyo=zH?>%9bgsVKvoaqug@ICPu(ajQiFa8Mey>#-{$x*dEe0?0^gTM{EhCnZOO-vF?tn3(j!K= zmnan>iK>0WB^$fS7gxn@?uFP5yd#36_HvH+Gx)Hq{hXc9_&0?vG?vgd9F~FaP^jaE z>KD8wL6R672oK))o~9Kzkmc2EmYxayx_kEC`a6(O^hS0YhO&b3g;AM7Z;i)hqu3R- ziHw9zYcULilo90fk5!yt?_Y6684HOWqrN7|DWdAl7aC|VjzIIc8s1WCji z%#Ix}F@RixXwL=BBp>7Q*uV-jU*~N zDGUw}Jia1y#A_4^<7%I&ELhXwPsXqK#BmA>;0gldU13;KwJbnSFY_-NmYrv%_-`*! z@$xaIT@;E7WdmG&qGo|ea=CDB=o3ZTv;X}N^u3rnP!k|;{PWYDFqV?jC#!`ck5+4! zl}ao*Q}`>OFHtUGNTw7srOQ4woM%|gzg(^?oH7v067e05b^$VGhn?9&(Vq3qG1^{; zT@-<9tHzO?(SyUCS24TEhlEKZBb#O8r%v^_cG?dmrjiWrPXnR~EDw+)#lO3YL;iEX z`}F&nha1kR^OQF`@LVb+Gvc#GOkR{!$LbuU4L|%GbNj@hb-E({qm-v5kz^3Jx^YBf z!y}Vobn|7tHb--koB(#R2=ZAqPj>UDd{z5rdv;gG_k$yX&*I7jd1HbK`@}_#Q8S$1 z<e4TG=PjIaM1KJDT#dnJ`ngy z6hy&?W5QI>O{W~+MG{VW7}p0O3WMyvYl8>(31Rs9;e67oa)bW@0~ZrfgPA!^$WSB9 zDB_?J*>_ZDCu|P}n{es`mNe7s@_^UE9yf2F(OX0? zTA+hhOG+wazg3YFh&~`|C84{yLD7kKOG1q-bAd|OMJY|~W}09O5C=bnJOU`m6{0}6 zn5=e%v=U6p!f+$>Mm6e*D20i&1z#{8@@(cbfnK5LNWV(^2;O#W{E5|S#y2mL7c|UA z&~Dv@TSuqUteiG{>65%(} zh+}vmD*CSplla{>F!iKL{q-|Ik0^R)Vr98JKg&~?s3FRBbXZ!Sk`U<{x{pnbX23qN z=nO(*<^a@~`$lShT>Uy}e|Omq&~WU8D{B_*E@SQCt{Cl)sH?!Mcs)u~wK+$QMYeH2 zX^t@P!m$w$2;;4}1UZw=v*7HFDI-f!IAn7WCz_OEJ)0U`>tyR#>36MYY-njtXlZV& zXcBvCm;}!RV~>;>;Gn`I;s+Oli75N#PzlImWPM^sX*q@#;EX&U+gdDbLmPQk)0-*B zNlET0MjH)oCTr$+$-%~ zoP=Ck0dZ#oHShwQ5RePbCdXGFFc(3z5%!CI73x9fQbNtEmV>M{$E@Hxl8;V;%6>cV5uQ^Lr@hPfp?o}?z2jf;0-e*?Rq zxH}(zQlvHAb?G2p@C|+UaeIg823L{h09li>_(9`R8Oavu2PA5)XrwKrcckghqbPQR z>B&Z<1~aFx>Tc?D4GJ`KojRita!M5HEKz4*r;*dcNpT~@OQu2fNPjU z>od-WpMu~ccgRXm2!^u@w|4FQ_;(aUlj8t470bwnE_XVJBtz~`X3(pkX>8clxwKBTtc7G`eQOl+JkJ*D+N!dTI(;!X~+G=o6B|_ z)BH&60Vra3b2*>+7SAm=*5@fZG!B;nx0Jr#q6-?}?~z)G=~G%J96(*~<{g~l;w2Z) z{~DZW8Mzw@nJ${%*r>JRDw;9H%k2=_%`cue){hZyqYfzHSJDsGs;(6FUQIvJWUgv` z;HTNFgsxcgyk639Y~(~Il7W3UC_6rWxU0IkvaoC^F?K$m?$Dk~z1k=O)p-qOZNNpX ze{%D0LmSR*vv!852buD|nH82Tsd)ZTo|nfDah>N5S+DGC(R*_|?Qf@rM?ok+iTsc?qeuKI;qATO8+Bf5iV488~O(MXRKnSp3{mU zH~kOc83FRpW!&Hz2U5ri{x1PAp%x+t4kyF2Ap_iMMdp2Op`JSlZ+@DQL&44gr!kl) zJb|G`e`;RY!{*55&NL^R%4;-aYjCgl-60e@tqC7qLO&kOtoZ>8?J58dEfq8H)V-E) ziX3U{<;Jv&?C&R;$)1+fLJ;a+b+Gz?T7FY`F() zr&%S#48Dt8%E$!9N10POYqR{7ty-19^)&wQG4@1JKa`KbBr-s^=_=K$?Lyj{$i za;n<7Gn?E`GES|r)@;(A05eGVnc!g+n3}r9`hI@uwca)BVdnWAT^2LyuSPdCypfVo zT@pZjeJZaxGIM$$FsYMPC+UDI(dEGD|bPpp?|IteqZ7K$uB9f?+9Z;upaQzWX&O`J8ai$iZ@?^h-unr^E;%VSxeHKw)ic4AI;LFg8{yRge66B?l0^m ziYhL{e*(^u@GQ+4M6P&4QOg?iI@O00zXDQllyqf=R>0_|fQcKPq_&r;PEc3+DGHuF zB2(Mv3r_SB^(Nw1g0bkcgy+W%^MJlE@KEH>O2fKv8zZ_DJ!qzYuWiMyLG|QXYh4sT z;$l`C)F*Uxb-^Yb{3K$*Ws`L_j`Tz(Jv#(d5#?${(viV}R`Rsa_DZ%vco5!FfM}S%`MvRJ`E74s+th zBgSo^S=^}lk22wT(&z+dXJq3x4g9+7NGjt|$&(<`Q$gXV-sQLaX#f5b2RgcM{n7rt z#|~zX1O{(hzy7A7kbelg@6QJa@9qEdft9_V{mG%5U%G!~@1f`KTmPWkk)3{U^s0xi zZSUUw5aek zRqx5@lD}61f<+9bvT{LQ(=>74)Zvo50BN8;)a!4%DjPi7-DOSK{^2X_D;k}|A6MUg zRigMnrAlaqPpzC9%xx7ln&P#-mLWwK8>wf2E~>CJb~WM9$ zp|EY+mcciQ2Rb>a@CSuEC>5I-aGfoV)MMMm!%L6K@LEUaq(U3O3^f+j{^-ipS;Zj& zJi;2yBBeb;8#wW%iIHIJ*5UmpZYt}}RMi|@cH?q`q4a!2>>2UV>;2DF+2Olnf` zjXJ_Q(|Wb7vCl>0DKH#cPet}CQQd7O_3&p2R)wynn;^hJl)_fYVW%krF_RJ?fg& z?NCd0C(k?wD|M6$ela7XZ{{m?^yLe6T}DIkwAK`GNT=6mZg~nCsg)^02 zc%CF!7PC6??au4IvUT%g(`^904k=(}Lw%dm=}o->*6eq9d}aoJbkCP|wx*^Yx`o(X zq7ZYBZJFu~274#g6VnyUE&wF^3K)A38$vY$%nqRQmt#S@UuU<1R4A+C?4Bu`MrFh% z5I|9FNGS}Vs?dq@_YQPHWr=WcVGx$Xi0dewJ>m=2IC!e~WtuXE{l1WeA@L*u7=hLj z^mqb#it#ENnhZSooXw?28=fwFjohfyv#8t!#@=%AeVPGd@4#+Cl|5}j$73B04SaGI zeOF$I=m%&XDzc*lJ$bTpPOtPkc z#~m~=!8g*(+>h^ zrLesUO2b4eCSlbCmenPlsiXv6m;pY%#KEHip@{MRNQAGOituLNl(~}5I}@pdI^+pjb(&up`BRk64A^qSNOQ&CcS#Pth6F?j|BT&Uyn}^xL%qX+zl#49RTBZZ zEZNy#z@dxWz|v_h<^tL5ON2r3>pr9s95$n z_|3$KQVj*EOauNh%h42NbV4iW#W1o8_{Nx$qyGRCh%Lwc7VyF%@WDnpKXQ`JNnHf_ zA(*Blk+VFlmY1N%^gH2I$7FDsCZc#Hl(-}n-&w9LL66yjFW6+Gyoc=DZ|wGUC%Q>aYj5Ite7Fg&jyJ&-wkE+S;Q6Lm{BKzU7L6J) zoX6lw9M-0;_O_|3zisNm4}712ZQ5oDHfs^>&tXkM6Vd)`6OJ|EO-=R7Yi4m^`Y#9Z zV36{>RX^DI3O`I?iP9c1w4rJI`c31dopvYVo5s`Xez7F*8=J;mSv_aRo9xfYu)iSc z&?aL++(v;u>pgGD^@DupD>CfYk*L@?hW0m&D|rYF&1BiK3c{CKrjk7M426OMqeN^Q zEF+N_!R?ZKhV})P{=I}h3#SEf6+tZ3v}UQ02q?zP*RwtVi2$Tz;&JK62K za@F$bP6yA^G|z9y^jGz7Tb|!NSk>ROYMBc}YgTX?ogOLVG1soS`HGYFx=gHpb$2h& z(IY@dztCKd)nJ|2akSb1ys0kGtS+-PtIKZ9s?_0UB=zQ5{A|``jho=sMnBx=2(=i8 zE2eP)ZGR+mSuJMOH7^TL8bEV2$0LKTej%R*hfivTQ78q9u&2wb@AHx$cb!n$MPS3M zR#uv7U|Rs|VI|lCY1`8k5jSeRH1sOoyOaqrqRobA^fGdR80Av>%fQ^%ln*f$Vvxh*ux3gJlIJ7Nrs&qgPmw$FGpnUutG!8iow#`OKF94 z(hC+0{Dg*ab_}ggY`|mj|3-5owii2vvbOD; zN3VfTMr~*r#oV*_xuenOX3JCfIgAC2oy$s_; zV0j@=@FePeGV`Vk`rm+Vz{}-3kWM62a1VrIc$0W06-PG#-eX+J=9P$3S-3#*W#&&r zA}YzJmKMKtfs$uV0`$>yOIo!dUYW$qQ0 zgBHTEgmHLNZ+QKhxi6H?Q2(1Ce9gI7X1Kv1N@CRK4f_-whmek~g44u1tK0|;cmDH@ zX@+t4)OLUBibf5?8T6`U(Z>J=_F=z97+AY9dnLqxFOs$Gd76k~Qy32rV8gZ%^6}j^ z@LH*RiWmjdz7asew{nWp>{=leHVtHABQc_(J=;#i+GFj_^=}4N=YWf&kF6LM^O`(L zb1QL>QFH&(>K3t3<1U3(Yf{Y3yd@ zHz_mNzMUf^1V*l9!~oKxb6GCcnHmAFeU``u=uB<j0SHk42iLtJgFAc*-9j&edvrPqGPp|}ybXwXb;E2=K?b)%^*w-$^| zH0c_c$a?n~O_Wy8>~q$2$Ev&Qo!$nmhA{E^s@AgeC^`DdumHd_VvUnCuHJa}^jLlU z+S}G_VnoRt_7}a^Z`SIx8iT{+4eIqAQ#EwMR{VW`*er?6V8^-^mpj>C(>j_on4Fc+ zQ9^{JGME79w9=51UJYXLW14HR2$sfvggB`$(~fhlG-RS_xKA@J2=E_>zG+Bl(lCTz zSVD=^2{k|`)Bv4O*=a%z&ZoBD`H=!5J>?C)rJaX} z^<;IWh7QVvtvWZd&5~cDW^qE8N3i+p?yaR#S7jC8Qr-)}M z{ACKKD0kwO$e`n`s|~vighBh3dsr>O&Hpw;p_;G86+(o5orDw+q-tM~KaKi`Bwhi$ z)8KeZ#tediFp>th_AS}1Fd?*C9=01VuX113g23l!Gtvb^J`#1#9r5<>9?ed!Nbn3t zlLYWx&1$yGteb zE)}>g_!!ZKnyT50FK12gR|r+QLi2zWDKzB#c_D`aU=s45_{r26g+r#`Hj}K_tSiXi z%7#cmRKD~MOYYffWUN% zl91jK%3V7c>JG!=fYEF>XtbQxks58=s(6kIe<}qS(yF+N@lBsy8`B$kvkQ8GD!?1s zfTX6d8?j?3Le$h)!wJY5)4Gkj;j{Ngt=9B57#TRMw=1o?e)mR7vkPV;mMw#8`@Mz1 zf%>*WZ>}jH&I$QFl}QZ}R4KPPnL>Oqbvmgm*1=5%CzRf{pzb6Y_BZG)$e_pGwt`&h zQ?qAbwu40aK}ioye>6$kRUUAeB#CYV4gw}gebuZ9Iu4Pcw6r$W&}i>kRWJTP2?ak` zteBd0hsLGWRLpK5aYpn@@VnSxZbfwK-Rr9V$p(|E&gFg4o`bzz>syyfs;K8k5-88v zG}dxiZC*WoXibb_7)HnHc-`O2z>vP#y_%aa6ZSav4$}AG!_$vLJs&%`dGp|v6Yyx- zJe`SikQ`_S{e#osbr72++*#kUL$@A$Joi}Pp8nkv2MdRCpU&^hUzzL6XE%sjMugRK|!1LK^*7HqxluPyCPP?s=>r!#f>1SdbUr ztIdGILfdcyyj_-);SHUu3o^JRLWvq56u2bS9R`aOizJVxXh6y^to(^Eo2C!%PA#e(m zX#8ObdqsIM3d6Zw1GU{&9qOM@NwsYS>jf?LM#TC3nldkK!VmXWDdN_bl8 zc?FrvMq4H>Mdqa_T?2bJYAN7!%zh8>P}_E|Q~fmcEI{KH>=44@z(8V5T6zk@xz2oD&Z*{x^FAM@g)gO)rBJ96<=2rjpo<--4@ridtd16B&<#i> z>Ynfcu3CJs+R@4b8V>aO8+FoI7!G|_~-co*L_0baY~uvY2u?ccNeaPI!X zt^Jehb{F>NuE~$*hjVr*ov+F_0M(q32F3n?f~MrW;WEJGT=%7p+j}^7>-_~8cD{di zL0;Is1p5cx8s0%OP>?lcZ>`>>!dEYL&40fP^#9FA2Z-VlE_vX-!7C3A1z3|(Aa&HQ zXy`i73jhIs9)>7EUCSqO%ZDk)Qf~M|6p(;F)@eVfKZfk!eeyWKlo?y2>>_=#4||HZ z4%1;i;0M->`XQRE%?-7qx#2>`fWNlTY}7R8B6%k={!=drg%Uh#YcB5b3% zj^Tm~u5Yd_$i{4`1+?;0(o6B=g8hHxT!H)$id#@`wZfgIh(nJI-Nc0@kVW0 z(+6l_U}vwbHtf>T6aiErN>%Q@HiD6y)X&@z*h9qau5xO%&Z_f`A0$sDda_y_CpbjE zn_(H?pIr_`qM9>Eq6e`f$WB+Ss=E=&ai(^>RtB_c`nawZywX1CY7cI#LvgRCGks&u zsL}N7DNGD(%&jl1=&$pq3q841z9j5&+yjpFrIN@?Rk)ucyHs3mHUzrLg1#p96lB=j ziuDB<_Scgx$mJdvL_*L|dg(*!!P-1rk)owIAlh$R+wa~hJM zXdSI}#(bVSkMWaO;rkah?pa+A8fiH}5KJzC(dx`~D^`#lAIT<*52`kKANCxw$=h$= zbnj+pf4hP}SJOaOqu@ibehezgf8VC%o0cc{PVZWkdf?vN-Gu}Fo5yw)_8K*Nb5r^C z`5_?d6RjilxtjTWNA-o!KvmVfRAQ!3dlmE)^?Bg#f((1zy9@b8rQcTAF^HA0YiCVm zW}~`IXsb&rRC5_MiA!#={y3(5smadiq3Jnl!%n0}JtI1S9+BxmDA=kMD3A<*g3%t3 zJat~LZ)F!nHJ~0Y{!zev>`Z+neah zJ&m8kuE4BB1f#JqU|We@31*g%kBbTLx*{}7jAh-w7N=v)jcEWeNyHurDuj<`<-+lMKyTNX@t*=T~cjRpJ zr0zB?mG+>n)q=lDcBa-MG$Ff&GwgDPMP%3b3Yce&dMmb`aN62KDl$pEj%n{|7q2ft zcO?`FnqELx|MLAM>=}k74JYqhlvbo?FXRDF60gXfCJ&L)*-vcWK5+XWlA$Y^j2Oea zU<1;?6VE{$KS(f0k`_NG4#1y^5urCm%uQ7uWay8L-#Z$p-Z6H2<$cvnql5WMb*{2< zs%t7%5$bADeYq}`6xFC9MMG4#%F%LQK|<;JjzCpHoo{+yRYKj*RjN|U17vlnzIvCg zVJ>^uBJ$Epd6Rg)h}iUAy*2D^kON-LAvv&lnH+9dMqb1LWVyU6A##)|mxJ}l#0E*x zZZw-ADeh;PrA=(_YS*HL7eGQghwKNuyH#A%oS{3Z-GW1Jz4q%@gEm^A)Y^`o!;P%eCqTHe*zgv}<`utxpbFuF0 z`YYxo4hoRD?Z3gfd6%52p=?;Uu00mrC+#3GsLlq0yoS zV4m8JJ8(<&9=zGAg!&NKs)T!SDhQOj$+UVmE`ge6qm7E3>zbIso~w*BV|yoJqkdLL zQCdB%w;`KON00+g>XFw;(4zkZN~U1pe%W0SV_v%sHqsb)e=0AI?JE1I+%jey8T`#w zpO@8~Coe0OW8+rUa_kH9W`j01d0>V#%UIF=63((u65ql6X=unjgKS@C6I-^JBs0=b z-LviwK7giJ+O*f?hChi96NOCTgB7WA;6UNl>V~nIN~PK}`hdrrs1_=rDcjV;NPE$# zPHn}8idvF)j+(pzuHHI|Dm`zwwJM>$d*DKcdoLualH9-UVXWEc>Yi`KhRUi&HEQ0W zhPo7v-x=z)zclaxh^*0FW&gEgT4bwBjQHWCY%%SDqtP*B#EX~^eHgSln-6~h=>vs= zq8^aH0d3)bf$75r=|iizxf!9?o~v_963fPITOZz-GMkml@CJPOz01=O%2Ch-_1j0O zZxKVp46z-Em_yqw*)ilNFs5hWpCE4qQ)3;a3s>GohSiedApnoBpF>}jbhGed*~D4E z)T~FtwNo8B9kOTh*b4i6*#tjiJ9Hk8t|O~KmfLbCGTm-MkJuFC;cc7Ju`&aXF|J)l z^-lblUH69FzN44=)nFwZT=`1x#Lce+XO+9~YUwhl;z`FtiLz>EB) z4E&!_|6tJz_sdTFSYqw=b#F+h^FiuY66(Hp%9F73wux8(#D4h!9u4+sE>b-8UC1 zdB?i#Ykw6?ISmiqIk|htLmi9+q8sxwA6VDs6D>J^Bu5&_(2C6iL-QL7vGV55&`@uO z%Qe-uVn;l-b>;Nk>$3)ZsP?-p?+f;hCpX_3=&4-Z)?Xs^u52o4A715aAHsemkUl<3 z{R^=INwD3^25}R@Y$isLmx3wjBj$R?i$iPtn#eG!eU_box-NA#GUa@emeD3# z46*L~vx}HVVDBMQ)16s#>lrCK5kWVX4N_!^cD^am3Q}bIpR6CpmePB>S_0BZM}3N4 z?Jv?JJtY<1yRO@&M|&A)qj&uMBjuedgQZy_MX_$##rno zj<>PMj%RgQ-79ua?N0SYx#JngcIfl*f_;NZt&hAe`I8Q`#J=*&C|K@zQx?&w!*gAf@Br*FkbLKOioe+%LaZ9W_Dh%BE$TZoZ!v6Bl`?s%(3aL^%c~HGprvUYrAg}zO_5|1k@e?K5 ziKnrz@N5y~8OQGQ@c18ywqvSW8A?Eoh&+Z+mthH|T~oeMnfB|6M-fVmE*DYEp?Q#l z_;@B67`Gv@P(~)44Kfz7@02_v(0n)p?@8wHlz=zTHZ12Uc>88X#uqK)OQWoqt+9kH z6J@QxylX6&bs98)(iwExh$EEun^k$tszRFEb$ES7Z!`%O6G}Tw+p?8$>VIB6fe3)% zwieEys2mx2ibX>`2S*xj8Jyiroxpm%;&*K@A;0T= zrlmK98cWC08#yZPgb=k8YwNjq_v2i=OXuEg%n8h6M^zr%$h|xI?ig+3UFEl;zYFE8 zHNcPY?6IJXyH>Qa$8iR|1WunfKL0KLU-TC2UVI*yZLd}#a|3R!5i3=F(oQ!q!M-c@VV^)y>7gGQVTJtkJ zuS$eCDR)yoZt(VbMJU8lo-sR-c16ckbRn&(E)}ZTO%)7zPRW8HBQ@P4n<%b}k5=$6 zFB;YXeSG>lqG1a#ArN;U$q>b%y#}F(vW~of;pi=;K+*zI0*ISHoCR?`i0eQar*8Bs zuI_#XsD6cc`W0VnzXDW0Qf~ZtBQV-f^q&oZ)P}shZ74R-hTv*@mNcTQ$LBd>dLE+F zg=#%>6OjvmRJ>+UY?=aAHAqcPYAI)M#A#2!8Ht-fX-~+ySL}_XJ)vIfKk$!t?Emlk zy88}%`2alj{F7&B&n#4BLY~r|*~*@gAoxG~zVgw@mG_>x10E;f@t*PfZ|UpYe*g5u z{X6?Qx80ARccONb`T>LO1$ z>(2tQug7*>MKNWTc4>nGl=mmi$_&TcXx8QR|i%%SL-_oLP|x zX!sn0k9(pQ#bof)NPJm3CPNL$Q15f+uv^ha1{j8-lBKjq*I+2ysaMU!8|@z}E8>3kQ6 za|+ouNokcWkY5n&e?m9zR-PPXJA6d)|W5fM@K2s>_V>J|@ZV~;0!C=ta za#KB*PhQOrALt%QaFpI?G?-C7uC-UHB%jlR)>89TFNYRrhui3D+oJh?bo{LucQ+6FiVSk8l_jo>CPT7;?xee>e31D6= zK`L>$Y|(%f3i+O(#}es|#XFOMaAxSH!LFU-ZLG!4vz*AI{FS0hv_{&!iLPWYoE}_H z$k?R!())?WiQmgvwR*v;#BO2>g!wQr4_-eLO<4~=gp{>@&c*E=-aTyPIP36k&Gdc5 z^x;aNdT6wF%bwB6H|N&O?U{Wd}DO_A+GAGJc_g)gS=`rhyU?t z!?h0^+g`e8k#|}xvWq|e8cKg9C)emaTsah|O7er|CLw0#__^R5#0-Aco{kqJ__WcD zZ%FWYF0LxMDuzd~GG$QKyw*6tj3CQ=%|Y2qM*ESA@nydzew$)Om)ZWO_mUbN8%Sbn zjsGxbL0PfycI8&4lB?R?5uYCEafWc$L^G1FO(NMfw-3287SYkZ<$?8c_pDF<0_E6N z4Md6oKoA9n;Zzeqb2MOKG*zDP2K`G=NB^~HtAFR}xK`_|#8>WL+Y*AJM-lAPej1d!T+LftF1Ldwt%!Y*|+#U-_*y9=dXf;>LxN#_d$uFwG>9za~Lek^@ z%kg&(FNKP~r}+_FI=-O5#SGzcIy18g`zf1Nn!NCb=*p}oW-7y#fq`J9y+T$tnKRX{ ziUm#7*z}gB365y_;#S!ld=Z)M>oMXA=v;C)M1`-A3{~mcWJZ95V6-S;)NN^*{)nV` z6otB!{a3sy4s|JrHq!D6OYsTK_w<5ni7)wU!%YAuDIMoeE)8<_0+^dYgqHGm{m_r;%Uf-Kc`YI;fxZ_8RRjJ$HeEk@cbQ3hgLAo=craVVW`BhvYS&?oct+-kG^uh#?J%7Ad*prO z(}AH`%n0`s_n7x=-MYt2d1jCo*2)6f=R6(rtV8RLW7l+LYN%4EWHQ0t_Fl4gmhe<# z6%Aqmc12WF7(hv0>k;R~G=zxddC?;3=9N2>k<@(MykxhfCP`PEibgqTOplu5gu;bDNQc4dkJQRTB{5D}SO6LnyWZlae+3%G+fJ+F%dhx;3!?@XH_kKvbY%SB|#EwmUvr z>UEK>{I=YKiYf^pE`S6Nk~9b>;e{1p5DkM6`dA8qXb1%H)gXulL4pH!hCm3VCol;1 zN+<~RWq9^R*#L#?5Xvio&JeyrsDBof;Y*H(8230crKbDCuqQHG@y=pK{*Pp6RPRI13z&h^O<~TudMUN0ogOsNH4XJ=(r68N9DYGZ{hh{OWOaY}A1F7ZMsGG!8(E8if^<*9KZeV0mL-3I z@*R?T2H~aa%Ae>5AzoI4f{d53E6W$oB+_VY=q>`2VoC9r(8zIGK;o@&}D9T9JfPYFY&Yd ze*VL}hA&&h3g0mv8}I*Q8)!q{wV|C2-YQn!*LGJMxf)(|Okw%)2MFd{FP2J|Ak1aV zXW><1`O zPG&oL5|lr;ZIyTFv~|>}c`W6mpG#n|=_CE1hOWIunH))fAnjtQuaV@_l*yg)2NLkC z_D9IupnU2LL&5VElKkJK!2;)8z@jIANP?G1gEi!K`VgjdHm-qZ@-c(q@_`1{Ih)SF zK&0zT5a|X3L^^VgL-iJ&>KUmwqM2DcO5KC)vI{Z=cp%kxp;_etDGzXBgP0S<&D~}) zVE}Hl(bVq-u3mT?aDl+M%V-@pPHJX}NyQL_sz_zz34taCN)FfDNHH%V2!<$`A@x{M z;mLSsJwdEh4y3Z_$c_(a3q^NOAhq`xc&hewJso5Ih{Ii0ZS&ah0|_Y}08N zF_4CsZ~>6dxGG!%8x|((X)?E7+KTFEdQQh&sL5FgwxJWUAz|_z=E#H^^bfUqv;OkS zb`QcCc&zqe-ij(tk{U)}b?92{5cq-~O0=UWEv7dVHjAQ*C-;P6DCMx$EDAxh)8XbX zKdIwA1WAmL-yqAhhsYBB#DBw5htA%A0o-(kK)%8kz~-`#iyaFFJ@zBP9B9v#b7U@O z^c+hr^gLlaNF7jiuyGMs0cTrpb{>lbW5*gTX;QdL@F)6uV?0G`M zeJDHGO8&}5^_K9mxhosnL(Qox$+E{Ea>uszw@r2jl9SS^^`<~aJT{p1>rEE(z^)Y| zTl?G}ol6eHEycFBQk48T%QB|+SW0XwrE{yZV#Jg7nk;r9;Vmyu=2jtfDR zMW6k+V(v$OMX_;9c(E9g{xuJG1|1XtCi7;M@%|NjV}D2fscMHGkM#P zEt8Bp7%fFbf>KmL-F-nY2$-!$C3ue}2dB9Pcqn*ZF!i_;TyPqWNzQ{UmCc*0Gu87}iS`yE zXk@J-_qnaLBbL<4LcCNA8I5{#I8*2e9y^wpxP4?4it-O@R*ytFqgGNwxLt`AX_4Vr ztJ~``vj+O{W1|Z*>E!6PZeeuNk?h3v;G^WX!LwQ~(M{ZhcTz1D!Yp0@o615u9@anE zzAt=SJf7a~Jz(CCHSnq&`tZBrMcHNE)~NN=e;Gdm7ud};nuFI`A=uI|)BGTY3ayOi_gTxeZvs^*^>%>|xLL>U)iaggokS_KwYnhF2vjetFK?~(DM?FTdKKlSl#^Bd4ClNq7y2|u zCHMgQ+M^O-=iwt*wsJ(mPk9|brMrAYLeGID6$B=#=|N5`3M)C#;G;79H@9Z`>e*zj z?FHU_l@mDp)m`lbuGK1M(@A0HOrv6TE#$(ELZ4Uxq1=1g`_~pl^55&!+FKdRXKTmQ^XBy@ zos15x>w}zXC!D7w{b%e;T$ZU<1V4s@Bj6BGdJOj&7e9~3^;)Aw4RY~ypOai={1qII z`$a?-)~nvVr^$EmKWWZwSKrv~=4ey6Jr@e++Cz3+*QqfYuk58vq0xcsBsJpt)#eMU(6ZD;kf8zJND8FdD?E;dFrFhvlPuosN zG^T6ibsOf-ZrM84z4VI%!ji3Yi#ZX#AEVbAIJ*#w>Nt-T4TcTp^PxyCA0l69pXv5% zbvo9{dmR)_W&6m^t41SJ(@scDoy2A|mSKh{fRCg4ToB+Q9N1YXB^tp6RHX~~63%<~ z3MySGWF^<>!XCoSEt!J;{1UdCIybX0$Q6zWjEM8Ic3I_W7i)reN#%OV4hY*AL z^WSFlO~jS0{p%8h6@Eo))KX}~dYk2B?M(|OkC^y99C4G6_Qo?telH%C>Z83^9>J1S z^!vr{)p(D_vz3`j{Ti;jqr^TuQ@bN@u|1s|6cC|!iBY)n+KlE?!wbPveG7x#sp5R< zfTIbzil<)wXMONL0Su`9f?KFwW`h@-fzFuuX*>B#4u{WAsI@>6~BIq78Kzm*-ip1e2iVxlYN zdKF4M458JgRC$UD4Zdb3yylaMg{UJquL4N+jYC`wgT|aNpOl(fG_!(csMb2Xl7#HchPcC6*t2s=`7jP3b=hW5|aApG})^N1EZht+X$ zwXRdzw!+<(PC8Tqq|G89c6aO?Z0I_bY;rUi?LfND*ureaVD;H*muXaoNektuDw>`U zMTPeK?Cn_B$#i}#n?t$|)C%DE?^ec-wf@sSrbpHa^5BuO)yniFd>V6PK7G=;(D@nj zLHdxa7?iN9TwO5`)ppMGNy)ij?);2|+se8@sns=34QF2Dwk6tii6hbapJqVc@sP`iEfK$f|^iZ)=Gz6^q$sqW0tA2oI9{3*K4;aOf z3Sl?FA+>;Y8!sjn!kpbdZ$HrRxcc2iIp?@3VZ10czP|xKD|x!f#htAPe1(yZY$Zg7L`n!gmEy5Fe)xHrLGB+FCTL z94n-cNOJk(Soh-+zE?0F!7fgaTMD%JxI*D_nqFKwYwOY;P2F9c^;1oY)(at0jg~fd z1qX5gR!h-3jnS9vj%A0^L*u1Xuy1YA-;r=LH2j9viqU+a2vv`XQkuFevoh;sIF5DL zO;(oXEnGO^4LKaia#vz7BN|wf5q=}Ew23#R-2RADjN#hP5eToR>8FUItP?#$L;?wf zb>7M`f&Gc&F6Ov(f98Zv=24e$Q2)i>ed7mM$F~ReTNB46m$htVj!V}4y37eh#mBB9 zYNj!)-YwRCS~Mi2?4xVoX{}N8hqxW2d_0(T$F&+QO;Wt*ghG#I z%Qg^4+Ruk*J+0BeKOe%n(f=(JISpgMH2n?oUfKp_G`YsGAtFy_A6iX>h=EGYJLZEY z>neUd!M7({TM6w%3OZZ&e13(E@+9Xy z2h@?tg-Pp0xNzYuwF;M7d7fK*Uvq`h#e+^PKmMkV)V+`-b(H4wl-?S0dqQ>txet)L zDT582*^JabXegcFwmH0lj{G1=-U)QP%Wij>wbVyQ@(!REWH2$Dxd}|WS+@3>2GGnr zQwJK$f~RBx&}(a38RZPk-T>6}Z-p=nsWqGkaPAqs-srdh9z7cpg9g!d0erm78b$BC z-N4No?x5~e#HQAAY%-5CHnnorH{O-vtvx+dqaamN#jP1ClXmzxpqYME2h4uA6H4ux zqvS_Pt>AMy{T!f4&ctZ+CgUkm8(M8fCv7 z{OFwD27id~1@KClF@%H@uKir()ASvXO+OF+w-ll(n?o+)galjAkxxso4P-*k!~ZJ( zt?#c}BlZ1txC$ZcW5)9bROPt#F%BZesH^^*F=P2|J1-cyU;h!8any4*lTNfdjU2}_ zV9M<=!*h$nW%b%>XK0fRNl*lJ9!J441WP2+4Nt`g$|9vvjN{ zlj`Y(eP1LrIkEK$IAE|sntJyu~~ef;`NZg zRsj`!0H{D$zYXeecDvW26M)_x@p>Y5z1iSO1_CLk!Qe~<0!fzv98$f?sb^UWOKTys z_;X(<<6#(2CKSrL7{--FkgZ;+f~Pgx@f-HalC((fB7%gS>^sNsY52bHC*aHS7gag> z9J*Ncpc;v8biG9d?Og7qk3k*UE_!$^5VY2)*Auqt3Imvy~}rVldG0qaLR zL8ONUA)KDO@)mfEI)zOK2Iw zV)#6UFc?fC3?_pJgNx6pV6Y8guPqqPqGR@QG9+Js=ybEJI}0Im9KPi~2pNV*$?vGW zaOL@PESQGWJVl@v%=|L~lc7va;g^$(nl(syUw&vXhko~t<#VgyFXADq!5K0~t{^xf zDA!-nF;xwLwyY7%&uEycges=h_n_t8uyHMC5o+5k@E`aGy$Q<9e@yrT@wos0vG*O| zaa8xdbIz14GdpeDY+voJdRg^mSy~lavXLzpS#EOg_F`jfOt&%MG!h^fJ9#8|K!8AK z#*z(+DS?ZEA2=oue1T9Na7p3j#W#TqF&MPE=bV{c72BBP<9pwI-;;j!&dixJyJ!A$ z{_V{9{|~2lhli0D*M`3LI5g20BirF-^hvH>L$gX@oweZ!~Qj3lW3eO@n!mfS!^|!Zfed~9>UB_@7%~^>&y#lrHPpE}i zRI4s4RDFJgYRnwQ+rzk}Dqa@sQJzFs=q)ZRH=2wKj3(nAnqGRbTCJ*txdz+2T`KsK zzjk&tE!e%PH(@6x4987TYRPQPM?>n?$wt#7~n@>`N9z@4ld^9~B zXQk&eozpv~F}9$ldh9%1)KcuyN?Hn#L*jKJt;H}m-j%xVz`@i5_gEDxBBzP%e(*ql z?~+50JkX7-Z<@8@{5@Bo)*T_OE7z$R0$2ArCF*ggQYyuw1IcS8%|nfo_4c6xEq)&2 z1!-`^UDQ$pc@;hGpbaq7r*(8Pv=ne78^a6>T1qtVUT^<_2T@}X`A{4020aH4fCYD1 zL@P@p->Lh7M-HJrx@VX{J@Ny{(L1Rn==chB{3mj}i&}#2U^4uiewMiqdA2ik=@~~1 zNKtmMIU)GV%d#VRHnf!pUwXK~Jbw-Oy@UhEaU$$kUxFNC9d^8Yj1EhWsf;UeIpKAj>{eAx;@nn8mRrkm zSU~EVW6DZ%=x<~~qkfa#OO=f+lVz;MmJOd|s+fwgE3i)`E3i)`E3muzq+VpjyAHC; z&Rl`rbtozI;!s3aUlN`F$}6x}HC*}l&TAjrQG>U;2X@r-#X2vWJ7Zf{Uaa%dxihwR zW?*mcS%JKbS2ah(1trY74Mb40e6GwgPS zo&0G$KNBxn3JMrOLA)DMO&$xjj!nFkUU(~yIa={30{2VELV$I#9*IMdRpJ||q|T=` z;I+ef<$2|TZveLUQ9^hCQ2q7wZ1n(`)K|2~H2^#Z*%j$Goa5HXuE(_xCsFkxT>ntA zXc3FAK-6E6d9gVv%65EAOJ>Hx$nxTNC28G;rZ-Nx`k{4oYiCzEtSk;n$!=LQy=hZd zapZ!_dP4EsnBA|10x)P1dDdZ1HDq=wDX#uugQNzo4jH6^!3dFt$}QVP)!;fa^Z8B zL;ly!1wYu*RKIcW0%MEl{4ml~w=?-viJrUQ7gRprkvT%%w=--rvh?^_n1{@#r*G%1Hq%fqa`rahMYAcCGqxFo`On>JiICB5ctjZG^WlYsq+$&=~$Ygf1eC)t8LaBTjoPNv^|d z(2uYfStJWxd9DO9`VjFsnQZ^mYYrwGlHFA@9yT)bCTl_ahK|;YW|!p7zN%;Pf*itR zlg*M9_0UuxI<0ie&$iU{t-o_iz3S0yHpQ!`KE><_dO|Jhr#CKZ3JGJGjD=MzzJn;V z3h~$hM4`Y~9&;idTh~uHSrzk`c2*wKRKjE0m-1M~RHY9P7As*Tcg!2fQ6LBYJhazt zM-2ASIT$Q2mP6PJQtJ?Ry)~Y@Y6y4L5bhHDq_v2BL}S_cvD_sh?plkvOU$f2|CPAw zt-6cv-*Vwy$*TH`?!O3cAI@uES>Lv%HIm!DauVJ`ZTE{ecQ#*t?7O>Pys0yB{jYD` z{*&c-^&9v1qHX@9jr(!<{_tt=7L$wgPkl!J*!#1H{%P*_>+8%9J%>q)^-rIG)lV~0 zKgJ64h0mQs`=sAJg14-Wu;vaq&A*qO0y3_w=FfP$+ox(F#iWs;8RTuz%XeF$E#Ow% ziopEHWYGs{Q2SO4|CQEI4`|U>bHF3dKg;k)z0M=G13*p)MU8(5huNal+GjeIzl1%= z1#&Xn_=hC9gw;MvlYSIufU|N&&Y9{5%MfGPC0d)Z?Y5rMp4MU;$B=ul=GM)sXjz^J zefJyQyl6;9Ca4$u1&2a17QvF*YIA!7YVXafszA^DJ-u;Waaei9YnR=kNpUIR+OFc| zi)fbCLf{vEpP2|2yCwA(Km$5hVAj`nA>k`m^u|K8JV& zpFA6nRF35l5r@R3E@4Dh)RUE~u;8AdQ;MR>@Mi2Z(Ql}Jk6ZZSA-u{xDFXj?ovxew9ydr0>bA?_%ly3)EweJrRTwZq$yd`UbSU6ZeT z!s&~+V=Ha&I8Mro4K;frifbgSNmPeZK1p)v72LgNYMzR7YMvt2!gE7MSRSWS<=J=M zSDXTaEIKnVv!d!%wV=xV(uB@7s~*W@l02&FkxlUL*IIxSaw{&0XYZmJ8c$6yeX-3X zd(d62Lp)VHnx`fqo+_v;sKh)~tMgPn;i;0w_mTD}S*?9?KAtM6*Lf<^_`{tnCPuh-qeExmbJDd_Imvp6m~92PSo3^KC+~b>*VSm-SJ1V6 z`hv@*XXVe@cESA1F35tr_kH}}vYwxxy7Pyp4lL`r|I{7A%`fbpG~?S(ZZ)=P4~TUm z4OF31ItwZZi(BCZ-am((hX+fKlU&Kz+Z6Z&DI_DNUyI`-SeU7|^0W|itHkj^vKHWQ zc0B_Dy^$3WpX^BMp1};ClxK8LQNmKv_@B7b&qhWTZ&3M5ScP08AXfQL!YZ?|ZN_Ja z|4(rXH===v2h_B&D=y-J7IY`pyw)}CU*ZEPp>Vc_y&!NGa)at*x0@I2eg|@d%x=FH zY27%zap~j`LmVL~D{N7TjkX^`0IF7gOOIfocOp8C;+1&@uT)`PL2|IT-#eS1cNSj3 z=Mb;plV6J`#0;tdpGW-sML{;xoDCal7GzZB5y=4F$a!2bA)kZl!o^nhs9Wx>1hJO#$aIB$YB#Ug3r+Q13VfV!?QeL zal&E^Q>9dbqH&s`gaxlaZ0)i_io``pBwZQAsn~FS5wv5ati?q>otv{qakHWV+`IIk zC;7c4qw`r6k~ol&%uBvByJw$|-4VAlqqv=+kH#;2WcL;Kt}QH0K61^KX#0rhD{Poi zI&b4-SFm|aNA0}Hd71@&XW!osu9*MxQ+M2YifkWTaodi0HJ(}DeIoh&W7pKjT9;nD zhe~^Oi0ey$K%PP@76h>Xi1|U(2V!0j^8g(3;s*KT>8N2u*iw>N89$IxKw;uj`9@}j ze1qiqM!a9XLGpYf%rAcc$rLfD;fpjLfAR{BhLT7K+lhYkoeE9_Ba`EF`P29-NQj#S zU2%s36s+`{`lEC5K(~9BjzsT<;GP0=t<8TCE2X>rjU82j@LLk3tq$nC(a^eKp zC1fXYXBl6(D4`%{_~RrM0X$8Ym>tu9p50j~Lvs{-;~&6^|w&>qJ$s zOC0cq+ty`V;t_FcxWvRKK20AW()J@=+A6~zB&rm{0V?SwC3ajw^iV#019p-zgUlSpelmx#56@wIR=Pa;EPK@%a~PjZN|&?I zXOrkuT6AZhXQTkWkvr$=o_SZ!%E_CJw_Uk=z45l9@+k#&Uuj!md0V0S1ag?_s@CmW zwrJnR`s#K2*38|~8p!Qf-;B2YoR0NmPSbEHxCBm1k5nT&4Lp2^m}vvR-tWJRz0w$| z)=f2Iq}qNcNls-(s@X3aE4ak0`tZ~w(>_tPvdAtr9ie&2B|AJeX24`&X~2}?2V>49>@J?WZECc+Dn~$02cE-h^5i$gbDK*v zM`3$KPNi3s>@Kj4vzi#umU`1(qD@^tB~q4H*%~#Aiq$GQCDdO{k}67(>b!7iNHnW1 zFvIOIi*7LxJ_JE%(mec>%7;tgazulWKF1%=`1nX44FDhG?1Z%Xn)g!v%JG(1!a{r1 z*OKJamyHA%yat!kw3$i0OWW*0r#~#wpd|G@n?Q3`4*V7I8w(lHsjB?Y56l)0Jw}@u zZV&mHt^;|26&Q55Je(N#09dgWpSn2l|~M{(7ouaOA~gA1=_E2KAXU zI10sO%sLqRVsiPU`i5Et@S0O{N){NciYjWXG7Fe(ZbkJ7G<1(h1{Bj&T50OpV zxO4Y)ZEe@@-qi&0(r#uRwQd1wT`y@}W%|A3PV!z7JVf40Uehmmt$OqDi%G(peYiw# zU-rnG$;z7Q>Z;0|(QhVu)o4|Own#3~rSbHny1Gda3YuMUi5!Sj#q9smcHQosji_Z1 z$M#?G+4a|+-hmS&K$?Y3yLMlXWJm4rhj0ztKO#F4s)GtzWe@NikamTlAbNnk7WM9} z=pTqbbK)68b{t4byV&S~Bs%$3M;YOo$ka_8)7H0yvf4IH>)Mp?epk+_&W=`Q$#!%f zc@-fWXrHljVR^~?t7lESYEfnN;wz@r&aV&nYv%`TcpUcG0QBOeSq^B;L#G9 zHRc{<<{g0ae7y)OI{XfokEhM_^{nXhIh{U%Hk&OL6K%#*hb?BFqfMfN$9Bf>TkJ)s z1-a->WYi|KrFopWhRFk0p)E`G4*we)VG?AtbTT!YT0?zLw-G3C7jgu7aL=PoD?)fq zvlZNf6&@<@pbF5Zi>d^7C6w^|yJxJpyLCg|-M;wUa`swuCryJVPaut_M-#t?|7T(d zNwT9E^Y2d1Xl-3_cd~VZukP-oFFQMacamJIp^Nd{geLrfmG~J1V9z5+&L?QVVh&T# z9k3w^&f+9z08!HhO+!y)wXA8qVD%&|t7UcTv{jS6H>z1h-f)RuRD#9+XmLQG+p}6% zw|1^-(86dtZFPh1W(8HrD)x(Vs3;IE_6yK#HPI$Pu`*6P$&3>e%cm{tI&uo8t!-#o z-;tX)eSK5)lswT@)LK;5lCNkbiIkjJKf1!YMD>(hX;cM@lBu=SB4#l&lQK~fh4J zr^nR;>l?X7Ye9)vvSa7wr9F)$C5=5xH}BkG%2~TIl0(Ih$B!#Uaw{X}-j{y>e1-at zT!A}I?LXJPL=Ng!-hZ@-M7l&HRh1RxxyIIRY~98-ecm+gc>H$!d6R4GarU_HPyZf$ zqO`KI^j7?Fs-mo-EQa?|HRb56!U6dk2rtEeb@2OWSPpq(E4ZC9cX@ML+sYN!M4?JF&D9K`)G8ya1Du=gO8d8Q$f?LqM6q$uBcpc?ab!w z1+qotEneQ+-4LHupLNliKutVbkewD@pu58X!Q^%;6|46yTlu48T_h?-9O0mBlEc{@ z8>igx4U0`SSp}C)iNq@3X!m&f7-;193FG+JaDe?Y zI(~{ue_t~>{-tsJ8~PnQOU(QX|9(G`wE02+=IJS28pA{EW3o9%neqY875N zCRll7xOikM_miKnW>Is7qJqVCjJCLt1&(t}0AK14CM!p?qUHeez%=CFv9yUdr#=G~ z6H=56x+Zl5kJlRgn2J!@x^41UY%m%S1eG*i%>*pQ)w+|q?HC(Oj;o-hYZQ*Tzuc^` zdK}%IiLQVzvVae2nqTIamed~`pjq*2T8IZMutEzmGhIQ&3cJ_72>&k176@1q*MAVt z!lccL4Zdx%Fc30U?zYr#C_2q`RFEn})+LF^==V}N6;FZr6p!4BZzBy~gxF4`cyG?& zOXZ-v+?+iq;g(knnlDa!s7p@bXketd<)J}^1YoG%@|?jWRSsM9gyL9 zVh~Y*WYx{_A`;{v5}?{P&tMYQKg{J0Cb_XB7#*!J_64IeO$>DF#6DesWBXE`RGx$-tx(CbR&6j6iCYKju#|NS#xqGl@P8s^Pa5k=N~m%~8%(0= zb=JWozTj}&F_?^x) z2JeGbD~-A};5kX;Y_Zx&lY@AcLfyLWFDUM6ERZ?2n^y(K?ROVUUpJ|BT}Mn52O<&4 z!E>xtwWXd{G}R@U>o(l7c}n8)00dP#j$J5DpM&q>Nz8cE33R3orT5|A(|f5`Kyi9szh|sJ5U&@ct@uUA zikIP@gGONdNpd?zfgT$V&S)mk#L{BE~bV9fjw!1Kf3W6gMC5C>MJev;-icq&89$G|jPKzgZcOFftRrX-}L2-3Th zS0AT2Xae{)Wy*yb4+d>SY@k~^PVNj99<~7_By`z85^RnL0wNiVU<@~K5+28r;6}-p zZZ`Yc&^E-`ioyAB8qFi^Ao`w~q{lZOEcW2e94)nyJ{_&XVyVQ<)4@Ev7u+_I<$XkTFP;7X5pS7D%g0C0=J$;k&9FK!}ND0=W2P2huBDi;X#`V7w1_{on zGrk9=BMEbHUK-`hdk@m?ik!-kt_eS|h^i$=^=X>)vK+Gm2AV{~$C_vgDzy%u)4|^< z`Mn+msdCBdlrevQfhRPXl#m9#6=*A}oSm0ioK67+U)P+R=&`3>_9Kg^xS}-#9!&RH zWUm;u9py)!yH0}`hkK<$1(49UQc7%)PU<)&ve&FsP0b$+dJX zt*L1w&l9G>`1@vvKOI$w{@$70zH&;pS;RS5B$HRU-&fk)9{1cBC@gl(?98c%sLW8~ zswugtzh)li>mCOq=G0EF%C68%sV|(_mFQj!yOgS?+Vr^Z{*orD1}U%pe1DUIHMZt2 zX&R&ypsz^ruJSj9RTOvQU>HBWbT$bin;kM?kmNpb(y(9xB}x+#++(h_(CF%L<6v^+ zdQH!tg9Z84!Z8U?a!cql=-@I^6CvBijl2uGlDHOzS#vofxKugdvvJd{?m&UR7K?Ky zqL5E|Aeb-3JIXXAyEf_w`8C^A3;SFoR|tCA=VX&Y3Pznvu{9F zi==2ss>wL>w&7t=4b%+WzQ?H=xCd+3!=+K49;b$pAZkKwJZGJ>FVU0l909TAS6^m%z9&kB>b{^gguZ31M;C6@5!AlH~f*wx*so~q`n;<75zSSfS{+QlR zvr^EFW29*KM~fAY^;#_;m4fMg_&PS!A!9KO9fh@cZYh4TH1sRjfOA*SW*NsKjr@`M z2tM+$aA7I-K~#_nmoOKR@pdw27ar?RN^JCTc#KL?Ec`9iRET-=yo2dW!tGmU&)PgC z6q>qq&a5p{LRUJAnu{u$b0k+$3)*Ij@c6PHZJAt~{PC*gKibkzyXnW9dUwr=mi6qI zx_H;DSXs}dxHr{+YFNu8kwA4HvblXUuQ!Ay4JnUT;Fe?p@$l3_lAud>tMU8+7p%4M zsi{^;jg*1?KJH~cBgfy-idxS4}@VmvjkZc z`3K|3Ksa_d8IQBsg@hW}tTRoGmkBj=X_aBtoSadqm&T2AI~^mV-0j8PmrgI~s0eXp zlgVoFm$b&0ZeFuJyCI~?P8IC&cv1seePG(=Y1y!%W$n~#UX&PC^D8b%k!COM?6RmH zFw@~ID|-*Z$mIE`-9AtNyP1`gn{xKi4&);o>q|OJ1DIHG%vU6bEOrUU&IxzHZi_W_ z%oL8fy*y;VwA4yT5N+VJU18$hh+}BIB9K?h4z%Zutz}8QcO7!MvJ0w1HZ@k0U05CBp{;9o zZ+U#-?zvsp;_bByJ2$oj^Ey`5cW%Jjm3ST_bp)E|HK?!n4hrr8_*&nn{_?N5zciu# zl6{{3f?f0PTLi&!^AA;;R@pMdt0um|pXxou(W&&XGNJ)#Ths z1zu#ei6$+lHh1RYxhp~ynk1?cXmvVMe{+;-mtO&Hs+l(_Xt4=2Yj=kQQE2UKYBotu zfNmnc;0WA+Tis6e!4SQaa!^_yt?*Bh#ww_>CQPlSu^k3?mvnClnartS&Kt}X%|J=r z=i+&Aw=B|?F26GLJJG6$u(r_QQt)q3!h4)Q2o*!l}!JB8o(sdqun1*%zS@7Puz^~MmF}feCyK7#NLC)d2pxz4L{C0)OuuJ{xAtnsHwSr)G8#%$m929C&`_^Ig8L z1($an(=n?D;X#bq*4dZpm}5p*Oz?}j76Z2-oW$tv=_Jd_02Q*519ne_1lgz!OWJSSk{@ zmxc}GBa{yqo9Sog&G z$rG5s1ST+n2~1!D|4-wB2~1!D6PUmRCNO~sd`;N9{zV-d3J{ik1^j%&A9ZYOM%b3Y zEd&Q9Fo6k7U;-1Ezyu~RfeB1t0uz|PKY*tv@ZTLI?z0$1aPmpK3uRJ5lWaR8Il}vp z5}8MgeVU3fPZ|5ns5&gAG5==lbEC>l)DGsfv2Ugd*qz3{g$kRlHTJFWj!b=?>M{M) z*cYe*)2GJ1P5dwRz636+^85Qfb7!AHF}~pkj1S9T;=hK=He)NZECb&_;}++tWf@!YKUD3vHJ1_y1LB zOTE^}7;Sfr(3X3RE11#Uy9sS2)1~WELR-c7c25`DYLw<)uVDsv&k@>Mrc3w7gtm`@ z?Y>!PcVLEdFMuUTssiKglG%hd^)qc#Khrk#Gi^(~)=)pww%lu+`kA(=pJ|)=nYO8) zX`A|)wyB?K+oyv+_m$A5e%{J(Oc=v6p-cp{CNd^Q&)69&?PR17RvC!bI2g|-V-uMqunBv|M4qz{zm6u)8_5bIQvf=#mks2V6D$(fa%9{= zVrl|g#OQf&;CUxlVS*M~x)bn7KAL8fs&nu*Lzsxq@^j zpr8?&x7zYBo)O(5K`-Mh#g{-+egePJVE(m|I0|O8$-}-RRX#z7>G}u z!tO)!lj;p}>uHaGR?#BjCq2oh8~LnAKx!hHW+pjBGyku?$IsB6B@osRYQx|gOQ$yc zx4!kx54yW^!v5?ek<+)?C)*?N?27H}8tugajD%vLrvkurij;Cs z*M?QJ9$1A}ii)-iNxsnfWFY&PNvJJU4qj;{)&J%krB&P_M8+ds%n*~;sUn}$JCopN zT-AL@y)+6K#1n?-<+iL2B9YONwt*4PSMBRu`%DOIR~L+=P8X3Ag^5HTM^y)7*h6`w z9?`iFLFSBhwR4b=y`E~}ISq)`{3pB9ZSDqK&vr7BMHyT#H=Ad|7>$$28hSc03%iJi z-M8A|L{{E>m&1`ub7zjj>nuX!O<71b5WiUXOYL0S2p3i zLp4~*xm!nYicHZlo?X6uJ^Ke@;r5V@V8?zl3ANrJjcYg>q|-g~BroW>o5n}Uru zk1ez_+V1lZ?Ll5XGI+g1@Xm+ZmdAMB)rhNaT-}1&RX5T1?VmQ2cLk<)xJA1>XE0CJ zcy=N&hCz(@?hL;R6Z=LlhSc(fT0&zOB1GIlvc&AR zLCov6T)KU)dhhTQrT0$LmeU?j6cIlb{FiYQcY{Lm?vi@O=w*R{ykeamzs!Ucdau31 zd5d~XE5Cst5O=&$ZK}8qBw9(ux$&vnLiPx8m+^joChikAswr)sa*$d|ZR6(jQ1)iesA(DhWky@GwDwnJZY!6?Ti;JjV3RbV9mh-R=N)RXRBT(YjjTIl4=);yD*(_3vNcKif~CG$hM0r=O5ATC{Jw&in)I*Z<_p9Q1it@#!% zvC!badNT7(4$kZ?C)aA{#+h==CcVzg2^wLI6_j!gYoT3l1$b&Y5rI zCMIQa$tJzg;xLZp97ZE&EXXk$3`PTIrlXv}=+N6uHVlvGFc_UWli3j*qcfXw>?W*3 z#}!yXAn4Iq93aJR%H?u(1txO|S7dVLbB@9sr`gEat)SOr$pfQcsnb{hPg)G%0K3I# zcLZ}uPA=D|a~9f-4$f`_6ecI=&^v-SM}ZFfs@K_|jUOo}G&@Z;5NRnaFxp|I!{{Ue z9GuN=g=k=FLAu#&E#mUQxtyuMrqeq)lZA6)UxQ`v2w=2;E^98AW6C3fsUoMb*a;7t zW*LJy0p>slSD>?$aQZ?BDYYBB&jL=i>i~=0I%3*8&(4n^I*hbnhVRFRsb{y zL(*{&fC8!ulSiMgvx8wqdvLljuh6WsyLmNAR6PpwVc2AF5e~ud;IObZu6NpX24jKF zJ`3X@A$2n|4?J$e!+I;gx0sBM;N(Jmpw2M}qR1uKtyX8g(`g$O5>ixD6kH%a7Yxfo zoFz7Eo?U0lFA32*bFCJqLs)7q)ax8%0I%~Xa}?TaW)lzx&joYStcBpQ60Q&^)B)k&871 z{S`a#z)+}n24OnRfoFs8Gok{BPf@-}pYLT^5hyiT^yWg~zQ=m21(*_O8bs5=YdJ`` zm9;dBfa?%-DOk!8IDU?1wX*f6zl01MLTwsK!fZE_0LlBp1hoXm5 z1QIb1Fk>HsuOOoEIA_g)VrRil(UC$e^6d6eV1slHhgEOVVSX5_dMH^Ir;gTBlNme{ zh$Xf`%Vh|a`p6(+k%3f08iyOMBXt%Jd(kaOpc}ScoHm<)r&KqVWv4q8Xdp?15eDH} zZpy{Kjl?0gLIC8*CkYFpa|&_tI`E*t5q)8)qnix@( zZ!Ne5Mw|wPb_*C|BmxXpsG-D`nMS=+B$$WCKz@UXB;F`Wab1pej?rtwwOE}vWoR)s z32983B1}2*@qUnFY?HYXuxU}@t z$w{$svE0Du4CoIG;-(~JCZ=X(a#U`aBaO2>)lvLQ)lOPj8Xl5#h6$+w~;xe$XiE-&MiO`K6mz128 zIW35bPs&WeGUGvLG?x~go|zPrl^mVUrDdh3rDnu|`dAQ~l9Upk4qDna2biw$;m`jbQV~jPV9?GO`DdUl#rOoC8j3F#=+pYIIt{wTyh*$1)yS*qmw2E zak0@8qZ8uDQ>h>&oh%cqo01quhCp95{E5j-N=?BqVp3Bw)1ey#DAP0Dk4{O-hzsJP z(~~l=L*mm@K|FRRJdsL-z;h{aR0?)A*Cryc1oyKt;ykv*#ziNCtPK3H_u^om+u1_N zei>pg=IY?&60CFBitl`Iap!}J|G>9*KDhYjKDbbmpF1C3{LlRGf=2Jo2N-ugz_{}P z#+?r^+E?>CA7Zrq5JU9NoewhZe2{VHgN*!# zOQjYw*&4E0QV8V-3YkP0q!fP2a*Ery8w4Dz&#jnM*!}4z?}iO za{#vuaL)(aO9A&9c-;uNUj^Ln0`9$l`w-wh0l3cq?n`K&gazEbfctL1JqU1z0`5q_ zJq~au0`94RJ0Eac0e2DLE(hGJ0Qa+i`xU^w6L5ao7PssXFWlV#_dS4nDA~w@An`(& z2Lbmiz+D2kmjLc(0r#tb`#r#254exQ%mu)G4Ru5c!B0e30jUJ1CX0QWY)T@AR80Pb%A_c_3Q6)l&jP^F{`;O+ysLjd<^z?}fNrvq*i z;4TE*ivafuz`X%*Zvxy~0QY-<`vBnn5^#S5xGwR`@XigHUIL$ zeK+7947f)F?g{vRyawE*fO{3--UPU}1MUXEeFkt}W(-KdI8isI1cd?aiGX`L;GPAz zivjmi!2KlP-U6fV0PcFgeGG7)1>9Frp+tk`NI3L}WC&U+8HJWf#slu@fIAOxI|27X zz+DNrp8?!&0`89h_aVUD2)NGz?mqzcpX_{=Wf!pB*eBS*>{@mxd!CJCFR;n%MfL%} zZ3f))0Cxr8ey%O;6BYvK`b*Jbq3s_ zfO{O^o&mURfO|gRt_0lA0`6^q`vbsz7;t|FxPL_^i42(~J&;ur1h~fn?kvEq2i&s( zcNyS*9B^*}+;0Hx4*~Z9z=bq!JC#ji?a-RfJ_xw&fO`qx zUJ1C@1MZgr_in)50Jy&f+-ISD%kjRaRKOo!-@w4wd1Ylv8B!`5D=V8SDk_?AM{cWd z!Bt^XN}*?~?2+}DpFK>aLawS4asY|$sfQrhh>Z;1h3M@b- zOf)H#NU5%^eF3iZ>xqE9d!K)P&6?%Q$umT~AV5Jnl@%3A8KaapbM#Vb7^SA1E9b^X zjgOiHH|OG9N;#}3PfX2#R$xhTDU!=<*a{mNSK=kGh^)6& zG`n2IN-3k1@=;Au_<}`pd2wZBw#!Cc0+P1X<3}h~hC))atxA?-1oNtiyId}ey{fW} zQ{+k{SHJzqQn-jpDofA~7q&{SptceZ$Q9H;rBco!xwMf=0TgnZtD5(1R7e?xlp4zu zF?jX5e7TH~%PK0;(l}18V&tj{SA{DJ%2i*um7ck%C@fXh2n|=Gm!XV{l`x2fQ8_|# z)`d?2E(90r039yd@J#H*xVqc4ZTu zkTNPD?v0o$3cCq)r5@_4q(}wS6}YQHNagm>{}y?1-fgRHM_!U@Q8#9<{1)t$-+;Z| zrv5E`H4<1X(idn;`XYZRffba%DoS7osfWPO@emj~9s=WzKwz1KQ4<13DOJE=9kZHQ z17|`F)7jPE6~m}h@JGpXh8v@bW)_fmsN_hc#2#!0em1KV(2E>Lj2st9g4pb$v?g;Z zJh!5(4CZjJ46f_=rES=V%yLTYigGMPE>1P8)JUbRhHF#Qrl{5AUJkcPiB#&EO`BFN zUAkz|LLz_|Dg~obT=x|&l?JJNFvA}eI3DW490#B(W$C#7{r&s*A6Kf7 zAq9972)r&|Ek|l42;H?81n%91r|70rVIxygsnod~rj|Pua->ieL*}|%^VCvCEpszH z3RWr<^Kfiju%Nh&Ot6qRLtwj0%eJaKbO*w#Wk`)vL-3CpA+^VKE`BsTxu1g2F`fWV*w-xDOL)kRuS%% z1I=61O6ZP_rdCIfC4q0jw8niht0uE6OG{xEcT3@F#V@7p0!^MR7wdmH?ke1qEou!? z`&4IFXG1ZlTE(pbem}}#o)e)sQD~+RDcC-mDsFQjSIW!F)CxwebmxjM7TTel6E_4; zx~P?~j-(6C7fLeeJRpTejx?Ct-U*`+5{Ar4Z=5k2DWky|<4zd`%+1HNb-_+LudUd> z%^8ghX^3}(q|qRx@$%(AlrMz{JqR344Q53KFzi=je^m5rJFC&QU)^PeCZvC)m8aM`9^6}00&A4 zDK?!+;i0>-iyrhy_5r)J3ZzxhJi+_y-d$~uon%%5*Qj_r8$U`odg2U(SsA01MR-yW z$3p4J!LoVngqM}k5+!D#%ZF`Md#52+t(7CK(klMn_a+Wn^V%_8;9{QJK#JQ%bTnk~eZ_r%Hga{3~A^xm*>b z4J5Wr2AL2Kx^#;p+>n``eTO#i^gtRG`__7eByz>i*eWSqhOB?owM5T)!ZZe7t7y2K z`h=p1i$y})*uF(tz8aL0k{HD;{0t@Lk3uCnmuvQ;m3Oed8<&~A2 zo5~tGIy$QbYW+e#OkB)Zm-Rh3qQRMdbFALu)IjvA8mv|%sN?N5h|ezrE6!8&>?#o* z6UMDymbI__tjPDyIl$HuH#)+?4&_GUIG2`}jm>0gAy%95<5ybiElg%h#s-B)r$?us z#t{&F(r$J1E321L&0?12mcuLK2Dg8B;BOJCt*Wo8!coBpRlpb88eRO=c3x#}lk;I` zs7{=((Ej94Yav~5uSi%Ov%$JdyG%RfIO2d8BoJV4Sj&AmE#Gc#Z%_F8N@#CyZa(tm ztCeTSHPG;IjEzHmE32PCE48_Idk5#YIz{DmCLQO4`vSYjEI9&zAM~k_AcS~O z+F$2!^j^FV3**@ru9YnouZX3@oxO9jvv;=kxFqc!(_NT}S@NFF77!M#RPMY7QFk`y z-Jz=JEB!d=UXB^&Z=Q_04`Y1kiy>-&;NScCp%2+Byu$iQfasynriQ@ooEUdmWFk@~!{&4Eu$b=>#DB%CAqG(%Q21M7iy0k4gWU92Ge6BpHGLk zm=BE*cs+lj`?&d~_Trt$c-gF7)8XNCa4;z#MO;pE*^C^9DI|xmd`Hu6>j!R>?+SL5Lr+{9lhx^t^z82d zj&AdX^WXu7Q4P8AuWCYoky?5Hg#pE91fz*TjWM|t$vqw{#Y$NQ`Ftm3k8d!x?jW$O zI@EdgPJHMWhb+xYlBwD6_xo%|$@9{j0+*vqIxqQ3@};!fKqw6VKdy!Oeb&sspHF-a zP?`MZ+RQ;W3+13G(@l-ObI_ z&H23gqbtthfllP@UhhpR8aP0a;tZzd$HGTflAA#@>llO9RN=GTCOOqgz;Efbw6UFE z-_&ypb}#wWT^6Tf3ED(*G5Ow|n^a1YtOpTZj_6&ili(?(zXdOS$6Y^sURfxOmR!FY zEkAZlCGEd!_)lD4Wdumi*6@Frga<;US)b^ZHV9qwNy={_at z1J+kapO%6bZ3yIZ7TjD`IraHbSI1u}XM9|DUv)X&rq9u`Jh}Lo@6SXvG{mmCS?$yh z!6}x=fKG;eLfK~LD;Qs-l_!KeYp0&iE3*h720baC7R$%PNVl5-C8Nh+_yO%)Z+G!N zq<@?xSCOhSn#{b?&G(n4zUZ?VpPrT(SZnYW4qyCH41R4s3^%ps<`XJ_S8WA&l*XW9 zE}XTq6oJN#z3T5R=;IgZ6=y3PBg|&hU(39Y*2;5P<2)M;m#rS`5TRczD_qQaxVhb6 z?R?ZedS4`anb_z$4OaMob!hx54Eq5kAD*gp|t6wz!;VGbW1xOrD;QZuV5eu64hZ~pQLE7|* zLswBm9;ewnCXLcUCHU7hJyrX5+}EEg+S`7`w|jnl{fyPaT}@|Zy>rF|dd!vURbu+* zsI{*^?^yaXOb+;|3vgg$Z*U>_lfhK;^8R3D@Pduz=Rfj-vW2@|Upf;@zvi#}a{2DS zV}I@aGIo;D?xSv-z0ujzD&1`QSQnAFYcL%_&_Z>r`Rvj8br(?hq`fzg7!db&^L9`6 zDSW5%ZtqAIZHLgnoHiu->R)SojiiBSktPdX?eL?IB74ove1#n z*u1=EM^LSQ`rgvwlQ}k7wGwUY_p)BhFPuy)aKBezysV1eX9h4^vbS^UCw^r>8BlIeQ>}7 zDF#xl@cq7;xiE570sS)m-R|F63JknCXWEbJ4cj)))L2ef-o0#B2Ul^p*;BtI1qJIb zw&o8m~~_v}bQx1I;U`0AD+)#mF&xf)w*ds}i5hIO*^_8WAu2-zG4z=jG9zOHJRtpX2I8;>B;!%b05m~bd_UE@ zWDK`QD$rciHr5s0jRHic0J7QogT;n+_mY1DHJx z(|RcM#49<-#QU{-e81i5tn7XdMa!cEEjMuWjv$a@+@AJ4EZ?{!R{7sXpKJWoyYmK! zo4;o~#XZ|9@;iBo&T9H!!s)$qr#XJ#h76|J>2kY?*~!duzWZPJ?0Kf&t{BPHzEm5m ze-AI1?IK=zv9zu()c04btVOb?hN>Bz?rfkWa=Zz@Ju^&R`ke1NSq58+!Do}U+diT70oC8YE_&yY$(wg(*Sa!F)Jmo$Qx!H_KQ*WoQ zlNt?oV8K?o(Q^ zRxXASdXtyC5|;%>0xS*+4u->PeZQvsw!fFX&eKOZPF`xq2)o^KY0dg@%yLaXa}@-4 z%ns(VlNwdxVgfjg#cl3ZH!b)GSuc|gL^nNVwcF>qhQ1yY7MT+qt$XU zS{;Elw}LM_gW)+@A0J!gz+0KIx2{=6`UD?Q_B7EETzzb#Y5C6E?6rv{n&}3l6NOI` zgB{dujoF$_onGHw_WjO_J$9^?@A?=0;9(jmQ0Gd+)7ZVaa=d&b`adP7ysZ<&74{N&evJpozwlcR-4}{Q8=~ zGXY_PG>uk*=W$vsdHC9N9SoHr+H0sisI}hehodskr$w-ThUi$eTASbS{4gyTzRX7h za}9eV`*y`#@tA^k&XK7)^ON6=b=x}h0A`8(IOCD0G$D$?^+e~I!UBfj<^x(Fix3x= z!b%j zdw)9H;+y)Bk#x$Ft>T;hCYDyj?h&W+`Q8EbuRzA!{PXoL2Ox`q&*%|fW23!+To+*Z zO+KspPG4)GI5}uRdWXcV)dryu2U2!_{S%e= zneXJ{X)4<UBWdc8wx3qbbT%edQ*LR zRV?_Jua5wkkF%FwPTr|+sa-2>i?0<}`m*l7KIQhYY>yVtO5%qG1ynIqFuGrRHU+Ud zOYhSjoTw@BL`qh};>Sh-_4;@sLjledBV5L1OPhR1A+>(10@}bIc)TB%jSk)FkIVgu z(rEL~hNo9RxF-MFpC5bsDV@Q+Z8m_1;4D2AGN1}qZ_|^(Y|Oj=#0_VO{n?uyW7F&M z_HbG%zJMU^=f@`$?Q+BWC~B|6#My(}1#P85j+gC8T202H4a2x7X1#^R_GWMG^#&n5 zWz;GZP*>g8!Dm6y~q4)@JI~DW=o8yRYj<;(yt1e<7TY_IZth_sPwDQ}DpTBWxpd zQ}MXDd+X(`1@b>^Z0g! zc32SvoKs!qECk7WmFAv4zTK5KWCW!;>+V9i8 zPou>IeYJ28TwMbxsSi1E@oJph(G{ut5SZ-*XAmuJXb&G9Zg7Jzb3&v1bt7P`jA1C0 zqE}^x=H>TewQqZrr&2pT-)>4s6310k~&$QE}`3Ij;+qFbv=nUv#u|*& zMtyQ(C%#%EHRa#ruYVVFhVZU++JTKxr8_;#ki;376^u-!aRL<_h2iP*IYGO_+m~gP z-2E08y;ntmvsk%ESXZlbe@43ESP;?vl2U8-#_&=Z}Rb5t1S~jRhow9X&#$r&tkk(}bR*i`rx?^VcmT7UkL@H7T8?dIEUE7SYc& z8o+U>d!Z=Skofj#%aN}dgyJd_xG2dKk3ZrN4Y(d!I#zfc*L-xH%V5*h1yx8**^zNs z%_2aZA8HWg)=jbe{p6eos^$B0b8pfm;tEZjJ@Z;!f^|i9^aPF_462Y>xVX$p<56#jV>;`yFf&duvmyZ4-| z4B2<`j`PBak)UwN8Q3H*NDf5X-EVOZw*JLNRxqgay_k%Z>#~BNWQ;_$L5h6& zw{bI=o3#&|X(O0>yEnZ3d#)ELa8^IFiwaBtqK^{v)dr6cMgnP16r{R03~cdQ{lkG} zavshn_1WB>0C5LoZFhD+*N^YVbqr!(U?Q}LDz@nl?Mbj6%s#VTg1#sIJ;p$F9-swP z!J@>!BNkOpUg8rLEO~i+4kYA2x97LE2#Y$3TipJU(sK$ZH}JY)HQx2XBepc_?oECX z4cg|NMmEAK9`93%WxF3b&sO4( z*9QMSv+e$H$*clWv8O_&W`unN*B^X=^hhm|j{bXL6hSaxPRlYPOq54;6l3a0wtIUY zC%-RQv$AZLB!ya|HhIElYvm?mGei&Rqdy$L@g%y~|I%4GH>V%DQuVB6QYR<(JtKFs zvgf4M^FG4iF1{v(tOSghk3K=mQ3#f}myj4hI~0cuhOBEK1jDC@@+ffU5kh67mnaJ) z*(L#n_{mH|+1W#;t*DUfUjS9q2PK!7vUi_!oz&|>sHw|Sm|S; zD@Ce?q`x|mje}Tu=)|=RoOK+GDx?!|)Gg>@9^?4t?IyS^22l&*bYRA6YVPj1woTnr z!};fqaI*S@K%n7Y`dnRq2%Kw#*Z>dvraMtcdhG4)-xed%&-ZP081*e1*XZg8xC5)3 zeFKNgMIpKDtbF?8KKX{h-uj%|Z&9_#%nGLEEifIo7Jehx!~8`v6V2N^iDdfbZpO1R zh&bwfvIWHO;TH(jr3VQ?HS}po^*S?5J1s0wxub`%@yQWhN;NqJ9g&g->yN`*dj^W- zB3c^W;%&78(lwSnuBsyv@nMplCCH8`wGLU@iKjkcG!bfQp+iCwBm7<4hn=-=6jRrN zp@E$3ai89V4a;g5+ToJMdl-`U!qvl})}VzV5Wl5Z738TGPxW{Ae2~_GP>@>DIx5vt zFC8}dF*I)PvTAmXoe1ft07zBLcHOq44ZV)!G>x{`F!!gNnHkxpvu-DCSz-ZNt{;Bx zjP>F(QLoD9U1ScLv|ja2JYfvqDpQA*f4?%Ch@gluhh-m$0xuxN^`)>>Y$IzI{Nl2= zSl_p%%rP1^mPOZqkzzkYtv1odrvrw-DFfdu>%%Zz@z)DZrp1%*QX1C2pmj3%gMIxXtG`>qy`?89a1J=Mk9zi4(ehm>eFt=>S3 zN=30O3p~Y3b(APMG+R;vFqP1vK8q5YMjxeE_M6gn<+ze;(vSX8=70B?npK6;0Av2E zyUss`S|O3ZG(=3FKfLm2T6a;#T+jZdiuZZ+5X2bJ3HI|YW;uShmG^U*ZxPx!ovK|o{jB4BPSQz|HSg&5wWsz z{nN6taQ}ZE*;v{2i2l!<|C7Rh<;=&&C}CymYUa!+VQb`SCT3>hU~0zr%go-w)sl#X zgM*prebEP^vt^Qh4Iu`PPy~T%yH+JR_HvYJePj3Uw7^rbFv+d zvK@6t9aT4`j9-h)<_c_NM3#bU7ZtW42pROFxWCC`Id&%;dX+PB+6$TfPLPEk7*KiFT z;MDYQ!yz_?uJg+b1A2%l^<#_3)`A6J$pN1|53-vTh?czIi65q?d0XIbU+sFWOTEqn*tY^c5ijMRDd%=UA9MEm`9B4{edjU7=2{P*>@Eoj znz|gXFQL03Ok{f7On^81%h9Koe7a@|q02#KKBSDtKLJo}(mN_9VfiIa#mAxRG!zY6$K|q&I zWD{SwC4Evwe{)FQjZ&0M8x64u;yh-ri;EW)GAt*#fRKpe4qbmLqv^&y0KHnNR>7JJ zFjCAC$NMJT5#0`76MV^fbZ5ISjV|rse>$)r04P{aW2`O)t<2a`b$eeYBt82mtYTkI|a#u@BadGHGW7_5zNe9C?AGT>sYBqYDiUi`59&j0v1 zxt0pXimPD*F=wH&?z!1sFj^(aRyE;NE^=M_l@Dc^&ttQ^5cEN?%DWZeYL#4?O-OowTY}OkS}aUe)sng_73d++ zW0+Ym>dBUpv=e`(omVmtu2e2Y>p7sTa(J0~NB)MnjGC=N!qC6(mVcyS7%!dQK2otf zl5y3*o}4f#-66@%;Q7`XNqiY+M$-~}f@9%(T2#pMQ7jSN9INZ%#2FKU{CW@k!n`OQ zvABWxP85PT*}?fF&g%`-*MwGx&D$(JZ7SIPEWex(f@JwmCPZNWS@Zudz9NNFel=qK zU*>`!WlNm0Uz`2|Q1oR=?qX=LLaO_{$7x@%!r{JU$SHaMP^R7T7@BbH#6m1-J234; zdFL3Kptb`E#Ai{92~sS=PwP%w`Z84>46M!!5&2m7_!|fj@`$my`D~6ft&gU2bcz#( zmcr{|`7X>Zj>}g|z96jPb@W+;k!1#ixgv?`eXY?jM30jO1v|m=bMfDDWlb683cPer z27ytvL?9O0s7ovty(nZxf$5Er%|pvWK(-L{q1)n}-BR-$5YUA3@34>(() z3&yr`gT9xvrCI@_9Ek50ygVm$zwXDa?md=3PESw|WjL0loY;3!0{t_1+#&LX>eN~gqAFxTu$e=exs)hZvU9@q#l_IA!~Q~#vm%e= ze1U(ai={o^$yjD}C#V$db0l$6s0$a9!B5MD*~LS1DCU#6R;j$@(QJ5q^86JF*Dj@h z$vh#J%R?21A>!&YM&GfmhvV|Y6wEFrM_l9aY%Hxp17fU~5R3=&I?9k^D%cg5h3FG# zZ?MUoZD7hpPB_%!5~a!qYvmM!O1^@ICT4O3x=C^a^ z2Q=acc&GDY{2(?!obtXaa=@37LSmKWB;#Vqq9G#r>X{Qf_P}`S`2JF%<7J{kko;O{ zv3`dT3x;tlI6Vu8#$=TLGG-_d3{?VeLqe%B#w;BM|2*djZtjN-60F6lJ-%5~YC^${ z9L(l--VEXB7*S+Xoy#NwI?h&}6UhF2`6>VM3+WcE+p{v`T{+iJ^m%AMCZ|9ozUL99 z59*yChGwnRX%U$L2o?7yCZ=Jl!v}RyW@FNQW6acpGlbp4!Uin}FCWnyLJD7BM|u1&Q{`b0UhS65yrDRSL{9b<>yE$~z2 zShb`^c7bv*9QfBbYgx$ex?p*^nf&|=4kR0J2bUN=kUsYek-8+eexBJH-i2(io|%%_ z6eC%UAjPHOu1ejWtv~i7`$em2gAfs0WUUYIt84Eckr|RHLRyQc9PMWK=JG%h=-Z+O zMDetBcl2xFbL+@7tmS?Y`*}PpPRdyBGb3|?NxoF&651MF*krcWn_EuB5s7EBxA{%TggG9UUt-_$Yfr_I+FW5| zjp-x~!k{?sepTk>C!gstN}%x2JuRS$SUd2@5yAW`1&3}rXQMuBV~YjmzR>>X-!FTUyTaD@^m4(*@0C@FE(IIGOiMKRN>gcL>982kX_ zKNIzb9->Oj?p-K<#7(q}s3t~q+o0pPos@V^`ot}#)WO8>|GL4Ti#sb3A&sR$9gTxI zkN(8VgN|Ll2__*@c|RVYM7o;*<9qlaOt44LcpXk+Gld&6fbq#|6LdG&yH5S_IFx*s zG*7(`yv2kQ^tAZb!rmGOciW>v^>N6XG7t(79cTwAz~unQPYX|}Z@NzTB4=Dq$L*9; zcop&hV$-_{TQptFPQPAf#6s_`8z)0oXP==DEjXcTv$yGdFR$wEF4hM@c_y=;vWgvr z3mU~nYiCh!b3dQ79tdYpclprJzkuo1`zfrIztd*n;TW^m>AO5nIQAdY@xWcf9CLHL zpVnES>|>;l=Q!GTh$5M@9@owC8$l5835=tql2t zw{jh45a1lJRrh`JnY*cQO^G<e_y-vc(3eR&fRm(@jT-*$MyE8qcD+!3;Y zar*4_oB+&gumd>yjxrI$hlgE;l^gY4X|>Y!0FP?8HjdZT8fZJBcEs)DZgpGvdk&AD zU)>>yb-^k(HoC|KT%Bc`1bf=Ohy*;HiF(StOuBm88Drm}uhph)4lm_vVroGqmZ!Jx zU&n7eHC!xwm&a#3OGzlIEcFQtpj`kZ2Y1OrMy>f8UDig zJeMe5dfZY=sTF~Ks18o#l&y3Ow+!~|I*oB3bU1{AcSEENW_daJz1Zv4>}Ff{Tg4rBk`q~^=u#UMtz&ORqwQ7DY(gYQS9ughUuTWySE8eBR*0^<@ld`$Ca%I4hr zHnIV9=^Dcwu>$9b*@ACG8v$G9W704Aqw^J^jSC8JQvyZ#5(%K`C>b4G?CBpmuQ}$A zjZ6zXR-A^>4}Ynbml%Tv==R}JmmQeY9@y04&=)kPi*J8mHdL4YC=PD1uK?Znj{Di~ z<^>LvdPqM)Q?3oGA?ty6{>Ok5KigbrzegX-A;jSUy)l{BgMuIEjNgHHE#6uHxde%` z3mL!6G`45{$TYUE_J|oBJvi2m${V>Oq#Jm&k!H`bOlXkWp9x?s1>9=EwV`QEcHEuIHv7ll`|D@G&jy>29Pw%MbS#=U5eC z9q{Ytw+|k^*se(yxM+89Po%76FI>7W23g1LK#fX-c$5*;ibT}oZk@KB_}$`#m$vj= zrOk-8ma-zM>TCVSN1sVb&8RDnNpUcXJI4YzZ1>CI%S`wVuS4{2iuQ3w%LU6nV$gl^ z&JMZ2donf=VwK;SbkyY0`h}0jPh^uc=moWZtE#HXsA%C<6OW_*NY9ssJJk6q(Q9eR zri3<1N2-=2*9pOEUTnt!%WvWW6bMj_d3jx=I>n1M=6{zt>Y&Tn$V_KpkIy}t=46DJ7+E7UZ+_y%571F$~#33pnn2BzyJtoPd z7U6ggn2#H5+_+#wbA|4c#SvCSVGPiFfIpzuB zyUOl?SIKzhE%Vyd5Uu2CnyF-SV-6ioPJAO>GqHH zJK6hYIXdp=&0%ZN!@`Z@R)3JS+^+CU2av zXf?PZ@Amxb+)tZ7Vyldh6MMis(C~t6%m7Vj5Oa8dL8cV1l!JT^RxbQeCBf}m4zUZc z%jzieL}#nQ{XEjDTs<7NwGnp4j9NaVW&@Z<&tYIZh~G7Pitx}&5hJsshrb>i#H*{Q z>Ry#gK&u>AvUh1$_Y=mATHh})V4Ib=IE!o;<4>0-lw_Ds@N$o^%LV2J`vD%WQ=oHSc zhyIY1&S109X@(8i{{0e?{f^=G8>NqQRdRcz(G8=P`*IKJ-(OPs`V_JdrA*k zRZhab>2?tcUW4uCVcUe949E1P)f54T9$ap9-Cd%$l3_KQIkVXYtZnyPNjWK5wW5`# zTO9>~7SGzztlma*iI0{2XN-b@Mt5=LhA<0kO6swU4#!IC?wnpS-nI5N#&mVZN&c5& zSN%{?QLZs}p;D=W>xPsU9XlT_0xf=L~@?AN6bB1W>Nyo2YOwOXAiaSL(MxRoket;+9}831BP z@CT%@zGx+P+VI7KvW(3};2E4181Rh1+he1zPSDHgf}}YXlRUtAky=hM`BS?5O2OBf z%o@ypJ@hF81UIMKWfnME#(}?j#J7^% zDPe=<^po3<5tiZ>7TRtWzJpa@)R2r7g)b05-@{}@}HTNRLLlks9ik$(qg zDCz8v1~WiojtCMH(H_?wRhB2BCUNa!Q)M&Rr5oWU^InTk)_cUO;pb`@UZ=FH&ls0? zZOKI&J{JS1GaC$P@7{w`%(?Qq)*7%N#1jT46!u-{)w-!G>D2dhvK(5mIG^mJC}w$d zC({1%!3nqOqXD)X4k~VkcC;HxU=tJW8WIDvzZ{zVo&+i?ZS8cLwf1Qprf6^UlngGM z+shrGW2?mNQZojFqSMejK`WE z{6KPJUy@WuW=tpEQM5u&V<_jMm+PK-_dFn3V;;thfyB@BU4og3TBJ$xxrVo3xk!P{ zUJgv>{L$)kC&O*HNc=cNtyBqkbLE+$r<4SHJzOmleI=rcgj@pQf(CmvnIwFSaU7_V6r2KB6Ny%$zb#0x~LJ91_=6m4}mB}3)4Xrvb+k+yzs0?Y^;)iEgQ zH(uT4cciNJkDD}|SvK4*Fao8Dg#|VuZc$}s%-OWv;OjHks*MojNiD*Y=BgC;S$`E1 z`DZ;AUoQ2sILAoWkfEOQBpyrf!8#haq>RPS%dF@{jlEu%7(M-x}lb0Rj-9Ygn_3x!aprEu}->KZ*9&ONvzx~*?W z6>$h!!1(EkfOBHc{_~d^OF)WpRYTwl2?+|*kweTJ#7_`~K5XKf`fv$YiDan7*chU! zm8Bs06XdjOr-@lGS-LV;W~BmCbe_)0R=i}@hvWV97=ITDeY}X>2A;xc(}r_wZSl%x z9y4b*<#JA@s*K`#0A;AGpqAkxAi{$g^cR9`gU<|O0EquH@!)pVcy!R%5bC6S9q#ie~mp4mH9YRFh)i)2xp|40pZXTar{ zlQt))a|)%kZ>KQrWaYH3qEQLIU#+G7QvC_)_WU@MTYPN=4_~;d5BTV%?$5AO<^lIY zI-{FAAwQdg_2WP$ryS!&$l3M2+g5e4^;^&CVTw?_HIxKeo?4eu161BYzx7R*iw3vJ4K z7R+X#f6IalWxg-Eu@>g(L)N-(SDr(z%fxJ&GzY}KoV+8?!1^E-+cUoY+p9CR&3=`4 zhHuP0ui)Jh4_t;!b~uSzD(d3u3SXPKM^felz3y(OZ#|t(|i&qsXayQBe z3Om`mb-2J^-WQxlw`U?tuwDi&_r7+=5Ek?wd3p5>!j|cV%?@m~&%H|M{-SFx*Agc|)dy_)ef`^)fPH@y*SkG)a_Mn+dh zGdnxp#qcn{jyGmnwP3@#*BUx zZ>bXE)Q0$MZ=%hK=9+~t3mb8(3c!$BTsEO9h_v4t-{f~K=G2FqUa)Uh9HxyXj1zCj zx1#R3(-kXs@eficp>h-YUNOrTi~ktXIC9PNq08iZXk^G;t%^D2OFbL2j=G{(jBB!H zEF%f$wHqg=coFFC$)qnDZGYC9^$4K~7P4n88aq``yYu81`_q+r(hQFRsV|;gW5eG% z(cDk9_GaS<_>LVT$AWYhtVl@o#Te!ppoFcnQ&+93dHz8#{VJM&z@^UznX_&xkjGvk zs@5BgfL+WpzTqf&jgf*8BGQ<&VhhsZ<@UoZ{hM1p9brTPs!i2Q>Aysr&LGCY*8ZUv z#?)pf5tT|T31i%uwbj|&l);s=#fiU5K)#Co%NiGsteoUa-1!AJiNL4VO{KR$zi>vx zzZd&D)>?IW0^Ipj70T)3Hulf*I&z2Up~CrJtw_~n?i<6F#D|uXTt|jVuKe4)jag(r zv49D{U>rI?UM46&&YnXekMP0Z%`o}K!Ys$Evt>h>vyKk#X1BDo|B+m!w#YSE zh3PNx2=o~)=T-Un&x-noVS1h0o9=hT^ibzcgsw0Wg37l1>XHDh_PE7A&HEW(I=o)` zwZm9HExIQ0{`@0IiKgoS2Kjh!G_Tl$^PP<%@$!&p+;%z{C^>quIh^l|zSrAs2yx7^ zcJ7f?Nw!LGv#HyvO0ub?+*C=KknxWwzg8#2g@t1@GJ5Rkb&~uWTco25v7}bek*Z%t zEkkbGuF+9Z>g^tos(86lXj3DgYfjO)4XS{`15HdM9gG|tLHn4cZ)AD1snTdVZ9HGa zRrI`)5>lt04o1{F_HLHqkLE?@dxF?Fl* zAdstE{zy$bN*5|XLwQ19p+a0NV&F_-qxA%e8+J^IkJgYV?&6oFjMJ^_FM;+)j7vJ~ z@bD18ZubseFBh(BrPer+Q9`MbK_QbtF)4*ry!lH4@3#(?uzu8Pt6IcJ z%gy?R`^2V_!5+PXwUx6PK_}tRSQI(KLRJrNx2xXh#6+`?{g#IF_RiUjBzd+@h=W`| zL6j20MFb=*4FD-T^UqJv%7I7`OVnK^ z>2)sb40;kt!9YHzj**p!W{*aDJpu*@|1 zM?k^ZXm0TushMQAHGQqR&Ap^pf#@}(^3k$Q8p{boRONtGdZwf1()ZQr~Vq>McWSFgHgv_6ESH{WS z#B?$oEh5hcTzcAlG@0+uE6X+I&Q$B?n;s1`mBZ)NWAz+Y0bPvkyfHauiL{L*7{!Uw z@0Tmdkq9JbXk)2dqtIi~4|AzynEbUfFK}M5SA0362Til4lIvaZl0f{hTGlW1QCsRS zPvumiRK=cT>|@5)P53z;-WNo7RqCK3|5gshTuKVd>}8Y2b~o_pGkV3z1+?*iY?M(K z)`h&;b?`Cfso-gfI~j6DU)98u%nsV=)+*s4geADK;M6!RQ}Oy=--u8KGi4~hDXLwP zMNg<7*X=Fz4II-yK%->NpStr_qvkAC@hI9KU^B|~#8u$+bNfxhlE6r2Hq;>ATm{@R z#{OKuJ-h|`RuJt@ofdP9@pcQB1lx{e83E>OwHG17TzX0Bscl}EJZ(F zuuoz9t1R`x?Ea=*@`DNfsB!}IiUW=$u~kubUq9?`0HaIoN}{fGa+y{r$b)F7usCHd zp{{0UF3}8a3})%Pk#L8bD2L`L4W1+rECi?&wiJ;l*40qg=#h)mSx1ecGnqBM?wF!Jczw zZFj95w#4D!q?RvETcfw5S?KrQH;awJ)!eYe3QPUNhAD*|q0 zlFm=2r0Sxk2B$pb!rITRZ%(XgEvc+O%5muXSKZi~(4A#MO2u?{MIJD5o{4K*npke1 z9N+jcPtCPn1xcM4Om%sIpRlo8)dGr4SmEeVxRoR%3Sm-feI#Yo9CZeVJ9S z=90jgdQbA(Fmz`)ySV50DKzNpg2`R=T;<1eGcG@xS{jdR&OeAGE?v_V6-<0Ah zd8iPOKPz}tU@_c<4MH2!)l? zD9nfGRyK^cbE!_Y-np_sem#I(c*WZa3>k6mbF~m%(7*7R)XrT@Ox|Dj@?K>2e70^j zVI1pc&~u~cnlG+XCsi&tkvJa{sXyc?oqzcU5!sUApU?g=bPD6VTrf_x#Dq4CN<+ZE zhH(?>TBaS<;VPG#$WJfILC$Elt8u|+flNi0hpLSNrm98!^eTGTfx1~=F?`18Oq_2r zJTsW=PbbTB^i^;vbE)?@&lx3hzAo#qzLf)->5&Qkh)l`vKLseo&YLEx(oarXn6)=H zJceqGUC%7|S6gbOj{nU(RA2M0Zt)6-TWM;TYhw;xwp6OgoSe{Z$`g#3>ON^J(9#)4 zl5z~PPG#ri!*m)9!)R1H;TExyDv!2|X>mJF2PNnf5&lFNzE@9DFISiF;BW9JmXkhm zqkCpmGztV{miUVbND4+~%zY}&L93EfxX{1?XaUU=@5L9z*6f&K^8VzxNL(LQ4AhbA z8cUq24AUAmF6cYBW=8XoVd^`M1H7_k3^A*6VS^6AayXL{jxuO0!U*7KlhsEL024Ut z8Ln_b!$0mfx@2sAa-PS?n7byE-!-LGRV?)Uc_g`{IK?uP`dbo>;>TJL1ewa^1L@3} z*+~vHnmuE}Eb#1n1uH_J)i~6kN*iC<-Hbu8hg`E)F5V@jJ~KHvz#fZ0oF8C@OxQoc z4v2o}6A7d83Gb5$2mO!=ERs?xpp!Mf8cUpF!nBlhCYzj1Oyp{@mBBPSwHdQF-y*`(4&sp`AEb;i*sx z0&6pODb)5=!tOA$+`pG(As(eP>{vCSy`8zgrJoynXA{#kIM7>M_e75}0tn1q(rItSN(B<_+j$E(rGk#a-F>%tpW0CvGPGZ6kH85tE zI3Es>$<^80!6L2tDXof(uO54oCc=pYzwJ36CDJ;)NBQEbfVHAH-wpxFv zDcjG_c9grJra}NARGyVf^uG0pYOX%7jh3Pi8br^)S zE$0L}k6Zg>HQW-z&~m_Hxop`qAwSdlnoK-N1uo|$j_>1I`#562W_PjN0VDiY1D2~$ z%5h%<)?95CWGZKX0Mcac44*%Vzx9Rh?y(yBC6} zW|9mQoER?#vIoC)TTS}zfjkj2SK3==NiNu$_ZgRpuK15ny>|-x)Q@W7mSo^K8Fo|* z87vEuw20>FaJGV+b|wRy2^0k!nP^Z{9vxf>J-CERl%Nl2F$+0#hiaU?O8Ke^=F>+rGuUYK_@nIDLSYf5_QCVQq{ZBni4z7|batO7 zjt1t_-*G81`IEsW3%JPNREee3EOkZ)`}d&%`P@l^mdulS$ZQHhO+qSK0>}si}0jD_zOze@Ug+yWWSe zJV~Z|zGEgmz)j8N%5v)Yv$=iphCbodYgKjSxs=9|@aV;@uHrZ%&%8hU%|AYJ1Nd2o z@V7NbYjx;g-jiLFH*Ku?@3sC^;+IT;T=?-ip(O!ADUINK)u>=aF7 z1$A<;x25R$+=+=`}+S7K#y^#}|(cX6$Qg8555MRSPkDeN!(@X0$OO`8YvI zAq3D@*X4DyCM9vJdk>F!G`LMe%V5m)ePwDlIB8eHG9@%xf8$z2AX@Xa9K9KHln7CL z4Wb%a9}V=6LkT{MVP$v}(RWziJF}1zBtUzn34j{Tk5t7xnEzkvR)gU$F2{sP!CG!| zNeT{y1A(m*fIg%p)amZ|ky?ndM`gg$ovwv$vT z|DV(^@_SFm(NQoj`$8L`>Y9nF1*E=2bD|cSo{@mA(Y-o7KFu-PYBal9Rq~ChppBQA zZdlcees#5xqGznE2Tk3{L6ySje=2V+89N#0)7YMqcplZmm$#gXll*yHz|?n(1Il~i zd=rnWkU)-HaaH9~>Oz)QyC{~EN6l`AaIl?IRBzt8)yu~d1J9}ggy3@;n$Q(I52K!Z zShH?J-7Lk$k@u^ z-Gy%9-r^*u%eR;!J(GPOhj6u2R8qVV6;6NjfRZ~F65Qy|RiF^b16R6oqJW!qZu?JVqTc?^b1^8@l`ELt3e#Wye^Y5eHX4lyh}vzGc$n961OYv1vAAl@2z%!a50 z&bkswfb-!@^+dp!0hqJ0v$^Q*WG_iD6s&TLiHhM= z?D6#lHWI$$25nqLiiG}NK?@nUCjCQuq;`_db?eiyS<2ARY(dgG%(6VTji+dCA$WCi zT_>t-vTSA{WGpm-Q%wKtG(bnodNbPcKUkz_*ifSB>daZvSZ;|#Neq;tf=$-qBf-Ye zLy0%(>qrgaq9cb+!0LauZSyvTvy3D-S&SUSyixGkjq{Et?|@~ZRCJp&0O#yGnW$>d z%KzxyrU+klFU5;sj_)&_Bn}ZtOq38Qi)VNYO=jQ?K9-)X;V!wwY6Au7nz`$44AdKIrTl^BU(*IOoD&7LD7VnqOWn59mr$N~~(9LLK$O+r1Z{1HkPGSoRqBt5ki zu@pg+P&JF#PKlA>k_k1Wi2Z{a6v=cMPmtI*NS-wSrti2LiUuC-WZ|8(cUm~^{%U{t zn!*XBL6))JYMwKxXaM-~!u*4GPrK&;WHs{h#BnuWynOp8AbWX?i?E^@J8P`}(ole) zsqHnjY?_#^H(Y!|9Oh9qE1HqbRBE)I5+rKz7f+gxwh0CvqnNbJhV5*L=9rYY#6sdg z=Z~th+9+^`W}o~#z-rdsWAJo8CJV}uu9RGJ2aiFnr14j`6{F_PW(FK9Np~O^SQJ-l zt4ND!r|*7dBUIv>*?367+Llr$tIlR*;IQyU(jVtms&ZUWg?X`DSP3Jfnnhan9M?`A zGiE{Fjw{)ITX59$#ahUQ)5EZ9(HtgzEpDb%MQfs)?o8=JyPjaQGY(kSPe$mc)a*_` z55?&2Xcc*Oa!nCK3~~$lNYidtD_*tX)T*u_8lSGp6@!?nKNnafOqtKrdha|E+Jn>2lu&^+|8vAg?{vopceno%JLzPPv zQM1i}VkazocN9WN|Lne4(w0@L*~ON?1oSZq#WN|2DlV)yBgs=%M0#@ME4L!9?53C1 z=NlV?mz*p=dL+7n_!!X0%~3{9{uNq}&nV1dtHO-jXYqkEr-SuON_Ea&EiZpvD%5DZ z>zEnw1QzX{Fke#Qu6r%*{)oqvv+@`*Jh)W>y71x%Pm=?H{nF9|aDQ)RKB%LsUs#(u zdi*4a18I_=&ypbly%IEq783rB&hsZ9Q0PU7`Iz=alwTTiR1lOQ6Ija0zR&U@Q64AW zYA6|z#r!UMmV0T2h54FI7LBG?7ha5>jQ%Zgz{2=7n;iL_xXXLfN^DiGTc7{(7`bK8 zXlcJ_aM1T*kLm{)HT!O8?T`eV$-vk~%PjS9d07j?+j{EIlw!>OxD1vZuG&*%1ETf6 zsODn!DMk#83ekfv+Iq`+LPS7^NsoF~`R z<_x4vMe7myq~RZA30x(T^!r73A9Snzjl?K$(?_F@k>L&N|7*SiWai~#{+q!mP!d5WBUH*v^2L zmCPKX2`*!E7Is1+R~^4aUeKw5R2S}ck0ymcWPFhxLoGLRU4P2|Spi!OIRK$)b zPrI$xle(s)wTHy+8BAbeh5w$Z1xzWEN}!u?;ES+?b-e7p4(&bR-$p_-e1-N`bgm9O zbf=b%2gGuTvaNKYOARS){$4GOvm)RRDipd!rx4&y~u1o%F8Ve z&5TUQB)xKjRObN?jt%D5OsiYbdD_MLo!^Qujl#iZN7gPC2rw zvpwRfWo9X9QuF*+ObZeyHG}sOsn;_IMdN})*Bh*c)c#XSjibbxjlzN8FLj?r-ANWG z;PKv|jHnSng9a}FhU=15#>ZR#o8Sot<7?59s-R|ko#gQXdaxuU}ho!|MN$wrbL z;EV^LEK(n@&T~oKg^vZR_xj(m7e*~OOON@2=t~hNVG}8($iAF;q@K$r8s_)Zkt?aT zkKZUr(6L;drdRRB)N@xiOFI5vlfqROr#oPrat#G~2KnfyyRfrgSpHv&xm}&L6Tu}n z)J?R}jROocJL2bOwa+J=y5^(W>P=N24jj{!>wR6s94dXi^RJjOaNwX_$PW+5j|`nl zXj#lJOHca}EiwM$BE%bT0caW6?Tyx7z+4uc`(6{p!I^OpP>w+rBOWbZ6 zH@qCI9lSG(*r%M1>(~tSZokRBvo(9hrkZuVl$Tfd*qEE31X_3m{8Gw#?$**h8~17d zWsE?98uu1a?9Kxx-5IQ5EJ+;>Tl03s4%qh%y)*$l+Z~#KE|Rf3nHrvKQ*vD*aWMby z4UQz;;Vh0W!#m-$MHH)wsjKsf`Fd*mhwQSJCbpGszZmkK)2kuA{oW-@uRq=WV^-3h zNt2cayE=Za1^rNRWY!L#I-W%vH}w@Tv`wr_9W5RIa3nlSzl8vw7M(xPj1V7xp*MBP z0bG5xP^^MndtlezS3llrsc2}UoJme~Z*If*(e60un=tc!;>iXDkYwKmlRaea3 z+R6c}id)EdsyT_tIZp~FVNhII)o#W&9A*V&vDQp~1ObZ9GKtb71nioWYj^V8OqXSY z;npl(a=5rp?|?a(tigGh8`iKY*x0A93txWlyEfB}B32q3q4#~E^$k1piLmu?M;daE zuRi@uzTBfQzLAFO^>6I@yD5ZzvRmDkX%)J_U!8L-AsdSLb#NqlnQxY!)9&hcxtf6^ z?OcRUmajL|`Fe$vQC=`wg!{q7%x-%)6KSp{uQ^&uSs$F`G#w^r3t8^X^eiqm1e?7M z?MH0qDml#;o1G5rZ@TIA#u8;=&H19f=ef6ovqO9&36AbA3+Cj4Dr^v3)4bd!mK`J# zz6G}Qet^onm$9OKmQiXT)>#wFqZTy_bn`7TIX}d?*<@bUJ=({XZsNJ$4~-Pnd&kYy z`%P{X1$DzJWT~2C-0t4@9fe|1c{JXM#c@A090Icxr2cddp4X)5y??CZ?yuAY4Yt5K zc|EFVmEH0_78q50ZRLhOyYao3(2XN*npvDh1ngRVmG&bH1*WTZfi%Ar&U!GIp-8xx z^cLI~dRj@)*37emCJZ~&-$FQMT8!8c>6jM%vN%=SBP(R zIdxdPHo%p!&T)T4%!m96I%EIUO+j?05uK|N=}a1}GSzzBJ8R-jn;>eHA~5u7_~V5*WQA_fwKD4~Q?F+% zDeUHy=Q8=>#gw+(%dFX1F^FZA84L&Q{yJ<<6Ns~-zY{U*w`X7D)6T3deqf z#1Jo8d3Q-M?=G&lfMN zlIyt__p>MdwhvxONp%w_!ok}K@G%$ri~=-G6g^Yeb*Koe_f|SSRHh5#LC2XnUCg;? zM_C>G9KDY_h&{np=g2l<;momDfenzCHbg#Zf$-o3ezTM6Pyri3bOxz7Y_4oQ89Oct z;^p_xbfO5_4tVX6@yei{4A}2mEEeXuWj$(6?ed8eFQ4$JEiDM&5g`9J${%v*nG^ivP^@Hv_>eHTE%(iWsQCki+6x>f~rM4@#%ZWP?@&rFZ^b4KRqE+n;{y`p;bgT|&2cK4Q$s5nTelAPe2T*!aBnh4BWG zCn!I0?>u+t9FtTIuTb}pH$cuRT~9P~OeY=*ZrLY8RqBZ5D+R4Rg&B_>ZzAtp4i(l_ z-$V9ZV>F!|NfE?2Y@?da+pRUGtx9 zI@y;URXw-S`|+QPsgeGTZD3R@H~1SU>)x6|uh*V!f}P);XHOy+&9o5W&yCqLXDoAg z=891enX|6RlE&P)ygjSgD%sTL=F%37OAK^A6tTgtngi0tIjQPk5RCKvUx)(-*MgBT zg=*PP$J1O-hJWwfI_L&w=rXMJNbj;<3n|g3R=HZfu-m!v+f{WDo_e!D{T1$=dN-vo zy4;pE>TCgGe|^O06PKM#RXxwuy@1q1?z43(|6AL+CSU9PczfRcP1#5ls-{X?2ht zjf~fl)l)$jfexxYNyPh)PGM|^+VCZ();^9Ij}>oD@6^AqzyvKZPRrGNYbu*+w@2J8 zmvGLkudC{%j5!st&8y`TEvl}{9?>vAg6`(l<~~r-wik!QMxUOPz%f}(R-8s5GT2G4`}25!uh~$}dfr-SLIW_lq4HO_g3~ zSyVC7#zQ?Ccq`O^)*kA_BBfE`KB)`#nIT4;u}f!vN3mB`(wT|sNn%oHQHw%9-;p+uWo~%ix~w zt}ky7{NO#q5iU8~{zQj7zSE07R5*2eU#^FS8lPC7mL6&JzEqDJKYwP-EUu6yYItxP zPS8yA)C8}6WWk66=DuWG zRH-uEDMg)#b6ZHclvvM9ocQ;S*nR1i|K&W`lR?W|uC!Jynki;_tMtCha^r;SQ)*+K zTt{qc=C)%w-{VwBL6`;udY7aV+5nQ!_c)D68Y110pilPSmdXZXQ5wQL0H{Pf&Q!3U z)>SqNVM)ir9%xl)Q~1s|261pi7(#GShh7PhLB-O_LHEAy@mvJ8+QAy2opabQE3v4G ztDe`MQ_(G#aOFj{v8uB4rBoB~%ryiG(416q6}nc^Mopd3t`ZR1o#J8vDHMgD_DJNx-gzPI=Kxw^eR;C>*R2K=#=M-z ziv@ZS?#F{VuaOS;k?L9@(u7uR&>yy{2JMmuPU{${2JP1b7zMQ|xYzJGaPsXPem0(X z&?uGHnp{w2T;BX5>2#)Qg!DZo$(igfB2d$GT}5lcf(mIxH8b5CF}BcaY-RzwSxIRl z7i(M})`*oR)5>0?18p@*g2uH%)`Cd0LNYOB9V^05+w&i#rwz5Pf|DE+Xr$~?2v z$HbfQz~FR^R^fS2xKYa6`7ZbwJE^^qvqommiN)4h#2vFMKjZDL^9|#%xVUl++aibz z)5Bo_;TdQUYMJ)K)N0~c-q>ow^LdVWqty`m#mJuv+J5fJI&?wHQF>M3)|$(p4jeZ& zXu(USL?mne>P75 zx_pG-%_A>2V78}SCb6M=dVi+u4p3N^0Ylb=quKyfXpS<})?`8|RR$92uRsANwRBGs zH}J(TVmv#{&EF$?705--FV6tVfcs=yaGYL)7Wa=;9pbV<*|2X7-pJ2u zz}O?-A|G&3o-X}|2lbve3^ahGL&_uObr)i*mUX%t>*72g!s&Sl@^i_)@4K2I2?eza z(uA7;7gZU5t}6jjg3os z3|bL_G>4$dyuA$i)o(Ar_dD1eKHJKx$p%S!er7#2jsLH`0zv^%1g*CJZzFp-nhb5| z630w3&2tLEgXoQPhP_FFC;)cyyOVY<bY5o zuuby0ovrK>LLr});Ow8`4ISC&ERVysBv0T%J;`DYO+mY@=(SkJj~T^<8_k3rt=M)a zqyjttAKo*oc;|EMvm>JOL8)n@Au}0m9dhUFhu=$*QMY{$5(rS-1?| zA3wnE?^}T#Fn+ze8mc1b9_Sy*-!`c~@jy?)^-a;d;AeD!=#qboL7d5OsEa-aU&WLY z$|ldM{CiN}`yWtXfjP0IYWc|lzh~ckOr9M0^P>GsQ-1skg=z1TUggFEjw=Ew3qBFL z|1H}5|Iw5s&-_5tg0+sYz||+ogR%ANB3!m|-T~xd4W%di#m*xbDv|>=ly_%a=My zw#14w_y_jPKZ4|_kp#MedR&lFsxf{dk-GT*eaTqY^zP%Rkr<-Ps^4+YEjkzKd1Wyb zwydwB&awg^iCqtA4Z;;DW7M?Q>tGGH)DpCSXbtua7mx`lpE;noCymVtITmIE=|ELee9E*%S7|K6t?4tl8r0yttF|MsS$9-O(f)59qW6Py8EK(B^L3Je?l{2fQV0 zu2a^(=rEr-?1&k9hZANZ>C6Vnk&ut9@76aXX+h~!KCi@0wg4|KKUaEuBQ3E7smBV2 z@P*>wj@t7kow_OlX*x@!JVRuIln_hOS+rJd#}R_t4C&rZ)b<#qoFjOLlE(?n!Lb4K zE{3U`F7bt;D{X@}LLM~1kzbV6I;A*|xcnQreAG!~ONu*bhiKeG@+Pf#ckpat7%lAu z!tol;IdAE5v)|zYY!gjHjw?9V9_W6*yn3|cOLdNel=vHBU?Q9Pc%3M8G``xW5jN42 zxW%E@8@4%x{J3m3Kvx`zQ#E-3VE|$&UdZHI(RvZWd>p~^H~i}dWHOKQ9|Q2k^B(HhV{&~?V<-r7$U;IY zYKKwWY zuFzKwKTonITl7Z3m`8<3M$&D3yxUP|=Di_4rR}(q1SeypJ16;N;Spc)t18NFQ!_YH zX)G~s3<0cWtl8*st}KBZeS~$-QHJdiPnXz26Gl6)uBkzqU&m4?{KTf>C(Sx%o^{Ph z{E_HH^~eGq^+tHf^+cLJz>Dxjlra~oo^P>vm{_4A+<3t{UJZFB+q0efQ|viOI5rBFVcqd8xr*uvlDuPGlX zZ!hhY9TBSrbL^CruDr8zv?A0zt8u0ks@c20QRci57bF~i$`h=gi*b&r3qMT}(*q|` zis&i+_7t8>r3x=4c9Eh)kKZO%za&$?LM@#VJ31E+btk5+(M@XfHw0HZX2XK2Fy?8gdvK6~dQ~jbvkwG_;9eG9snH5b3?kiSp)vsKxkmkL$$N zFq(LbFTx|wt!tEliVq~0EsAFLuCR~tfEbzfCq@;OuOVCJPp=i)I+TR!pkr^^>t7)% z@h9nC1j0KNQfEFLV8r2fVZmCFGREMt;7fvi&wi1%=q|M9?5K;5qm+Oj5uN zeG8yI1 z6g;d#&9H)6-(6hmV+WhjaG0w^q(MA9)cQy=QK!^jZF3aQNHJ^l6%-VQ@GE7NfaK0yt(94 zcgjP5$i$MBJx2#UxxdXi2~^1oSOty@UmSj@Cd6%jb~~W2dwZP)@4-EM3%%h2#OmOS zDaW-4iKOkr0zq*yglYGw2pWaSQpVPx0)(T(#03e55Qc`Sju3*#PsdFk+uefzbgQG& zK;}!h8K^`if&$n6BnpF)Bo9HdBZv{nBoI;&1T$X2#EAa$u?X)+lRPW{XiX>HC-L7I zPjqKMi62WL_Ex_K;vm5h52H&E;0;tS@E=4IW4Z~Cr3&*(1AttQ7aTcx5VqC;BH5=ZxnQ!* zmQJJ)>EJ+0NTxx%J9^6(j^)w10RRd3GC_(sz*Z!JoP(j5LYoZWWCX-NXc7T3fJ!Ej z9};>PQV)p-2h23A<;MZ91}>#^C#qMR0;M)KBw)ca2e|jJ7AcG-4>RW0mj$G3!T}!_ zvEI{%(}J2wAT1Ow5F`L48IB;zg_%lzM4QwCBRe%ilzbU^3QAtWKXV7ObAS?28aTM`07;3~V>K z#*d!CAKRWfiYCx!?+=@g0q%Jes7$Xz2naPTs%$7kfFvxb8(zS1Z;go%O+GkEg|cuj zD=Q%(;jU1Jf7kaV8;MduB0G{gQpWCp;vJz*c$+~feN=yJ4$fG&>+v95p-chL5FEW< zKp{aC&jTt6qENzrfPOA2d;ma9<<1^X6)z0@+6aF1;T>jE#{@jtq$c#ZSu$ zy8M?-Fkr4P2ub4>5`W+S(}@}|&K{Wq3I_?Jsb3SPu`~^^URklrADNH8k)%(V-~<9$ zfb&U;4iPwS9U3P&gHfL||ITfJ5*b<;_s(CN5ZOMtV15!HCR|q&Ssr=~8UP(32clyv z9^*tZaYzs{>$B#0O;QOEAJ~P&AN5UISsakw-XlD7EZaR-{-Z_&P&t4?QC19xh@Y5M z7lBHiAl{@8i0F}2e2a+aH606lxbc`@HKHA!+cQUh7a5wHfmb4)ApW5ph*g&;%1KaD zR^L<_eu^F7wa_3ylvwa&wEc~kyK{+&7$U;~li^Vsat@LKHr$f1k8^2jmx$bO!mfU? zj{w9W7H60|pN$?6z8a_imU?hlz#Fqq0K}1BatJU75gS+wFfQ;oo&;?#4}$>;d-!ID z{qt0l0I1>E5mKyA^dN|8AK(swYE3d66(Ydo3Ndom9Gbza@3Rq@5)plvv;^Om9bSaH z*o(h?-*W&qp~p>~0>Gj2C}uA4PZau|KN(^nA)J5;;6KEXe2_SDfZ&5WvjO1wnlOpS zvACIBG5~Cj|A8YOP%2Ude}s+SpGwAkKq-@jCv_}TqCdJsAK17F%;L!r0rcF-0BS&U zFexTvaYbja^*`)j{j;d~5p24c2UqIj);s=K)TtEl$qECN`Q$Mv2@6alaboctsjo68 zjo=iNLTi(#1nD4sB0em8w=n)kS^%Ji3*YL9Bw(P0j0Ff_JlPjg_aRr}(sQkY0*K10 z06fv40hlmIF{q&P-vmfBP*BAS-VO+)jKKm1jD(!Pgm7Krcdb{286>wl`xI~=1AVNFoKE z;q?Uop9u7z&YlVY#>IIBP)MorQ8>bdVMhddiuDuuKy^gGl`+nm@y>~WD9q9K#DIRs zs3~(o%LPgo)nVp_0BJC*drARRp%6l^l@Vfiv!cKK1PW3 zp%&nb6hBPvOX33oXviAf_l&#x`Ti7`cRL?Eyjk1B2AEBjjPt!R`rep)p|^hjO}oFn zHaRQ2&HKds^}8{n=zevQJ3P%DndOPe^TOIKdY|=)v3q6lta)^@J3QSPneC4GeSKkd zPU&?zyV+>Eza)>}=ldCa!nsb+%#P}Go^;{lj$(4(kiCauc9!UY_iYUvT`L3Wl|7uk>Sq>n2T z(-5?zEW@I#-&%U3E)&g3HYkHyq&pKVWU%Fr*Yu2LVM>WSkB$q<1L=twh$2CE1gZr~ zP-?5KrbSF?u}Q<%wO1)o%S*`HKS|TcJs1pXR?gOkX}LMEtjthZscuGakN_;v+C(PQ z*DxRx)c84VUs1&OLeBdvp6g*8H=Z$MmJ5VIVkKY0jxz#bwjO&<(Sn4_sq0~SY> z82%RodJX1$ei-h1UlgGqs#SPoxt{F%kUAjzbWFKkM3Ev`I*=w58)2j$uO7R9`k$A- z4U~BYy!pVn*Dvb$lYx%0Hhh(6VG^Y49firHpfs9zLRf!~G?cKx!pL9`ikny=-TLx; zhV%nLbf8T#RK~YFVd+BxXLdjXp1FQ>Xrv~XX+6~0s>*bqzOtn*pS{=eo#VoE(M`^R zqFs;B<|F*}YZj{>9_Qd%7o~U&gZW*0)Zt zvg{hiqfj)DU$aDN=lpbILq?3{$};X&Q_}C*SeLt$CxJW_r{JS$yRGT`b~cq=Q+vA1 zik>q(PPWT}(QuLvRT*7Y8xb#E&3R%G9BJ}Al44fte)qA>@X{5yrT3?PEYPm&0QX|W zP7_>9Rr(0%k*IBJsk&fngr_yXM zk-;=P=}yOa+gDNjhzh&0-NI8sj;xB5bQoQWBx~JPpCuLJ<_+Lu*pZ>iGC!8hSl<~y zlzHDtU-3!MQdkA{>30wFNk-c5KlB)Qgqz&(I$16@a(HO`-hXJ&^+Zf zr-ichyvorV3+Ea~05q|IH&?bFJ->@d2(IQ8Aeu^wLo7>Hl(J2z815>PlRB3Tqow{7_

R>C^(UeqdKy&+TJm4ngk+{QwJw4MVY&w2zcC!A;ZZPU^q&Lr@r60o&{yc@3LyS$4s;-3Q z#N2F=*+25|A+M_q#T4xwS9<{|*{DSq(~hCY!{}cv8YcQrB`xW=%A9+z1?8`sq>lHh zkdEz@gGe=pTp3p~_$!*-^3x=Cxm$d^j$&l31J6yJiA3ptFrz|Xr8xY_pr~gp(>z~t zJs#?F!<&RJr48r;*(jP?Iy06nm2wc;o~O@9@|tnIG~X=_;?1U)_~Y8OfsRs8l}Wdj z8$7R!=kez@J+m5b^Z9RQRl!N`>-EUa&;md;-AZO~5Suwi9|V&-lbel`Fr^zh??p|< zHOKYR7tq1Dw%k8VquC!w^_ZOtf9ELu-+KC8yC-&xrkFAe!_J;gZw{JQ#c~awbDs(o zujS3X6wW=JY)f2<(B2n8jI9Z^69+WpzV6kvcb zB6cy31`%DIg0~eQjN$$J=rOdbVf^_g{EX+K0{sRB0WXOIjTq8xT~ySMJDpW0<%i47 z;hMTI=MfgHh4k<Ynr%Q-UDA36v!BrAr$hMqFJw}=g8~Rd3YGE z9%@e9H8nIpeN!v_nuw$ndNyp2zq+PQ=gg^gSEijlNj}_8Q==NIM*kDO_0V>0Y^y7= z%br%1-QN=();w#N<(c8^;+aaZuH)C!b6gIDNtNsn+hUw@Yigp|W#RG}Tvjk|oQZ9y z3S`q+slmd!?%?wV`Pw`XzM5>mX{j(^k3*Iv&8p!_j7_4@CfayuzgJwPT2zgi-B=`~ zy#)QuP~nQRW#>Ni7I+(38cQYoX-KQi^~-e+%zvF3kJ36P%RoHvnRDal)~0)1qf4-p z8>TVb)mC#Z^pJ=e>aD@c+tqk>g{Su9OzJ2p(sy;Ld5Ne)-nmNbw77xg<2#s0V0$-1 z%jlNOiYUOx$e^w3!LhmK;axbAeQ9b(UYeHejhlGR_T8_Dx`lcyqIxnjbLZi6*lrNi zana}tJ8e^*t*QYR;fF>EIGrHMpTtAE4K(ase^skzpvbLcK@I;7z20g6CabTQEPLaGs}@NTgoN4ZR!02a%D|eA z-L3qK$4(Y6hSO?bjct5pENp^qUGH5u>PAewtuS`1dMtLBzDImr9ilrMUUePZAw4wf z@`^@rdd3$^EAii;*B#$!rXo>K4V$yLSxIU^ zy^O}+ND9_6!Isdl1EDCpk~z+F2V*y5NKLFx(krpV<8_X7+&TUpuD9yBwW5y;{$6zH zLU!|Qb=H2(&L_*whwzVj7MwK7m+A~7E1DnY*QYN>hF$$!HC_uvWX%gEkR6T7EU0)^ zhd5b+;5@N87d+Jz=np+*CX!$Fsq`MK{Z7@=b?*&JO{6ZpP<5Jb9gJ=}lB;_n5>IJ(P+V23=ynbv~xs&!&fjzQ!!Y%Ea)|Omkpie~Xke z>9+O}osVrKw^@^x)Wc3MSJ~Um$udTAUz!m#OuOc|Lbx1rwZHcU7d<|2?Y0W-YYJGV z8!;I@TX%#<5;c^*#zw@ds$M}xS<>E}%SzNsYOtXmfA26Ex0^k3T9!c_N7rJBbpXvA z)M}9z14ZK?>tiw=*uUOOH-}5iMx-nkuTe5ZXHB)1YsT4aM>*wL7MaQnS-tYwfjTQ} zvwoup6X~KN2D*2qzxl}Y6)-1ZFKk#KlEW`a(`567{g z=Mu9!!&^q?dh)m%4?oArUUuCZ3?j)Iv3UnDH7oAJ#H{To(wo1N9{ZWxf7|eTzVreO z3uCB~6%X=BjQwx{0a0Mz2(K**X)uoz$N)t%|DL*0V^;dr;#P`Z%Y(K6A8oy$A>}JB3P)LFgZ#KjwZ+3uw>qpUMvkhVn5T^{w2-Ean!jD@e*n{$u*6u z!Y~S)J;n(_xhd3pFk6Fit1GI#4$t#FpTRoO)zLn@!PXkRkz8K)sUf(Sf>DZr`?=x^ zkDeFG#T*xdmWW!Xoi7n)61jmM3IcD_G{^(Stdc)YX z-j(v3Y{StsovVqJ8;$%)+-0+@t1TVl+F|LW$7y3TRi|av3eU~6Mya$JUp^${N`#1UJFs5;-vr(+o?cyskE0--@WNS+MgE<|_Zl~vJ zX7Q|XJJ0TVf0s))owuy1h3W2JKA&mDck#r-!2%wAlx+0MMbn{O@$oF`l zP|8iKDeY-_MpmAS%UAyABkC0X_McdchF(==wQWwtpfKxS-SR@4%d?z_#~yCnltUM# z0mplM16a-V{fSa=6e|bq9g2yAP;UOhWY8pVQ~B?*5Pp0cft5hx%Xacm-wcB=k>*J$ zJcSbsJ4h)kg%j^@_0%`44`{Y-CdP4H2n z6TS|_D6bS14d=8J!^mE59YnKk(Yn6!n5M?HGX0$rl<(tF4+i(_)lboN5rvagqaDAq z+zk2CUY9|uei_-E7Auo|=AFRfN5^l$f!fQuY_DtkpG-tW+w-G}o4B)o1L*`n9{Uks7QIE6zi{kwdk#xO==L z1c_ty3y2}5NT>~_&WlIg&zSCSkAV=))zbroPQ0tu%P#xN=lt#Amk^QuAns>fi_>OJ zRwS95ZgWR&^ln@HWuez%+rjaifA@AfIGMXrkS^q~PtG{|s-$gyZnodY=bPIp%XX(%vezR76qcr%U9c_dFa;Y(u;ZqBjCAZ9I_&tR&hyPUSI z-s-_tQ8ZY6wlv-iG+E#*e4E#_M0GJIG1FP9l4@e%8#TT5zI`8wKO4D;mw~PGbxu2Z zYQD7^TK2o7tU&c{l&^-Qa0UQ|4qK$6E8}EVt|)sdB~ok4>1y`&P_rz581-3BUgv$; zEbLT!>807z*Wc|V4H++%#cf9_Ndt9iRoNUMM2gd zu0{$o$uS+N2Q9_xL1O+Rl)^mYR${aJNN!?sQ_Hq~)TIt&cJsv7KpyL?a_>+DF+o!AWl1=}F z>CGB_zl*V=7A;!;GB#=W=*0#1R83!CVxV3fvR<29R!O={=7v_+j#HgdUcINGJY1|M z%s(u6#ifG9;5#EZJ~vFkchu0iQ7?u9 zj+mFN4Q^1)>~9k$R?Hhq$ySW7L}2)}G_v--Y~5gz1}b33G@P#Jvd*H1DLbc zvR*h{Ql`;Z#hub$kFHf$b6vl=AGm(|B={n}tD5yr;1cWQ_V|8m>Fz4It#@!aSvR10 zb(SrXTDslqy>PQt=g=S3YUxwm94$0+2+Sl*^(TT5A8bvu_nVnrnp>pSMHr$lbwSx? zKDt^hS4=HD)3mgpFJp~{k&)mOGfc~Ewr|U3;438*SpLgiSbzEyON`0mLUlyX&1t{z zbt3-Wi*EX-XM<(Iz({oezzV_W@30jLU_|q>yM}Iu&kQ-x&M5t$B(!X9klEttT6Rr< z=Y51CwdGUJZ=H5(k&&pH$My%pog`t>%9i5G=2h0Gr|~=(Rcfk%(lk8@f4+U}V`IbP zvw5Bw1?Am5!}Jd9T+i2c!`T^Wumsmsf4maYE?rnn4K8I{6E??ny1S_@9f0dC@MTN= zvDkGwX=vtT>{uEX-JQK-ooSu>ijShB`WSy_d3`#a2toGaG0^pSK4%ylU|NOg62qI> zWboC#XYukh*NR^X@gP}wHssjfn@`#yTSvX;qORrw!YXI4Nvs!BAD9aMAg^-5?q(;} zh6<(gb#=@=OzZ%y;uOp4Y*Vmpe$XXe(J?G_&EN6c4)dv>=5?_77;$_&Gs7$}dPL^i zTeL){aQKx?~;D`Obox&q~D8~f%U)cZ0x`F zWclxOMyCJdV*dT|e`0JL4FAi*^xtnV{g%VT&VkRw^k2D{nOX7K{%0+jnc47}IQ|dj z(tmJF|9|EZGYbbh>whzs7#P^;+3Eie=#mzMrsmQT?@JdOR0G3gFFk#4rye>!2Dk>Q zD0rkLgxVVEv>*}zHG%lE5E4?6wV0fRMoN2Qdim0Fqf@FWvE7R4g-XG)dXsv~ay4p- zvQ-B9G1p5LhA!gb>a#`9w|8dR!}rTCY^m)eyMqU)2LKp=iHF#$Whk&*f&b5RYRY z6ED!|xX9OGHcZ6|5540y6u{FAAi9I{i`7kATayWJZ@Rdz%DhJhS36I3a>Ji1jM?o; zZDjNw6BmPS*awa-i)8OxSiSlK>(LLahR_<;1NYjC zDJ#x4XRk+A3o5`J9ljqe)dp5C1~Xb1fX(etxrO=z?^7Ct#;wpF4Jj8ktBYNG@od2i zYxe~I0x8c9B`tdbOIQk0wY+Y=Ycx|pC0RW040aVr+A?#<|=LFQVJxf z1@1f8rU9tKBP#jhi*oY0BS|9Q9cId00a05g8D(>l#=)g$1Zg7wotzj1QxfYeG2LQ5 zhVelC){8IhJBB#&@$cm|S1|H*B3t_aQP(%)!<6umLsXHxOnEQz**p#-Hi}t`2fA|} z%CIw%I$W{YYxXIYibB%<61fP+6Tbe)cOr(s9P+9)?yt92MKSd=|T3k z?@N-i;+^Sjd}tFmOZ^wwMrCsF!5T>3i%gsL6P|T=?UTkbv3YocCrVLywNwopYpI8w z#p}^wpzN1G(F4k*Bw)J~XteTgT&$kL71ak4f^I;oe`XJLkGWMq%m=G`0yoMt@Qf=+ zWf!#>(pu@U8_;7-e3gpEzpKAulrH~Tq88?j_L=86Vo(3sq7`of7lk%xWawoVqiEa6 zHc9rEY2NR{RA=(NfGasqEHzJz0KwMxRoCcBhaE*_5t4!IhSoV8Cq%eHd5^97QS&Sy z8DojO9lH7YmYyTkuf9rI8I}21jsL2fwHxtim${9*=<$MQCXfl}^EJYqS?EIsG1JF= z3FwOI_Jvl1^#*cLR1enu`f+fwj*I;^)wBNFSiFIvepal0OaE$#e`nSNmHGb_9&?DC2Yl88#L^4@JN%>& z3v&c~8)skjVJm#=E9-la-|mHcZ_j|Q(f@(W1vehhEDh!~4IG*Uv9jf?^mEVyyEGz6 z8%kqhq+;|+W3l(wB-0`H8G3kRpg;^$k0tQQ3{p=8i)BYrH<4$YhhW;~K>UEN`Fh#_=;?lh`F<%EzsY5+ zzFE*Cbq9h}$tTl78Z41=qdkyAL<`*kfLbMxITJt;*5#-Sq$RBtG&Vk?jyP%{ZO*LH z^|IvN7;moAx}3PQcmDH1*%7xjfvXo&k5^Yh!iPu_)-~2?iJ37nzQ!-x5R>Hm3tHn4 zh7LU45tn&ITd+%~KR;T%)yCH@&DC*xmQs}ao5fqSK#%efVYn?Jy{I7F*^=2>J#RtM zVg$q{9S%Cq!-A_CjPRD3{Z%6Nd8tp46B~0}hGoQ^KqZ;yGXn{%b6YRbV!7RDH}LLc z@iEQeA$4<}eXV3trD=DJF%bahqw!0?T9_w^K%>!|W%tn*@Y1rHGV4AsZ%cA8R!N*m z=O{2$*W>f9CL77RY9u2|LyB_O@>ecU7R&F=&E4Lbr46y)5Rk9-`2OV2c5%tgHOS26 zCN3x?&?X~pp)$AcEQVw8ke+>vE4EQgNIMcQrKXO(*s?zr&CgRd%UGq-VqZD(_p#UJp=M=gs{#;>ccf z(n@D(ZKAHgqgP8s#LfaL(9Em&*8h@GpBv*hCLe?EWg^}RNq;>fe%LY0{#n;VZ{*N zSQQ?)<5OVfRWxm84!3>p9^{)pdUr0@EY4xUA!|r+XV_F*B5IQQY70`M!FcBhW{ff{ zI4r}c2-F{YV4h8uBvswvJ^6Z1K?}+w0Ed5)FdAXzw~CoKlcCw`Z=IrtN){(vntW(; zCas5|?}hh)jR%%#a`fj&O%G+&ajY(;;hH;IY}0-01?8myau!G*6t}8^Si_j=Jedy$ zLiu1SwBsPm1);Cx>qqd+V}LF#T&KevhZc~x-FK=~2OYIbUA1m*|1hpjsm&rLsFRfS83I97L^27{HxW)$uV*51gF*@nZnHf#L+s`=o#Jt?_B)8b{9v~i(nor>e_ukb= zX0-W(Qr26fIm*O1V=FPNURYzWO60urBAmZw=nfTz8{ z8A42XH`GXyXePESv;HP$MU$NBHb&4J0Fua`&$kQse5S}#Mb~En9|;tk7|~D85!em^ z{fw0w#{oKL96^Yy{}lkiGr~6{FQM3g$I@2mqZpj+&}0`}%YEMJQwjEcOW7Uk4VOz9s{pExo!0AsYpp5TO;|3c`r(Y>>s7e3LIGj5tpBcC9?wbQ5e# zydZ-$&R3u8>;x7}B?RTg61M-_^%{W_?V94zeQ>xxFse&g{oAhkikq{8=)av@mVby~ z#&vc0f5Z&_&2Vk0F0RooV4Dp!NrnVX^Tk_lJ``3NS+b@ZRh3o?`Y$8%~IcBj4`e$lGv=gii^!YS02U z3~M7CGxY6*nTZIq?p!keMW-F9oe+H{t7)hU+2Rgy3)qo!XJY-a@5E8BQz-e%F3i$a zADkcQxy*w7QT#kZFB#h|4#_FF*{$gL*{O5K?IrkKS4jShS7JUCC^j(gwO?$#K9(%T z)XBcT#i8#GjJAsiThHH@+YW~o`4+$}rTl>^j`OY7@D91kK}6t?jBU#AQ|w)p2b3%A zNWpnuqkq-ty;ClKva#f?PwJij7QU(xQwePC^V)r=$MeKD?bu?-q# zB9-gD=qjvKs?0Z`@sm}M6jBrWTQ`S=C_hmb>yq6>4L9ga9*4%J@9M=~f!*1Rjkpdp zwMO^RNM0i1XcU#rREKmb2{!zwa1;QsA6rY5sdR*m*o>5kHa$<2DN#$4 z$%3Uv)rTs-hCQ7gP)m`i6jmFj3*7f^yQ~@L1Y%LfkJrbsH@N^mO{$7CUCDO}W3o(G zNqS0fN_t9oS_oND$`8iJm6Rn^%a|z_Q|rGg>CXh7j06G!1X6-TO>~RYh|mbnjKqvU zO`?i8T`Hg|*(L-61%V3Bj5tY_Dl+>|Rz?=hnVE1g7zYa899){{HV6j_p&X*TKUxUf z0fG|Z7=Dt}l%y0t;|Qc-bXC$H17u;$7=w>uiHd-nl$BFn$3K>D7rcZ{NR&*Js8&IZ(l08I0%QzCnX&<% zIBr(5O%MnPA_@c)h}$n3pCEHNFc+qTg~$|q5rh&bOi^$g0wfXuSr@?{!T&(~&ojhP zGy*osD_7qR__z42-RgGuEka+2o(ERH4*0j^EnweA;XQ6&2QfD3D^ed9h!1fRFZ^fr zu8ZQchW`$Hr_`;5{2NN22Jx?&7L5N2gf>(Ot-vcuU&Y?y0)jTd>mLXmQrECRI>gV+ z-9P?0apMn(9~4K~M6St!Gw|31uIamEAU^`>G6b1M6F4?8z3GK)_ne~u+8X!B+C60uf$kJ#0 ztqhs-QMLl?MPPgG{x!xMNuF!`wQ1`cf=g_OmiVeNwb8mXe7|jTF{z=fiv^@>FEI_g0>Zt242{4sB;jrI z3X)7GbQVMU_(?hLx7A+?n3Cz@ttaukbhc+rXgGbPxUyN8Q33pMJ`N*WpX-ju5W! zTTbjwUp=q>H{58C$T!ZtjodfZVGF~T#h?yBPmsHf{x{6wN}P_sH_3g)Xicgzmyh1L zQ+MPi;(f#@ugDryD6fDw?psN!5A2=Vp-F5EK5x_~(%}!EH{{#MutO#<<1&_3*k;cC*FhJAm1Vc!A{htz#$&K51t#|z1HZ?g3j(|wRgya^q2DqPUz0ujpKIp z&QT}KQ466DmK)tY%_tj@57b-6C>y~}DV^iCuV>e_^a-2ej-7UhE6qL2s0xvf*2=|a z`ZeK+iW3`0&Aivd8_E{VG?kq9pZlWx5w|ea>(109F1q`dkDkVw9iKd(lplYuj?Z^3 z$)1Tii@oXxm#dAZbJ`rCs*SUqJzk$3*dOPgw(p1MtP5UZPYm}!?r!m)W-pDe`Q^hZ zjplGXYom|m`u3_yS1Kgk3b%?*C1%Szn|qt>mNB@Dbk-*uNUQkcK-R7{F<&W3He@%$ zA5sxz;C!1C(t_JH-#u)$9p0MGKAo7X5NL@HGzMK`5V;7>ms(_#fLDNnAI=h>;cm{= z+;4-{wMGQi~^d}Gk-xumCBZEhFFHoYoEL4|Ay+cJm> zxU9SusE9~v`ufCjwJFuNY-zc>OW0`-wUvxyksA0RA)IOHlXNjoYy;z8M~IN&|j}@(A9wzdwQ-Y z%6&tr?SRkyIJey3eFeA3osS$n#J54Fh8^ZK=z|~sV3d7F=SFWwaYh9w7ud&^QX9nY zQ;GGXJ3ag_x8f>@j^hZL{y2(j72N(6|LKnwiH2PIiAAl}?twLv+a)`9g2l!UY?m)nL8f1TeFJxR(ZCjdA*K)O zmb4S5Ctzm)FEwS#@L_l6mf&y1+)ZEUL#mBzw#99mJM;dDzNJB27XT3|UWnBkWB7@X zc&5J5N&c}lc2vah5{B$Bg>i(%h-Fj^+6~gpTxz7d>r<&=<<4D`sEz03K9OqyVHh1Z zL;b)|e4_~(HxTY&3; zytz;AR4ghus`%9D!FvJQ9!4nKV3EW-A8c5v`Va;udi8hP#>3cnZ)oqpj#-&qGj<@E z-OabSeqKKlTklWg>=CVtlv{U4(5})+e71*vhg$^-G;QUyRB=xbT%_b)w^SdoRzMLT zMVo-IAD)F#<2#g1Zo%1JY$LQ)%=SgB)|Odi(*@=1VuOKMaLnaDK%WOL%4lb`lZMlM#Q^O3Jt-^R_P%HmTV<{#vA{feF`G5+^5%Z#MgOyN{1(lXb zMXj0z$awWHU!o(E=E*71+OM$6WsBQC4 z@^eqwc#2MR4+;_viCqIZWpfEJRPtljo_WH;Lx$$JOLvsFV{4UNQp9U1S)@wc#s+G2qnf1(E)2BRT&01L{h$OKq z=Q}ZrA-B{1Qq$K$rvu5V_(C#jH>JL+6&NqGLmGo}wW{~3V)6(QEsxjz1z1T4PqzbZ znIM-rLf{_Oo@Fu=NelFcOm=yL&n8B( z__>a|*|`=_1iTgwPEJZ$YEqc191mFuXcU{Bk zkgaYp=UCF;Gje6@iZ+ZY)HfYHe@OXECYnnoP@8VqjBDHGFKHvft58v&7`vq86d=qn z1B8qELu9=^=Tz0-ji{YIZ(OGZ7no5m$)klJAEoJ0!zglBica~+$|h;%RCU2@=_sg< zN;19=8F7=@-&(qckEbPr=>1cSxD>cbEq^edyb_ad zpN%@CB37nReA-~WW+%lM91Ln*%$8&gfUc$2NR1B2)U)8VJblC~R6(d$LA1D@Y3rCb zgaHL3!L;~?LrM(MOOKug2YMvfbK(VlDwK@|aF-rMy*hfyT`3B6$;jcMnb|Z(vpH)= z3aPZ2tjjkDPCagRZf>sDW#zCoIBmdm?VIl-J9s^> zRcm-yXSA5}rDc+L^B7FLPYZ3w@#6}62P8fpnOHOi&ksKfDe*-JbAG$HxexRY)v+Jz zV@u>he%sn(!xgSKf-3PqLs;<`n0X5sD|2`kA68HXqd%k-BctCpSVEMkOBok;V0(Dv z)a0&R$%IP_hRaaK$Ow5F#*is>+6t<@1?X%d$2h4bl`S&83@K5|nm-F!MCWX8n>yJ% zrlK;lYLqVx)5QV7d1tdrMdF3MP9)$T9n)~ToJC?zK+6?192pf(h+*bQMnG9UA3uF! zi%K}DG53G0?@J~-A0JUgz^+ZGQ$2%K!(FSNBM?1td1Ne9a$uu1 zBa612#ofTa&2_sxJ=h8A_t0ayMn?I4IqTNClBc^snGlti&P0uR@Z+STj8j5OuCcM5 z*-$@h&d>T&NfEo&nVGqUyL!0X^Qc?X!~~>;iS)rx2@TF^6>|wEwX%2hX0U}dQ+1o= zDtljBJb-!?H%DK&6s~^T%X_9l#?;+_t7xZd;iP9^O-9&wQc|81C5hKG(o5Droo|$u z?XZ?q(UfEn3-Ot7wHwq8`YO-Zm|mTQ(qM!rJDmDgK;AedmcL|w^-a~hp^T-Rzlp`dyx76K{a5ezmSsEr z+Q}G=9okh6IbqX&9XZ0iyLVd&!wRkmkfF~KS?ARd zvxtWD?E27==$Zg^q0Xdm?Om{nn3VWDhMPiZ?-EssGz7-wWz;LKU>`-EcDhlsH8Cc1 zCKcvcF{UrIVx`R?@&yVLx>Gv!qT!!;^$BnnSAtGb2TfPG_T|T0|8!kNebN5y-H7TO zRBQA?_&D_^$N-&Bfc-0V8|Vy}SB}EQ2Rd9fP5ahyTjERZ=4M)hKEpz5n#5;4xw^g9 zv}HrM6wcjKMWnNgaPmej1Nhtd;G<_r2foxuHKOpgURP4HV*;_+wUXU* zgjYfHtaSQEQgQKw zRjb|78m%RmR+{*~)hxX{G|ou;7>L9r?(b7*_Dh0XM) z3G+@0`=k0ahkzvoq$l;HY16E_LNE8-dnKmBAChB<-GkEUzZX31TH}9cPOH;!?EoAOukie}#=s z4oI_tzt@8>>O3&4XRQ2v3=n8I;V1|u)+v(6#M^mr**MpJbdE>>>v6XI(z<9Lk6c~w z(sA4GJ`)x*)5ztwxYE!OfNfCbPRbP3?16tYgK8lAwDiX0mZ^zTe+ zA>@1J<=@MlJ2m2gl}Y1yo@T=c(xJ-SS5#V7rxt$Z6)dt!eN%;&ag)M}*nTsPmq_!% zZ(=&?8J%Zk>c$dwgW=*@^S7qgBOWkIU88f#+hOisF+bk#c>rY*>l8=ZpvM_OWVfnM zkJ`N4upTyLxoBJKagZg=Sn6F+uYiROf!*|he4WSY{R)ZYzW?et`Y`DvjY&B{fcpqr zvAIW&az2jvrtrxAnHZx5I5yy~uAs+UlNofB;C&FOtG((pBsiIVXf4O+0VGm&UGP|+ zts;$m^vBBbaxBB1;6oJF<1Oqre)Najq%~+(hyJ{TptGu1?Y*J}WDoPsG$e|nkD`Ljv~gd_8mpcv%bkmKXU0_OwRqq# zS;5R|u*!qAT*Wwtx#YJM=QBh?P0pCI zQI9(Kdmw*&WK_i1Mwi%LrRCx-0|uk~Cq;_i8F9EObsV8g+O`4<4h4|U0&YaMQ(!R; zR@0vXIB?R`5sZHp2le+zD&2;>b~I5;&_F^C_v((@n?-M^t=hsB=~|JH&_n1z(jhaw z`wc%9Op5GAF@E1n<^Jb6BmW92W_=7BQER5InPx!*%9}W?ofj(kO!6^UfE`pYk!ZaK z$p;2^b0(#XVct<4sdvFif^|cB$vNWef}+OXbCn8)F$Nl8+++NGQ!5Zi*B!GOEfw7 zizOk`@JYusu%=Q!__Fpsu5x)CpWrD+AyUt@Kpay~N)LcbKSHO6<`d>1+_H8!%XA8H zNfOEOUdhTvAA~0-_d)7WryzqvGRx+;t(#_2Fg5Utmz@dvB8ECn)+hgLhSJIO_`!?l zq_kLdr~~y_L8&kA6bfaG7vxR-Fg7w`I}=GiFv2V-NrWxia@=a%5G67yGM6FWo?Htr zw!{j9fl?K*EEW$1{yRB{ESXwUMSxAT`)$O~fKB&oVcRb2$kb{l(fMa){}_sJx#%N?G8BA0uGH(&-HRazxkBy5)VfpmWN2k6yiEiD7}f;ze~*n%?zFNLvNq zz@I2WL?AD3uP;BM<|I01gbNEiDmpqiTm+3KJh#CC7S47=4Bks5j50QDDE7#<@*A*o zBUm*K;B}0MHqmXZmIvCx;>;f(im*ZwTZgf=cZ5uEz#S9UMY9kp-$Z(Ja!{b1Glmyw zu(Zp233#W+Y$~p-wF|Iwz3Dp4Nr~(d2FWVII?ELH6dQ(WBg7`n6c%z7jx*c+d=#zS zprX4q|73L`#Kl=ril>#KuAXL=+3n)WBi{+hN(iRncjX^!8|N`m1~B3t-)NKu!+0~@ z@zA^p&-igUhFT$g!mf-BGI6~yj^d5JqRX2YwfU>EpDLKwh+3-ZXa5zc3*96+NCmOB zH1uU5-&y7DU;mT6Qc&LJ?dd460G0-JYmKA*QT}o7Wr1zB-7do3Uxmi|2?YRTvT5JNmkf^>Z)^RjZrOt3spSa(9Jqm%KP&Mrerl?!4IP0cUwiVU z1U`zKM?2()T$4pdKqF$<|lrj8a4QpXdAw_?gdVTOdQF{3&y!CREE z&)T_~n%9EZ*eq4ojTbA`h|h4atAKh9mNxMSvlu=uZ?R#2)=un~=x~}++@Big0@Z_e z74m7lLN5S7Jy4`T&PSc;XCZnote#PCg8~BuLrPB2NW|O&hfTi|qMrcaoqJT|<${xy z`sBT3XuD~%gNf3=Nlu}b4hjK03Ou|C=5apB^he(7eX$27{?=9;=xgiDVZ3R~>WJ-= zKoV=~OYbk~ArILjqm@c2B|a&2d^VMJUkl1zOw&m%R-RWe&f;?zx~0RlRGU`gSUfUQ zXJJ;zRQkAX?kuRA;or9Kxf`OgHw;{o+dQHu3Gha^R35E?E@sBFF6Q;~DHvzZWQW%}r|(=39whved+x}%nEz?RYL0du44%~&$t zrQ762OM8aEj2bYXr>8&Y!Wqmn!q*RptGf46?GFXJ1(8Nch4tvAYr)V1=xgp16||;2 zw8B>npyurwPgp!^A+WMnC1gX9XHOeIMN}S#Cgb>cF*}&=h?bJZ!F5r!0e0N7XzFX! z&+*vG9(F2tYWE^Hxea&$0TOzt@-b{Lc0Ne4>1#IRzZ?>Y=8;|O@+ z7Sus@d!BbQ2ig=vvKP#5qIB|w1B%CNWF?SNO7h0TXUb$@z)2HUM0E=4VeGw=S}xa} zEYYARQG9$}DA84Rdxs%ml6x(mRN~bTQHh&jlDECCh1U?P;@-atwxVSAo8pmxtfsde zQAW+`2lwi|pqxke)z!^8oFr%&C?e5dc+~S}ddsrLlPOO`C}6>U9*Hp59?-o%?J}#s z1DP&WLdzbwWl)~#1qtf9m4enuUz(9S)ZK)Og?N}DKt{fPZ zOX94gtREYRQHfp9%?Kr;_?O0tQWu+ni}AS zmkbCDO{V3Qn^XZW$PW_%(yZMg*+rB1eR6eyWUg8a=>1X`yAaT5#nX9&$lSx<5G2{v zj@LihyP}!I^z+6egKM?wFjPE^)Xh-~^&sCSjVC zk?i$LKxp(D*Coxv6$FAg-Or%E0l!fZ`7z`0C@xf8bX|-u2-VOIc*4A2Ky<^SCdD3u zRN$?^|1>DOAv%!JfCgGoI|q?(u3&MP+*EL9EJE)Cr@8w{N_!kXo?|J0okKr9%VMM` zq*<7f*Ql)3gRK*t2zulcKUb3DWwgnPIyX?*6^FC5Tu)kxt(46(=XP+^y8+RW03j4; zfwil+RJYgJ87f2!Az$ox+P>X$l|u`b4xY{;oc0VhJ14PLEmN61SSVC!J>k{vhaW=x0YiaFmd2;(RX>k!cA z>8trb8);%s@|wMo#7%ehDyHh?65YB0vTfVzdJbhNxmUIl?-R?S4D-tkSCP#k$QLZh zw^u7|oTm?``wJhtB~i&~cNo;`+zt&+pOa)M@c?e@Jf7|WYpiqrs{TevODr?|Rdn^k zTQ#ncP(1(oszR`lGLb1?oZCXSUUPT-T&sQ#kAvZ|0nxSrm>fs{CcTBJq4o7HK|ZtD_Xsd4NuhOpTv{KR# z9H|AVXl8|}sr(#PC@#;#%28FAUr|2Dza#J(HF5s4$s#dig~gA>>M@{Q75wtH)$BWA zdwF&&0>|4*QpWmmY5#?eE^>}`I5of=Y64j1c0HW1}40-(?I4Z zy_DkcV6tDw6pPVJsox>3cW4_`5BZ)^uAtQJvJ=|#vVErD){GBUI`|DLHp%f;==to+ z&cQJ2tqoGL&1t8d$@P{!_cFxop_u2Ozx_w>psv&&u%5FfBaU0PQ9RGlk+Tu2O!JIH zK|aSz##v;Sz9C)^0cx7Cm>So_Q;nRd2;Ec=$%Y?^zzK({g^g5Yal_0Q3_MF)mj@`w znhawb<7v?n_?Z!iYO#_v=AVAfz4p?66@G7kY=i=Sb*;IJTRAOMgduXTzu{tKwVCL! z(2?)!Eu=Zk-CA~AM={3vRE4G)#iN8*|VNk*n-L$deyS7sq^w% zERANKZbxU6W2^lWbmh5*%EHP8$qUzi<20btM=nzW7)0ds9*1>ctWEQcd6R0)jPoit zWEd!7<)_fc-VpRIVD~oR&Go=vX7dV4El!ozmDXB<7t3vpp`b#Wp&zg_IN74;PC*|8 zpZphuM)72xV7RLZ=31NWtq!N3hq}4|*kulJiB7o>U+GhdHq(|l)$*p^?nZ1-jSEb* zHOiJRxvD#l#`cPAZ7mVXCPQ8n` zj~9`1*CC$~2$l^kx#lPXsh`dvGo^&aJ`J${%6>Vob-Y?^1?gU zD1AwIxBZ-4#G+ggmT%e=r_wQA4M=w6FNbH2`@?^eSAb0M2@9_ku4J~hBeUn&IIn%l zT33rA!?Z0rDc@2$?T0|z?G0B$=oav9%x@G1?ll&kO_Em+i&S+K6uaUGBMUJITrj{5 zv6I!JR<0#6iMedZ3RSL_RHhy}qKYzMwuIY~1R92F6a}|@Pg|oBkgbBn%vYnfwvH{X$dv7}2A-_Rpp%y<+nk{3b?4*%=LKDU-SdnV{k9IH^A!$eSU?*dVHMR|O zx~YTE&oS^sJ}}Kv@l)wII8dU9jDEunpt)8q%k~wTaCYDF}4}Mb`J0PPK+W6 zIgp-=eme05nk$<%^Sc2VgVTKAYuO4?Sf~d4Yk7{)`>PJwRse@k)-1h&34T*@N+chw zK^#WY9;W(Ofwh!uO~jc1krFQwk(c%NN`6PL@`BVcc-GH-a+3ByY*cEp(^3s79{bm; zak^#;cUyOlzmb~19Fylmd|CO?3k_Y2 z?BL3N>bfO8)?(-QS$#w2P;Ux#x0TpN+{m@Y4x$;J)S$)$Xz|6RkraK3bvAdTihpVc za+;bi-Nlyw3Cm*(ehTvJ4(V5y6!+Nnuwl*GW`-qkEI1uZ(WaDq0a@yoM zx9|o%xw%8eZTjqO7>G_XZ3t7^f_&2iCc`k+ly;6iDQPKL>XN*j_vYDJLk$%*ZYg-% zJz1dz^C~ekv*`9$1DEpO9Ru1X^Bk#_Mn{j3Hp0t1@^DFb|1teTjO049i?$84ElzpK`oBWw2+-3=N>ImVw1*Ij z1S|Dt{N?)zrx9bSmMgo*gm_v0_7o!qXKm>``4;m{*5Ef z5m@9Wt6Q@|NnCqzcaSLkk&9v;3SL-6$y(eNMR9wh|0>xZXZdi9+z%^#ZoeIhdFr`V z5(;tPUty@&60x5oCD)`-BaV*BIbS8V0rMw>d!Ydk*PvE4$ij9JovjiDZ4rnpNElui zKVvdcz5Hd=&S?Io7l(B)gJP{)oYAZbf}N~sgm6C@keS5 z|DLcNlLN710B5>Au8JvPy2Wy#6g6`GRlukr`tcuMG9JOZ;o5}j8U;P1f8Rjr=qk#t zUzvRnh1=)z`Sr-4!}fWg*>_vAIQ=8|FI(g%v(npmX>>JM3#-RBq66;g4^ign8MnR5 z;)~!vy1&4)nWt?ZVZOJMO#HiH9Uh1POO%F}c=+W=q32a>F-VV-Z3$jG=hr*3%Lenj z0x_#aWC|gLU0YsVMOZ~dF&-$nE}}{T>3#|(XP(MrNL&Eh5xZPa&-|$+-07O9K;Hvf zBKI!qBWjG*v?B*jlq=5m$C;@vPBQBxcVmm&0==NSDEw5hHF9+U<*;IbD`Gk6bPJ=^ zHlVtAnrE3b)Z`nQ824|XFIpWWsrQ*xbRT|4<%|do0tE0AH|2{5LnL}=cVLlu=ptp7 zXxiHBV-M^@_n7ZXCeSbjTnb8Eosa?6=b>LAFEiUN>dUQha zYCqPrR?+V4H130xjg=lCm`aiT5Yz_K#Gpr%Ynd%eRFx-g!%3ll+Q64p{DIG?FK3MQ zN-7o9DhM_J1@f6+gPC$)j{Dnnh*jwfv7k($Bg9f`6=+L)M^Ne-SMkM_O;@U&E{%d= zK$P%emBEt47{Sh}gc}6(&l9SiXMaBg>D-Lr5;T0hc!KNeovv-#OWs%>XGYoW;cBPN zNDgyEFb`vSU3EV4^*T*F*A~a8{L;heIl5}<_O`L$ZeP+yRHWH9U31nvccNexs7B0m zr>73GLG!axU<;qcGCDFaw%XCKb z^T*#{0fKGuo7{4U$4@fVNyF~dHqgZMKWuYBXM^(msVR5NtEI83EeVcitnm*~6Nw2R zqpEXR))DO<`ZcftI>Qy1Y;YFXXt&bBU+yh&cMGhq)7EHa&NGs)MU|e*ArQUG^I4Sg zz+WYwE=~MA4&tx0&Su6q!Ku2^+l(i_U5~mXBpl883kV-?k-ECv8)0oaIrVL{JS~oq zg52audre`9M2vzMP8av#5QUN*;9j=ow(8mq>E;v&wo=V=63vIQQRHWA=KwNN77uM> zmm8=zRIcmFfl2kJ616O6{{3g3R=C>#9C8zx7Zz8zLB z$rAx{3*m_+_7Gj#Vq8J^+P5zq6Wv~o4Mb%~$A2G5^Cu7dFaSBh|KF z;16#M;#!_V^g~QU414@66&maEu6?7uVD|w-^4l>|6{g6K6pFNyskGcAbbq}x!98zM zSK(>XK0(v?rUVIa4N6tazi=i&M@hUG0)Y!~YuCM$`W!qgEp461=E@N!(h(7gglRYU-na`!_wVDy9dzQT}KIOS{hAt zN)_GD!5Pp$75UO_w<2z7OMhRa$0||7d7LQioRmq-I4F6|@$SQtnC)|PS`tT76`hh; z(fyR%u~mF3l7wAH+>$7FPFW?9D$q$3pOl{6jANQB-}roCs@A}(IQXorBmko99s4q{W(w-xf*M3v6B!V8+jY}fvqjgjg7w9FIK4pp@FT197y?9ev?V)UX ztGud3Go~Vk!)HjZYWS;MZSo)@WA#nQJ@PfGW9kB`;wmY)7b*Ruk66L;EZI{GV!>uC#A@loRh!%Z5r2G~6P#Rgxk~Fdy zHV0W*|M5pWhX--`lRQKguc1#KTUfP-y04#VVH29yJ-p78Y>v@b7M3LXjJ(<#kXL&P zVF@b*^I-WmRx5ZKFF-QSWRXlP13qjTIjHPWo$M}I_A_3P0!bDxSs7lO^0!Hr!JbAb zJd77oAK<|BNPW~&e-Sx-CfX|dFwmY~_A`-REJ$LukHI!c1igeCC9$v{#f2&TM3EWr zR?ceKb@N#RL^xuDJJkM4Udb+K<%e6$TrY={jxUb^FLMleTG=7^RCjyehF12=R7#K@ zOWiB&>~2f?S4#&EShj$qC^g(5g@+0!X`Xk1vs9Vw=`k=*kEM3rD~WP%TUJY=++PZ0 zS*hW01DLR(`E`N?9_5;6?62oL$oq+iJj3&{q^oI~*V8*(E=z(7vi~0pKQHe|Tl=4Z zwcn3Cp)i(x`^I-lt5Rj9Ouy7u9%rMz{WtF!@9C1_!`idH!qN*^2Pr?rL&1|?Da|VZ zovhjkLJ;g`yk8P?I*NBmVtm-AJuCVOiz?w=Ik6<+z(^9Gp567CmLJPPZU_vS0MmMh-x_Hyb@4j%U=-zy zKBd|x`a7)(KYVS~5ZCHEKt?8G002nMu!{eA4@4b;0M7qCbDFKvHNcy^fxMw`mLL3J z_dxkZeDp=>E2)R2Tf6)F!2E5Jz|{TtmG3`sWOvUxX>_<#iVrP-1Q`o6GifNyIhQmd z8Zupfpfyo%`MeuWw znE_xbb;8g|MSiDcuNjzs4Yfu|)95soVVXuWv|}EYF{FL=uv~B7gp8v20<}Tvcy&`# z^XQ1n+3aji$;FCX7;#oNAx?r!^m;~{<3u2NuA;Am{ZGB#GH^C9X!#&X&Q(Lm&+7q< zMk)J&%OvsG%$b?=8oPkT(+s`nFYZyUvk2!muSlK~K?i#FKSj_*VBoA67$hwph-AK? z09_>#%@h~O0w=j3oNH^ZwSeEHOKtlvlZ(F?)^aEqe;vyQnwGcKj<4I;uQct*<5|*B+IR+&o<3v#1PO%51h8IFsFMF71p>-0TbXw-#58@9AoI z^zebL?YU+CRg1-)+smRoad)$LcpO3SOFxij_@9t&WCgMXc^l4g8;2Otcacgk=l>h2 zM|17&n+Pcn44+%>viPdZWcA#p zMof9MQ>eIDgQxu;{sGAwv=0jAvbA5@T0dzE*;#9e``rPt+h?p8+;({N2aZUm1g#*+F(n0%kp}szPLGBzr4|%>>2)jxYnoHuzPG*j~hSA z7x^su7H{kQJ9<4PcauqD(eo&c`|JBcMMFcW8lNXISl;zO(%2ld#uE)*OGmJH+4yjC zfMqoQZmlY@RrW6{cEyX$k?xfjQzi8{+ev|c)ozew&x+7vafz@Gi( zwg8xZm7lY6ZPf&6IG3#N^V?KNpqz4tyWIoiK=u)B@WGGr$|l_SpWaMpzvgzbVLFt< z>ka3`dB^7_*ExGOf>&5ym{%U7)U;PBHRdpT+%7LUd1|(=&Z{xc?BehUbGtY?(SI$X)`)OsYXa$Stm+}9WeSQpl zhB9Z8pNHI=kAS>KDPQ)G1)d-CySyuuB{Oh^w(RvV9DHma2Ut7O0&L?ru#M`4cGn~$ zgn`r}IDtnaz^1{MC#jFRBL;OvuhFe1qnYm2-PSX9<*`3X!B|!HaU!Ox zww5Px;lm2;<7#3PS|I-5$8(G2onB+EtO)2c%4Kch8AS`UT7C0Hm%@VgtU2UqdGc(3 z3`W<4Y+hh=bztt3Dnw=Cz|3~1-Gw~s_Oxr^=6|R>K|AOD%fbPj4~JZvx6QX@<%-GQ z1NJk4{CE3dbhi+n>x6UYR(4Ag+D>Wa9vG8r=p2rK%dKp#+A`UfyT-qrCaap_o0T^+Gx9x@HMoo> zhn7H#v|TH=);EnM?6|RerC8UoqRyJ72O0f%9VFLW}KJoE-c`hTaJP zpNWGsS>0S11@p$g^M;+xaMZE)z&PbDGSe9OTgr+%0%zJ z*K+Tzs$2WM?_E`0)myr&lXSY%NvE@~WP`{ODoc}%j1Z8`B?^v$Cz31C;hbMCFGuBvn((KqRQw{G2gP&^Phh?|AxN^ z;0kl)+;kyiVQv{unMJHdD<9w~m8-3vJTQ-$4Yj0hjTUv4_7GAk)UsrBvmpd_f9 zckwl4=huOL6KRCZcCMM%;WJ=&^!)9;hbx1UH({?XtrKYC4WQNly!#)%MT7CengipB zk%F@is5MV47|N~Oe#34U+XChQ>aQuJjJz_-99V+sRCz$)xpWHQI3#UM16)jZsc|m$ z6o=qsbfK}F4ie^$cYUM1=ga0XP1S4)R#Ba2;ev03x`5fJg)!SMxeqPirR8y7$Ga8Z zsJZuiMQt%lz)OqV1{VB>siB%LANIPM{$JfrpF86NI(*Hb$DA46{^|AYif7lld0Dq^ zc)qH3R!`O^03A}LUH_u~XnOU5g{6BwfA`M$P}?*Rnzq@wcIOS-BUf$JbWN4gV*eM+ zM!sIts5QnwMq;ZMp;~p*IB@ufY;P9jI6j#{&lN|#qm~QxJF5R%E0Kdh!}7y6or48P~2XJ zM00fSwRf+m?z)hGJ|0`#?I&rLq9DZB>2uic0mK%}CV_kxu%s!Z7b#%+a>CLJ{*Zv7 zP<9Nx5cQH-vP|M6_dyyGF60qZuWB*I zTlVd}b??x!<@1*>-#hfA%3C*CJdPxl{ zhac)zaouRph)b&b@q_=h-4&>-H)1y7G#8fLvTw4|_}T4i&sVmO_1`sF>0faF-OpC; z&wu%uiu&^o@!g6;@V-_N+GkJQHm+?W*G&!TRDRg>%|!EJe`%;@sWm>dd9xVpzZ68U zCkGa<&PYj#u*4=3*^*LHknG%% z(qJExgvN^Eh~a$M*N`K?ET7Ar?N*aXL9)>n4y=a3T|#Ru4o-crSZ0bz)of85nZ-&0 z(JE&*!bX>9l$b%1CYu5F97fgcQHiW0>asBHLAlT#bu%wef~-5#uqTn|<=B(78ELf) zArsZllgG##k=trM;r^XFuN5XgI=pXW??{h((`4_)6*h)w)R$osAlo0Wy`yyPywvjx^tP} zZ;lZ-rujEgW>-i_&Plih@n7ohCI50v4FkxH3M|R$`59x)6V>G9&l>u&O^paJXW}0i zviR&3cdUvTbgWE!{dU#N0{#9kccP(br4iQ%*BtR_GJ}jFn~=ZJV)oag!)4Rb9w9ra z%Y+t02YW{3^Pw@a&6@x@o6wAY#$T#gLzk|HevtMGXxNjTtY}TkJtHCce5Jj0VgRvg z%@b#gKS{J^i@w|$%UNi-)w%T!Rm@TImOot0T-JQREY1mRo?E0=)?5!o@R;a|LMKFQ zW>e05xlni5(b0CtL6zc>G2-XQ0puPnukF^YQSZ*|PHg9fRFYXXxipbxi3NMFy=KEm z;rxQJix}b+)%0pS14J8b!GUhn4mK>CtTc78pm4sjVC8qZvYN%eB)s*!~c zJWs}O3W%rdZ@0~A8eLh^I9PS?FIZ4N$k#mRfeM$u3|r>q&MJ!5YuQw%EgJn~ctAf- zYIdq}?(>g){*liBLMKdqefZeO(UAv6zBICVQ%|@1_Q{R6^==_<{LIMJ=WiUlI6YPK zq|_|y0~$^3ZWN^Lt9So(KwaB@;4`;RR_Z@-W_f#--LWttJClgH;zH5hgQGa>)C>TIfJ*Lb*^{_n;gY@SObYpkcmkaZcX=dZz%+1M1IYrCh<;lIYe zi}WF1okcSD^H!t-rUwn$tO#!ncGv=aIhHIfbT3SvFB`|mnd~XGr2P5Z8K~xIB|MZ% zXrl??Z4Vlg=PSkwkf*IOX=BH!*pw5NYB)SJt|d`Ua+zU@0L*6`+PJHG{>E+_OYg!O zCb^vy#jBRtEsLaatiwC_Iq(2pONEYZ`L2SE@o`hJ-&TT%=CI>*AA2~N!)3n28; zIpeG9h6vk!TeGk>t~PHa)pQhCQJ8MzQf-iOMK*&4P#36W4A*;+6viw<;q17oHqyTR<}swPjF^_$FE*}`6^zZF@n)^_$pqcb!skE9Xn+g zsCCDVpV_Y(-bfZg;-2aE$bSNmScH6YHb|tC*!ur!d4??9Y~D~C^cvqFWy3h+XeUAZ5$UsuoFk?C#|4tRCa5E zD)~<&9^SCy&)RpaAWsQ?Skn`RnV_tMM?k?kP3P$%VNJ{bZ{aBX3D`ZBj0@H z$6MPA@}EFiUzXDg1B}VF(6mTDUN5m+ zL(MZVnP5F&T$uGa71k}cTHxH>jHqb6?3>&I;Cv0J7W@c7`j%XKcuRGPlI$UyBOqb? zoA+TD4d|`IBhu(Ttbg0eVGqWegN~FNf1Fpi4bQ#u#>c8(VE{cO1(P1_#&-!Onpa__ z=cfE?PJa7)TOs9zRY*t#!Dakuux9U@ZNHPn79lPqfQ^=Iq{|v1brJA~SP>@hc6!9m zzFjsgs%?kK7` zC9dW^1VDr~=lGT}g1{)7rHZ2u2?7R0aXmZrKV^v^NDQL{NrxfTPv~kT#4%bn;P;WT z*-Tp^_NgyOB4e>A5^t7hi((=fooF>;+eL}BD2m8Iz4B|=bGS%45I@qXRkeBAA3*3% zM<8(ueY9*7DTGdR1{_X5i+gs5k60(NM}@uk9`HsV!)|NZPS6s6UA}!d9z8JZlD9OU>}maHA?=kKr!AU%^Et(K`|;48&h07(azRR(2pCDm4gyd9H#qQAW z>3V|R+w_VpmbP=XiWaJEM>Dj!Yn_BLM=QG(RO=lR6>pj__ z_1#^oye#JN`^@-PP)4+yWV?Yx)3n6!iSGHq(r{RRHzj)PuECx(FF1PRslm9JSP@#g zZh1KzkK`e^a3@6r>;v-fq zyp~lKeWWbK#BA6`+DH?3Bs*a`8g2!bmL?Faw3%G8=6ZuHcchY?2%C;p!mXf5)Ej+J zUf7n*e(HArqXegCIg>l(5BJ2KB2(&&7Na(vCUJ_Txo}6XXU7hmw=lYG(9x0b@+|S9 z;Bm;JS#+iQ`nt@;qO3@IjDX6^EUFr$}QuC}`7Qz8;ZO33F_EE4Dp z;)s--NZ47*z$NAYOUxN2aNiDaIYW~|94xZjY>TYPMp(BG)~$o?wmz(Jb-m?gU2jbW zzgd@DL)2 z-g&(#7Mq0lvRO`sY>~cUUvMpiPQ;By2!;f_j3KI5g_1q1w#IUW=-f3KsPTLidk*^z zphzjC7x}zaTR{+6S@t7TG0mPv4+2`1Mh}#EL==UN2V=!AMX6KM|5(;J{Ua3RicJU) zyIK)S^S)L2TLvz{b80RkSkpt3Ye7G;jt47L@kCm6?I>zCU z=L5Lga1tmGJjBss=$p6%aI_m4MNVnl!MSj>$KhP)=a{jGHG0vGl(=g#C_%85vK_st(CYiXS0ZJlQ39I1eA zMefTL&~aesXeF?Rv^-QHTj4&73wpgYL+ifK>@Mg{9Jode9^f;Jt{?Kw=?DN&GkTV> zMtb6bQq)e;A`MxIKQ})i>s1l~xH3<;eLgGxRgEjl!IXDyPm;r)&5dGEV#y`;P*aR(xyhRr$7^Q|q^K*L*l!Hd zi}x}lEjcY_hmpp=GzYw;$z<1&=p%Jpxbj!D&g_JaAry&nX7TCjAN59(;ouerOQY%P z3w5B>5uqA>g<>hdbk#i#03YGs@<9VncSINruG7U(9=-#Smkp1 z(!5&h+Xl@`dzRJS0t3q|Uaf>hLu|0T=i-FNXYU6JO0p(JfoYygV6K3zzbDHj>r;=_Cs=Y&O|3N}#!!Ke3!{Qc{@UYWTjdJH~)%QegnC@R0j zk_=j9f7)S51r=+w(_>CpYOCi@U@p39bsT*OFaro@^>y*$vFwBu;d~apE8&lG&dBZy z0H&%tD&%KiZp#ANc}Xo37a^eyplbA@jecs-1oV@{y?)mqq@Q)X1CV13ilo7=Z#bNq z6A>wL1_#j*(aZTmp~1Co_pw-kt&_@vou>*Bb z$4PeD{HS5V^;nw%STE(LZD)a}4CY5Gh6&pBSi6RokeceD)g>Uh(9C*q!Wimaa&`HZ zgOSxA-+bucXNrTx#aTlM^F5uP^o%mTgUydOMeHg>-*E zdLAdi_~Xc&n&*JdmoEsqye_Z#j)K>4B^05MPar;uP9F_V)Lc1tOZ!S6px4gkLF%b@ z6HWtlt*IlrbP1X*AdyW=tJNno+~N{SYI?0B8}aEnP*!vThM^? zc`v!|Vu~Hm?8JPF_~CBr!;?Bv@l432qm}l4X7%L!5NU44k#j#-K`z;311l&@$}E&I z0-5Vev7MfG&Qri0%*)b z0P2~({ywFU({wzIzFe>BcxnVk*%LGv93o=pqKbXwR~*Wnj!lSmL(oB*-Mh{0Y(~{g zfOMR%6BjAQovwUfiy3ds*+_I9w=9YUyB<>`cR9DBl=3mQnTogq8a^3fnViiMW(Z=M zkQBQ~FGR~LlP#1LqR$3f$}0oC1HA9;K&QPHyzhX<+rEqF&^<^2NudYJ22%n2A>NeE z*4_U=l!U6RMRAOf+ymVc?uVlP82V`l3&kI_H7}T%N{oqFJuV%vH?seM3fav)Q0bls zxgV;8Z1D#xExlaKUy^Edmz+@#ifzu4*WwIMvsQ1ynd|ZcHOe2Hf7O7mC+(pbSZSWM z1q$JwvOm|C_xt*<=(T5}E`}z4O~ZnOIsxK}6+V(2EqYkJk!JL?-7Xs?LprRu!JS+r zx}e~qI2{A4_nihX948+IEAF$JtS?Csq&o%1=L!)&q|2-~NC zboUPH1d8gP^a|^A8$?F2$fRCx@OAhMAsJP81LLsCHv@r+Ai&{fC<#A<{RlUaCcw)N zYQ8JHwF^o6Y<{aPW#tgw>QAM+d^V2E?{@Bv9y9JG+cutRx~NLv0nD^=ceeJHMj%kN zx1Es+YecBo$XAzo8#^hbx}g{HbAwd`iw&3gRPRVA(I1g%VlL*1suXH2MmU4+xxFc% zBLU!O!sUzvbd@C)Qj|#1YfdQWB5f^JzhiXiec|xnn!?Mf6ilf&^(^)i>&Nbp&yv2g;l&w%fzocJr-7rB)Nt`06>$I?7(;shaFhVKdgd!i+_v zVP(SJAh67*uA~fRm+bJ#6uJ^43=YKtrNO~KZ%5LCa-!1$@qolgk-ek({$84+F<2cE z{XdL>f;C_P8K$Z$3s+vfYfuyQ;X6K${e)Nw-f>u4H{XiK;49j@N~h3GC-eq=@)UYw znJe1$#iHJhBhl070mO~;qhBeD$h_ShyW?F3+#CQjmAz0_8&J2?w0y*>#qM0rcuuPY z`k_r{08?8iI6fPM%=NA97NZ=o6vs1nuIEyItJ6rwzCplx_I9sKqx~46cUmoWK&TV= zj|hNBP=6%RG+{5~QWDBa4zt+?(*n~*=Jx7)dkwq_!|l~CsyUWac(MYieu41ZL{aEt zb)2bgW|+vf$_=F%_}+uQgZ)9pp*<=NF$jAKeeR^_lf>|8^oVK`K3Enl7DQx(#BLuH zfo>4?w*mwPT|ye3sb_E2kV^N#EoKaEniU{iER|XeZgqPb_6LGA=LT1GKguRziW?B8 zFJ6sdln6ip*Uo65CmR)k=;XEpog_+$Y-#^3pIY=HuY;**P66&{pc#N)7|qkw?b&VD zTvvo#AI4(djJ=56LF$o&=9LI7YaHT0Jm~qdhjh3toD}sE0YKOS;197NjOX#_E;svx zd_yxkYb`MeOD#hn{4b4}8JMW&@d{`qvrkl7+O^b|gvPY`9%9{?2Fpv`4)1rkk>k~8LX1Z9jQB}dHZ3`$t_6*6cK0r}DzvfD!n&nuxf;8;#i zzm45QZbHmRrlz-<%)BMQI|7y{k#MWQ&PFnE3SEBEJ!WjF5i#|=sO9DdvrrSN#MWkI zH*EM+rM+dsUT->ERo`YlsLqEP5&k3$YB5{v1_Jv#T(Ac14!=y`zoK{puTKW-0huN_ zBWH~JTtTp+_tnFM@bBm(o+JfHcz=gJ5(#hyJy_lbT{s%zjXZ0#0vNnE{Wg9Ez@UUI zLmt=WgF??DdN3caKW)$(kVs_6uDNP-VY|!vp{}8^vgw4OgCslHG4O`}P#*KV)zSQl z=OA>TwV)TI#JPjDVJeCWv)^l>+rl)Y3VDW!V9);7Q1Hl2Laq_ zQ4Ol?F3>Ov1Go|BtkA^IbX@but|AeRm|Y@;WeJ1gl&LlQM}7AEl49TH1u21JZ~#7C z|B6k?!E465LdL3z;*6{@;Rk?c0IYccYiGbj5w>MtJh+7ZgTVkD4^Xq>lIhZ#>kFx| zlGow0ix$r1v@trjO|&NFj4c22+S#W8%)^7z=P*C9S;fVTn!hrFe(waw1!VE#P7d%Ye;uV+O-4EzB%IAv6v zdv*F8K1yr@0{xhllkW#eC$=3K1eo^&74!aG#k|46u>BNfFSAJ4{3Jn_#MOhYuDG(TB^Ez5ndZJDj~U6=LzqSD;Hj$w&*+$vpwTQjJIX{gnX zS)+X)xqU$#_Xic1k;HL;@MdUvb1sPPO7y&tjEjg~Iv@BYWQ;s2?{|2O6seOT zhVPhu2Ym&Qk+M7C@q}fHl3a1OHzHxU z*PC<*f+OkmrQm03Dh4lb_LSeNT>ucCsQwoJH}d;n#dd3S(~OxA$m56;oRI_ryBRyA zVi>fc{tS-)c*_z!4Z}9HES6kI4}* z(qDrWz$u+5kmG7CaKKaGzQn%jG3@Wj!$=4j(rA_mz3VtfI!^-@f*=a|-bvDDxU*@J zG*}p4QwdeuE!DuzsXi-;rLIha^<~#)6O0Xea>o}pCuyBokE41(RBa-Qg;KFC5AP#% zX0M_+4dj(iR8LobTz&Pn&V2{=`7S z&^}TdyuSL=$I&6Q3-!an?=A2E+BnHjH&mzY|5)|+)t^n!6DPsw z=ha95kT&{%S4aP+69D#YNbp*1@W)&4sF25MS(+?Oaf8L8RM)pwt-ETVYrt4mR6D2+cW&sBh zB(%K0F>OF!X&w2)%_D#FvPMo9B`qP*4A@~nV?%*7uDy9YP#ZV|yOBXXA>a6In+e|J zv07X@?D@M;Zdx06ym{Qed9(WdC*i&}$>@>kY2*{r1okZXJB-2)$s4Dqr~eClkE!2p zkv9Sg_YQtFzMR~rQn(F`d|rnDar0n6kOHrM2#`A&Gn83ALfV4E#^Gkk@YOSD=4W7? z8mH8?`ZQ@Pw?ATk^-Mblx6o~0v0nhi#41UOjzC9HUhym008x#itkDiG3QZUByBY!I zFTgXSvD(po1-|!5{17e>KgVc7L{8xkf-5gzqu3a=8(fiUS9W2e=sER@46h*A^q;3E zv6bi?L_`9}B5luCLL98ocT^#tFwAHraBjg2pLtc?z||WS-_eRzKpD$P$N?8fI4 z8I>E&C@fG(DYbpaf>1!K$}~rCKsh`G zd7SD1Ll(_|&)Q_s3}~&>fgY^<@SEzG!LrdYqfdVOpSRCHv;g{(jp^ zY-A@`DK*X|qX!V^F@4|!qbHkYeTH+jUWV&l9b=tuQS>3&sJKi?$xPhE7%eW7#lccM z!?HB)Qb?BJDV)}uR2_67+J(Q0FI3m*a`^ivO^AmN4zehYI1vUMjX(sd^XYR?57n^q zTh8Dq6o0DXG?tAFI6Gc3HZgP+L+ktIO$aHseaG*?pl2yJrPmoLo!N-}Nv~U?UgD?p zLgNzp2xYRuGDs#q;Io?0y|l?_QG8x1fvF)wgr$wUw2Xt{ZRayD7SRZ*s49%eLS)W@NFj7%9&u<{PsG zQ=xLx-ffHL7Yg$iZ`*rQg?6sJ!s;BoVgHi-bN}Yhfo>VKNy}GTR%1Q= zR6iF_>(l!W?cB7wKb`Jhy=mv6{dD;1EB#?4b2f8UoT$=i>OYKD!#Uh{(pvNLWfB=CcB!on^+CBN&X?17PE!#1kbI-l67AO#s zlAd%A90~4y@4j>If6jl-eN}I{dw0KT>J;r9Uf`>yi{j!Pt#4PoUsc5}HDnr0={4Vx z=|SZ=@5<$SO}k%}@xTncq(_e|O%AU|Oip69)kHqtlJ^#{OXT_CFTLo6ajh0F<&Y~9 zHNwBB@(c4f@X76GZrI~!DzJa{<)gQm^#en@$*Q;s3EI?+*}L!S={wq*lkmpp9{gfQ zOXH{aWh9vlWBe+xLBmZo)wSR94R3F5 zBX5PwUAQ0D$!+2e;?ruCm6c@7M0a^#Z_nN1w@?S#8_)oe5*CK}Vz4NWyQ95If` zuw_2Gt;slFlisc-v_Z1~U)W3jh-nyWEZJM;WoVmjoR?{9;0oF$`r*6Pn}<(|U_5j6 z7K(b}ZT0qnvrYECSV6-NaOC{|FNHV61M2s=O0FO87B4GH$-TfIKcAw@ddifRX1XAp ze!irn;At_)k%+1Xi;#)zeQK3&o3fsgX{+-kC1SzTGPKJe0R#<8m3y68%#aJcY4jU_ zqNv*%w`1s#FOY?w@ANjdjPEP1^Z(b8y77E7uhyj)^=SsFF@K-mUN|tY^OmBdbfZPo znMGqxfz;~l^t^m;uQfYCN|kaf+Vqr0`R+E)KuNmMm~G14U?u0BF9>goe)TWmwBcip z)PD+yzpVa8K?7$Br2bvuE%9OXub|Fj{d>Y&{4cOBVEuLBZ6SztHP&Ai-ctQJ(Wlp7 z{Z%+V2kS*__?M64Uq2=u5YC7iqgIoaza`gR zU$nD%XHikBqc*)}$F_B*6qVMfGvrn_mUh?+Yny5d3tNWk$~w~1bm}kYGBc7AQxa>d z^2&>fx7&AA-)JjP87v99)b(1cH6_)Wx@Tuz#imU)oi$tfcIT~2G^cC1zilOJ^Kt!b6#OWG2w^IU#=a<>w|^~{VUzr9Ufq)<)1_N}NU7n`fd zm*#jyz?P4y2B$B}gPk3d#i@~H<$CE ziJOy;k4;UT^7|cQW716SDM$S`_KSl%b{rhM<<8^x&&wMgZNI1cMArfP{`!_DF86hQ z^@EnZ)vY7*g>BY(bt?v1m?rR34a9+S$LiN8Kgf+8)o1zR%M4z1rHIIsWw2({nSY z&dlC7b?Vl!gR=bWBzMf|Jb1%F?pRKGYx)hXJ)3rIu6ca^q1NMLcg{a^>*w1~bRX@? zDX7|Kw|!8sH@S6aUfsrp$)H3v-l$Ee@ET4s7wJ?JVaeMU!;~Q;DSGJfd6{(a`8((3 zm`)08AIPK|^$-Mn8wNaOiW2qpr7>}T{k&LRPFQyN7xDNC>*GeThP=4{su%jbx@qMK zE5baW+Pd7LxL3`yYnWV?U;PEnkTxvbuQ~us-OjahGssnQUPW$YWv+qSo~kl#uel%` zvL!Y&6qXlluI?_eXU&`2TFE*Cbrt-4o}PaG$G1+BQ{*?Rsw&>EV4Mq2ED7X5bJo0U zZmT25+Kh6YzCzE>%R~WwCt$(1Mn-)vKws!cKWD5{o-z!txXMmca#3*1*U@BjN8Bdl|+Mjok1<-W~SoWIAo#SM2jU+T=&r_@>jDy{4N*xTS_tj*i~FW zySnHd(lJ(zwq}$a!&Y2k!sLhvV-0sbR=Xxct==k>UAShjmpe&UQm~o&-F+h?edAl@ z#%;2XkV~4Hy3sY{toBxMRVi9ct}&IP?hG$zFG|ZeC`(Gg!8>u-BLp@|@mBLi zcI-fQ&}Uhyqq(snCzg_7IVvpXLDpg(#P$9k-}V2l&i>>1m3fh@$?RuqX6_grb?)C) zR<^fvU+MmVj{5qVeftJB*SP#n&I!IGuH0Kz)!bvR>L_eIIB#w9>*igGD`^fSryYw= zcPq%>3cT_`)`-Fyerky*vmOM8w)u%aU14|96p0#F@@M*zC2`kXeF}rM^ zJa**Jp&MoSSl5l!k3_}mgI!~teeR?7zK*umJ6PO4a-VMg&Ny+4?pYGOipyVPE|2~y zg+_BhbSJfUM56kU`v?o}j2G3kuWO9$>m|u`#Q$oRLB6&{oL{(>OmT&Uj?1innA$@e~=9^;E$C3}q?7~YbImEh~ zB#CZ9kETUQVs-g}Uvb&p)n|c)-(7KmKmWJTjCmYpFFA3ZurQnYjH z@okg#{hb5VQ&CYH>gut#L0YEqIz@7Gym*Z>(Jl$j9IC7KU?eQ3XmXAlme(1PE4$^o z=H2)oGZ+5tipw8gM_k2xRQ&Muw9|Yw;nyxyzQnV)dA{e z;^n@}?oRM;TfnZHx7CInd{OamYy@5WyV!FmtGn;A?CwODf(qhNMM(x~VNSgkkFM&y z|J!S7w#W75)vgJArS*sfwMZ5ujvt3tSONITZ|t{77Bl}LI}^s0f*<9+gPv>nbla!e zKXp@gm#6RM_O3_we5w9Rx3#w1eS3XNLWVIb%eb4{ZsCizKQw=`ZDQWh+O{X7Xa3Po zCuk0|@9S>t+HiSGCw@~@f3X^amihEz)VXkMid^(9QU1w?=H-)Zj){30l^^Jtmm})8 zY`82#2lx#U_E1_C_BVeGZe0Ai^g2$q)%Pu4T=z<=0uv9*3*(VUeeVx^VlJM)22LnJ zO+QFq--$c94#uurbIIHWu1|TI<16P=tcFaz^_=N~F#BBQIZgDVSu_c}S%o*cKWDO@ zlS!*@YckKtG3`pD7FZ>|+rGUz{PMbd5#M*Z#b}gDw&m`f94J3>lhl?| z{Ky7!gZe*Zrm1TMoldv8slU8us;{KsQ%`&A9r;PgdR~1}zdj>Lr_-ibj18X8wmO_9 z^Tj+}rZsuP`h{N@lXbeZw8WAwU+bag?;XfmXD}z={qF3J1Mn)^=h-yN1^%(~i5sk( zMxU4k4tqZRX`L=1g*Z4NAVxcmJc3w(_wBr0b&);w`2v?E%%0b!KP|6x5WRh8anRED z5{S7;Hw!e@K&?g`Gs)gv~O_5%O4Z*m#~jO&}RqXH0Y{Dvj_qQ*)`#_tny^I<%5 zVt#JndX?}SlhQlsmEEJkt)q9ZKA)73%o)wZ6vu|ISd73k*GA5fAzG+A{tHslr2C&8LA10Z^jhf7?bsAH8l5im>CF$e4$avU2BHSkK z1V%uzl$e;FX4d8Arftg8avDq8M&jmNZK9ZxNg^~QU|j4od|nqF{bp4aS)GO6KZqmW zxT=Grj7a|$iBW#1&#LlRO4F)Rg`ADxX#c`l?S^b=y>QeoWEB=?i1(-qGiuXv;8V$A zephN`QDbJ77CB%Msy=?jm|#f|>OcN2)}PDD)~95pENBGny=7EfU9&EVyOZGV1nX|x z-6eRC;2zvv65K6FaEAnU2<|Q+xCGbW!S#0DPtN-V?!9O4G48p4b`J)<`dKxr>Y1}v zt*Vx_6y}rD;qfDu2%&uja$OB#Q8+AE^G&GthUd0xw2Y=3jXP0{hL1H#6tO-r38#81 z1oaMRZf|gnP<|^X$L;!MBvc?yTbs7unS%|FZuK(nL#Ndge@f>te1QOeYDztKuGzwm ziLEdcXZ0nf&6nD^0y0uE(paP08tB9WgRiHU-)ia2!MM$~@GnY~#g&C#jTl2q>Xv;{ z*Qg?=lw|a7PL{3DlifA+xVedQbPss{6S_cSd4+J>hTc1KAr$xhkB2LYA0OUfeU}9v z1P#q`jt+N}m~@4Fekf+&&d6c!5M*sWYkeT%SY5#AL9IvGu$naShm}!bl_L<))>Esm z)$ONe99HsHs0QCquOrm6*k!4vF+b-sm0C;7+Z(<6GE1$Ziq8}FC4UFLCoLTKE{ zX}$YDy*VwbH6}bxTUzQeanLzSk4=+^x0+62+oJs*nu$_rL(Qpiw?DEM#tC`!E5+$o zyhED$D(<<&iWt8fV?hzhKxp|gxhXD=*%t*L&bd4en$*C6JeYGm^J%jJA1}!qYIf-> zCz%|ack}=Wmp;rl9rE8b*nWaeOSMqnC}xddaH{9gCN|RzJ8)wt!{TdwOO}yqqsp3f zyqv-X`8VZUyU>?<<}b*XjNlR!mVb`P$#oqq2o+im^v05i%jt3CdZtg zXm=`{+UrezLM3e@-zRsiC?4JzwLSeckq~$k9hX^7)#>^I(@gP)rnIUjWzMKZLbIIM zFYZ_KMoOTzs-4kNs+%g4P5CbKk9RL$uA|y-z#|Ha%bl6&#}Xk8*~+)EFXV1yVjqRY zE%)FK0f#E7yeD8^4NxkbioT++YdF=|Yo%+<>i?=vL&`*JQJzm4D%CqvvOL!O(cR*n z`;{hql8lSms9Ao;BFiSfQbpxTe7^E*McRu4`iH%OTvZtodhcYZxy~(L<-9w7@mHf* zpBJ0OXeg@kAvP~URIiJx4L81BRh_R)`!8_V+@d8MIAVUj)>C!ilQ7x-G_RdFSeE!z z(nYXI^oV(j=k*Tk zj?|7?yqAN#S>|~6S)8NZ-+ler{|N1FDnGq(li!52srUJ;pZ^qF z2a0QILuccRgNx%`qGn1Dx8tmIxI((zioRK>`JVFA#=rj_d}C6BY+CJxaM1+ZewL&2 z*Ju!_2Rk>oRdPkjF*nsWJ|+(KYX@gifo@zaPlGYW6h3lBO%fqyHFMR`GU_D_ZCbc{ zEY{FiRz3gss2Q-{Fd{;7hcjR;+z`gk^eYYDlA^VgUih3<9jEct6l+PzT9s;fWmU?M z;(c5Kd&Rw|`m{seq(w=|y3AyB1^Dz@W2P}jmWFz1vTIJ`k}Ak z3C@dOYkrlKY%@+9l~}EKc6#GCD*x0eNoy~y78n|&DK+|9Go0oUZE-rE8eKH)F_g~Gn2;sC&jbo)WWu}hD$MgXo&XMCc&R@4HouAx!d{2S{0VpeWu zYG+*cobay~JL&BtCUnHTu~Ns&@YV$@8u{q-d|NVQ1TulE;M5Rw&nx6lIxjO`4t+z; zleUOw*@XKpw<2Lb-R}gp%k9RX2_D!#6lDf;KxQAQNE*a%Tnt@`5gxmD0?fm@06}`D zhrFpgq#`10XTlyI3{;QTzooPJxxu3^*Udx1HyZA;6xi2P8JJ2KED)NYbER!asXQ;! zz#k%T-mdZDNZc;wo*XX_J__Z-%M^@A_*l12E}~;!qNps&JU61*;BK!2$Vjnb=y^;X z6~)v5WrTZh1KOpSXfFp@1KaWQ{c`Z9{Gw?L!yIo9%vfy6y&l~UJB4Uxg9ujSUTH$e za7yK=*PZ^!MNA+1!^q5?0j*fk*K;oUN%rHEx!!kHA9ZIzQ7y{p!ZoVKFnN-KhS`B5{7W zbBBl}b6cG3I{QgLpi8p85`ndCpto+X@rTSCYCkJQu007o?5&$F^Bp|&Y7XHd?=TB= zNTj`N@CB#1V<@ShdX4PpKlLF}+Uq|mO#8a0p{O;%(4I%HJ>ExfBmJuPPka?KYsAq< zRPFU5z>bgEm>z#YV^%P>NGC-UoptoKs}!-Ap0IiRM`ZKOqRt<@bV4dH?Tl|mUF zr5*MHi@kL}5@{48%vvyB5yU4k`aTq*p)`lydL+8n{vmn=`V67vm_*2{@+Io{ zeL@l#7TG)Dec#AV7o%rCzx=o!@+Nrvlnq%vJO8tZh=DCbX+qknv3t6)AE*Y>V%w}F zWOUW1rZ{O6?Mu(d9$I4gQnEE)NKBLsUSGDGdu5-2onUuvao<4B5}O z1Ekk852mMToJmxPZ^#Mbk4z0K6sMu)m5B4~hoRB)4sTIbMBYdnpz=G$&M{&cT*|Pf zbq;Qtaj!LI*lob%j;a*3(IYRGu%y(s3?G?Oec z(&(knT3?X39DxHkXM23YSH*sY*)x7;3!F|y%9QM^fyjCwUI~48%jkm=NxEwAxt-G_BP2=1FdE6QEUT5kv|)X$G0KFG03jEh zLbjzSUEzI}v-)`8{6rF!~aH*?@baKrS z0QpS#G9)&2u3MQiSC_oLAPev zQc%EQb5$Qx?Og(I4`aG0;fGR*s?4}n$i2Dp>`CbYe29LK znIpPM(A>4HU=OHb{agTbKbt?LX0AhVr9g*w$PE zXrKWGs8v@!zMB@-OTs0kC zByY1yoFmj*nLhd9ZCFZpB0uUCM6B?y#Oo6QnNH9I=v|3f+bZLH8_+_12vor^Xn2L* zn5SHl#E^K&yow|=s-+XOE96&~{`Mg!^+|8kD*01)Gw^T&pwN;$7cucD-NtJTf=J+o zZU;;Y(T7*g8~isf5X~wn8xWi6Yhk@w$IaZ#%MUUnNcd zVizRg^+Pd+J%KhYip+-WfFd21_RePx8iwL_FrR!GM#DxX1>#j8g2jNTAqH&&*9LR^ z+l(yI5IN$X=x+Mu*eMOG<Ou3eljjmO z2}tZ)nFTpSOh8^)I83e+MH0+WIqjYBY$Ard@89v()t9R@!$yrR+R8G>|2AO`HR}K9 zpY7Kt9s1eH&r8+mKm_@PXBKV*Nd zYcyITayVXh&WP2OoaX}zfZGx zRTiIhxp{aOXe7l zFc3&lhV38rRuQq9g{xvKVKCGoj=l-ay6Jt>F4d_| zu@czPp!9wSzVSt$L-zp+Jxus9UjNal{>qec7;lhw-=Y$B`3x=vxoG^?;6R`W(!xt3 z>R+7|yfhBPNR4 zW(;)JF&+dSx4bEE`=~9-V?wsCUGiovb2#rL5=a zzZ9jzj?%v4Y40V!#4p-HY<+OA>{;K^2+P4y*WOP+aKKc<05N53yR*X>pF+q(IIneF zWHUYyJ~F!lx1eo@eKrH}m~zAWwFx1j;IQmLw%F>pz zh;}Q0@~aXe(ae-cEryCLkmNm0p1}AF7QU>btUs~Sd8~gfVN$9(Yv7uf=Bh(9*9uC( zBIX&XUXx#?3*`DMt0wUOXjjNCzsDJ7!@Iub5aE`37jmNmk>2^hh+1U)@apUNo`~6S z{4nQfX7duAagC;|lR{VFuJ(-hs}0vcT#9 zIu0E3LZj$(n?MPN=?^Xq9zepg`CGz~Ta)+&c*Zml$6YMN@U*ofFJgO9xMtMb;aav-T7Ufu{@U{j_@Mj1CD@m_ zM!NbK;Y;Gv)+yNAHYnKj2;uV>@<_U-`><_D`*^tq@u+Pd^C2v5JN{j!osi`Sdc?-?aGiEdyuk(5iPVh z;d`rejHW`duo_<=Wuf(V;TY>75;63-5jD0ThVYB{AvIdzHGEKh+x9`#5LgL!XJ76r zgiaJ`uR^V0gG|(IUxQ#IZwH~~w&7NIA^HfSX|$qhv?6Q#fMPs?Nc4qZBs~$tLRr&2 z7N)(@7n()VaDh%lYj?ob$A@Qhg-FzFchF zh8QyP+vILPel4Z*!KZ3ka*@vR>qaGw9F67W_$RSU^P3RxAc-M&J zse&|Co3^+F*WX3ZeWO=aj$T6fnGjS6?IW8(Aa{o!Q|Mnaw4V~TpMvk<#TE{oLxmPb zox^yD@j9eF%r%7k1bNLu&HqY|tT2Q6TDNf3IfZznZg+QAQ}DBSG$$wL*zlGg>p#sCANA`vu0k9T;8O`4xDyl7KV4jKg8j7(Vv3j+Ka1zC zvA+_W$`8tQ^}}R5dZ*T`Zqg*iK`O$2AVvwL)Mam`*AaDI{atUPwSylm7Kn@%kej-& z;ORlNP!ptT^Iel_!6cn*N7bo@h)a6h;zz9pT5K4d9UsJ}X@q9Dtj@6-rC*4eNHUTo zqEUd5W(8^>`s)Q03iz*7p*&_->b81kM_zf-L zKJ`F!L9(i8(9}Txz^_SDf1{p|B#CMi(g{2FL0@UvE#%b{#5;s;8N5`Iw`GZWva?I% zlQVMH!5FK@niYchLH4~a*q4vdZZ`UpodV>E#XP-gth1V>Q@c){ zIsHh@1LQ`vwt?Te&Edj;$aGHBP2Zp*$|YhszvR(%61bP{ZoNrUrbIxT!C%M}FhE2I ztO%%-h}54X$%F*mRQga4nko*asAbWlRDI{D4r6_l78x@wC0*=ax!hroEWvL(DQW&0 zfxJMej}X<_-2jddwfS2zmySiQydbi-7o3Ki039ZiMCWQgqwaoQ1-8Zgr3ALE92H*~ z72hE_9~=#Iv>6o$B8%Ap7hP>nXj5XPN(tVGjg~wK)?lkai2?8ZumK0*$Oqs_-d^5e z86eXWKXX7c$Ok>mr~O)zPI%~X*|3a{N(d|TD@r@ms3V#>YAzbEN6DeOAB*)3N2Ny0 z7dWk{9fyzY_&8>XtPEkB!#El`U1XipP{+B7JFh5k2=2M@BHUu(cb9UGrJI zYOd?9sX2@}VpIDua6;X5U;>2=+GXi@3@?ek`{thcjW@?JPF8K76%>Bg9=+1w4{M*$jBCiaVeW3Q>7xe8OVGk;395xYL;otxx9m*VH z%rL*#y`gSyYzm#U$SZ|zl~OnakUd@q_Hb52l0GSyD8hH5_p{x{dh+I00e9Ria1bzt zbz`fJcE{XK=*!1;%XM|198G%(c;NfOyH9T6;mjrmh%8_#Di(OP*?6gYKeqtWxFj!6 z5&7zT+0epG`W{=~v#PZN*Ja*p3#A|cfkXuoj1cjHC2y}fmHrnl`v zX0u$a5)PDMjlW|G_b(;SJ&&;&+AQLJZ90gO}(*|7!W5QOAhBs;m`o0M_FS-)Pe z;Kt#~(!@g+enTiyX;5lzNVktk=(bZp!!;%7fi2dws~Cpe?0^qvj|PnNjR+H)QLU1% z-2wp+Kvr6q3dNU-)_&i$cE%kOG1?V=8N&ASiCuJXw14V>RU27f{Wgsg-9g@HuY}T& zVbPuDS$f=J`Z2Yqlb z$T;O8;)XGD@-MLBEs;y!PoxpWVjH4hn!nJmG!`^K)))L0l-a-64n?*7A_(&>o1S*5 z)X0Fhw`ADX*^<#rw3J!W257*=FZ464+}Ye)HY9L@X7BF~V=w?MsCTg;kiPVDoz|kl zHGYG)Aa}-tk{F<6CQJU_-R?th!14;#{^r3EKGw=>Ob9PK8qUy#-lY+i_T@+lII$HX zKIxr$ZB)8AA)@JA>5WVeURyy|lLZXiHX%d?QE#%kn4~Hcb4dBH0yue{?~pPRTU5el zJ&)ZWiuNuKD8y1*3#nLWSuT2@ujrA`)yTS9odlLd9nMh4E6Nm*b3%4dRZ4a%jtOGS z7Ms*YJ!;iva~o>1)aORxhz*gfPf|WGAEPCKu~OYr-*8h%Ed_U+-%LnAMelkr9(Z0l zdt|Ln>SU*r3TR430E-=awTp98>(9QxFw|2a)$xxduW4buLSLVQPVAfSrJXz7 z!I`97Pj$evlQ3+)quPtFxlp5}20ZQS$qcdz^L>92!&w+ybT$>Apa#p*75@39;2cc&aXO~;N zBJ@w=p%rYM<=$2ONL0yWcOSH}eWTG86jQ_&gn|Qr$)D;Yox_7)lRRq;^kGnGRxDKN zMc-e+?gnn@qXLH52iU_{?@m%E`TH-EW{9A@n^)gXk=ic87muP*@`ddS2MB$JN{8C7 zp|@p4rvv5S>q3kdc~daxa<+ipwca~T^s@aZ zT33LY8YCH*yUf)S&<_n-a)&5 zYi(7Jrdvi{ewBYF6DfC3M%qQm>x9F_*Wk!!l4VXBJ)11dH({BphI4gRJ2T6oYn~L) zwFJsN*zyz;?KP~fPq0STX4)aOWZ7y-sI9$sskDg}i=J*rOMh8f5*fS}gdknsBX)J*pcFAzo^}V(=~@^v z3Q`IzHSo1f(F;2_ri9IQ9EYZxb${v~iY@I-*uh!nMAg)5H4qa#?07AEz3qKAX%j=) z7K8g3ApN}%9sMn?3=z4BC0{=5JZuRbGpG}?I)!k6EPR&0KO9G`x(#2uN6j6?|I?A01 z-NB_GXM0@jr}xb4!l;($_l(+9o>Yd>gqc{-dsOg`#@{#WH@-v4kZjP=_L%|(!=OuAYJ&|9R{Vo++Ne1VQfNCf#?cQ&%PB@{_fDR> zj{d7lZM91c(pF|&LBoZ8>rUtLR_6v^(9lW6cfJ(9@S%`1MqY~6iS@UxJ%p1yyAIa7 zcHV7kC+G;lH6`8@)(u_6a}>qxpFY6K&&U%A(tkM`ldhX7sm7p>eTUg_9z$;@vF=@| z>R2UbaQ2|f9lK4EgUIvhJK^{i`vb6Xk~3*gwRGCHHxY@NBYa}WKNR|s(&YN(M5Ka} zk<)}TM{=Mvty}^U+ks~XrSVeMj*$K2e2UMFar5i1UhTm*YuT@I1Fg$&z9k(5$j5<@ z?=&79BG(<(Mkuk&5b{aq5$7!KwWHnpHkdqDXo0ocKb)4PB1{_StvgcWI#^2@>Rg9Y z9Df?43?#{42J|_59q<)2?ZoPL7DIFEf=+Z9M%jRj#(F1GW%=MM#z^(QJvj9+8-gz` z{}xxE<{^`=Kyb5&(x#)e8c(#|#JRJt*ioNGvU;l(Z^L=-n?n z_M-Hc{99h?W%;s_LX6g;y@r?Oa9rBEiRCht!_@n2l?xA!@!PsdhwGotM?y;>X}lQ| zYGNnGaQ&8#)vLez?`Dsv@tvzM2)u;1G-N4jYbh#TQ_&jIjg5{dl^S9Q&-EWV6Zq6SCnA7^@;e8OJrA2Yh1xZyP%HslW;b93A5+v5IA9l;tyo|<)b+cr( zT#nc=-Vw*{ExGTw-lskylhXY17D;t0P8t4TMB2wE{*lJDISiNB!z4EI4W;#hgMQ}@ zN12hVbRR7AaAbS~d!oexJ+gtCJiX0bfq)&SEvSNh2vGl$1{XnAGf)+dBD@GV0qe|8qe z%;l)_d164dyXD<|uCW(ysnSsh)o2i)E;*1o3QHDsXD%AbY0i(=i+U?oCtF&X`Y@>W zhCw)a_0mx>It}WsI-(19d_0re>tSIBtH4&t2L-NEj|iiE&F2b+oGQ&9;@c-8nl3>4KZuS7+esoZ5Q%fTDdSHU)!eRmgJ8g@5cVe#oiqxG-9zdg-d) zV~=DCaVpvv)Och6^-+L1L#>O@*5H*HFH93RTE`1Ke>F!UsDnpr?5+dA#>X3$b%UaE zSkT3kwMeW_*k!Pt_92u4%FE-WEkES>BooDa!qW%cy##d=qVeq{}mwapt z_GUN+_Y}kG3^B6Z=@dOZ&@(2r!(F949#{4{IdN`t3D{oLZ@g*yyeJNs{boW)b&XS_ z8qj3xAjaH{eCjNKGkjNbniA~&scNsd+;eTdWTs63Cwa?L*V1}sJ7lkVLuw}fNCC_? z3KiR>6!pQYi~!HL1UllUzx3MqB#fa zIJQOPZy^ytwcdbn>}Cz{4Y&JcPd|XxCEU{y2K>&EUly#|tECC6f=?TqeSUIVVMib=8$?s=Vi)ig)j@LtQ3=Pg`QmP=`L-rsZg zl6QVw+t68W#zhXi$&_tv@X8MKpd5>$J2N(eJG@a#PWBtA2kd78gI^{-|SO6qTn!G zq3~#=w}j;*8V#38PGRTpu+hn9v&kd47e2$`*N=r4O8RwYFOMSMD$ho;9k?#T zy^9+?@+3_e)SOx?bGFpA*gQd(NmYw0FPpbG zYc61>JJlR#`1Ir5dP$ILEd}9MBQ%uM)b}deaUQ|Mjxsc!%x-5h#$rc!je=EM33C%F zRM(vz)myJQZI;xT06{|Z1djR)qbV?uR(*c+ayI z@wa{04|FI>DA5%rM??UzoyTwG4+HdLIwvsnERssfDCLL_nrEo#?{XGn6%^soh_>OD zg=>e|$8@mGE*`(`LXT*hPm9DmyC|)}Or{m7)}=0h`bOp;81#XCBlvf`oR^%N!G1eL zvu=oTPH-U#(BI(Ac%@-cbBz2B<(%m@plW@!OdDax{j(F@ZyRC6$D#eznnmvXepo@$ zWid-6V2GE9H&F7;rLv{Xrm}IRdQfDk9!DQY99E~6sZxpg)?@s-!+R5RJ>yj;6ABw zvbzx$^(xZ!K{ib9V}GR6S;T3A@qn3e$}bCSfm5nQ-16MG+htC=dR~$?2G#RNSPYqf9pD-o>3M+qHP#+esZ~u64&B1!ut_x9+`agp#aCc9wFm zRd{Q}A^E8Jl1NUGo!x8%ysy*xLnA(>0Qebw4pT$f*1w;eyvsag$G^9&3r0pqw=flt znUPy&iNBbCs4_NmcqD`}>h}~Mpu+1Yk>5L5I+PSF^4^~HKpuM63-`JC*j;s?-}UB7 zdC9hLLBXbMAY8D@V8H`fg)*^YgfctIE$H*uWk_1eE5Wu>PU{cS&9UnBbaKP6?cHgT zBV`h|%-_8NocMw1{dGb;3V<^oNR`IOk_l;WQWcR;BP+)WFeu(f( zXUaGjudfsx)%N2|GTcvSt#E8(QJC;o45{h&Kf16qEM-1Ms$?*VZn2ovE$!=ih3a{+ z28D`+3?A@D@_YLum)`bY&bFl39uapJ5#9=Xx{&CvBfio73L?|oEZ`BaXt-DE8ZDb@ zxhb;eJyCV=rETL=Q;)bg398@4olhC7VXc4qV3>d97!wR<@DrmN^?cllfJVS zG`{(2X`g&y)4S_$iP}F&E|O}<8+6e zZD`}xZ9=}Stx8px2y)ZJr%_-is-7-i4BOZh7OMbJC&2^$muLe2vejVs{^l&NNYwqHcW*wkfl4v;De-!PBl?+ z12etXHBil!r;3Iqr-&Z{`ah$bT+Gl$9_}$kWX^hlRE~u1C#KpMKk1kBUzf<*?58yh z|IA?rW+X?u_}t!{eINQF+O;0rQaB^_(f5M8y57>T5XUAi#&@HV3O@<(+BrPCM;D+q z)j~QX@7TRn>b=+q%^znK%&#{`qdCz^98NVmc*MJ^%$t(Z<*I2{S*oz=;2p2{tCK3O zJwyElTT@qUp!aJ)HpHC9Bx+xdVdcaT+}0w3Ut78nb@NankESPe2LOCix;M4#3vfnw zRirO|-TLPU47oC1`Q%cRykS_GFsP@-NgwH=oka5gf%wj9*jlT>a#&M?Lx6WZR`knR zENhZOG7QtX(B;cSi`3w%c+flO?-^fuv{P+NLhyaYsMUUr`r_bBV>urc=R!lB`0BmJ zj7LQ>u`zaZaxgKl{%h0L@Es}=kOM#lAp2`mn+(Lsr9<}jeZYV19U{P^4bovcw$jh)nUk>s09*nBs7U`Z!6)cuXJBM$;zVX>VrF5(PjS@L zMnPs_%un%#T^=BBCu(ADA?4vTYUE*Q#BEF=D8T2&<7RDV4K_pOW^HBT$m7OO zVPI@)Xu<>D{tdHGko_g%WXVs#$_!-U1OO=nkoX*oO?i~XB>p)F{EDB#+{wv~hlRz} z)s@+mmD$$8j0MQe&CLP;v4B8KUu&{Hou(cuktwl)}zcd5?CE@>xuK(I}{o}L` zu9d-6;lGP*f&W#kgPR0?3RiF`{(sXifd1AKh*>z=SsA#4%Ntb-Co2;&CkJPf-z@-G z$3MFZ*1t*r)j?<|o0zhwSa_I_0XbM%-e{8n$=Jw1I%F)$wzf{-7XUJ47HJz(TQaua zhQQlm+I-;7f`c0XE}Db^tYRQG&fm4t-%BNd|91(n0SOB$Cld!22`g}QDQ041Yi#nb z&V`K?^!LWaEsgzq)9ZL8yuOo5Yo&Im7NN!>vK-}@FCjS}Wn;trN)rdgg;d#ead0KN zx}9TJ#6$plB8E4(cr3PKM;k{WOu`y#Y6^ZRPx3*Bex0@pq%~jwoGPpFdh0 z=yp|T270gJVU+=AUvlHe_~rHAlb_0D>ot6KdVHBt-`Pav1&m#0K$6Rvc$9dd5Ly@F zHc3n3i}hMBJe0eV2siYN;eF#3(F@*%wXuT8T@U)fcj7AH=DII**bT)f0i>-MV;tRV zsNYGuBcLUS6Tf?KvIQZIzKNu7{M2!h!GtITu_qPF9uieK6cp``C;2(DF{=;WFdW7 zWt$W#CHCPXen5d)B}xnYr3jC^LNVDz-GG9M@j;>iU49(J+9f2xDFjf{{?a_qWyepU z0ZC^ZmER7P0weIJ9kk&%vV8-h_c%H<0HIzVA?SeD>$|^h@(aPX5dM2t)@!x9S5@{U z{1`{@)@kowD&>=IFWw+5_Z-@GUBMT~nKC{bsBR7>rl?2&aFnrupZ@t^<0j)^XJ=(6 z`@QR*4!{`%{daoBK~W5H}DU!@nQ@OCKwMjq54K$?*gOv4NZM zKgO~G!H3Wv7(4qDyR00~$Z>Ey;l|3v_Jju;fcuHhY#z9Dm9IIXHoT%7NH9xc>AR!~yvI2FHK!0CBQ|$D1kYnTK0{m&0ofW|P=e)3Uv9kWT9vrOPY=7G2;9>{-IhK&++18weBtH>Jc)ZS z#`(ksH}Dw@#QnrBH`|j~}Jiy2K6MdY| z@Zfxg2RL4yj(vs)=N~=;!4df+AAsY9^BEqT&+y=Sh6mR(Jis=d_{a4O5AZqVsoXO> z!1?s4+#lS2CoisNcyK+#gZmjC;C%nY2KX3!iao=F`xzeG&+y=Wh6ndEJh-3X0nS%{ z`T_)>QJ-Q@d4QAHGjf0U42}&D>z_FX0007>@&JN!@l(4`c>n=Vc>n>=@BrtqC;Gs- z^C|WW5AZqusoWpjz@Y&IKEng}3=eSa^Hkq6Jb=&e06oJ4e2#yj5A=u6zvmu&eEbgK zztu=!@EIPUXLx{~;Q@Mv2k03dpl5inKEs3c86MzxdBTnL4{pEb9$ddXm3xK*q-6R_6!ejE%j92Qy#yg;y>iT z@xuCNO$f#~|E%kPAP#Qun*R=~f5#ON#0mPdz6WD$f7V=JjPuW08ORB)>;9+{fn4Bv zEN&N391gW1rNWzcFy${Wmu!2LlT$69-fz z@aJ;>?4{ZMKX0J_(IOi-IQ^rw0{g@b;zmWHrWSuKfr|96ehYw#^#6-@EQ$^$E@c03 biskp43@T36zh8pq?N7%!z_t0m9RI%nG+%A& literal 0 HcmV?d00001 From 80530ad5f3159e63f633b6849a496fe413fe11ec Mon Sep 17 00:00:00 2001 From: aryanvakharia <46436846+aryanvakharia@users.noreply.github.com> Date: Thu, 25 May 2023 22:14:26 +0530 Subject: [PATCH 12/12] Update README.md --- README.md | 30 ------------------------------ 1 file changed, 30 deletions(-) diff --git a/README.md b/README.md index 4519ef1..3c3034a 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,3 @@ -# data-oa -Online Assessments for the Data Team - # Data Science: Exploratory Data Analysis on a Consumer Finance Dataset Exploratory data analysis plays a huge part in quantitative finance. Often, in a variety of scenarios, consumer interests, expectations and beliefs play a huge role in deciding major moves for organisations. @@ -32,30 +29,3 @@ Link to dataset: https://drive.google.com/file/d/1Vnny6HVGBgF_mdDtIo2ddOTtOiGF5j Log in with your GApps@Illinois account to access this dataset. -## **Deliverables** -1. A Jupyter Notebook with all the code and your thought process. (Remember the thought process is what we're looking for) -2. A generated, dynamic PDF File with the insights that you have gathered. -3. A list of future hypotheses that you may not have yet implemented / couldn't figure out how to, but feel that could be interesting. Ideally, this would be structured in LaTex. - -## **Grading** -We will be looking at your project and grading it under these five criteria: -1. Code - - If it works - - Modular - - Follows best practices (ie. OOP) -2. Documentation - - Concise and exact. - - Follows popular conventions. - - Visuality. (Lots of graphs and statistics) -3. Styling - - Human readable - - Can quickly glance to receive all relevant information - - Follows Google Style Guide (preferred if it exists) or most popular convention (ie. PEP8) -4. Robustness - - Customizable - - No technical debt (future proof) - - Handles bad inputs and errors -5. Git - - [Good commit messages](https://cbea.ms/git-commit/#seven-rules) - - Commits are properly sized -