diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml new file mode 100644 index 0000000..9bab288 --- /dev/null +++ b/.github/workflows/release.yml @@ -0,0 +1,106 @@ +name: Release to PyPI + +on: + push: + tags: + - 'v*' # Triggers on version tags like v3.0.0 + +jobs: + test: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: ["3.13"] + + steps: + - uses: actions/checkout@v4 + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + + - name: Install uv + uses: astral-sh/setup-uv@v3 + + - name: Install dependencies + run: | + uv sync --extra dev + + + - name: Run tests + run: | + uv run pytest + + build-and-publish: + needs: test + runs-on: ubuntu-latest + environment: release + permissions: + id-token: write # Required for trusted publishing + contents: write # Required for creating releases + + steps: + - uses: actions/checkout@v4 + with: + fetch-depth: 0 # Get full history for proper versioning + + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: "3.13" + + - name: Install uv + uses: astral-sh/setup-uv@v3 + + - name: Build package with uv + run: | + uv build + + - name: Check package + run: | + uv run twine check dist/* + + - name: Publish to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 + # This uses trusted publishing - no API tokens needed! + + - name: Extract changelog for this version + id: changelog + run: | + # Extract the section for this version from CHANGELOG.md + VERSION=${GITHUB_REF#refs/tags/v} + echo "VERSION=$VERSION" >> $GITHUB_OUTPUT + + # Extract changelog section between [VERSION] and next [VERSION] or end of file + CHANGELOG=$(awk "/^\## \[$VERSION\]/{flag=1; next} /^\## \[/{flag=0} flag" CHANGELOG.md) + + # If no specific section found, use a default + if [ -z "$CHANGELOG" ]; then + CHANGELOG="See the [full changelog](https://github.com/qTipTip/SSplines/compare/v2.0.1...${GITHUB_REF_NAME}) for details." + fi + + # Save changelog to output (handle multiline) + { + echo "CHANGELOG<> $GITHUB_OUTPUT + + - name: Create GitHub Release + uses: softprops/action-gh-release@v1 + with: + files: dist/* + generate_release_notes: true + body: | + ## Changes in ${{ github.ref_name }} + + ${{ steps.changelog.outputs.CHANGELOG }} + + --- + + **Installation**: `pip install SSplines==${{ steps.changelog.outputs.VERSION }}` + + **Full Changelog**: https://github.com/qTipTip/SSplines/compare/v2.0.1...${{ github.ref_name }} + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} \ No newline at end of file diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml new file mode 100644 index 0000000..7db9a49 --- /dev/null +++ b/.github/workflows/test.yml @@ -0,0 +1,68 @@ +name: Tests + +on: + push: + branches: [ main, master ] + pull_request: + branches: [ main, master ] + +jobs: + test: + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + os: [ubuntu-latest, windows-latest, macos-latest] + python-version: ["3.13"] + + steps: + - uses: actions/checkout@v4 + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + + - name: Install uv + uses: astral-sh/setup-uv@v3 + + - name: Install dependencies + run: | + uv sync --extra dev + + - name: Run tests with coverage + run: | + uv run pytest --cov=SSplines --cov-report=xml + + - name: Upload coverage reports to Codecov + if: matrix.os == 'ubuntu-latest' # Only upload once + uses: codecov/codecov-action@v5 + with: + token: ${{ secrets.CODECOV_TOKEN }} + + - name: Upload coverage to GitHub + if: matrix.os == 'ubuntu-latest' # Only upload once + uses: actions/upload-artifact@v4 + with: + name: coverage-report + path: htmlcov/ + retention-days: 30 + compression-level: 6 + + # This job will be required for branch protection + test-summary: + if: always() + runs-on: ubuntu-latest + needs: [test] + steps: + - name: Check test results + run: | + if [[ "${{ needs.test.result }}" == "failure" ]]; then + echo "Tests failed!" + exit 1 + elif [[ "${{ needs.test.result }}" == "cancelled" ]]; then + echo "Tests were cancelled!" + exit 1 + else + echo "All tests passed!" + fi \ No newline at end of file diff --git a/.python-version b/.python-version new file mode 100644 index 0000000..24ee5b1 --- /dev/null +++ b/.python-version @@ -0,0 +1 @@ +3.13 diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 0000000..9213363 --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,37 @@ +# Changelog + +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + +## [Unreleased] + +## [3.0.0] - 2025-06-26 + +### Breaking Changes +- **Python 3.13+ required**: Dropped support for Python < 3.13 +- Modernized build system to use pyproject.toml instead of setup.py + +### Changed +- Updated numpy to modern versions (>= 1.24.0) +- Migrated from setup.py to pyproject.toml +- Added automated CI/CD pipeline with GitHub Actions + +### Dependencies +- numpy >= 1.24.0 +- sympy >= 1.10 + +## [2.0.1] - 2018-09-03 + +### Fixed +- Various bug fixes and improvements +- Updated documentation + +### Added +- Initial implementation of S-splines on Powell-Sabin 12-split +- SplineFunction and SplineSpace objects +- Support for constant, linear, and quadratic splines +- Hermite basis conversion +- Triangle sampling methods +- Basic integration methods \ No newline at end of file diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 0000000..54c21eb --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,62 @@ +cff-version: 1.2.0 +message: "If you use this software, please cite it as below." +type: software +title: "SSplines: Simplex Splines on the Powell-Sabin 12-split" +abstract: "A Python library for the evaluation of simplex splines over the Powell-Sabin 12-split of a triangle. The library provides efficient evaluation using the matrix recurrence relation for S-spline basis functions for constant, linear, and quadratic simplex splines." +authors: + - family-names: "Stangeby" + given-names: "Ivar Haugaløkken" + email: "istangeby@gmail.com" + orcid: "https://orcid.org/0000-0002-7697-7526" +version: "2.0.1" +date-released: "2024-12-20" +license: MIT +repository-code: "https://github.com/qTipTip/SSplines" +url: "https://github.com/qTipTip/SSplines" +doi: "10.5281/zenodo.15742326" +keywords: + - "splines" + - "finite element method" + - "Powell-Sabin" + - "simplex splines" + - "numerical analysis" + - "computational geometry" + - "interpolation" + - "multivariate splines" + +# Preferred citation for the software +preferred-citation: + type: thesis + title: "Simplex Splines on the Powell-Sabin 12-Split" + authors: + - family-names: "Stangeby" + given-names: "Ivar Haugaløkken" + thesis-type: "Master thesis" + institution: + name: "University of Oslo" + year: 2018 + url: "http://hdl.handle.net/10852/64070" + identifiers: + - type: "other" + value: "URN:NBN:no-66606" + description: "URN" + +# Related references +references: + - type: article + title: "S-splines" + authors: + - family-names: "Cohen" + given-names: "Elaine" + - family-names: "Lyche" + given-names: "Tom" + - family-names: "Riesenfeld" + given-names: "Richard" + journal: "Mathematics of Computation" + volume: 82 + issue: 283 + start: 1577 + end: 1596 + year: 2013 + doi: "10.1090/S0025-5718-2013-02664-6" + scope: "Theoretical foundation for the S-splines implementation" \ No newline at end of file diff --git a/README.md b/README.md index 85166d1..f9ea749 100644 --- a/README.md +++ b/README.md @@ -1,52 +1,251 @@ # SSplines -## Simplex Splines on the Powell-Sabin 12-split + +**Simplex Splines on the Powell-Sabin 12-split** [![Build Status](https://travis-ci.org/qTipTip/SSplines.svg?branch=master)](https://travis-ci.org/qTipTip/SSplines) [![Coverage Status](https://coveralls.io/repos/github/qTipTip/SSplines/badge.svg?branch=master)](https://coveralls.io/github/qTipTip/SSplines?branch=master) [![Downloads](http://pepy.tech/badge/ssplines)](http://pepy.tech/project/ssplines) +[![DOI](https://zenodo.org/badge/121780435.svg)](https://doi.org/10.5281/zenodo.15742326) + +SSplines is a Python library for the evaluation of simplex splines over the Powell-Sabin 12-split of a triangle. The library provides efficient evaluation using the matrix recurrence relation for S-spline basis functions for constant, linear, and quadratic simplex splines as developed by [Cohen, Lyche and Riesenfeld](http://www.ams.org/journals/mcom/2013-82-283/S0025-5718-2013-02664-6/S0025-5718-2013-02664-6.pdf). +The SSplines library was developed as part of the thesis: [Simplex Splines on the Powell-Sabin 12-Split](http://hdl.handle.net/10852/64070). +## Features -`SSplines` is a small Python library for the evaluation of simplex splines over -the Powell-Sabin 12-split of a triangle. The evaluation makes use of the -convenient matrix recurrence relation for the S-spline basis functions for -constant, linear and quadratic simplex splines as developed in [this -paper](http://www.ams.org/journals/mcom/2013-82-283/S0025-5718-2013-02664-6/S0025-5718-2013-02664-6.pdf) by -Cohen, Lyche and Reisenfeld. - -## Functionality - -At the moment, the SSpline library features: - -1. `SplineFunction` objects representing a callable spline function over a - single triangle, and the `SplineSpace` object facilitating instantiation of - several functions in the same spline space. -2. Evaluation and differentiation of constant, linear and quadratic simplex - splines with convenient short cuts for gradient, divergence and laplacian - operators. -3. Conversion between quadratic S-spline basis and the quadratic Hermite nodal - basis often employed in finite element methods. -4. A Method for sampling of triangles for ease of evaluation and visualization. -5. Some basic subdomain integration methods over the Powell--Sabin 12-split for - use in finite element computations. -6. Methods for returning the polynomial restrictions of a spline to each of the - twelve sub-triangles of the split. +- **SplineFunction objects**: Callable spline functions over a single triangle +- **SplineSpace objects**: Facilitate instantiation of multiple functions in the same spline space +- **Evaluation and differentiation**: Support for constant, linear, and quadratic simplex splines with convenient shortcuts for gradient, divergence, and Laplacian operators +- **Hermite basis conversion**: Conversion between quadratic S-spline basis and quadratic Hermite nodal basis for finite element methods +- **Triangle sampling**: Methods for sampling triangles for evaluation and visualization +- **Numerical integration**: Basic subdomain integration methods over the Powell-Sabin 12-split for finite element computations +- **Polynomial pieces**: Methods for returning polynomial restrictions of splines to each of the twelve sub-triangles +- **Symbolic computation**: Integration with SymPy for exact symbolic calculations ## Installation -### Pip -Install using `pip` with the command: +### Using pip ```bash pip install SSplines ``` -### Locally -The package can be installed locally by cloning the repository: +### Using uv (recommended for development) + +```bash +# Install uv first (if not already installed) +curl -LsSf https://astral.sh/uv/install.sh | sh + +# Install SSplines +uv pip install SSplines + +# For development with testing and visualization +uv pip install "SSplines[dev]" +``` + +### Local installation ```bash -git clone https://github.com/qTipTip/SSplines2 +git clone https://github.com/qTipTip/SSplines +cd SSplines +uv pip install -e ".[dev]" ``` -The directory contains a setup-script, which can be run using +## Quick Start + +### Basic Usage + ```python -python setup.py install +import numpy as np +from SSplines import SplineSpace, SplineFunction + +# Define a triangle +triangle = np.array([ + [0, 0], + [1, 0], + [0, 1] +]) + +# Create a quadratic spline space +space = SplineSpace(triangle, degree=2) + +# Get the dimension of the space +print(f"Spline space dimension: {space.dimension}") # 12 for quadratic + +# Create a spline function with random coefficients +coefficients = np.random.rand(space.dimension) +spline_func = space.function(coefficients) + +# Evaluate the spline at points +points = np.array([ + [0.3, 0.3], + [0.1, 0.2], + [0.5, 0.1] +]) +values = spline_func(points) +print(f"Spline values: {values}") ``` + +### Working with Basis Functions + +```python +# Get all basis functions +basis_functions = space.basis() + +# Evaluate the first basis function +first_basis = basis_functions[0] +value_at_point = first_basis([0.3, 0.3]) + +# Compute derivatives +gradient = first_basis.grad([0.3, 0.3]) +laplacian = first_basis.lapl([0.3, 0.3]) +``` + +### Hermite Basis + +```python +# For quadratic splines, you can use Hermite basis +hermite_basis = space.hermite_basis() + +# Each Hermite basis function corresponds to nodal values or derivatives +h0 = hermite_basis[0] # Value at first vertex +h1 = hermite_basis[1] # x-derivative at first vertex +h2 = hermite_basis[2] # y-derivative at first vertex +``` + +### Symbolic Computation + +```python +from SSplines.symbolic import polynomial_basis_quadratic + +# Get symbolic polynomial representations +symbolic_basis = polynomial_basis_quadratic(triangle) + +# Each entry contains the polynomial pieces over the 12 sub-triangles +print(f"Number of polynomial pieces: {len(symbolic_basis[0])}") # 12 +``` + +## Dependencies + +- **Core dependencies**: + - `numpy` ≥ 1.24.0: Numerical computations + - `sympy` ≥ 1.10: Symbolic mathematics + +- **Development dependencies**: + - `pytest` ≥ 7.0.1: Testing framework + - `pytest-cov`: Test coverage + - `matplotlib` ≥ 3.5.1: Plotting and visualization + +## Development + +### Setting up a development environment + +```bash +# Clone the repository +git clone https://github.com/qTipTip/SSplines +cd SSplines + +# Install in development mode with all dependencies +uv pip install -e ".[dev]" +``` + +### Running tests + +```bash +# Run all tests +uv run pytest + +# Run with coverage +uv run pytest --cov SSplines/ + +# Run specific test file +uv run pytest tests/test_spline_function.py -v +``` + +### Code structure + +``` +SSplines/ +├── __init__.py # Main module exports +├── constants.py # Mathematical constants and lookup tables +├── helper_functions.py # Core computational functions +├── simplex_spline.py # SimplexSpline class +├── spline_function.py # SplineFunction class +├── spline_space.py # SplineSpace class +├── symbolic.py # Symbolic computation utilities +└── dicts.py # Lookup dictionaries for sub-triangles +``` + +## Mathematical Background + +The library implements S-splines on the Powell-Sabin 12-split, which divides a triangle into 12 sub-triangles by: + +1. Adding a point at the centroid +2. Adding midpoints on each edge +3. Connecting these points to create 12 sub-triangles + +The S-splines are defined using a matrix recurrence relation that allows efficient evaluation without explicit polynomial representation. This approach is particularly useful for: + +- Finite element methods +- Computer-aided geometric design +- Approximation theory +- Scientific computing applications requiring smooth basis functions + +## Contributing + +Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change. + +## License + +This project is licensed under the MIT License - see the LICENSE file for details. + +## Citation + +If you use SSplines in your research, please cite the original theoretical work and the software implementation: + +**Original S-splines theory:** +```bibtex +@article{cohen2013splines, + title={S-splines}, + author={Cohen, Elaine and Lyche, Tom and Riesenfeld, Richard}, + journal={Mathematics of Computation}, + volume={82}, + number={283}, + pages={1577--1596}, + year={2013}, + doi={10.1090/S0025-5718-2013-02664-6} +} +``` + +**SSplines software and implementation:** +```bibtex +@mastersthesis{stangeby2018ssplines, + title={Simplex Splines on the Powell-Sabin 12-Split}, + author={Stangeby, Ivar Haugal{\o}kken}, + school={University of Oslo}, + year={2018}, + url={http://hdl.handle.net/10852/64070}, + urn={URN:NBN:no-66606} +} +``` + +**Software repository:** +```bibtex +@software{stangeby2024ssplines, + title={SSplines: Simplex Splines on the Powell-Sabin 12-split}, + author={Stangeby, Ivar}, + year={2024}, + doi={10.5281/zenodo.15742326}, + url={https://github.com/qTipTip/SSplines} +} +``` + + +## Author + +**Ivar Stangeby** - [istangeby@gmail.com](mailto:istangeby@gmail.com) + +## Links + +- [GitHub Repository](https://github.com/qTipTip/SSplines) +- [Documentation](https://github.com/qTipTip/SSplines) +- [PyPI Package](https://pypi.org/project/SSplines/) +- [Original Paper](http://www.ams.org/journals/mcom/2013-82-283/S0025-5718-2013-02664-6/S0025-5718-2013-02664-6.pdf) \ No newline at end of file diff --git a/SSplines/constants.py b/SSplines/constants.py index 30cbad1..f7c0746 100644 --- a/SSplines/constants.py +++ b/SSplines/constants.py @@ -26,7 +26,7 @@ [ 8], [ 9], [10], -], dtype = np.int) +], dtype = int) PS12_DUAL_POINTS_INDEX_QUADRATIC = np.array([ [1, 1], @@ -41,7 +41,7 @@ [3, 6], [6,10], [6, 1] -], dtype = np.int) +], dtype = int) PS12_DUAL_POINTS_INDEX_QUADRATIC_ALTERNATIVE = np.array([ [1, 1], @@ -56,7 +56,7 @@ [3, 6], [3,10], [6, 1] -], dtype = np.int) +], dtype = int) PS12_DUAL_POINTS_INDEX_CUBIC = np.array([ @@ -76,7 +76,7 @@ [2, 4, 5], [3, 5, 6], [1, 2, 3], -], dtype = np.int) +], dtype = int) PS12_DUAL_POINTS_INDEX_CUBIC_ALTERNATIVE = np.array([ [1, 1, 1], @@ -95,7 +95,7 @@ [2, 2, 10], [3, 3, 10], [1, 2, 3], -], dtype = np.int) +], dtype = int) PS12_DUAL_POINTS_BARYCENTRIC_COORDINATES_LINEAR = np.array( @@ -154,10 +154,10 @@ [4, 9, 7], [4, 8, 9], [5, 9, 8] -], dtype=np.int) +], dtype=int) -UX = np.array([1, 0], dtype = np.int) -UY = np.array([0, 1], dtype = np.int) +UX = np.array([1, 0], dtype = int) +UY = np.array([0, 1], dtype = int) DELETED_KNOT_TO_TRIANGLE = { (0, 1, 3, 4): (0, 3, 4), # diff --git a/SSplines/helper_functions.py b/SSplines/helper_functions.py index 22b3878..5bbcc98 100644 --- a/SSplines/helper_functions.py +++ b/SSplines/helper_functions.py @@ -32,7 +32,7 @@ def barycentric_coordinates(triangle, points, tol=1.0E-15, exact=False): else: A = np.concatenate((triangle.astype(float), np.ones((3, 1))), axis=1).T # append a column of ones b = np.concatenate((p.astype(float), np.ones((len(p), 1))), axis=1) # append a column of ones - x = np.linalg.solve(A[None, :, :], b) # broadcast A to solve all systems at once + x = np.linalg.solve(A, b.T).T # broadcast A to solve all systems at once x[abs(x) < tol] = 0 # remove round off errors around zero @@ -69,7 +69,7 @@ def directional_coordinates(triangle, direction): A = np.concatenate((triangle, np.ones((3, 1))), axis=1).T # append a column of ones b = np.concatenate((u, np.zeros((len(u), 1))), axis=1) # append a column of zeros - a = np.linalg.solve(A[None, :, :], b) # broadcast A to solve all systems at once + a = np.linalg.solve(A, b.T).T # broadcast A to solve all systems at once return a @@ -85,7 +85,7 @@ def determine_sub_triangle(bary_coords): b = np.atleast_2d(bary_coords) b1, b2, b3 = b[:, 0], b[:, 1], b[:, 2] s = 32 * (b1 > 0.5) + 16 * (b2 >= 0.5) + 8 * (b3 >= 0.5) + 4 * (b1 > b2) + 2 * (b1 > b3) + (b2 >= b3) - return np.vectorize(index_lookup_table.get)(s).astype(np.int) + return np.vectorize(index_lookup_table.get)(s).astype(int) def ps12_vertices(triangle): @@ -541,7 +541,7 @@ def coefficients_cubic(k): [1, 2, 3, 5, 6, 10, 12, 13, 14, 15, -1], [2, 3, 5, 6, 7, 10, 12, 13, 14, 15, -1], [2, 5, 6, 7, 9, 10, 12, 13, 14, 15, -1], [2, 6, 7, 9, 10, 11, 12, 13, 14, 15, -1] - ], dtype=np.int) + ], dtype=int) return c3[k] @@ -558,7 +558,7 @@ def coefficients_quadratic_alternative(k): [2, 3, 4, 5, 6, 7, 10], [2, 5, 6, 7, 8, 9, 10], [2, 6, 7, 8, 9, 10, 11], [1, 2, 6, 9, 10, 11, -1], [1, 2, 3, 6, 10, 11, -1], [1, 2, 3, 5, 6, 10, -1], [2, 3, 5, 6, 7, 10, -1], [2, 5, 6, 7, 9, 10, -1], [2, 6, 7, 9, 10, 11, -1] - ], dtype=np.int) + ], dtype=int) return c2[k] @@ -576,7 +576,7 @@ def coefficients_quadratic(k): [2, 3, 4, 5, 6, 7], [5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [1, 2, 6, 9, 10, 11], [1, 2, 3, 6, 10, 11], [1, 2, 3, 5, 6, 10], [2, 3, 5, 6, 7, 10], [2, 5, 6, 7, 9, 10], [2, 6, 7, 9, 10, 11] - ], dtype=np.int) + ], dtype=int) return c2[k] @@ -590,7 +590,7 @@ def coefficients_linear(k): [1, 4, 7], [2, 4, 8], [2, 5, 8], [5, 6, 9], [3, 6, 9], [3, 7, 9], [4, 7, 9], [4, 8, 9], [5, 8, 9] - ], dtype=np.int) + ], dtype=int) return c1[k] @@ -753,7 +753,7 @@ def hermite_basis_coefficients(triangle, outward_normal_derivative=False): x32, y32 = p3 - p2 x23, y23 = p2 - p3 - d = signed_area(triangle) + d = signed_area(triangle).item() p12 = 3 * np.linalg.norm(p1 - p2) p23 = 3 * np.linalg.norm(p2 - p3) @@ -1008,11 +1008,11 @@ def simplex_spline_graphic_small(mm, scale=2, filename=False, is_visible=True): # Edges x = [v4[0], v2[0], v3[0], v1[0], v4[0]] y = [v4[1], v2[1], v3[1], v1[1], v4[1]] - line = matplotlib.lines.Line2D(x, y, lw=int(2), color='black', zorder=2) + line = matplotlib.lines.Line2D(x, y, lw=2, color='black', zorder=2) ax.add_line(line) line = matplotlib.lines.Line2D([int(min(x) - 5), int(max(x) + 5)], [int(min(y) - 6), int(max(y) + 5)], - lw=int(2), color='white', zorder=0) + lw=2, color='white', zorder=0) ax.add_line(line) @@ -1029,7 +1029,7 @@ def simplex_spline_graphic_small(mm, scale=2, filename=False, is_visible=True): for j in range(i, 6): x = [Lv[i][0], Lv[j][0]] y = [Lv[i][1], Lv[j][1]] - line = matplotlib.lines.Line2D(x, y, lw=int(1), color='black', zorder=2) + line = matplotlib.lines.Line2D(x, y, lw=1, color='black', zorder=2) ax.add_line(line) # Color the faces. diff --git a/SSplines/simplex_spline.py b/SSplines/simplex_spline.py index 33e8380..6809452 100644 --- a/SSplines/simplex_spline.py +++ b/SSplines/simplex_spline.py @@ -39,7 +39,7 @@ def __call__(self, y, exact=False, barycentric=False): dtype=object) else: return np.array([self.polynomial_pieces[k[i]].subs({'X': x[i][0], 'Y': x[i][1]}) for i in range(len(x))], - dtype=np.float) + dtype=float) def display(self): """ diff --git a/examples/basic_functionality.ipynb b/examples/basic_functionality.ipynb index 8b2c085..18c4ac0 100644 --- a/examples/basic_functionality.ipynb +++ b/examples/basic_functionality.ipynb @@ -17,19 +17,27 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.549084Z", + "start_time": "2025-06-25T21:43:02.093908Z" + } + }, "source": [ "import numpy as np\n", "import SSplines" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.560416Z", + "start_time": "2025-06-25T21:43:02.557187Z" + } + }, "source": [ "triangle = np.array([\n", " [0, 0],\n", @@ -38,16 +46,23 @@ "])\n", "\n", "degree = 2" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.566661Z", + "start_time": "2025-06-25T21:43:02.564717Z" + } + }, "source": [ "S = SSplines.SplineSpace(triangle, degree)" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "markdown", @@ -58,17 +73,24 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.810428Z", + "start_time": "2025-06-25T21:43:02.808098Z" + } + }, + "source": [ + "print(S)" + ], "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", - "Degree: 2\n", + "Degree : 2\n", "Dimension: 12\n", - "Vertices: \n", + "Vertices : \n", " v1: (0.0, 0.0) \n", " v2: (1.0, 0.0)\n", " v3: (0.5, 0.8660254037844386)\n", @@ -76,9 +98,7 @@ ] } ], - "source": [ - "print(S)" - ] + "execution_count": 4 }, { "cell_type": "markdown", @@ -89,8 +109,17 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.837716Z", + "start_time": "2025-06-25T21:43:02.834836Z" + } + }, + "source": [ + "coefficients = np.array([-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1])\n", + "s = S.function(coefficients)\n", + "print(type(s))" + ], "outputs": [ { "name": "stdout", @@ -100,11 +129,7 @@ ] } ], - "source": [ - "coefficients = np.array([-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1])\n", - "s = S.function(coefficients)\n", - "print(type(s))" - ] + "execution_count": 5 }, { "cell_type": "markdown", @@ -115,61 +140,66 @@ }, { "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.947586Z", + "start_time": "2025-06-25T21:43:02.914339Z" + } + }, "source": [ "# the number of points correspond to the dimension of the bivariate polynomial space of degree 50. \n", "points = SSplines.sample_triangle(triangle, 50)\n", "function_values = s(points)" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:02.958773Z", + "start_time": "2025-06-25T21:43:02.956798Z" + } + }, "source": [ "import matplotlib.pyplot as plt\n", "from matplotlib import cm\n", "from mpl_toolkits.mplot3d import Axes3D" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": 34, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:03.136154Z", + "start_time": "2025-06-25T21:43:02.968707Z" + } + }, + "source": [ + "%matplotlib inline\n", + "fig = plt.figure()\n", + "axs = fig.add_subplot(projection='3d')\n", + "\n", + "axs.view_init(45, 60)\n", + "axs.plot_trisurf(points[:, 0], points[:, 1], function_values, cmap=cm.magma)\n", + "plt.show()" + ], "outputs": [ { "data": { "text/plain": [ - "" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWlsXWl63/l733PufnkX7ptEUqRU1EJVd5WoeJIZIxPY\nCKY/tOExJuMeBIZhGxgbNpwAHgP+mAD5YEyAyZcEAfJhAhgIumc8maTRnbjH9sDdbqeniyWVSqJU\nUkmllZS4Xt57efezvO98OPccXlIkxU1LdZ0fUCiRl/csdzn/8zzv8/wfobUmJCQkJCQkBOTbPoCQ\nkJCQkJB3hVAUQ0JCQkJC2oSiGBISEhIS0iYUxZCQkJCQkDahKIaEhISEhLQJRTEkJCQkJKRNKIoh\nISEhISFtQlEMCQkJCQlpE4piSEhISEhIG/OQfx/a34SEhISEfBkRB/mjMFIMCQkJCQlpE4piSEhI\nSEhIm1AUQ0JCQkJC2oSiGBISEhIS0iYUxZCQkJCQkDaHrT4NCQkJCdBao5TCcRwcx0EIQSwWwzCM\nt31oISFHQhxyyHDYkhES8hVmpwg6joN/DRFCYBgGhmFgmiamaSLEgargQ0LeBAf6MIaiGBISsiev\nEkH/P601tVoNx3Ho7e0FQEpJJBJBynCVJuSdIBTFkJCQw+GLoGVZNBoNDMPYVwRLpRLFYpF6vU4q\nlcIwDJRSXLx4EdP0VmcikQiGYYRRY8jbJhTFkJCQ/dkrEmy1Wjx48IDLly/vK4L5fJ5cLkcymUQI\ngWmarK6u8vDhQy5cuEAul0NrHaZTQ94FQlEMCQnZzkHTofV6nc8//5y+vj5KpRK1Wo1UKkUulyOf\nzwciuBPTNJFS0mg0uHXrFr29vUxMTABhOjXkrROKYkjIV53DrAnW63WKxSKlUolKpYJSirGxsX1F\ncCe+KAIopXj48CGlUomZmRmEEDx9+pTz58+H6dSQt8GBPnBhS0ZIyM8Q+4kgeNGalDIQQT8dWqvV\nSCaT5PN5xsfHAXj69Cmjo6OH2n+n0EkpOXv2LIVCgevXr3P69GlqtRq2beO6LtFoNBTGkHeOUBRD\nQr7EHEYEG40GxWJxVxFMpVLbBKpSqZyYYPX09DA7O8unn35Kq9UKjrnVahGNRsN0asg7RZg+DQn5\nEnEQEfTTob4IlkolqtUqyWQyWBPcKYI72dzc5Pnz55w/f/5Qx9eZPt1JqVTi7t27AFy+fJlkMhkW\n4YS8ScL0aUjIl53DRoJ+OrRarZJIJMjn84yNjb1SBHfb71EiuP32obUmm80yMjLCzZs3GRsbY3h4\nGMdxUEqF6dSQd4JQFENC3iFOQgRPnz5NOp0+lsBorU9coJRSSCnJZrNcvXqVzz77jEKhEESjzWaT\nSCQS9DeGhLwNwk9fSMhbxBdB27ZxHAfXdfcUwWazua06NJFIkMvlTkQEdzuu1yWK4KVZL1++zIsX\nL/j444+5ePEimUwG27aDlGoYNYa8DUJRDAl5g+wVCT558oR0Ok1/f38gHDvXBOPxOLlcjlOnTp24\nCO5EKfVaRHGnUfjw8DDZbJb5+XkGBgYYGxsL0qlhT2PI2yAUxZCQ18hB06FSShzHYXl5OUiHxmIx\n8vk8o6OjdHV1vdHI6XWsKbquu+s2U6kUV69e5f79+9y4cYNLly4RiURotVqhRVzIGycUxZCQE6RT\nBF3XDdKBPr4AAkE6tFgssrGxQSwWY2BggNHRUdLp9FuNko6aPt3veZ3p051IKZmenmZtbY1r164x\nPT1Nd3c3tm0HUWMojCFvglAUQ0KOwVFE0F8TjMVi5HI5RkdHicfjQfr0XeB1rynuRV9fH11dXczP\nz1MoFJicnMR13aA6NUynhrxuQlEMCTkEhxVBvzq0UqkQjUbJ5/OMjIy8FAlubGy88XPZj4OuKWqt\nqVargdin02nOnTu3q3j5wvYq4vE4V65c4dGjR1y7do2ZmRkSiQStVivsaQx57YSiGBKyD3uJoB9J\ndYpgq9UK0qG+COZyOYaHh+nq6vpSRTl7RYr+tAxfBOv1Oul0mnw+z9TUFMVikbm5uaA5v5O91hR3\nQwjB5OQk3d3d3Lhxg8nJSQYGBsKexpDXTiiKISEd+CLoui6O4xxIBEulEpubm19qEdyJX2iz0yjc\nn5aRz+eZnJwkkUhsE6dcLkd3dzeffvopExMTDA0NBY8dJH26k3w+z9WrV7lz5w7r6+tMT08DbIsa\nQ0JOktDmLeQrzW4iqJQCCETQv+jvFMFIJEI+nyefzx9bBJ88eUIymXzra4q+KcDjx4+p1+torQNT\ngINMy/DTo7Ztc+fOHUzTDKZifP755/T09NDb23uk41pcXGRhYYGZmRnS6XRoERdyWMLRUSEhO/Gj\nPr894lUi6K8JdopgLpcjk8mcaCT45MkTEokEAwMDJ7bNg7LTKDwejyOEIJVKMTExcSjB6Vwz9IVs\ncXGRmZkZFhYWGBgYoLu7+8jHWq1WmZ+fZ2RkJJjgEc5pDDkgoSiGhOwmguvr6ziOw8DAwDYRtCwr\niATL5TKRSCQw0D5pEdzJ06dPicfjb0QUO1tBOvsh8/l8YAqwsLCAaZrb0p+vQghBJBJ56feVSoX5\n+XkMw+C9994jl8sd6/hd1+XevXtYlsWlS5cCQ4CwpzHkFYSiGPLV4yCR4OrqKo1Gg+Hh4SASfNMi\nuJPXKYq7FQB1iuBu5/n06VNisRiDg4MH3s9eogjgOA4/+clPSCaTfO1rXzuRtcDl5WUePnzIhQsX\nyOVyaK0xDCPsaQzZi3BKRsjPPruJ4M7CGD96sCyLQqHA0tIS1WqVjY0N8vk8/f39TE1NvWRB9jbO\n5STojHg3NzcxTZN8Pn+oAqCjOtrshWmaZDIZstksc3NzXLx4kWw2e6xtDg4Oks1muXXrFr29vUxM\nTOC6LoVCIcgChIQcllAUQ75UHEQEhRDbRNBPhxqGEUSC6XSaqampt306AceJbGzbDiJBXwRzuRwD\nAwOcPXv2SOLwupr3BwcH6e/vZ35+nsHBQcbGxo61n0QiwezsLA8fPuT69evMzMxw7949crlcWIQT\nciRCUQx5p/EFz+8RPIoI9vX1MTk5GUSCGxsbFAqFt3xmR8e27W1pX/88TzLifZ2ONolEgqtXr/L5\n558HXqcHaerfCyklZ8+epVAocP36dRzHQQgR9jSGHIlQFEPeKXaKoH9h8+kUQdu22djYeEkcent7\nt4ngTvz+uy8LjuNsE0EhxIHO8zgcRRRf9feu6wbHKqXk/PnzrKys8PHHH3PhwgXy+fyRjxegp6eH\n2dlZ/vqv/5p79+5x7tw5lFLbjMVDQl5FKIohb5WDiKAvhEcVwZ1IKbft413DcRzK5XJwngDZbJbu\n7m4mJibeSMP66xodtTOVOzAwQCaTCdYFz5w5c6z9RiIREokEiURim7OOZVlhOjXkQISiGPJGOYoI\nlkolSqUSUsoTiZDeNVF0XTdwjXn+/Dlaa7LZLPl8nvHx8bfi2nLShTb+NncTJH9d8IsvvuDatWtc\nvnyZWCx2pH24rotpmoyPj5PP57l58yZjY2MMDw+HcxpDDkQoiiGvlaOKYGeasKenhzNnzpxY+ksI\n8VbTp67rsrm5GVSI+mnFdDrNxMTEnm0Nb5LXsaYIe6dYpZScO3eO9fV1rl27xnvvvXck5xvHcYKb\niGw2y9WrV/nss88oFAqcP38eIJzTGLIvoSiGnCg7RXBlZYVMJrNtLckXQcdxKBQKL62Vve404ZuO\nFJVS20TQcRwymUwwQDgajQbN8u+CIMLhRFEpRbVapVKpMDIycqyimd7e3mB01MbGBlNTU4eK6jrX\nLcFrBbl8+TIvXrzg448/5uLFi2QymaBgK0ynhuwkFMWQY+N7h+4WCS4tLZFMJolGo4EI+ulQIcQb\nXyuD1y+KSikqlUrQJuGLYC6XO7ZovCn2W1P0x0X5xT/NZpOuri7S6fSJFM3EYjE+/PBDHj16xMcf\nf8zly5dJJBIHeu5OUfQZHh4mm80yPz/PwMAAY2NjweSTcE5jSCehKIYcmv1EcGck6DgOT548oV6v\nAwR9gm9rrQxOPn2qtd4mgpZl0dXVRT6f58KFC0deH3ubdK4pdk7KKBaL28ZFnT17NvBKNQyD4eFh\nbt26RX9/P+Pj40eOwjpHR33yySdMTU0dyO2nM326k1QqxdWrV7l///62VpAwnRrSSWjzFvJKXiWC\nQCCCftVkqVQKnjswMMDIyMgbEkGFlA0EDaTRREgbIWy0ayClJ8xaa9ZXG/T2dKGJonUU5cZQIo0m\nyavcoDoH6xaLRVqtViAS+XyeeDx+6KNeWFgIROVto7Xm1q1bZLNZarUa1WqVZDL5ykkZhmFgGAZK\nKR48eEC1WmVmZiaIjH/yk5/wt//23z708ViWxe3bt4nH40xPT+8b1a2trVEsFjl37ty+21xbW+P+\n/ftMT0/T3d0d3ASEPY0/04Q2byFH4zCRYGeLhNaaXC5HLpcLIsGHDx+STqdfoyBqpKxiGGWErGMY\nVYTQKBVFoBDSAcB1EwjRQgjvvs6ULoYsB1txnQSG2EQjcVUOpZO4ohctutAQDNb104X+TMFz584d\nOLW3H2/7QrzTJNyPdsfGxkilUoc6Pikl7733Hqurq3z88cecP3/+WOnUaDTK17/+dZ49e8ZHH33E\n5cuXSaVSu/7tXunTnfT19QVrl4VCgcnJyaCnMUynfrUJRTHk0CLorwl2tg6MjY3tWiRiGAau6574\nMUtZwZBlzGgBIdrCZyURpp/M0CgnghH1HkOAcuMYZsM7LuGidTx4LsoFCQKFFDWwykTlIyxbsrgq\naVhdRNODTE1NvTRY98uI74/qW8P5JuGjo6OBWAwPDx8p6vXp7+8nk8lw8+ZNenp6jnW8QgjGxsbI\n5XLcvHmT8fHxXaPq/dKnO4nH41y5coVHjx5x7do1ZmZmSCQS2wYYf9nf55DDE4riV5CDiqDrusGF\nc6cInj59+kCVkicrig6muYEZWUPKJo6V3hI1AMeGdg2LEAptNYOfQYPtdnziBcqNYZjt59s1XCkx\npMK2WrRqNpkuiEYUY0NpjNYSStZwjNM4ehTEl+urs9MazvdHHRwc5Ny5cy9FRifVkhGPx5mdneX+\n/fs0Gg1ardax1lj9Nos7d+4EbRadInjQSNGnc+3yxo0bTE5OMjAwEFrEfYX5cn2zQ47EfiLY6R+6\nlwjmcrkDi+BOTkYUHSLmCkJUMaPVrWN3HbQG/5olnAZaRxFCAQppl9A6jxAKIUBaRXQ8Ffy9Xd/E\nyHgXUMt20CRIJhTRqEnMrKOJINCARskMhipjNOeRzRdoI4edPAvy5FooTrL4ZzdruHw+/5IP7F7s\n5j5zVKSUTExMsLGxwbVr15ienj5W5Oi3WTx//py5uTlmZmbo6uoCCKpJD0s+nw/Edn19nenpacBL\nK4dFOF8tQlH8GeQwIuinQovFIkqpQ0eCr8I0zaDy9NBoBzOySsRcRggX10mglImUfnSo2ynRpn92\nKCeGEWkghEajgp+VVhjaol5PkUyBqzVxXUOpPFIqYvFERxmZQugWihyCtgg7XnoVQLg2ZuM2kdp9\n7NQ57MRZMI73Wh33guu67rYiJ39996jtLiftfaqUIh6Pc+HCBW7dukWxWGRycvJY1amjo6Pkcjnm\n5+cZGRnh1KlTh0qf7iQSifD++++zuLgYiG06nQ57Gr9ihKL4M8BRRNB3UvFF8NSpU6+lcfyokaIh\nCkSMBTBACO/5AtC2CbG2KEoBtgo+xVoYYNvQPg2tBfXNMl09USyrRQQwtAk47Tt/0CoBsoYWEsMu\noqMZwNu+drS3baGRrQI6kULgILSLMnIYbolo9TZGeQEncxan68xxXqpDoZSiXC4HNzSu6wZFTidx\nQ3PSjjZ+5Omv4z18+PDYlm4A6XSaq1evcu/ePW7evHls428hBKdOnSKfzwdiOzo6GlrEfYUIRfFL\niC+CnZPlnz17RjqdpqenZ5sIdkYPvgjmcrnXJoI7OawoCppEjccYsoTWAmWnIGa3H9SIVgNiMvhr\nYVUg4V1UHcdFtsrIRAYhBEpLUrKF1lHi8Ri0IKpqQGwr52q32sInEWhcFccwqmgkhrWBNhOARqBw\nZRpDlbzndvb+uzbx5R/ilD+n1fdz6Njxpj3sxl6GAPl8/rUYArwOUex0NTp79mxg6XbcdKphGFy8\neJHl5WXu3LkTGEIch51ie+nSJSC0iPsqEIril4DdRNCnc7q8bdt7iqBvJ/amOYwomrzAkAUM6aUs\nhdCIVgVivnhrpF1EqwGE9F6LuKrTqEdJJIWXEpUOjhvHMFtIM4pUDZQbB+kdg1R1XDcD7QIdwy6i\n41lEu4VJOC0wAGEgtI1LKohUsRptARUYrXV0LIHQNtIqo4wEZmMJsfzXOPFR7P4PtoT3COzWC/km\nDQFOWhRd130pwvIt3W7duhVYuh1nn4ODgywuLvLs2TNs2z6WeQBsF9u5uTkuXLhALpcLvoORSCQU\nxp9BQlF8BzmICAohtqXQVlZWcF2X3t7ebZ6ab5uDiaJNlPuYFHDtrCdKbaRTR6k+pLRQysEASsUm\nuR4TV3vbjcg40PLWBZtlL/tpgr8IqG2NjG+9htrx5jGivRYM141DW/ikU0JHc4Eo4thgehc+wy6h\nIt2AQGgX18hgOAWQJiqSRroN0C5G8SHm5hOaY7/YTse+Gq01rVaLxcXFwDWmq6uLXC53Yr2Qh+V1\npE93EovFtqVTZ2ZmjtUGIoTga1/7Gs+ePeOTTz7ZZh5wVAYHB8lms8F4q4mJCVzXZXl5mdHR0TCd\n+jNGKIrvAIcRQd9Y2l9H8lNo4+Pj1Ot1zpx5c+taB8E0zX1FUagSMXkPieX9wm2idQQhvJSp7UKt\nUCXXF0W3c5ZdUU814/E4VEHYDYjLIDITVhXiEZASFAhrE+JboiKsCkIa4B+WbYP0tikAV8W9XkXA\nsIoocyu1p3UMpFeRI+waCNDSQDZLaARCK3BaGI0SybvfpjH691A9Z186b601jUYjeC/L5TKRSISR\nkREmJyd/JnohO9mvmlUIwdTUFIVCgevXr3Pu3Dn6+vqOtB/XdYlEIkxPT28zDzhuOtUfb/Xw4UOu\nX7/OzMwMDx8+pK+vL+xp/BkjFMW3wFFEsHO6wm7G0uVymc3NzbdxOvtiGAaO4+z6mOk+Q6p1pLSC\n3zVbFnZLkOtui5QRIdNOfZpBxFZE6z5ou9NIp4xWvYEoSmcTrQbQ7XJSqeoo1bV1TG61nUIl2J4b\n2xpTJJwGCF8kFUpFguBVWOUg+jOsMm6yB0QL6dZxkwMIt4nRKOAmezCsEtG126jiU6wzf49mR8N8\ntVolHo8HNzS+I9DIyMiRX+u3hb/eKYTYc9zTQVo8enp6uHLlSjAh4+zZs4eOwhzHCdYuffOAW7du\n0d3dfaxqV9haC/XF23XdwNQi7Gn82SEUxTfAYUXQryi0bTuIBIeHh/ddRzJNE9u238TpHIpdJ1Jo\nhencJaqXqDWitCKQSnoPGaZJQtj4OVRpRDDcTVw3h5AtAK8gxo4g/BYJwHWi+D0V3s+RICUKoB2J\nRiLa0aa2na1Gf1y02/49IJ0aLjEEBgIX6Wy1lEi3jqNzW9slCrL9uisF7ZSult57ZbXqqPVl7Bdf\n8KjrA9I9g5w6dYp0Or3tArq5uflWZzwehr3WO13XZWVlhenp6ZcqQDsLbfajc0KGX5162HRqp5D6\n5gH+AOPjpmfBE+/Lly/z8ccfc+/ePc6dOxdYxPlRY8iXl/Ddew0cRgQ7Kwo7RXBoaOhQxRSRSOSd\nFEX/wu8P1i0X1xjJvyCZahe6mAamNKCdPo1EYhitEq4aRMqmlwJ1Qdsg42wJm9WCRMdakd0Cs+Nn\nq7m90MWqe9GfVt42Wk1skkjXhVYd4a5DdRmhbASg4kPI+nM0AmmWUGYSbUYgEkO3bJTRhXArGM0N\nXLzUrGyuY5tdRAFRXcI2Il4EEYmSbqxxpXmNeu5XoGsrav0ysDPVW6vVAgP0zvVO0zRZWFhgbm7u\nJX/S3Qpt9sJ3mcnn88dOp/rb64zwjrs98IQ3n8+TSCSC800mk2FP488AoSieAEcRwVKphGVZQTr0\nuBWFpmnumaZ8G3Smfuv1Op988gm9+SST3atEkhH8XsBIxMSor6Jj3V6VZ/s6oi0gDtqPGBsb6FgK\n0RY2w9pAJQaD/UmrhDL7g58Na0dK1G7htqKIegNjc5mUY2CaEqm8xn8n5o0lCi5jrt8bqcFpokhh\nVha8hxIDiMoqWhrYyQh11SQlDKLSpaUMooCBRif7SWiNLD/HjecwmiVid/8S58zP4fZNvvSavUuR\nolKKpaUlisUilUolmJIxMTGx55QMIPAn/fTTT5mcnGRwcDDY3mFTod3d3czOzh4rndqJn569ffs2\nhUJhV3u7g2LbNtFolPHxcfL5PDdv3mRsbIzh4eGwp/FLTiiKR8AXQb9hvrOQ5FUi6JfVnz9//kTL\n6qWUb/Wiul8fXTwe5+oH54nXfuq1OVgRaJ+6QAUVoIZZC7ZntAro2FaKUeomruoB0URoG4FCO1sX\nHC8FyvafbRfXSiCLq5iVRziJQczWirc9IXFkimhbFNEKN5LHbK16z3ctVDSLtMoINLJeRAtPNJvN\nBrYbJ6cqxDaXcKODRCrruPlhEqkoWkYRykI2S6hYxjMdiKWhWUI2SsQ+/lOsy9/AGb28dbxvOarY\naRDebDaxLCswCD/I8fl/4/uT3r59m42NDaanpw+cPt1JNBrlgw8+4MmTJ4ceOLwbsVhs2/ZmZmZI\nJpOH3k6nc45/vp999hmFQoELFy4AYU/jl5VQFA9ApwiurKyQzWaDx3YTQX9NsFMEp6enj72W8S6h\nlNq2rrRf1FtY/oJ47b8gtYUGjNoyOtaHwMZfB5TNEqQjQagmtI3rJravC1quFyn6WE22YbVw3RQ0\nLcTmOlJbmI0XW893OozP0ehGNXC/EQJoNrb+Vki0lr6zG26jRjPeRZesEzEEMVMH1atRqdHxHEbx\nORSf48QHIZZD6hpaeildY3MJZSbBBZXpJfbxn0KzhjP1Xx36tT8JfG/UjY0NyuUyhmGQz+cDg/Dr\n168zNjZ25O1HIhG+9rWv8fTpU+bm5sjn84E/6WERQjAxMUEul9t34LBS6sDiPTExQT6fD0zA/Yj2\noNi2vc38wvdjffHiBXNzc1y8eJFMJhP2NH4JCUVxF7TWOI6zayT48OFDPvjgg2CYqi8MpVIpKDjI\n5XJvTQRPuum6c7u7FVe86lylvcGZnk2k9tY7BZ7gKCeGYdr41jDSqeKqHZWXVmubp6jR3ECZXpSg\niEO9idsykM0KolbCMMrIxlqQAnXiQ16bRCC8VXQshlAtBAqzXkL1DCCdGmiNrKzgZvMYqkWtViNh\nldHpGAKNEY2RiKfAqmMYEqO+gZsdxGhuAAJlJJAUvR3bFubGU7QQ6L40KpZFtsq4qR5ErYaxuQJG\nhMiTj8FycC78NyfxFu1Lp7tRsegdZz6fp7e390AG4UdBCMH4+Di5XI4bN24ce4ByPp9ndnY2iEDf\ne++9benJw/qe5nK5IKItFAq7FgjtxV77Gh4eJpvNMj8/z8DAAGNjY7iuG1SnhunUd59QFHlZBB3H\nCYRlZyQopeTJkydUq9VtwvC2Gqw78dcVT8K+TWv90mDddDp9qHMVdon4xl/Tsv3KT0+ctDAxaivo\nbBeCjpyn5UC0QwStDZz2uqFGotwoumqjy+sYdg0DcM0eDGsdAFfGUdEchlVqn4Tb/rktVkLgmhlM\naw2JQgO2ihGjRqNRI42mZkfIGC0SqTTR1jpubBijtQ7SxNhcRicTXi8ioMVWmGkUn3uPOU1ks4rb\nNYBRWcGol9ENC7drAGlV0dJE2E2c7jFkfRPjyU2wLei/cKLp7916WnO5XDD78k1WSPojqjY2Nrh7\n9+5LYnYY/IHDfgTqF7jA4cdGwVZE6xcI+Sbgr8K27T2/A6lUiqtXr3L//n1u3LjBpUuXiEaj4ZzG\nLwlfSVHUWnP37l3OnDmz65qgvwagtd6WDm21WkEV3bsggjvxK1CPIoq+CPrn2mg0gunyRxmsK5xN\nEsUfIbSFSQRHZYjISvtBE+FW2xWmW+uIsrmGG92KFgUamg5uI4qxsYjptrATI0h76zlabR2T0ArF\ndvcSrTouvlKiqlWIeulSV0tUZQNSEI9FoQop39nGaD/P8VssDKRycOM9CNs7D2NzCd2OkIVycBK9\nmJVFtGGAlv4BgIhgPP8CbURxBs4gpYGsroMwMdaeISpF8pUKq6c/OPDruxP/s7oznX0Ub9SjivN+\nnw+/ArRSqbwkZkfZT2cE6qc/jyKK/vZOnz5NLpfj1q1bjI2NvbJf9FVRqZSS6elp1tbWAn/X7u7u\nsKfxS8BXUhQBvvWtb/GjH/1oWyS4M0XYbDZfigQfPnxIV1fXOyeIcLi2DK019Xo9EMFarRaI4Jkz\nZ/atMHwVwqkS3/gRQnl9hVpIr1AlbXrp07abjKwXIW2i8dKqAgW29uy3VRpRXEe6S5it5a1tWy20\nkEG0JupldLSdItUKUdsI1gkBRHkVUt6FslKrk7FKuD09GNhgmCScKsocDLo3jNo6qntrvUqWl9CZ\nTOB4Q70CZrsytS2EqHZ6trKORoA0kcXnqEw3QrmI4jJuVw9GrYBotnBJI6IxdCyJsbwM6Tzd939M\nCwNOnz7Qa+y/f/5ntdFoBG0Sx03dHzUFv9/z/EKbzrW8vdYGD0pn+nNjY4OhoaFjRcCZTOalgpm9\ntnfQm8++vj66urqYn5+nUCgwOTkZ9DQed6JHyOvhrSe4f+M3foP+/v7AhX4nWmt+//d/n6mpKS5f\nvswnn3wSPPaDH/yA9957j6mpKf74j//4wPv0BVApxb1791hYWODWrVvMzc2xsLCAaZqcO3eOq1ev\ncuHCBYaHhwMRjMViWJb1ij28HfZry/Avoi9evODOnTvMzc3x6NEjtNaMj49z9epVLl26xMjICKlU\n6uh3sW6T6PocQm29RkJITKeKEu0CpXaxjLQ20TqNf2+mAeo1WCljLnyGUV1FKAcVyXbsQKMiW1Mo\nhHZR0facfdRtAAAgAElEQVTP2sWobWAL772qVisYrQot4UUk6a6MV2AT9ZrvteHtV4lkILIASia3\nLOO0ixvNBaJo1Atoc6v/TtRLwb9ls4JKD4I0EWh0tAuU4wl21DsGoVwwk4gXC2hboaWJXH+GncjS\ntfQAOf/TPV/aRqOx7f17/Phx0NM3OzvLhQsXGBoaOvZa9utYl+6sPs3lcszOzrK4uMi9e/deNnc4\nBH76M5VKcfv27WNtC7YKZnp6epibm9vTJeow65f+uCzDMLh27RrNplcgZllW0NcY8u7w1iPFX//1\nX+f3fu/3+LVf+7VdH/+zP/szHjx4wIMHD/joo4/4nd/5HT766CNc1+V3f/d3+Yu/+AtGR0eZnZ3l\nm9/8ZlAOvRtKKebn5/nhD39IsVjkypUrfPjhh/yzf/bPDpwijEajRx+a+5rZGSk2Go0gEuy0FTt9\n+vRLjiongnJIvPhL0AoVz2CorbU8NIhaGZ2EwIoG0M0mWpgoEoiNDYzmY3Q0tX2zOrp19yYlukP4\nlZBYTYekBOW0kIClo0Ro0JVOQQ0MMwV23TMCAESjAYb3XABRK0JyK70oKwVU15bfqWhUQWx9VbTe\n+rfRKGEnO8Ye2XawH7mxiE7ngn+rZA6EQJZXQRiYC/exus9itgq4MoqwFcZnH0E8gTr7Pq1WK4gE\nK5UKsViM7u5uxsbGjnfj8gpehyjubN4/yVYLIQRjY2NorXn06BFLS0sMDQ0d63hHRkaCgpnh4WFO\nnz697TU57DKFf/PS3d0dpHwHBgbCnsZ3kLcuij//8z/PkydP9nz8u9/9Lr/2a7+GEIKf+7mfo1Qq\nsbS0xJMnT5iamgoMsH/1V3+V7373u3uK4rVr1/jN3/xNZmZm+Lt/9+/yta99jT/6oz/i8uXLu/79\nXkSj0aB6712kUChsu4j6EzMO2mt2ZLQmvvLXGM1V3Gg3RukFOptFaCvYr2GVcFKnA89SANmqoOwY\nkeJ9bzMygrI775wVcnMdnTS86EtrjNISKpNEomjaDtHWBnSZGO3txpXdzoG0bd+qhXZfZLvnsbyE\n250PHjcaRdz0VvuBbG3idnUYAVTXsLtGEJEU2oiBZeOkhqF9h69bCrdryIsKW3XcSMqbPqUc3HgG\nyRJCK9xExrs5aFZxB89grD5GltfQjSq6pw9XSsTiY9QPlvj8yQL13pHA4q+rq+uNXTSPKor7PWe3\n5v2drRZnz56lv79/jy28mmg0yunTp1lZWQn6I4+TnvRnKn7++ed8+umnXLp0KRDCw1a6+uTzea5e\nvcqdO3dYX19nenoaCHsa3yXeuii+iufPn3Pq1Kng59HRUZ4/f77r7z/66KM9t/PBBx/w6aefBh+4\nu3fvsrKycujjeZfSp34kUSqVgjRPJBJhcnKSdDr9Ru88o+tzmNUngJdyFMrC1UkMrG1fctGoouNd\naECJHMbyI3Sy465eORibL9C5HEK10MrFsOvU9AApUaNWq5HTDi0jS8wtkkilMYrPcaOnMKwyWhjI\nzRV0Ty+B6NU2UKlRkH5KVNHUSUy51eeo9Y6LZ8v2Kl8tB1EpI+wGcmUheNjOn8YsPPV+yA1DrYxs\ntguJ+s/i2nF0JgeWi9vVj6ysYWws4vSMAyCLy2gjgnIsmokc6cUnVLoGSWqNyHUzc+eHWP/T/wL9\nh+ufOwmO4j6zDacMZnbbr/bbpt9qMT8/T7FYPLJzjeu6RKNR3n///UNXk+6FYRhcuHBh20zFfD5/\nZDMC8L6j77//PouLi9uOMexpfDd450XxpNj5JRseHmZpaenQ24lGo29NFC3LCtKhm5ubmKYZ+KSe\nO3eOzc1NVldXyWQONsPvpDALdzDqW8Uw6LavaXkRle/zJy15v2tuYEUyUDcwy58DIJq1wAVGtAdE\n1Z0oadnCatUxAUMbIPAawJtrGP4222t9WrfTn0YE4TRxTC9K9VFye2pOtlpouXXhkdUCbrwH7Ujk\n2jKisoxRXvLWAAG7O+G1U6h26rbRYRygFCrVsyWKlgWOg7H4sP3cMaiB6hugZSmv+rRVp5TqJ+o2\nSJZXcWJJ0kKjhqaIFl+gkmnk//MfUf/9P4TU0S/qR+EwkWJn1Wtvby/5WB0pl1DyNMitqO9VQuun\nUx8/fnzkdKo/NmpnNen4+PixeyQHBwfJZDLMz8/T19d37HVAIQSnTp0in88zPz/PyMgIo6OjYU/j\nO8A7/6qPjIywsLB1h764uMjIyMievz8oo6OjRxLFw0ySPy62bbO2tsb9+/f5+OOPuX37NrVajf7+\nfj788EO+/vWvMz4+TjabRUr5VkzBZW2Z2MKPoFpBt9fdfOEQ2kU7Jp2XV9fMI9Y3MMtbTjOO41Bz\nt4pDXGEQtby2i3i7bzFWW/W2306RGuVltDDQ/rpg1Utp63azv7BaiA7fN1Er0+FsSqy2jtICZSZw\nIv3ohVV4UcB89BmysoFQLm52K4J96ef6Jm52MDhPufwUHWm7+EhQya1iIHtjDWW1MBa+QK+u0nIT\n2LnTdMUiRBNJpGvjdPUglIPYWEc5EnI9iLUXiO//+8CH9U2xnyj6rTuLi4tBcdri4iLRaJQH9+9Q\nK3yGlhIhN7Y97yCRlRCCM2fOcPbsWT755BPW1tYOddyu625LafrVpGtra9y+ffvY39tkMsns7Cy2\nbVOv12m1WsfaHmylaCuVCjdv3gyOsdVq4ThOWITzFnjnRfGb3/wmf/Inf4LWmp/+9Kdks1mGhoaY\nnZ3lwYMHPH78GMuy+M53vsM3v/nNA2/3qJGiz+v4sNq2zfr6Og8ePODatWvcunWLSqVCb28vH3zw\nAR988EFQ0r7bXeSbFkVh14k//jMvXepauEY7Zaa3jsHYfI7CQGuBQw5j8QFuo0pDbkU/lquINTe9\ndgbAiMaJtsq40TyiHXUK5XhVpu3XXSjbq0Jti6JR30CZaWhfeGW5I3IFjMpqsH0Ax0hilyx4uIBx\nfx5ZLaGMjr45raDZcdETQGeBlWFs9UAqF2FbuBlPNFutFuL5YyzDE0lDK1Sf12oRj0Uw410YTx8g\nHj/CjeZw+04RKyyizCiytI7O9cKTh+hsDrn4GPEfvnPg9+Qk2CmKzWbzpaplgKmpqW0V2ldHNdqQ\nbFYrQB1/8gkcbkpGd3c3V65c4enTp3z++ecHrijtnKXo41eTZrNZ5ubmqFarB9rWXvgzFWOxGNeu\nXaNQKBxre+DdaF+8eJGhoSHm5uYolUoIIbBtG8uyQmF8w7z19Om3vvUtfvjDH7K+vs7o6Cj/9J/+\n0+DC/tu//dt84xvf4D//5//M1NQUyWSSf/tv/y3gfdj/5b/8l/z9v//3cV2X3/iN3+DixYsH3u9R\nI0V/3zvvSo+C7z/p/yeEIJfL0dPTw5kzZw69ZvFGJ2VoRfzJnyFt7yKjZQSj8BTVM4R0KkEvoUCj\nazWqmxZd9hcA2JZFRIrgliyRTGJurOPmxjFa60GrhHYFqI7zaTYhtlUlqh0H5NZ7oGQS0V4nFMrG\nNZLb7vqEq1CxLKoB5uMHkD0VpEcBRHENbbZTpMpFrL5A9fciG5uAQK6/QA0OI2sFMCLIlWe43XmU\nbWEC9vICMur1vErtoruHYe0xRjSGWH+BjsYRrgsvFlC9A8jSCqJeRW9sYpl5HNOLluXKItqMgmGi\nE0lEYQX1N3+F+K//2xN68/an1WrRarW4d+8em5ubRKNRuru7969abmwg3XUyvaNYKDY36xiRFZKJ\nrXX/w6yTHWWu4l7N+36q8jDN+fth2zbJZJJLly4F/YdTU1PHTncODg6SzWa5desWvb29TExMBD2N\nYTr1zfHWRfHb3/72vo8LIfhX/+pf7frYN77xDb7xjW8cab/Dw8NHKrSBrXXFw4qi67rbRFBrHVhv\njY+PH1tk3+SkjMjSNYzqVgoUaXgVlk0HaXpuMSaKuhtBF1e9C2L7mphMxJAbC56AWuWtFo1WO7Jo\nC51Reg7ZTOBfKjeXcfvHg10a5WXcfMdFt74JsqNM3t4SVDfei9qoIR99gdF+jaTVQsXSyFY7elAu\nbmYQs7TYTr1qVDzviWL72B0ZJwq0bJuEVlRUjJTynh+3m6jBSaJ+levSE3Qy6fUtWg3ckSlkveSt\nm7bPUSDQyTSRpWcY5SL26AWM2jqk0gjbRsl20cX8LdTgGHLqzNHesH3wb878oi3wokXfHPwgF+Po\n8t9AJomWBtFYDJM4T58tAorTBzQk2InfxpDL5bh+/Trvvfcevb29e/79qypCu7q6Dtycvx/+fvz+\nQ1+4Z2Zmjm3qkUgkmJ2d5eHDh1y/fp2ZmZnAnGFqaiq0iHsDvHVRfFtEo9EgZ3/YD5nvY/gqmyrf\nhNm/4GityWazQa/gSXiUvg2M9S8wVr5AxXLIlncRbdkuScCsrlBJDxKTDo6RIlFcQitFw40G46LQ\nCgG4OrItkpPlF6jeIXDb64TKwYnkMYw6uF4RDh22bV5E1/H8yipuV9sr1YghGnWc+BDixRJy4zN0\nftgbR9UuiNEIr0DGF0XDhGZbmP0Icn0ZbQjq9TppgOUFVFcU04xDFbpqG5DuuBBWKtDlFToJx8bN\njgdpV7m6AJl8+9+LuENjaAly6Rmt3mFi6y9QS4uoloWId3lDjb/4HJXrg75+3D/99/A7/zMyd7xC\nKqXUNnNw/+asu7ubM2fOUKvVePHiBblc7kDbk4X7SLeCjve1728U0oDxiRy356vcvHnzWDdr/hzE\nW7duUSwWmZqa2vU7exCbNz+d2ln5edjpHZ09ip0DkU+irQS2UrT+UORcLkdXV1fY0/iG+MqKou9x\nehQD7b0qUP2LjS+CrusGInjq1Kk3JoKva1IGAM1NYve+TzOSQdZqRJLC6w/s2F+qtYmbHcZYvNeO\nuASpZs1LjzbWAsExiouoXEeTPOASA9ExpLlWRsuIN98wkkI3WjjRfs+T1LJQ65s4FQPQCKVRtoV6\nXkTYNpIF3NwQsrTafmEUKtm9VSUqQJS2HGm0YSKXF3D68mB5RgCyvkmjf5ho+70zlY3KjiPb77+w\nmrjpUxjrXmGJLK3iZLemusuVBVT7Z2G3cBMZJM+9B+s1RJcnkkajipIGuDZ6aBjx4Av0mffQQ6cQ\nrQb66VPIjeB+9/uIf/g/Ig6RWt/NF3W/z+WhPj9aEy3c8K4kkYjXBaMNtJYIARcvXuTFixfcvn2b\nSqVy5PFRsViMK1eu8PDhwyAq25lOPYz36ejoKLlcjvn5eU6dOsXIyMiBz3m3iLRzIHKhUDiW6blP\nT08Ps7Oz/PSnP6XZbDIyMvKSRVwYNZ48X1lRBOjv72dlZYXR0dFDPc/vVeycRFAqlbYN1j2sCfNJ\ncZKTMnyazaZ3Qd3Y4Gzhx960eqOLuFPDiU2AtUo0loB2XYoyM4hSNaj+FGhcDC9iEmwVz2iFa6Tx\n+wkBjI3nuHlvvUdFUuCauLYB6wVkfQ1ia2gZRVbbBQ7dp5GlAsKx2vvOIjqKjZSZxL9MCuWiS+Vt\n5yYLy9jDQ0QaJRqtFmmtqBtpUmrLoCFiRLeLUGUTkdjKEohyEZXo8vovjRiq6eLkTqMdF2HbuCqF\njA+AIaHSwBl+z3ttlI02Y0ghMGub1PpGiZWriGePUEMjXvqUKMRNRCYPj1YAgfP9PyfyS//dnu/X\nTl/Uer1+qLmehxFFY/H/Q+gWxLOefaLUiOCmRgOK4eFhHj58yO3btzl16tShv28+QgimpqaCCGp6\nepqenq2bqsOu8/uVn3469eLFiwd6/l5uNn5biT/BY2ZmhlQqtcsWDk40GqWnpwcp5TYjdd8eLkyn\nnjxfaVH0K1AP+iXtnC7vO+v4Ijg8PLxtsO7b4jiTMnx2TmGPRqPeBdVcIaO8yCoWNaEFxtpj3IEt\nNxgnMYixeB+VHkbFc97wYMARBrHNVdyhM8GUCQBjYxG3b2vNSRtRlAVuPYKx8QwA1TeFrHvPEY6N\nm+5G0hZFrVCZAYyNdnuO1URHkwirXSlaKm4ZiCsXubaEMzKA2dzEtj0hbaoIESCRSkO1SKJZQwg3\nkGq5soA+PRUcoyyu4KTeQ/ec9gptV9fQsS7ks8eesfnAKbRSyNV2RDicgHIZ0T4H1TeBeP7YO/zT\nUzgyh5OKo5RAZ/LIUhFaDbQZRTz6Aj16CtY3INMFrSb66TOcW/cwL08Hx+TfuGxsbFCtVkkmk0c2\ndz/osF4aFcylecimvOIoYeCNbxYgXIS0wW2CSGIYBrOzs3z22WcUi0UuXLhw5Ob3np4ePvzwQ+bn\n59nY2AjSqYepcPUxDIOZmZlgOPClS5de2ee739qlP8Ejn89z8+ZNJiYmjm055zgOk5OTDA8Pc/Pm\nTcbGxhgeHg7Tqa+Jr7QojoyM7FuButvoKH9Chuu6zMzMvMGjPRhHacuwbTs4x3K5jGma5HK5wBRA\nSoncWCS+9GDrScqPAkEUC+jeEZzEIOZi265NCHC2vqiuMEFbXpQV7aj4VDa44Cb6oGEhnz1F9EYx\nNjpaKur1rcZ510YUVtBiazKGdjrWq4TAzfRjrj/xfnZs7Ewf0c0V7GaDCFAnRgaCC1uytok2hbem\nCMjiOur0aah6zftCubhKIiJx3MwAlOuogo3x5H7Q5OH2ZrfWR5VC2Tr4WWiNyg1gtEWR5ReowVHk\n8iK4LjqVJfL8MRHAHT+PincjurrBj0ZLRXA1dMW9jpRWk/pf/g2NRJSSsimXy8GNy0n42mqtD3SR\njdz6v5GOBXWN6B8E3cJ7S7xJIVpLhGyhlLfmapomMzMzPH/+/NhuM36RyxdffBFUp8LhKlw7GR4e\nDprzR0ZGOHXq1J7b2m+Wok82m2V2dpY7d+5QKBQ4f/78kW8CLMsiGo0SjUZfKhQSQoTp1BPmnRHF\nH/zgB/yjf/SPcF2X3/qt3+KP/uiPtj3+z//5P+ff/bt/B3h3Tnfv3mVtbY3u7m7Gx8fp6urCMAxM\n0+TatWsH2ufw8DAvXmxVUPqjo3yB8Afr5vP5bfMTLcvis88+O6EzP1kO0pbRWW1YLpcRQpDP5+nr\n69t9CrtrE7/+f4EEHY0h3NaWswsgrSpO0yH64v7Wc6TEWH+GO3wGo7aMkhIUGNV13KFJZN0rbnGT\ng+j1Msb6M4TriblwHdzsEEbZu2ERuLjZQcziIgKNaDRQQ0MY5WUv+lt5gU5Hg+er2lY/YdO2US2X\nKBBpX+eTjYaXxsUf+VRCjY2D3rqgKBFHmiZYLqqrD1VxYamGWPBceBiZQqdziGp7TbJURPWPeNGh\ncpBLy6ix0541nBDw+AvUQC+yuA5mBOpNtJRe68fTZ1jDI0RXn0OjDrke9OcP0Pke3KnzGHYTrTVu\nvUnLcnGUxjYs1H/8If2/9ctHtkXbi4OkT43b/y9mbQ2iJtgCHYkiRAQtPOchtAJtgGhta9wXQjA6\nOkomk+HWrVvHiqT8GY3r6+tcu3bt2M35fjr17t273Lx5k0uXLu0aER7U93SnndulS5eOtKbamfnx\nC4X8yPbixYtkMpnQIu4EeSdE8SATL/7wD/+QP/zDPwTge9/7Hv/iX/wLuru7g8f/6q/+at9y7d0Y\nGRnh+9//Pn/8x3/M1NQUp06dCkTw7NmzxOPxXT9gb8M55qDsdmx+Fayf9u2sNpyYmHjlFzz62V8i\nq+voWAIV70O6FqitfbjpYYz1ddzMMMZm+ybDH71U3kBHjGAihfe7Am5qGLG+jrF0D5Xqxs0MYRaf\nBX+jXIK1QKSx1a7hnSRaeOu1QjkIx6KZGCRRXWGzUiGzuoSbT2G4FvF0F2KzhI5LhOugAbmxhnN6\nxIu+2mii26ws5PICbvcwulhD3H0KvRaqZwhj5Zn/BFRXL4YviqaJsoS3ifbFWTUt72cBQun2yKl1\niEQQG+voySloNrz9lUq4EW/tUj96hO4fRFc2cb94TMswPPPz/iESz1eJj4+jXI21USRy/XPkL/zc\nvu/fYXmlKBYWMBeuQyLiDVOuN7daYYQAIRFSgXDRytk1rZnJZJidneX27dsUi0Wmp6ePLOy9vb2k\n02l+/OMf8/DhQ86cOXNkYTAMg0uXLrG0tLRnOvUwyxOdPZJ+Uc/o6Oihj2/n3w8PDwdTPAYGBhgb\nGwst4k6Id+KVm5ubCyZeRKPRYOLFXnz729/mW9/61pH29eDBA/71v/7X/IN/8A/4gz/4A376058S\niUT48MMPuXr1KhcvXgzmJ+71wfXnMb6LRCKRwCj80aNHfPLJJ9y4cYNCoUA2m+Xy5ctcuXKFqakp\nenp6XimIcv0JkS9+Anjrfcb6Am5yCOF6IuWmBpDPHngRT2EVbW4v4pC1khcNtj9qKp5DNzS6WNuq\nClUOFNe3HGe0Qi4/Q8XbqTVpIFYXUXHvLlsZEa81QkishhcVascTokymC6kV5NrRh2Eg6lVUbhBc\nJ9iHMtNBpAieCPpCrjL92HYGd62FeNI2/XZdVLMzTQv6yVN0rJ1GM03E8wVU7xDC9aJoubKMGtxa\nbxULT1EDoxBpv+YLC0HK1qjXaGR6aNoWKIVVqaJdB6PVIppOE7EcUmYExs8AGhExkBET+/pt7KdH\nd2bajX1F0XWI//T/RMi2q5NyvRYUVyNUFeE0QSm0loCNoLGn76k/CzGZTDI3N3eskWyxWIxkMonr\nuly/fv3YFmxDQ0O8//773Llzh6dPn277vh9lQkZXVxd/62/9LcrlMjdv3jywycZ+15lUKsXVq1dp\ntVrcuHEjuBlutVrhnMZj8E6I4l6TMHajXq/zgx/8gF/5lV8JfieE4Bd+4Rf48MMP+Tf/5t/su6//\n9J/+E0op/sk/+Sf8+Mc/pqenhz/4gz9gYmLiUHdvQohjDzQ9KfxWkCdPnrCwsMDCwgKrq6uk02ku\nXbrElStXOHv2LL29vYcrwHEs4p/8hy3xML3ozFx6gBvvxU30Ip8/bRexOMhmFTfmR+8dFaWrz1DC\nwE4OwYsXyLVFdLO15VvqWMhKEdWuOhVaIbRCJbzKQoW3Llejnb5WGsNq4nT1EzW9bcRLW044ANpq\nX3TahuFKR7zzaF/M5NqKl+JrI1oNlI5gp05j31mEJ888D1L/cdeBZ89Qua1shLAsVG/bGcXY2g8d\nFzxd3X6h1w07EEJhtWgosBNJWvEkxuYmOhpHx2LEajWMoVMQiyBWV2HsNFIr9OOnqEodXSihHQdp\nW9S//yOsQoWTYj/z7uiP/gScpldJq7zpIrqpwLLRRgotDe91VRKtkiCa+27PL0yZnp7mxo0brK6u\nHvmY/eHgY2NjXLt2jY2NjVc/cR980anVanz66aeB6By1kM2PQvv7+5mbm6NcLr/yOa9qM5FSMj09\nzenTp4NzFkLgOE5oEXdE3on06WH43ve+x9/5O39nW+r0b/7mbxgZGWF1dZVf/MVfZHp6mp//+Z/f\n9fn/+B//4+DfSqkjf3Gi0Si2bb+VilN/7dOvEPULgPL5PBMTExSLRc6dO3fs/Zj3/4tnaebvt8NS\nTZQ3ALNjHdD7v7n8CHd4AtHxZVTxDO5mKxgtBZ4gqPyoV2HabqfQ7bVArVyvZ3F5ARkT1Oo1skCs\nvomWglgqBfUyUhsIp71/u4XKnkK0u/nF8iI6E0UYbeFdfo5OSDANcGxkpYTdTotpBE7PBM6qhfHg\nQVA8o8ubqHw/srgK7ehPxbNI1vFFXz9f8sTYH2D87Cl6YhQ22tWy66uonj5IZ3G7clgu1F1BTGQw\nG03E0wJurg9j0auelT1RbDeGcBS82ECfeQ/Rank3Camk59KzWYVoFCEdMCOIcpnS//49en7/f8CI\nHb8VZ69IUdz4IUZxER0zoWWj4wlEq4mTiFFZL5BMxokl2/6z0gXluRgdZBRVLpc71vioTt/Tvr4+\nurq6uHnzJr29vcdOp3aOjrp06dKRZyn6dKY+BwcHGRsb2/P4/CKbV+Gfs98nOTk5iVKKZrNJJBI5\ntlvWV4l3IlI8zMSL73znOy+lTv2/7e/v55d/+ZeZm5s70H79D+JR7qbe5AgpXwQXFhaYn59nbm6O\nhYUFIpEI586d4+rVq5w/f57BwcGgh+m4yLVnGM/u4eQ7LLr8MU2RBGzW0PUWOtJOl7pb+xTFdbQQ\naCFwMqcQz55hNi2c1NaNjDAisFEI2iWUYSILS1QjGVp1b0JGxGqgcsNBcYJZK6MyA1tVoiuLXhqz\nLWPa1UH0JxwLlRvyilkA0aihcoOeS0wbZbmoVA5LDuJe/xxds9DpjvUjw0TF2oUR7ehPPWqnTH1j\n8koVNTAWRIrgRYtaGrgDo9R7xyg9r9JaqqHuLWA+WCBhCWJaYNgOhuvCWhHl97O5DnRl0UpDeRO1\nXEA1bZzPn6DXy+izZ6G/HzHYjzYE+ukCutLAdFus/K//x4lEBruK4mfXMK//BU5LgWOjDIm2Ldxo\nHCMRp8doYlKlUS0FNzXCaIESB5496Pf5+cVyzWbzlc/x2RlRxeNxZmdncRyH69evH/u7Ojg4yNe/\n/nXu3r1Lo9E49pqdH4U2Gg1u3Lix5/EdJir1K3INwwheP99YPEynHpx3QhQPOvGiXC7zox/9iF/6\npV8Kfler1ahUKsG///zP/5xLly4daL9CCJLJJLVa7dDH7Fu9vQ785uvnz59z+/Zt5ubmePLkCVJK\nJicng8kEQ0NDL5WGn0gRkFJE/8ufglIYT+5vCWN7VJMrkshKEWG1cKM5z5vU3notZKOCcgSuyGI8\nvuelQ4XYlo500MjKBpsRz0rMbUehsUiSRLTjrra5/WKhMdF+JaNjoTKDXjUnnnXatr+1VafRjpfa\nbN8xa2lgVxxajyroR36Bj0blB4K/F4ZEPV5AR2MQRKQ2bu9IIIoAer0Y+Lc6uR6qRYuSyuHce4Hx\nYIGY0ojxLc9SQxq42XbTuWVBtY6TzqLx0sR68QVMeH8vIgbqxSoM9KMtC/35F2gE9q0HGJksjI0i\nExGk62DUKyz/b3/68vt5SP5/9t40Rq71PvP7ve9Zau3qrl6q95XNnZfkvVdkNIIdBBPDsWwEsI1A\nMPpiKekAACAASURBVPJJHwzFUTRGPEEwCAzZgAMD1vc4FozIiWEYXqCMIGDGkpeJLNkjjchL8pK8\n3Lfe96rq2s/6vvlw6lR185KX3c2rEbX8v5C1nKpTp7re5/0vz/PEoBhbl61/82uov/9LlO8jmi1C\nOw0BCAyE44ORQVtZDLMH04BapULgxZSdOmHoHxhEYtm0Y8eOce3aNXZ2dg503IuI+1JKTp48ydTU\nFFevXqVcLr/k6INFOp3m8uXLaK339fCOGlJKTp8+zcTEBFevXn1h1eqgmWIc8fU7ceIEN27cYHNz\nc1859U1p+bzJ8UaA4l7Hi9OnT/OZz3yGs2fP8uUvf5kvf/nLned97Wtf4+d//uf3qURsbm7yMz/z\nM1y4cIHLly/zS7/0S/zCL/zCgd97dHT0SG4ZsarNxxWtVov19XXu3r3L1atXefLkCUopZmZmuHz5\nMufOnWN8fPyVROyPwynDvPMdZGmts/AbCw8jhRYhCDOjGNtRv1ebFsbGImF+CqGCTlYW5oYRm0UI\n9v4ANdb2KvVEJGvmts8x40W9RSMZcfLk1lLXlxCi/uPesu3mcidjBSLQjHUoPRdl7VGa2Vzpio0T\nlVAxLIKhGdxahuRCCb0HBAHCtWLEsYSoJOp6qKGJaHK1fbda3Y76qHGUShQbARWRJ3hSxnq6jp3q\n6oaaQhA+XoJYS1QI9JMlmJ6NrrFlYqxs4IxNdPif+uET9NxcBOKuh6632jJqGv1kAePEDDr0UU+W\nUS0XdiuYSRP9ZJmN/+cbL/lmPzrCMKRUKrG9vc3S0hK3bt2CK//E2J3/iJ20o0zMsBCBBiFRrkIr\nEJaIBmuUiZXMkc5mqdeqOA0QwgPcQ2dWsd7ps2fPePz48SuznBfZRsVRKBR45513ePjwIU+fPn2t\njElKSTKZZHx8vGPz9LoRn9/jx4958uTJvvM7LCjGkc/nuXz5MhsbG9y5cwetdUci7qc+jR8db0yh\n+UWOF7/xG7+x7/ZnP/tZPvvZz+67b25ujps3bx75fWOu4vHjxw91nG3brzUtF0+IlstlarUaiUSi\no0X5OuTr13XKEPUS1o2/jW7ssVUyFh/iz53HWn3QfXJcxlx+TDg2iWhWCDODiKePIJklUCCERGqF\navfkEn6IFoJ0JgtlMGol1NQ8NNo9OK0JsTt0DC0kytPQOxK5ZwgDpRPogRlAIzyN6ikg2UG06h2K\nA0QgGSIxANU7hLJzBK6EO/ejxy2LMDD2ke4p7aJPTSDWu+CrtqvR+ZgW+D6isstuvoccgkb/CBRd\nkqoHs9gdDlNbRfTkFGJ5KaJo+AFhpg9jdxdk9N0GazuY6TR4AvwAa2UDTnWVc/R2CcbHETNTkX9j\nMok4mY3k6tCITBrR24Mu7SLHhvEePCN5YobqP91mteww9j//8kf+HcXiFKVSiXK5TBAE9Pb2Yts2\ng4ODjD+7h3n/P4EQCC9AGTKaOg7B7DFQWqC1hTBB+DW08tDawDQtcvkctXIVKQxQhwdF6OqdPnr0\niGvXrnH+/PmXAsSrBlJi94mHDx9y/fp13nrrrSOBTaz2Mzw83OnhFQoFZmZmXosfmEqlXqjt6nne\nkecW9vIkv//973fEEn7KafzoeGNA8YcVr1K1eVnYtn2oXaLneR3CfLVaxTTNjjxcT0/PG8Mrsr/3\ntY6O6N4+Ydg3AttlwoEpjGK73BjbH2mFKpVoZfpJP44AR7stLM/FnzxGorREwowWLHN3m3DmxD4B\ncXbL6GQy6kP2DKFbIX7PNJRLiHIZ1A5qc70zVBPOnkE+6IJzMHUC+aQUeSEGNXw5ipACDImuSLxi\nGp5tApuoM+c6gCvDkODJCmYhjWg1O9lfGEbuHXFmqLe2aU72I0p14u5OUqZxzQLyYdsdPl+A6RlY\niOTbhGURVBwsKTu8Rf10Ceanup+93kAdn4GdMjpQuPk8WluoyVnUxg56s4EY0Oiqg96Myog634+w\nTfTGNvLELKQzhDs11OIm1lvz6CAkU8hQu36PxX+1yvC/+TVSk9HErNaaVqvVAcG9mqhnzpzpLL6L\njx/T+/WvI8qLkFCQSqAEIDVYSVTdJ/QVsjcdaZ1qCwMf3ACRcMH3EHaa3r4k9WrAxvoyhj1yiL/C\nbgghOHHiBNvb21y9epUzZ86Qz+c/9LyD6J7Gk5pbW1tcvXqVs2fPHtgJJI69Pb50Ov2xAO3e84vF\nCK5du8aJEyfwff/Iqj/Q5Unm8/mOWs/ExMRPOY0fET8FxfFxFhYWDn3cq3qKz3vUGYZBX18fhULh\nY1cgeVEcxSlDPrqFbjTR0ojkzdogpBNpdHkXegZh4Snh1DRGeRUvCEgBSkjqnoFQXsf70Ggr3phr\ni6jBgX3lRrG1gR4Zi17bsNBWlkCnMXbXERtLCECNn8DYiQBHBz5qeApj9Ul0vOeje/OISrn9WeMe\nY4AullG5IcRKxC9UMzai2f2eVNVB2jbC85BKgdKooXGMpUedIR31dImgP0m9USdejgyrB5kM0ak0\nntFPuNhA7hXWFuAX6xEIKgWmgd4sos/Odc4TICjXkcPtnX+uh1CbhMPjBLceIio7BC2i8nG7lypC\nRVh1kCND6I1t8HxUvYkxOwl+QPBoDTnQi0gn0dU64eo2xuwESVPjlXZZ/+3/C/lfnaP5yTlqtdpH\naqJqrQm+9u8Y+k/fxZIe2gZlgik8tDAJfIElXUwdQn4At+xhDvYglEJbPeC5aNETVazdFiQk2bRJ\nvs/i3qNVCoXCoUEojqGhIbLZLLdu3XphZvZR5dPno1AokM1mj5TlPT95+jzQvgy0DxODg4OdLNR1\nXYaGhl590CsiVuu5f//+PrUe13UxTfOnwuJ74id+i3DUTPH5nmIYhhSLxY4W482bN6lUKgwMDPDO\nO+/wzjvvMDc3Rz6f/4ED4pH6ioGP+f/9v4jVFUKzD5XqAd+P+ohmDlmvErhOpAO6tETDzhEqhTIs\nVGqQntImqdAnHJ4FouxRGxYiDFDaigj17ZDNKqGyCHJThCUf7j+EugN7pg31brXToyQM0LW9pWqN\n6t2jXlSvo9sehvg+Su/Z66kQPbZnkllr9EiXE4tt4W5EfLFme2BLhAo1OEpPz55J1OU1gsEJmkse\nwYMVdBjiB/sXYb1Vhpno88fTqP7SVoeuAcBuDWVlCEamcLZauLcXCHZakG+DhecTLq4jpiY7GaVu\nNFGVJmKkgEglwPUIF9Ygl0VOjiD6eyGbQQz2YcxPEnguaiCFFwToVgv1H26Q/D/+lqnvLDDrJpiY\nmCCTyXQWQX9lg8ZXv4nzv/3v6P/4HQx8hCERBmgrSSBShMJGJkwCZaMxEDLA7hOROIJUUVXBV1Fv\nGQtt2ujABBqkUiaTk5Pcv3//Q0T4w0RcAnUc50ODLoexjYJulvei1/qoeNk06MfZt4RofXn33XdR\nSnH//n1ardarD3pFGIbB2bNnGR0d7fRDf8pp/HD8xGeKY2NjbGxsvPqJLwjXdXn69Cm7u7sopToe\ndTMzMz9UXtBRnDKM976F2N1B9w8gN9dQ6R7CQj++mSaz0XaraJdVTRVg1Bqo/lFU00Gut+k00kQs\nPkUNF5CVLUgkoekjt1bwJo5hih3U4BSq3IDNXShvIrwoixOehx6ZQmy0FWQ8DzU8jbH+LMpY17dR\nkwVkaQvQ6I2I9iG0jrKy/gKiVo1cNJY3kLaFCHyEUviB2Sl7IgVuxSWe2fUFWJslgrkB0qZFp4u6\nU4eRCKh0vp+Wm0HUTIhFAYKAYHUda34U1tY7WgX+ZgXLMCI+JECtgZoZhe06emISd6UMRQ/hhnv0\nDTRBKDFsC9lenINHS1inI/UaAN1oofO96PF+RDZHuLOLerqJzqRRlQZis0hrcgh7pUg4UcD2Asyc\nharW8ZSAeovg1kN2b96nmrIR2RSW00AELlKEGKZAJHwQOho0EhrfAeHXSWcsfM9AmWmEDHGKPloE\nJEdTGGaI1gKpHESzhQ4TgAI7GQkoGAKCiM/7okzlsBFPbG5sbHRKoL29vYRh+EpLrJe91ubmZkdH\n9FWZ7EdxFGPQPkgP9CAhhMCyLI4fP87169eZn59neHj41Qe+IkZGRujt7eXWrVsMDg4yOzv7IZ/G\nn+T4ic8UJycn94mCvyxi1Zhnz55x48YNrl+/ThiG9PT08NZbb+1TjflhE2UtyzpcpljbxfjuNwHw\n2o002azhl5sYXjfDS+z9sWiNqvmIWrV7lxHpi6qmhzajbAEixwzdCmiGWXjwGLm1Hj0vv6fPJCWq\nvoeXZlvRxCVA2+JJJ9uZm1awuwuFqAQrDAO1uyeTVBpGo+xQhwHB01VUe3GqN+ropU1UOppgtmJK\nS2Zg32AR20W0tAin5qktBQSL23i7DiTai5wfXd+AeAiiDV7FXfTMbNd/0TLxHAMnNUTr1hKqVAOl\n8BtB97UMCTsVvIEB8LoZi3/vGTqVQZ44RpgfxHm2TVBs4mlBUKoRVOuESxuozTJqboJMTw8ynyOZ\nTmH2ZEnMDKOyPWAaiMBDqxAVtMvi5V2k20D4HkKClAF+U6EDD0N4BH6ImQLsFG6YQaPR9QZIQaof\nzGyCZkmhzUSkbGNl0YkcSmQRQRMdKISh0aoHU0aUDCklZ86c6Si6xFSqo8TIyAgXLlzg7t27LC0t\n4fv+kRfz4eFh3n77be7fv8/CwsJHZkyv2mzGNJDp6emX0iwOE0qpjtnw2toad+/efW3hc+gCuFJq\nH4/T8zxc1/2Jzhp/4kExk8ngOM6H/gi01lSrVRYXF3n//fd57733WF9fJ51Oc+bMGS5dukQmkyGf\nz3+shr4fR5im+cpyUDx5uLS0RO1r/3eHZyjanD+dSJFoOFgbW4TDx6KDYnCyk4Qii6g3CK2ejrya\naJcJ5e4OYX4CTItwYJzAyGM9eYrPnp18GMLiM3RPTFMAsbmBKkzGHwKxvo4aHIX2uanllciNoc21\nUrHOqhSwvoHujXo52jJpNSPQchp1RBDiD0Y77J5cD0KDHhrvvA9A8Gx9H/cQy8ZxkjSurXS5koGC\nyTZns73p8B+vwsjIvmODlWLEpZybo0UfzRuL+CS6AzZKo7Yr0PbxjK+bsbyNmJ2GhI08Pks4PIq7\n3cT1NcF21JesN5uoB8uokSFkTwZsE5nPYdhJlJbIvl60FgTrOxCEJGyN8kMSysWQYBKgdQBK4fpg\nGT6YklAJLEthZQw8I4kwTVoNQULUwW3i6RSk06hQEoQmQa2FIQJIpok2BBp0GEnf2bGPpoMIfKTY\n3+8bGxvj/Pnz3L59+0Ab0pdFTICvVqtsbm4e+XWgy0FsNpv7JN2ej4Oq2QwNDfHuu+++kGZxlLBt\nm4sXL5LJZLhy5cqRuNXPRzzYMzc3x7Vr19je3kZrzfe+972faE7jGweK3/zmNzl58iTz8/P8wR/8\nwYce/8d//Ed6e3u5ePEiFy9e5Pd+7/cOfOyLIu6rBEHAgwcPWF5e5tatW1y9epWVlRVs2+bUqVNc\nvnyZU6dOMTw83JnS+8+panOYeBGBX2tNo9FgZWVlnypOZneLgfUnneeZ7RJUmBtG1CpgJxCPHxIM\nzSJCH23ZhGYvcrtt27SxFgEgAN1GvdjeIjD64PECcnsToRWJ7U3UQDs7DH1EEKIy+7VSVZv0HYOV\nkslokMM0EY4TgWZ7iEcvr6BNC9XuV9atKOsLpMBY20GbFql2hijbwgGd73s7sq4ScZmz3kLnonPR\nvX3UjGFa2z6id4/VjyFxlstRZrfn+gZmKhquiT9JIolj9VG/uUpYqoHWeEvbyOPtfmM7I/XuLSGP\nzUSvB6iERRBI/PFJWneWCZa3aVSrBPeXURMjYFv0xOezXkIUhpBnTxI0Pbw7z1DbFYLHywT3FxB9\nPZBKYvRmSfQkaBopGs0Q21JI18XEQyQMAgx0owECAhcqVUk6rKOEgWlC3c3iuYJ00sEPJUoKnJaJ\nRtBToO0rHOmdCq8GYYBQGmX3oIMkCBcpgg/10ePBj62tLe7cuXPk7CfWE00kEjx48OC1ss84k417\nbi/SJj2KwkycjR1W7ON5IBVCMD09zdmzZ7l58+ZL9aEPG3Emury8zN27d7Ft+yea0/hGgWJsIfWN\nb3yDu3fv8hd/8Rcv9C382Z/9Wd5//33ef/99fud3fudQx8ahtebBgwf80R/9Ebu7u7z77rt86Utf\nwjAM5ufnuXTpUucH8rJexZsOiq1Wi7W1Ne7cucOVK1d49uxZR/EiVsUZvH+HcGgWnW4vtkISjswi\nl54CoK02qDx9TJjsJ0wVkJvt3X07W5KLTwlH5omBLRyZIyw20XUXneoKLYSGifJpK+C0QWXhKapv\nqNNfE6urqMGxDlCw8AydyUF7I6JrTXR7KhbHpZbto9Ue0Em2ovsT6RTCD2BsoqNEEy6sQybbOUe1\ntoOTzYG5R2WnHqBHx6lsGvhLxSijK3RLvMKQEchNT0Ooon4Z4D9aifqnhoGaP05lsYlXDRH57qCO\nsE2ajzcRfbno2Ha4iztoy8SbHsdxTZq3lmgsbhNOR++bjoUMFrcQg/1g2xinZiHfi3tnEbW2AyFY\np2fBMpGjgxjHJgmWtgiLFYJna6QKPaSCFqmMiYNFkEzjKgvd8pAigHQajUAmJXY2QV2nsXHQlkEi\nGRIqE7elsfw6UmhE4ODterTcBIZXi66oYaMSeXAdhLsDUiLcOkK38D1eOFxmmiYXLlwgm81y9erV\n13bJOHnyJLdv335tsBgZGeHixYvcvXv3tR0y4mxsZmaG9957j2Kx+OqD2vEyAM7lcly+fJliscit\nW7deW6wD9kvsVSoVWq3WT6xE3BsFioe1kDrqsY8fP+bixYv89m//Nlprzp8/z5/+6Z/yJ3/yJ4yN\njb1SNSaOH6TU21HCdV02NjbY2NhgcXGRhw8fEgQBU1NTL1bFuXUDtjYRj58QllzC0XkwE7C2Z1GJ\ny6lCoJoK5eiu4kzQzZbEk4coI0WQG4cHjyMR6zBE9RQ6z1GmhdhYR43PdkqiQmu0lULobqagtNEp\nKQqlCXJDqDijW1+nobrfTdpMks1GwCu2i+j+wY41U+iLrmOF0qjCKHvdOxw721XHEQIvSLK7HKKq\n7V6m1jSeboPdXpjapHu36Oy7NmjwAkkrO0LtxkpUZlUalR/oXh87AqEwl+/wFgGafVk2Sh7hQgnp\nRudqp1OEC9uYJ2fQ8eZBSshm8LWJVgJVbPdyExba8fCXttCZDEpLNBLr9Cw6m8J++1RUEh8psFsO\nSGkX221gaQ/TkoSGjWg2AEWzqgnckKThUW8ZeBUPdEDghvgyS6BM/IZPph+kaVAvKcJEFtdx8Jx6\n2x1DADK67lYKLZIY4cvJ+3H287ouGXF///Lly+zs7PDBBx+8Vu8tLs3W63Vu3rz52g4Zg4ODvPvu\nuzx9+pRHjx4dCGQ+Ss3GNE3eeust+vv7X7s/G4cQgv7+fgqFAjdv3mRtbQ0hBGEY4rruT0w59Y0C\nxYNaSH33u9/l/PnzfPrTn+bOnTuHOhYiFZwbN27w1a9+lc9//vOdabbDxsct9XbYiLUpHz58yNWr\nV7l79y6O41AoFBgaGuLChQtMTU3R09PzYZAPQ8Q3vt7V9HRduP8Ivyk6ZUSgo1qjRo4hFhagXCZM\n5dGJZGdyFCAcmSbcaUJzz/UQArHwDDUW6Xiqdl9Jr27sl19bWkTbqT23l/BiA2BDEq6vEaaTkE1C\n2iad2UuV2C/7pnrynclP9ZzPYLjb2tf7M7bqEdDlctTzs5TeW0MPdUEcpVA1B6Zi7ddYiaYIU5OI\nWKP1+DGqGyGh2LNYCkHz/irGbFRa1u3M1320xq4UBP053OER1EKVnkQaVRhEt0FXWCYoaN5fRhYG\nMOfG0YMDNO8so1sezbtLMDKIOTMKlol5aoZQabx7i+img/9oGdV0Uasl3OsP8O49I9GXYjDtozR4\ndgrPsGk2FAKNl8oifJ++nE+AjQhDTAPMtEmjlcJQASmzQZDMgCkprQrSiSaJVEit6aKBIAwJmzto\n10GZvcjGOggH7RmkLeeVQzCxS8bS0hIPHz48dGYSk/djZ/pcLvfavbeYwjA8PMzVq1epVCqv5ZAR\nl1OBAwmev0riTQjBxMQE58+f54MPPmBpaem1MzrXdent7e1kordv3+6A4U+KT+OPHCXjnXfeYWlp\niWw2y9/8zd/wy7/8yzx69OhQr/H8rnV8fPxIoPi6Um+HjSAIqFQqHUEAIQT5fJ6hoSGOHTvWWXga\njcar1Xa+/8+InS10YU8mN3UM6i3C5TX0iXnk1iJIg3B8Hh60r7FlIzbWCQsjGDiRQPjoHPrhY8To\nBGHdxUimEU6zy7NbXUdncyjVzv6aDdTYPNRaEIbo/kH8lI34L99BJwys0V4S+TRG9iLhcpXM2W4J\n039cxjo1hG59Et3yCZ9sQTqNLJiotTJhvY4w2wDr+ej+UViJhMLD5U2MgWOd1zIaLm6ij9p2i7Ae\nZSit9SopQ0Ylznam0dqOnBz34Di+KxCpJP7gGLUba5jjg7iG2flBqXbfsLJVI21IAlSkpGNIkukB\nvFKRcKM9majBX9hGzBZILG8ireh7lNkMjgvCSuFvt4UM2guUv1okHMpjzfYjag2EaUaC4pkk9tgg\n3r1F0Bozl8IcHyJ4uoocLVBcKVGgToUMAymfXb+HYVViN7BpuDb5viaVMEPOdnGEjW0rGg1JnxES\nVhuEUoBtEjouPb0KnbbRySTSsPB8C7O2ip/PIexe0DZCBUgRHoiba9s27777bkfq7Pz58weWONtL\n3hdCMDU1RW9vLzdv3mRubo6RkaMp6kCkj5zL5TqlyteZLhdCcPz4cYrFIteuXePkyZMMDg6+8LkH\n1T3dS8x///33OXfu3JGH/2JQjDcXa2trHbpKLpcjCIKOEs6PK9n/jQLFg1hI5XLdLOEXf/EX+fzn\nP8/Ozs6h7Keej7GxMa5fv37o8/1Bl09jGkiskaq1pq+v75VcyFdSMlwH8fd/0/5/dP46m0MtrcDo\nWDSd+eAxQX8/IplF3LrVHaGJxbe3NgjGJ2GgH/Eg8iDUgY/Y3UVNTSLdFnGpUrRaqMEhtBuVJXV+\nkNC24GcuYBoK+xNTJNpA4N9ZxzrRXSRC30X7IaL9uG400MEAImUiUibeY0HyrWF4K5ou9e9vIgey\nBNdHCO6sE7ptzmAQgZTSJmQzhMPjlJ6UMComut79DoOWj5ydRD1eRLd7f/76LunTE+wdJPIrDn7/\nEM7t6G9O+wHOconE3BDWynbUkwFEuYVxfpZkpUE4aOBZGVqPthHpJEbCQrt+J3vVz3Yw35pFux7W\nySkaiyXUnWXQYE8MYIQ+uv05rFMzOI/XMYccnLvLIMCaHUcUcqhGC+v0DFoIjJRFuF0i9BV2yqav\n16RST5CyPNYaKXIDmpKbxEqZqJaP60JfukGxniBjNDB7wLCSFEsW/TmXUj2JafjUGzbaz5ERBkJI\nIMC2U2idRTu7uMl+kq1Sp/QsOVgpUwjB/Pw8Ozs7vPfeewdWiNFafwh4e3t7uXTpEh988AHlcpmT\nJ08eWTgjLqd++9vf5t69e7z11luvBY6x4PmtW7colUrMz89/6Nw8zzswuMVZbez7eBQJO4hAce9G\nZK/34/DwMNPT0z/2nMY3qnx6EAupjY2NTvp+5cqVfTyeg9hPvSgmJibeCKcMpRTVapWFhQVu3LjB\ntWvX2NraIpvNcv78eT7xiU8wPz/PwMDAR/4gX0XJEP/494h6uwfhtOkOmb7o/8GexUuahNsOemq+\n6xwR9xh7+1HFBqoeoBPtQaT4PZeWUZPzEV+wHbpaw+vrIbh8Evu/O0fml2bIvFvAyMh97yksQfis\naxckTEn4eHvPKQmCvbcTkmCzWyILah4ynyLx35wm86//JclfPUv2i5/G/JV/gTd/ilrdYmvDpPje\nGrrsEDohItt11pCWgdNs9072nJcXdhcnOTFMedeg4Xd/Pl4rKoUFlRBMY5+TS+P+OrowSL0U4izu\noP0Ad7WEnIp4lnuvU/PZNmF/ntqdtYi3qUEkLLyVIk6xiejNYsxP0bqzhHb9TofU6M8R1FzC3Sat\nDxZpPlwlqLuoYoVgaYvEiUmCxyskJgZxhYlUIVnTp1X3CRHI0CeXDanWJI2WQSJl4MkE20WLAauO\nkTCoqQwJw6enHyxbEarIM5NQRRuAoAGJPiw7jddycLwQoVpU6iaGOFx/b3BwsKMQ8+zZsyOX7CzL\n4uLFiySTSa5evfpayjCGYZBMJhkeHubKlStUq9VXH/QREQue7/U/3Bu+7x+a/B/7Pt6/f/9I1+15\nUITuhsB13X3qP57n/ViWU98oUDyIhdRXv/pVzp07x4ULF/jN3/xN/vIv/xIhxEuPPUgcFRRf17tw\nr3nwrVu3eO+991hdXSWZTHa4kCdPnqRQKByqHPJRThm6Wse/94xw+gQ6PwCeg5qcQy+2Rb5jLmIq\njar5UV/t3mPU0BQ6lUYbBrowRlhxoVSCag2VHYimVPdmzQ8e0dKSxtAI7oV57J+bZewXprCHU93J\nUoBUCrWwxzMvkQC155oKidwz/Ks1yL2Pa1DFevfphsRb7Za0/ZqDNZuj99fmGf7i26R/dpDMv5je\n94Jycs+EqWXSerKNHB7YNxDTerSOD3gTI2w+rRNUWzg7DcRkpEtptWurYbGOcXy627s0DMTsJA3H\nQLWJ+fG/9bur0dRo+7lqpA/PsHFKDvaZ6c51ksnouzcHe3HKLu52jcTZGUTKBqUxp4YJnJBgs00X\nsU2s8SH8Z+tgW9hnZggWNzBOzSCSSQqyxY5jkbIV9YamkHBoOFCpGQzlPKphmrxsYPVYJLM29SBF\n2vLwSeCHBlurmt6MiylBKB+Ujw40QiukW0WLNDm9i7ZSNL1IOECKww9p7JV1+yju4KtCCMHs7Cwn\nTpzg+vXrbG9vv/qgj4iYZ3nnzh2Wl5dfz5WmPQ0+Pz/f4QrGcVTbqJhz6bou169fP9TG3XXdzEli\nOgAAIABJREFUF75nrPE6NTXFe++9R6lU+rH1aXyjyqfwagupL3zhC3zhC1848LEHieHh4SP9UIQQ\nh/pBxC4FcTm00WiQzWbJ5/McP378Q4bBP4gIvvEfoOkSLEUgKGdnENpGWFZEk/B9tJSonkFYXIb+\nNndvYYmwLwepHDy5053qTCRgZY1wcgJZ3YrEvIWgWRghVTBI5PoxTwwi2tQHYdnojV3oicqd2g8x\nh2xUuYnMp9EhWENJgtUqxngOLBsjb+Gv1jDHe8AwMEZSBFsNzEJblaaXSEElple0HGhLeQshcZcb\npOZzyKRJYjpN38+N4/zKBKV/+5jaNjQ36h1dmpi3GOb6ENt7JiE1lB2B/7CCaKv+JNJJ/DDAJCqf\nxlF7tE3uZAGZS+P15GneWiV5chz71DTe3YVoOlVKUJrqnRV6351Fnpig9WATQo01OkD99hKp4yPo\njSLCtkicnKTxZBOZ9dGlGv5ODZmyUdkMaIH0QrTjghRY40ME60WM4Tz0Zgl367gthW55iFYNuzdD\nRrUoeUkGeqHsWVgpiyAUOJ6PIQI26jbpwCWV1GxtSnIJTbKniWNaCC9ga9ukb1KjjQRYFgKF0mkM\nbxXhDoPWpOyAoKGwbZdSrYydObyw9fOybufOndvXQjlM5PN5Ll26xK1btyiXyy8sWR404j7evXv3\nKJVKnD179rXKqf39/Vy6dInbt29TKpU4fvz4kUERuiAWu4ucOnWKgYGBVx/Ii+kzcQwNDXXEyovF\nIseOHftQOfVHvdf4RmWKP6ywLIswDI+043sVMDqOs888ODZMnZ2d5fLly5w9e5axsbEfCCB+SKVn\nt0LwrX/uEOMBQhKEy9sEQRI1cxwtDfTksQgQYV+2pPsGCYsOenyqc5/bflwsr9DK9ONNzWB+YpbB\nnx+m52wWYUnU4h6pq5aLMZQgXGo7RwSR+LTebN92Y/WYqJSkY7eIeNLVshFA2CbfayGQKRPnYfc9\nrH7RFQEQoN1uWUoCzQe7pM8OMPHF/4Kp/3Ge7IVsNMkJBG1qyO79DYK9zh6njuE7GYy+LplfGJLW\nQhFrfjzS+WyHarr4RoJGmKD5tL3ZkpLy7RWs6WiwSbYnV4Vh0AoMnLIL8cRtu3fZerSB6unBnB6m\nfm8V7QWd6wFgzYzgbtWof7BMa6WMpySBnaS5UsZthLQC2N0o4T5YQQ/lMBc2yaQyZGbHSRkSaZpY\ngc+ua5JVLXoth81qEqXADS20ENRqmr4+Qa0q6bXreM0AMylR2sQApFdDeA5CCAQhKtkfCbinhtCk\nMawUpoTtjdXXUnYZGRnpZGcr7cGpzvVuexweJOJhnpeVLD8qnn+fWDhgcHDwY6FFxFxBy7K4evUq\njuO8tlpWrKzz5MmTV1JBDvrdxFO0e69hzGn8cSD7/xQU6QrvHqU/+DyB3/M8tra2uH//PleuXOH+\n/ft4nsfExASXLl3i/PnzH3Ip+EHEi5wy/H//D5G2ZjxGOTpK+PAZ2DY0moR3n+LLHIEj2kR3Ohmh\nmpkjePiMVqtFeH+BysAIGpDtnawuDJMaTJA+ncSaTiNTbeD1A4wBi3A5UgfRIlrypRWifUUMAEYh\nRbDeXVTMXovgabGjFGPkTYLVKsqNSmh2v0Q5ASLZzvHi0q0AaUmcR+3pWyFIDUnC1p6e1h4qiUxJ\nRn5tjtHffovMJ0e7JUsvxBqLgJKT82xeWwelECPdbEe0KRTNih/1Bdu3rblRymUVybDFzxUiolns\n+sh0AmGbyJ4UeniI1nqdRsmFQq7zGSDKWnVPltpWk8SZaWQqgWpFf2uJszPU766g2txGjUBMDlJb\nL6IdH522EV5IKpFCZpLYro/sz6GzWZxrj7BGBuinzuKuxUTaZb1usRum6euVBKFgJNPEkxZBC3qt\nBqkek7KTJoWHYWiSPQIjbKHMDMJvoV0H4VfRIhUpDkkbWV5EEJ3f8WMzBEFwKEeK5yObzXLp0iVK\npdI+HuJhHTLikuWxY8e4du3agQn1L+Mojo+Pd2TrVlZWXrucOjc3x4kTJzpDdq8byWSSS5cuIYTo\ngO2L4mWl05ed57Fjxzhx4gQ3btxgc3Pzx6ac+lNQbMfIyMiR+oqmabK1tcWjR4+4evUqH3zwAY1G\ng5GRET7xiU9w8eJFpqenyeVy/1nLCs/3O1WpTPjt70U3hAApCX0dDYi2VWvo6yNc2iJ8vIRXC/Gn\n5vA8j1phhPDBU4QG2f4MmZUt1PgcZiYLZ+ZJXkyQeTuFFAEi9FGN9nu3QdBIQtjono9MmYR7QFAA\novXcjzX09j2uirXO8ItMSLxHRXS7lJmaSBBW3S7ge3tA0hQ4z9qgrDXpCZugcy6aYKtBajzD+O98\nkpl/fZbksQicmht19Il5tq63FXy0pnhvA6O3DXbtMpOzWsY6Pom0LeyTk2w/3kW7AY2G6kzNxoDp\n7dQQE8NYI3lcK0Xj2Q46CFENj2bJw54cBA0yZSMnR6jdXUMISeXWCp60SJ6eInF+jvrtJdDg1KMh\nIzUzQPh0i4RpgRQkhvvRuw1EqLHnxhCFQdxQ4m9VQIBhCVpD4+SzBo3QINQC2/fJiwbVKhgolDAQ\nqQRlL41W0NQplJSUiopKVSOSaQgUKtWHUCHa6kF4VYQfIOvbaLsHEVSouRYy8Dl58iRjY2NcvXr1\nyEMqMWm9t7eXK1eu0Gw2Dw2KcQwMDHSyqINksR9Fx4jLqaVSidu3b7+2ykw+nyedTrO6usr9+/df\nG2Tiqd54I/AikYQXDdkc5DwvX77MxsYGd+7cQWuN1rojEfejGD8FxXYc1EIqDENKpRJPnjzh2rVr\n7O7ufsg3cXZ2lr6+vh+qo/XztIzg3/19J+vTWsPcHHqtXdozTZAy0vBsOQSmCa6HfrCIY/SQMNKI\ndvpi71l8tBcg85rkvMIabU9wGhJpaXTdQXthBwyEBbrc6IpiA2aPQuvoGulQI5MCHUBY81HNEKPH\nQu0pS9rjqagf1w7DbPfRAGEI3CelyG8QSI4nCJt7fpR7S6iWpPUw2oELKUkNG+h26dIeTTH+r84w\n+vmzOPkBarU9E7ShQnshYrzQPrb7WerbDYzjU2ze3kT7Ch0qWusV7JORoMTe7ZBb83HsDN5WtClQ\ncT/SCahtNhHpBLq/j8bjzfZni65RUGlRaXoUF3cIpvoRM4OY0iR5bhqxEGU7IlQkT0+hWi6JM9Po\n3h5qHyzRuLOEPdBDsNvAOjFFIBPYliQvWhR1lrG0TxOTxWqCjA2r1QTpZpWE6bO5BU7FIaw3aWkb\nKTRmwkA4NUQYINwGJFPQaiGdEgoT4VXQdg4tUwQND6Gi7yl2t3hRGfSgEbvJnzlzppOlHJUaEJcC\ngyB45VDKq9RsYm5frDJTr9df+tyDhJSSd955h0Qi8doyeHHs1Tl9HmyPAooQrTUXLlygt7eX73//\n+9Tr9U7W+KMYb9ygzQ8rxsbGXqjYH9Mk4uGYMAw7vonT09Osr69jGAb9/f0veNUfXuylZQRbJcLV\nLZgYjwx5tSB81lX7abouweAQ6ZVo92ikInBkdgZrZYvQcdDTkxhBM+oxmgbi5AyZ0ToyB2hNUAKz\n30YYAtAYCU2w0+rItQGYKWhVFXqxAY6LSJqE2w20TiCt6HneYgvD7Gm/DqiFJqGuoUiglEQFAu+Z\nxhhKYw8naN6vQdsd0UppAqUBgbQkjUelDqCkx619ICllvBhorB6T+sNdMqfzEWh7AYP/7RTZT7os\n/NsizuOoghDzFkt3N8nn0vuRbrCfhm9E9WHo8Al3bq4yMDPYeW5ybpjSYg3Ll2ROjtN6sLqvHyls\nk7ojkNkMEPVJG61mVHI+NoTzsEh6JIe/UMEFUmcnqa+UEIP9CMtADfbReLBMWHMwHYWZTSICReL4\nGN6jFWR/D34zxF/YIDlbwE+nCHabBDnIWD5bnqQ3FVL1JIEV4mpIJwENE7kGC9U+tJDIhIVO90Kz\nhek1UIkphJ1AyzzCbaITEhHWwfGxZQCqCzaZTIZLly5x9+5ddnd3OX369JFALeYhxiVZpdSRNqKx\n3dPW1hZXr159KTfyoMT9iYmJjl/h9PT0gfnSeyMMI8GDeHI2n89z48aNj8VTMe5dLiwscOXKFc6f\nP086nT4yKEJ3o5LP57l9+zZjY2P7FMZ+lOKNzRRf5Xjx53/+55w/f5633nqLT33qU9y8ebPz2MzM\nDG+99RYXL17syCq9KsbHx1lbWyMIAkqlEktLS9y8eZP33nuPjY0N0uk0586d49KlS5w4cYKhoSFM\n0/yhS729LPaWT+v//ns0by7RfLhNc61FsQ51M0VtZAR3fBQj10d6dQ83MJlETE0QPlsBxwEhUIvr\n+Js1wp4c5rkCuVMO5oAVefEZAgOPYMfrZIYAZlrht8B7Vsd7XIKtEka9gqxVSPQq7ISHkbbwVrtZ\nnEjZuEvdHbGQEJZc7KRHMu2gNnawgjJmcZ3w4Sq61sB5WCas+9iFBGG5y1mUIkS2e47SlLQe73bO\nLz1h45e7vUUdl26FIDVm4tcDkkMJTv0PY8z/L2cwsmZHyFt5AWJiuFMOT5ydYf36OtXtJlY+Kq3q\nOKNV0PIEIEgeH6X4rELo+AjToPhwm+RsoZsNZ21ahkVla5firTXC8X5kNkEmkyF9ZhLncfQdyUS0\nMCdmC9TurePvNnE3KoS+ovV0h7AWfRazN0NQriNsE71bwzo1jRgdIVgvYs2OosoVxMwUqVya1bpJ\nwzFJpiRhqJnpcyg5JkEjpNDj4gcW5aaJFbYw0gmshIEIfRAWYW4UWVxGuLsoUshmKRq0UTaEIVnD\nRaj9WUNcBs3lcq+VBdm2zfz8PKZpHnpw5vkoFAq88847PHjw4IW+iofRPd2rw3r79u1D67A+P3na\n19fH5cuXWV1d5d69ex9LOXV2drajObu+vv5aoBhHXEau1+sfix7rDyPeSFA8iOPF7Ows3/72t7l9\n+zZf/OIX+dznPrfv8W9961sdH8SPCq019+7d48aNG/zVX/0V7777Lv/wD/+AZVmcPHlyn2XUi5rQ\nb6pThmmauK7LztMlan/7vQ7JOxjoxWr4WMU69uIObNTQjkGQL8DxecToMKKvj2B1JypVaqANLGJi\njExyk0TOR3lttZpYT9sQGIZH2IKwoXEXmwSrFcz6Lrpax85Fz8HzESpoD9lE06V2ryZsdhcNKxWi\n2o+LdGLfxKWUgtZye9FPKFS5gh3uYmyu4X6wjipWOq+VHE90BlEAhPaQyeg7FFLQerLb6QtmJmxC\nJ4zmZSxJ/WHXNig9meDt//MdMnPdBaN0bxOkJHF2hrXr7UxSaShEGYbaQ9ForuwSpJLsPCp1pmKF\nIVF+SGmliupJoDMWLcPE36qTaJszu4sVXCxkXw+Vu2udLFRaBuZQDmerjg5CZMoG20AYBn57U5A+\nO4XzdIOw6ZA8O0OY6aH+rIj7eBWRTWPYEi+Zg3qT/FgvASaW5zGSaLFUspBojGwKK2kTakkqKan4\nGXQihRIaI2UhAhdjaxHfcQkzA2i7D6ED8FpoLIzdJbDa/Vf14d9ILMcWL8xH5Q/GAh6HHZx5UaRS\nqZf6Kh5W4i0up/b19R26nPoiOoZlWbz99tukUqlOP/V1Iwbbzc1N1tfXPxZvWMMwOH369IGUiN7E\neCNB8SCOF5/61Kc6F/2Tn/zkkfoTv//7v8+FCxf43d/9Xfr7+5mZmeHGjRt85jOf+UjLqL3xJjll\nxLJwCwsLLC8vs7y8TO3r/4TwFSIdfRYznUXu6cuJ0VG0H6I2inh3nuFWAzxPwvQU9LQnUFNJjDMz\n9E6VSA4ECOUjnSZ+ezBO+wqtwS9r2KkQrtVIZAPMpEAIjZ0K8HbawuMSzITGW4+ATaAjlZrNtgSc\n52OkZDdbVJrkgMAtRsdry8C09ijgSEFz2UVISGY8pNvEWF6kdW0V50mVoNjdrWbGbJTX/exWWnc2\nC9KWVO7tdjj3VqqbJWSGNFbO4tT/OsvcZ6cRhkC5AY6V6gAiREC388EGqfkRtN89x/TxUUqlgNRM\nV2e22VZWUS2fQCYQhQF0qf13tCdDsfqz1Hc9GMyTPTeJtE1k0kZJg6AWvYZM2mSOj+OultCBwh7r\np/VkHXu6gH3uGLUHG7SebJKaLaCaLuZEAbcWRGbEz9Ywc1lmUh5brmTFSZNPKDbdFGnPodIIeLJu\n0hdWMZRHueRSq3q4QUjZE7S0geHsUm15qNIaorGJTvQhd5fQ0kC4RZQGpV++2MZi4IuLiwd2kNgb\nse7p3sGZp0+fHnkKdK+v4t6hoKM4ZMRlxXPnznHr1q0Dmyq/TOJNCMHMzAynT5/mxo0bR9Jsfj7i\nnqCUkvv37792L/RHPd5IUDyM4wXAV77yFT796U93bgsh+Lmf+zneffdd/viP//ilx33uc5/j/fff\n56//+q/5rd/6LUql0qF7Ej/MTPFFijhra2skk0nm5uYoZHLY70VC3iKZQM5NESyso9qZl5ybwn+w\n2Jno1MkEStpoN8C/8wy/4qJnZzHnBuib2MbqbV8bpRGGwJINvJLG2Q4J16vYNLBMB8t08ErtTFJG\nbTpTBoT1sONBmOjV+CXVKWcmBiV+hc4gTiKnCB3VVYGpRoAhExaJXoGzExswgml1szIdhjTWAzK9\nLhlRxGjs0ry3S2upCQL8ne4PPjWaoFXuZgKGDDptwuy4RXOliVYaM2nQWHYRUjDz309y/HNT9F6a\nolgOsAezneNlWzygWnY7DlX29ACbj4s0qnW2npaQA9FAUra94ZApCx+LesnFGIumXlV705IY6aW2\nWY9EH9Yr7Nxcw7eThLksZn8PqZkhjLRNcnqI1sI29mie1PwIcnSIINPD7pMSXsVBWCZGfw/uwxWM\n3gyeo3CXd7D6UsjeLEpaCDT5nMSvK0YzAVU/RZ906O8TCA1OYJC1vY5bViol6bMh0T+CTOXJmYI6\nKRQSLRIgTXR6GFRApWkhWx9NLYj5gwDXrl071G9q7/RpPDjj+z7Xr19/LcWpvUNBy8vL+L5/ZIJ+\nXE7d2to6kK3VqyTeYieLmAP9OjZZEK2ZUkrOnj3LrVu3XptaAh8tAvAmx4/mWe+Jb33rW3zlK1/h\nS1/6Uue+f/7nf+b999/nG9/4Bn/4h3/Id77znRceOzQ01Pni8vn8C522XxWmab72H+RhIjYO/uCD\nD7hy5QoLCwtIKTvGyKdPn2ZkZIR0Oo38zu1u6TGdJNiNSmu66UI2jb8eLVQ6VGghoTCM2ix23S0M\nA9Oqk9Lr+HVJ6LXv1wKtwS0LZKWMrNbRYexsD2iNZbp4Jd1hSEhDo1rhvulTqd3O1CeAdlqdgRRp\nS9ztoDPhmerXuMUA1TYSjj+XTNmk8oJWqQuSurnH0qrewnTKpN0N/DvPcFZ3qDxs0liNsqyg0tXC\n7J228etB/DI463v6k3RfM3c8w+nP99MzYSKG9ogut4d6mhs1vME0DGUortTRviKdTKLdkNBMIlMW\nwpAIU2KODVBdLKF8RX2tSc/ZCbQfYPamcAONX3P3ZY7J6UGcskPx1hrlJyX8ZIZq0aFW8dldruJZ\nSeqLRdzNKpmTY7QebyCTNsnRXqzxQcLhIXSgMPJZwpVNgoFBwkoLc3oMVyQIUxa+EmSEx1rDYrsM\nPWnFlpPi2YZJIpvEMsBOJhFSIivraGFh1DbIpQQtP4GurKKFCaGLMvqQYYDwX13qix0kpqamOlZN\nB4nnKRnx4MzExARXrlw50u86jlj3s1KpsLm5+VoLfWyqfBBbq4Oo2cS6rplM5rVtsoCO4cDly5cp\nl8uvbWD8o6ps80aC4kEdL27dusWv//qv8/Wvf32fhFH83EKhwK/8yq9w5cqVV75nrEzzppFOPc9j\nc3OTe/fuceXKlY5x8MzMzIuNg9shvQD7+w+7LzTQj6rWEUk76qONjKBrbZD0AuT8LOHTPdl4JkXm\neIr8cAkE2GYL0WjhliUBSYItB1u2MAyNCEMMz8GrRbtoHUTYZ5kuvtO+T0dOCU5V41YFTkXg1TVO\nI8Qpa7wGGBaoPSLbyYzX6S0C+MWu80aqx8cpBZ1MM4jBTAiy+QDfaWeqAlrlduaVhLRskmpu0tNa\nJ7zzDLG9yc6NXZqbLgLwi91BjZ4xiQp0+/82rc0IiK2MwquHXPqf+kgNO1jjETA2W92FP2hKVCKL\ndtsbpjau1VcrmFMFkILk8THKD6I+mrQMCDVbt9axR/sRfT04W23VnrZgePb4CDu3VjrfsxYCkU12\nJnyt/gz1x5vIhIUwJUE5Ot4czKGkQflpCdxIxi8xMYAqFBCWReD4BNk0g26LrGpyu2gQImiZCfIE\n9GcVWRkitKJRd7HTFpYlUFY6qhoEPrp3FMws6VQKU/uUmyFhIDCKi9gy3K9n+4ooFAq8/fbb3L17\n90AegS/r9Q0PD3Px4kXu3r37WhqlsXKNZVncu3fvtcqLcR/17Nmz3Lx586Xc6INKvMUmzfHrHbQ8\n+3zsvTbxENTQ0NDHInz+oxZvJCgexPFiaWmJX/3VX+XP/uzPOHHiROf+RqPRmXpqNBr83d/9HefO\nnXvlewohyOVyR5qYMgzjY+PkBEHAzs5Oxzj4gw8+oNlsMjY2xic+8YmOcXA2m/3InVjru/dp5XoI\nBoZws3mcXZ9WHZo1TVAYpbFQxDVS+Lk8YX6AwAfj1DGMuUlC0yA7C73D7R9DvAhriSrW0esVAs9C\nxeu9igZuLBq4dZsgNHGrBq2NEF2s0XzmoIsNZK1OsrmLv1Il4VdJBlVSfoNweReruovcKSOKJZr3\nd2k8buLsCJQnYsU3MkN6X0/Q3XI7CjfpjEvgaoRtIE1BdbkrHpA09zgjCGjutO2XEpq06WJWi6Sb\nGzTeX0aVdqm3p2HtHpPGYvdYd6cLmEHVxbAEn/o304z+11kQUYkMwOpLUfn/2XvzGMvyrM7v87vr\n27eIeLFnRu6Va1VlVRbQommguwzT2NUSZQ+eweoemmagAIMGEHiswfQg8D8DFggjZNES0y1L2Ege\naGx129DYjMd201mZWblW5R6ZsceLty93v/fnP+57LyKzcomIzO6uavWRSqqXcd9999137+/cc853\n6YbYqJuWV+HmcdeurRGm01SvbJlHapuVju1JLCcicyCeQUaBxBjN0F5pwqYIELmTs3TvbgxpJ0Y5\nR2h7CF0le2wGf6ONUc7jKxqNi0skpkdw7qyBouAFkt6tdZz5FXrNLt7tNcRUiWRSh0jBDQWWHVAN\nVZZ6SZJaQMIwyOQM9IRANTQU3yIsTiN8H2lkEGt3EVF8vtJ6Er1+H9cokMSGcGdtzIGodbvdfip6\n80nk/UGl12w2n5lUr+s6R48e3dFs8HGRy+WGAJdr16697/vtdH452N9227MPx6M+b2pqatg+vn//\n/o4fKr5bKT7H2I5bxm//9m9Tq9X4+Z//+QeoF+vr63z/938/L774Iq+99ho/9mM/xo/+6I9u63Mf\nx1V8WjwLLeNhMYCLFy/SarWG1jkDMYB8Pr/t1k3kh3TO3kYsd/BWm+iTo0OUJUkDv9JESRixl1/C\nxJ2v4F5fxL56D2e9SVJuoKkOrm0QhQooArerE7UdjERcnRmyS9j0cC0TqRt4to5diaDexFvzUJ0O\nCcPFwEKTLl63j5xUIGm6uIOOVhCi6+FQvEaoCmE7IJ1ySIU1lEaVYL6GfbtFb1UgXTms3jIjEbL/\n/6oGnfsuih5XDLqyWTkmkgHttT6aVUDS2NLKE7HdlAAy+Yic0SKcX6V1foX2LQu2/K6ZCUHgRiAE\npTkNrxsvPCN7Fc781kEUXaCYGn46Q6/So7veJf1CbA8VbUmK+ZMztJou+Rc35+aiz9PMn5pl4+oa\nncUmlRtVUkemUBIaMmnGrVTiqjuxZ4TGtbiyF4og88IknetxklUzCfx6F+PoLJ6ZILD6c9l+3qhZ\nFtbVZbS5MRTbJbl/DqXrYJayiNEyYwlJ14MDiYBIhnSbDiu+Tqdq0WxbeLaN4tkgJcLpID0PpbaC\nzI4hrDphdhajXxm6g6+9g0pxEIMKbUCGf1x7MAzDJ876VFXl5MmTlEol3n777V1XekEQDNuLlUrl\nkclsJzFop2Yymfd9v92IgQ/2N1D72cn3fBwdY/BQ0ev1eOedd7a1zkkpP7QJET7A5P2nuWV84Qtf\n4Atf+ML73rd///4HOIs7iampKVZXVzl69OiO3jcA26RSqaduG0UR3W6Xer1Oo9EgCIKhGMCePXue\nCyS68X9ewW/EC7+SS2PfXiFzOLZHMuYmcd69j9hbgqSJ9AKidg8VENkUpYkeJi6m4oPjEFkKbqCh\niRCR0FAIhpVjhE643iVExUyHmGbfyNcL8KSKnhKouoztmWSAZ2loCRmrzEUhoaciVIEmQ6y6SnpC\nIAOfVM7HaZskcqCaOm7DIT8TgKzRroHrqoSpHCKhEnR9GOtrjmohURCABrlSgN2MhiIATt0jN5EA\nAclEQHMpoDCjIYSgOOLj2xI92W/FdjxGZzWghtuDjbdT5F7IY2ZV1m72KBRimbTGgsvICynMtEBo\nkpOfTnH235ZZPhcr0SiGyvI7S8wcGye04sUke6DMypVVRk5Ms3R+menTs7QvLyJUBX02x9qlZWQk\nGdQ91WtrjH7PPnzNJ39yFme1gQQCL9zkQmoq9nIdYySDMZ4nNAzqS21k2EKfyRP1XPSRNOH9KurR\nWRJJnZANDCHg6D7c9RaGKpDEbhvjScktR4IRIVSDhBHg2hbZQpKeE2KndUQyReT5aO0lgsxxRK+C\nHJsjMqYQfgCGhjQyZKMuvlRptCXJXfLgZmZmyOVyXLp0iQMHDryPvD5An253P5cvX2b//v1MTEw8\n9T1bI4qi4ee8+OKLLC4ucvbsWV588cVt3fuPikH7s1AocPHiRQ4cOMDExMSuHTIGaNdCobAj8YAn\ncRRVVeXYsWOsr68/UdzgUcfyYYwPZKX47YpBUtxpPAmBuh3PxIEYwPNIiFJKNv7d14f2KGQuAAAg\nAElEQVSoTX1mFOn4IAT6njLO9b5voqGjT5cJN1pIP0Dk0hSnLbK5DqLvDuEHJkE3RA08jKiHYrk4\nHY1Q6jhNBdW2MXQfggDh+Nh2AhnnQAwtILQjgkBHSoGqRhCEhEF8yWlKgN9VhkCcVNrDaasIEefc\noDdIsD6ZnI/T72orpoZTi8jQIO1UUa0unfshgSfIjEi85mZF0lv1hkT3XMGP27z9+9Rrbf5emg6N\ne30fyUhSHA9xu9Hwb7LVQltbYfUbVUQYDFGm6UJEFMZJXroehX0aZ34qQWok/kxVjxVuNpY6KIZG\nYjxHdaVDFMhhK2r5wjK5U7No2QSddQcZEltBGfHim39hgtZyi/qNDVbeWaG+ZhOkkkSJBImDE6SO\nTBElE3hSo1WxaW50qa3WkKFEny0QLrXI5LJkJoroR/YQeoKw56KPx3PQ7noPd76CdmCG3lILYyyH\nmzDxfMk9C7KqwAkUnDAiDBwSQrJvxIsFyHWVsDSL0qogE1mIfMT6MqKzDhJkqkSkpYmskAIu586d\n27XAdS6X48yZMywtLXHjxo0HZv870T4d7Gd1dfWZSPCD2eBWqblniYfRpNtN9I+LAdq1VqttSzxg\nO8T98fHxofHz07RiP6wJEb6bFB+ImZmZXbVPH+YqDhCi165deyJC9FnVIx4V7bdv4yxUCR2fKJfA\nvhG32KJIxsRxCWopixgtIiXoR/aiH91H4YAgne4RSQUUcL00imej6RIhJVIKbMeElotfsxCWh22b\nBJGGoqkIBYzQxrFSBHoGx0kSuDpOS8GxE1gtA8/S6DYVLMvE8wx0xcW1tzjaS38ISEllAqyOgRBx\n0vFa/fanqpBKuYSD0ZDrEazVYWmd1h2fsLv5O6RSm67giZSksRgMZ3yFkk/oy2GSNNUBj1KgaoLW\n4mZyzWZdhCKZmrAZUyqsnqsTOBHJnKB+s4dQYGROo1ONKM6ZnPmpIpmyGoNnALfl4Os6jlDxOgMu\n4uZvtnp1DVc3h61gANXUMIspmkstQm9zQcvtH8WqWzRubVC/XqHd6FFdqeHUev33GaQz8WzTHPAn\nVBXHjqhfWUGEIaEXYUyWaK/1MMfibcNkmqDagVoDZ7TEaCFBmExSs3zMjEkYCXpeiG4YNIMUYmM5\nbp1KFdGpEeUnENUKsjCB8OPWKjJCNJuEwkB3G0O1mO2AZx4Vuq5z+vRpNE3j/Pnzw3tup4LgA9Rm\nIpF4omvEdmKQzJ6HcPfguFKpFJZlYdv209/0hBgAZorF4lOtrbarZjMwfg6C4IHfYGtIKT+0dAz4\nblJ8ILYrCv5wKIpCo9EY2kUNEKJ79ux5IkL0mxEb/0vshBHaHrKQQc2nMI/tJUxl8FBxFRPPTOM3\nHXrXV+ldXyFpL5Nor0EnIGpFOBsK1Du4TYHV1ulaKp2mCV6Eoki0fhIUEXgdFc8zsNsGQSdC7XQI\nV3tEtkT3LUy3A/UeOD5m0CXjtQkbIUq7h2y6qM02jbvQqer4jornbraM1HDzhkvnfBxbR/o+uiFp\nrw/UXRSkG6EKSU6pY7ptmrc83J4glZPYG1voGZY/vOINU1K/52/O8kZC2uublJF0IV60pYRUGjbu\nxllY1SRar0W4XKX2noWIAtR+Vec0421SBYWP/kKJTHlzoXYVDaW46cW4NSnkjkzQbTp4KYPM3lhD\nVzV11NEsbtsZysApukqvY9PrxK1xCaCoJBOx9mvuhQmse7EjeubgONb8Bqn9ZULdpH2zQmKqiHVn\nncD1sao9go6Nv1RFnxrBW26gTRRB14gCST6TJG336EqfyJAUSibFrKCkdtEMFVmaQIZqzD9UDUR9\nHTwb4fTdSCIFsXoXJXQRSEQUkuxbGG0HPPO4GFgW7du3b1h57lRpZrCfffv2cejQIc6fP0+1Wn3i\n9k/ybBwozQyEu58lmQ3aqYlE4rmQ84UQzMzMcOLEiSdaW+1E4m1AeZmbm+PcuXNPPXcftvhuUtwS\nMzMz22qfDhCiA7uoxcVFHMdhcnLyAYRoNpv9lrYRrFurdK/cx9w3jnZgGqfi0F53aC828Zo2zmI9\nprz5AbJ/XKVDSYrqOhKFUKo4loKBCwIiVUf2IgzLw/QdcAJsN4VraVhWitCRqP1/F7aLFyQJIxUU\ngeZaOH6SSAqElKieh+vFN50aWNhePINRZYCpBZh+D7PXwmg3qN2WtGsmUShwOpv8R9+SQ3J9wvCI\nojgp5nMuzoD6EYR4Gx20tQq12wFhb7NNWhjxifzNBUEJva0FG/bG5ut0KmDj/haHDnWzchwth4S2\nz2i2hdFtYjXjzyiNh9jtED1toIiIH3wrQW5So/TiDMtX11m4sEKpD66R/YqieHyS5XdWEULgVB3W\n7zcpvjhDet8o9RuxQLvX511qe7M4lR66En/X0olp7MUWQooYDNXsq+REMdAheXyWRqWH244rocRo\nGhSBOjWGfa9Kcv8EkeUQjZZA1zDGctiRgd5zMAtFSgkdQ4ZYvoUrHda6NjU3wFA8UDWkqiLsNlFh\nBhEGyJFZhNMiKuxFeB5CRvhmgaTf97YM/feBZ3YrVTYAot28eRPLsnZdmZRKJV599VXm5+eHBuCP\niqehQQdJ9vDhw1y4cGHXknWDz0okErz22musrKw8F63TQTu10Wg8EoW7G93T0dHR4bm7efPmA8f4\n3UrxOySmp6cf+WQWhiGNRoO7d+8OEaLNZpNSqcTp06c5deoUpmnuCCH6zYjK//UuXrZA9WYdpxsS\n9Tly5kSRsBcvjMnDU/jr8SKVPZKjFN0HwEHHc1VQNTwljRXkCFydUEsSqClsmcMNU0S+QIYCGQgC\nT8fyMgQYuGqewAGnoxGoaewwTegq2G6WwEgjhYbmu1i+iYwEZtTDspOx2o0McNy+pJ6MMIhI+S20\nRgula9OsJvE8jbTRw7P7ijeJiGZVQwZBzEXsbJ53NQpRFElJrZOwGzTugdWKbSN7lc0kWRwN8Dqb\n1Uq+FOC7mzd20A2GvPlSWdJYibfVNGiuxItKvhhg36mwdL4NSGp3bNyex9i++Hh+7HcnaFU2CPu/\nxfy5ZUonp5GhJDWeZf1W7IQxBC8Fkspyk5X1Jsa+PMJQkH5EZk8R606/CgslWsakfT9+bxRGFI5P\nYa+2Yk3SdILGWpfKpRWyc2METoCWTWDdXkM/NINdj5OnpiuoB2bilrOug6oSdD3UZo9QMYgmy7iR\nRNMVNE1STKl0nRArSqAs3ESIiDA3g1JbQmomSJ8oNwuOC26c7EJ1C1hkiz/mzMzMcB73KG+/7cSg\nlRdF0TMRzU3T5JVXXiGKoseq6Wy3Gi0Wi7z66qvcu3dvV5J1sCnxtlXr9HlYRw3aqSMjI+9rp+5W\nDNw0TV599VVUVX2gSv7uTPGbFE9zypBS8ku/9EscPHiQU6dOceHChW2/91GRSCTwPA/f97l58yb3\n7t3jnXfe4cKFC1QqFbLZLKdOneLVV1/l4MGDjIyMoKrqB0IU3Kl2aV5fx631MCfzdK6vIJIG2nSR\n3nvLRE6AcXAC+9oCspjCsutk/DV6doK2myfqAFZI4Or4VR/Z9QkDDd9VCfQs0Z59yJMvE736Efj4\nx5Ef+2Hk930/4ns/Qnj4BEGiSKCkidQkoRUStT0iX6D2ungbHnbXwGkr+A2JLXM4UQo9srGDFFJC\nUrHodgyEAFPxaDXixVQXAd5qD6XWpbNhEIbqpj4p/lDtJaX2CANQTZVizsV246d6EYa4i3XMSoX1\na85WcRgUBTrNzYU0YUY0VzdflyeDYRIGcPogHiFgZNQn6BePxWJEKW1h32ui9o9JUQRWPZ47fuwz\nGQplMbTHundpDaOQItAN/D5dYriYqIJAqKiRQeNWh0BPUDw5g1ZKD8E3kReS3T+G168AAz8ikoL0\nsWm6vsBxJW7DRklodG5XCP2Q9P4xtH2TWHWLzq011LSJlNC8XcO+u47IpOjdb2KM53CnR/DurJDL\npDEzJkKRtLtdpG5wclxH11Wi/ChSMwk9H2F3iBI5iDTEym2E24HAR5o5TGuDSGiE+b0QPHiPDKyf\nFhYWdp1AFEUhmUxSLpefycNQURQOHz48VNNpNpsP/H0nvMFBohBCcO7cuR1rI2+VeBtonR45cuS5\nAHogfvg/deoUV69eHYoaPI3W8qQYtLQHVfJuH3I+KPGBpWQMnDL+9m//lpmZGc6cOcMbb7zBsWPH\nhtt89atf5datW9y6dYtvfOMbvPXWW3zjG9/Y1nu3xsAp4+/+7u+oVqu8+uqrvP766/zar/0ax44d\ne+oT1EAN59sZi399cdj6M4oZ3NUWmBphX/uxJ0LCSEEUshhJjXGvgh65+EoS0bGQ6RSuYhL5kjCd\nQRkvoZ8+TuoT34e6DWF0iM+jd+Fdwq9fwpu/j+h1CbQ8GAHCsQiSaUzZw6rb+KYKAkIDXD1LSrcx\nVY8g1NHwSBsenq8CEblEgOOopJJtbFulsqFjjJrk8y71ZpJUDgwtYmNdJd1Hivd6OknTj9GsQYgi\noGy26dS6dDoaHjp2oOJHAVUtBaGPboJwHQbseFWFTlWSHo33WZ4M8RzQlNhTd+F2wJ6jGpoBjZWQ\nmaMe6cjlzk2daC5NsRxgt2ME6w/8ZIL/+y9CmsseMpSsNrpIudmSNRMJLGDk5DQL55dJH42J+07L\nwQ0EjZsbBE5EupzDmC1gd32MvaM4bZcon2Hx7XkAikfGceox6KZwZILm5SVCxyCQCTYuLzPy4gzt\n1SbJQ5M0btdI7xvDfneBAAWv0kZLawRCJ5FJIhWVPXPjrNcraKpAInl7xePUmENHFMjeuw2ZLJFQ\naVZqjLoVotG9KPUFpFZGJsfw0FFbNVTVeiSBf6B5evv2bc6fP8+pU6d2RUWYmpoim81y+fJl9u3b\nx+Tk5I73AbGaTiaT4fLly0xOTrJnz56hYe5OksbA6b5arXLu3DmOHj26bc/VR9ExBqLpV65codFo\ncPjw4WfqSg0snt577z3q9fpzWb+KxSJnzpyh0Wh8t1L8ZsR2nDK+/OUv8+lPfxohBN/7vd9Ls9lk\ndXV1W+8dxHvvvceLL77I5z//eQzDYN++fXzlK1/h937v93aEEP12JsbIC1j83y4RRRH6WIbOezHi\n1C+YRCkDygUS+SLR7RoikpS9JZQwwFNThJ7EM/O4topPEj76/eR+/9fJ/ze/SOo//qFtJ0SIz4H5\nynGyv/hPyf/+v8R469NEs/twPQNLFPAdhbaMhbCF5+NHBrpvE7Yi3HpEt2Fg+WnCSKAIiWPrKEKi\nCIndiy9VRVGQvZBsr4m1BmGgMhhlGPhDc9+00kPKWJC8lHGwXbV/jNBtq5TMHtPpNmXRRKnUGfE2\nyHU2KHQqbFyoU7thsXzZJmz1qK9vCgS01jd1EHJpLxYM1xXKEyGuI1AUgelb1G/beC60KjH9YnRK\n8KlfNklkBJm9eXq1gI27XcZemu5/L4E5kWbpYox+Hmq+jqZZfXcN1VSREXTXunTbAWtX16jdqeE7\nPr3KZnUUegGhFyJUgb3cREsbGHvLVN5ZRtEUrPkNEOBYEV7TBtdDH80S+rEcnEyl0MIAbbpMqBmU\nJ4voSoQCGJFDOWeiBAG5xipMzGFELuHoPrJGXEVFTv9YJGDbJCoLiDBE1BYRwaMJ/LvVPIUHAUuD\nudna2tozzeFSqRRnzpyh2+1y6dIlgiDYlUMGxHO3V155hVu3bm3bueNxHMWBOfDzAPTApjjCyMgI\nlmU9Fzk3XdcZGxt75v18O+MDmxS345TxuG124rJx5MiRoVPGz/7sz3Lw4MFdtSi+HS3UgRrOxf/p\n3+M1LLqdHiJnouaSpF/cixbouHea6IUM3WvLKAmN8VQbU/HxFROnEeIGBl5kYvyz/5Tif/+vyP0X\nn9xRInxSJF48Qu43Pkfuv/t1OHwIXyQQLR87zOAoGaJIxRcmwvfwSJMQPolmi8pailonhS58Op14\nIconPCw/AVFIIenRtTQSkU2yXaO6YNCxUuSzPr1OnEwSqke1oqHqKooCzWa/nSogJR+UffOszYVK\nCLBbESWjw1S2zWhYwb3bwLpVY+WyRWS59PqjmEJRsjIfEYURhgmNPiI2nVfoVXrIjTpBz0YogkJZ\nIfDgzX+ZwfNCCAEJd88tUzwxCULgBpKoL5Cu9KXbEmNZfDtANeIqZfTYBJV3N6/P/IExnH4btXC4\nTHu+RuCGFI5OoqYMXDNJtx7/PX9kgqDjkD29D7vaQy8ksefXEdNlQj/CnC7SXekgLBdnrcrGepdW\np0W2YJJK6wRqgn05MHKlGEgT2ATJUYTVQVU1guI0mlXHTo8TiQxK5R4AfnIkNhl+itRbuVweapVu\n1wruYfi/pmnPhW6hqirHjx8f6n92u91dtxcTfdTtwLnjaevEkxLww4Ce59GqLBaLFItFrl27tmu6\nzMPH+N1K8UMciqI8cFPtVurtW5EUt/olDmad1WqV7t/HYJlkJoOeStPrBIRhzOkTSQ1npQkCRvel\nEWFAO8jhNnzCdB5ePMXoH/862Y++9E07bj2Xpfhrnyb7G5+jVRonjAS+JfG6Ed2ejqeYGIFN24+p\nBUnFR+n6BPWQIDBxwvipOXRBiPiGday48lN1FbfhYVYb1NYS+L3NGzpwwy0zx75/o4C07rJW0Yav\nS0oLezg7lIylLbY6Dqm+T8qMmCr0GAtXqV1usnqlx8KNEBEEKEr8GYWsg+9JpIzIZ3wSRsR0ro3b\n6KM/U5LxvQqv/+PoAdmzhYureKZGtHUhUQQjR8dZvRoDvxRdRdEU2rVeLBigKiRKKTaurQ15jAPH\nkcD1UVImlcUOUlWoX4/3IV2fzIlZHEciTI30nhGSL8zguwGO49GyHfyUgpNJoGST5Es5sqkSe4t5\nuo6Da7f4D/dqJFbnCSf3IdFiMfjaMkQhQhGEuWnU6gZyLW7nBqqJ2ekn8W3onw5kxer1+rY0PB9F\ncn+YbvEspsPT09OcPHmSpaWlZxICH9AYZmdnHzmz3BrbUbMZtCoXFxffJ2aw03Bdd3jeO50Oly5d\neibLrQ9zQoQPcFLcjlPG47bZrsvGo+KboWqz25BS0uv1WFpaep9f4kANZ8xLYy80yJ2cIUok2Li4\nhJY1ad9YRagqyngWs5yjeKyMvrJM6CuEXkRQGCH7yz/J6L/4CdTnoKSznVD3TtD47I/Q/OjL9LQU\ntpJC8QLsnkbTTqOgYos0RBKpmggEKbvLxrJOrZtFJ6TdjheLfMLFDkyQEQXTxfEUsl6LdK/H2lqa\nSMJYzsF14sUiq7tUa+pQjcaz+mIAgKpI1tf7C6sAU4tYXR4stILRvEuzY/Z/E0EmGTJZdNiTblL2\n11m44lJdlyQSktq6Fh9TEdbXdRQFRKfDyg2fTAGWbgZki/B9P7y56ORn8nQaPhtLFiOnpknkEyia\nQmtjUwtT1RVGT0zSWY3LVC2hkZ0tEnohvu2TPzhG684G+YNjpA5OcO//u0/oh6TGMjHSdaYAqsLS\n5RV6yw0iAXa3x9qNDeylKr4fEd1vky1k0IWKkU2iiZCwZSMyGY6Nl/CjiFI6EZ+kUKKsLQzbvJFU\noFZDWb6LMjaFFrpIBLaRRxk8AGxTFHygVZrNZp/aJnwSQKRUKj0X0+FsNsvk5CSdTod33333mRLQ\nwAHk+vXrjxXZ3q7E26Cdquv6M1XFA+TpoDoeHx/fcRt7EB924j58gJPidpwy3njjDb70pS8hpeQf\n/uEfyOfzTE5Obuu9j4vtchUfjodVbXYbrusOpZ7Onj3L3bt3h0P7R6nhrP77m8iRPNX7Tbpr8YKZ\nni4SuQEiaeI7IW6zR3LhLqGRwJEG8vBBZv7wl0ie2P/Mx/ukGFS28/PzXLhwgXfeeSfmYH3iNJO/\n/8uIPXPYUQqkQEYKQTvA6ah4SgojcukEaQCyug8dD2cjwo+SBKGCEOB4BkiJqkCznyyFjLBWXZor\nBt2eRqexeYnbHTGsNMczNo4jEP3cl1f7Lvb9RT6j9sW3++9tVeLXkYRC0mW5nzQ1FVJej9GwQXXe\nx23YqP3PyJguURiDgPx6j+aCg6pGBJ7k8LGAH3hDifmguhYbC0vBvfMrtO0ImUkM3S8A9IzJ+s1N\n7lt6Ms/6lbgCDL0QcySNuW+MhfdqdBrxd1ETGs1bcXvNmMixcruOPp7BrXaJEiqhMEiN55EtB6NU\nQAhBFEJIiKJGaKpEDTxEJMju30dJ13lxLEU09wLCc4jGZlFqK4Tj+xEBKL0WUTKPshF3LiIjQ8KK\nid3SzMQnb5sxILEfOXJk2BF5VDxNDm1gOux53vD6202EYcjhw4dJpVKcPXv2meZ5AweQXq83nFlu\njZ3ongoh2L9//7Aq3g0/8mE6xuTkJC+99BLvvfce9+7d+7aDCL/V8YFFn251ygjDkM9+9rNDpwyI\nxcE/+clP8pWvfIWDBw+SSqX4sz/7sye+dzuxW1Ub0zR3xSPyfZ9ms0m9XqfdbqPrOsVikdnZ2afa\nQ1m1Hvf+n3m6yy3GXprBXW+Rni7QvVMh/9IsUSgJ17uMFD2kadLzFPJvfITRf/rDOz7O7YSUEsuy\naDQa1Ot1HMchm81SKpWYnp7GMAzu3btHKpXCLOWY/J3P0frqWSr/9v/A1AWR0Eh4PToyg6sqpBMe\ntjQRMsDDJClsUr0uy1aWQjkip3XouTopIrKmSxDFEm1JEZDyfcKagGQyJvkrMJKxCXwTjTiZLVU0\nyhNxey6fClhdS1IciReAYsanUkuRzcYL1nTBptVOk0r1ZeO2rFmTIy7VeobRUodR4L33TKzpBNNz\nAffv6GgKTIx4+AIM4bPS0tlzFPYegY+mSvzv/2ON8SOjw/2Z2QTNusPS/Q7F6TyjUxnUfILMhE8U\nRIR+SLKcZTRl4nkhgYR7F1bxLZ/sVJ7q9QrFlEp6rkDnehV1JEFlvk7khuRGsjRXuxiFPLWv36V0\ncgp1poTT8SjtLyNtl2whj9VrkMoZKNk0ERKzvkaimOdq0+VUZRk5OYoiQsKRveAF4PSr2vwIohID\nNmSujNeqY9k+ZsdF2YUJ7oD3d+nSJVqtFvv373/gntiOxJuiKLzwwgusra3x9ttvD6vQnUQQBOi6\nztzcHPl8ngsXLgw1i3cTiqJw7NixITBw6zHtBtRTKpU4c+YMly9fptFocPDgwW1XbK7rkslkHvi3\nQeK+fv06Fy9eHPpJbve7fZjjA5sU4elOGUII/viP/3jb791OPEul+KQ5wSDCMKTVatFoNIbQ5UKh\nQLlc5tChQzu6oG7+9VUUQ0PPmjRvrKMaCqP7x/E8SRgKRBBQnFCIPAU3UJj+r36C/CvPtzp0XXeY\nBDudDqlUilKpxMGDB0kmk+9L6qqqPjAnyv+j19APz7D6u39O0A6QuQJKs4efSOC0PKJCjqRsklYc\n2q5B1vAwZYjS8KglC0SqT0r3MVVJ3c5QSNhkjYi6k6KUsMh2miy10mTGFUqpLss1lan+/Z9W3E0/\nJSC0AqL85vHaTY9MeoB6hWoFZufivxcTFuuVNOPlAEVhaCMFUM57ZBSH6nwWGYCRU9B1ydqGyuys\nT1IVVJahOCoY39Pm1nlBe4vSjlFKDfmUjeU2YSTJeRGr78WzscJsntX5Bs2F+HobOz6Bamj4lo/I\nKCBBGAp+0yGzb4QwlURrdwh0h+7dGolyFrfng5B4a02UqVF6d9cpHS2gj2QxE5DUc7iNddTQRctP\ng2EyNp7GWVxBtBvIvXuR9TVo1xHpDOg6UaaE2LiPVHXC0ixRZYNUK54n9jLjrN+7w8SB0zte8Ae8\nv5s3b/LOO+9w8uTJ4T52ons6MTExpFts1z1iEFsT1WCed/nyZZrNJgcPHtz1HG1ycpJsNsuVK1eY\nnZ1lZmZm1y3IAb3l7t27nDt3jlOnTpHYBmjuccT9QeJeW1vj7NmzHD9+nEKh8NT9fXem+B0W5XJ5\nV1p+j5spSilpt9vvA8fkcjleeuklXnnlFQ4cOECxWNzRjSAjyc0vX0U1VIoHx4iCkNzRKVa/cQ+p\nKDTfXUGVPnqzi68nmP6v//PnkhAfNkF+9913cRyHmZkZXnvtNU6ePPlEndeHkyJA6sAUM//mZ2Cy\njNvysJM5VM/BxURr9ai4JSxSfa4cmCKgZpkkHQuj67HhxDeqKf3Y8RjwvfizhZDY9ZDkRovFeyYo\nm8+BxbRPs7X5eiJnY/ubr2eKNu0tSjlTeQvP33wtEAxsEidyNqt98E5CcalsJBhJdNibaVK559Lp\nwPSIRb0GXsfBbQa4jsLyfMSP/5RCPh3Pg8ovlFm8svZAyyo1mn7gXCYKSZS+KXFyLMXatXVCEaGl\ndXr34iqtcGCcRDHD6nyLwAtQdJXCoTIyjBDlAkiF7P4y5mQJIUFJmdjzFaQXoGsSTRVkx0YI0imc\nu/NEhRGS9ToHcyqyPA2uj6hXkFP7EL0WeC5huoCdmcDr+LTXa4Ru/J3C7CjJ9jqFTHrXfoaDam9q\naoq33357qMayU9L5gJ9XrVa5du3atueDD/MUBwkI2BVB/1HHVK/XuXLlyjO1KwdE+gMHDmxL0xWe\nrmYzMTExnIPOz89/x7dTv5sUHwpVVZFS7viHH8wUt4Jjrly5wtmzZ1laWnqkVdRuId4AS1+fp7vW\nRjE13IaFMV3CqnRRDZ1EzqRwYgp1bQM/laL8X75B/uV9u/qcKIpoNpvvk7gbaE++/PLLzM3Nkcvl\ntvWE+KikCGCO5Jj7vZ8hmtuL13FpkyXUDAJFQ/E82g1BN0xT91JEElK6JESgCUFjFdY7BTRCap24\nr1lULSxPRVEEJd3DlwqjwiK1XufGdZOFaoqeo9DtbNFrFFBdDR943Wls/t3UJPXGZpUzmuzS7CWH\nrwO7LxouJKOpLo4XJ65c1MGv9lhZNWjVIhQkY1mLhNtGFRK7J/mBH+iSSEG3T6/o53ZG5oosXF6N\nDwbITKZZurKK4/Vl+8YyICGZSTJ6uLzpqJHUuX+1gp42qd+sohgaCgLz4DggiPZ/pAoAACAASURB\nVIiT68adGvZSjeTeUZKHp1EMFU2NEDJEuDZpXYVMAW5eR05NoE7MEmkZcF1kIo3YWCRSVGoijbx3\nl8TSPIqRJN+rYSb7HoNGEoEkmzQ5efIkly9f3rXQ9cTEBKdOneLKlSusrKzsymJJ0zROnTo1NPfd\nznxwq5fiIAb8yoEw9m5tsWATXJTP57Es65mQrgAjIyNDXdKnqQVtp107aKc6jvNUs+HvVorfYSGE\nwDTNHQ3SXddlY2ODXq83BMcAHDhwgNdee41jx449d6uo6//ucny8KZNGpYeiqTTvVCmemCKIQFte\nI9B0ojdfIXVi+22irf6Ply5d4ty5c6ytrZHJZB6QuCuVSrvye3tcUgRQTJ39v/dZxPHDhJHA7kb0\n1CyEEZGRQO25RK6OJU10QlphGgHk9QCl69FtmLh+fI4VIdhoG4DEUGHD6QuQCwg7MNbpwkoAGy53\nl9LcX89y866J1wy4v55lYS3DrVs6ftXlxnWdmzc1FpaT+A2X2/M6iysaLcvA7m0mzemSy9KqgqaB\nqUfU2vGxpBMRtQ2FabOG6VpEfkjCiKhUBLP5NnZX4cB+j0/+E0F9qTn8HQACRYJkWBkZORMkpLMZ\nUiMpajdq/XOn0rrfIF3OUDw5TWO5i4ygtH8EGUZoKQMMnZVLq3QWG4QSPB9SE3mMYgZrsUEYRBgJ\nEIGHjIJYLDbwMTyXaGKKTs8iWFqDpbv0mi3ayQx2qkggkxSkRI3i31VkC4goBEUlKkygbMQenjLw\nSSaTvPrqq6ysrOzaamlQWa2vr7O0tLSrVuPDQJ5nEfAeGxsbipM/CzBFCEG5XB4aIe9mjLM1Hpab\nexI6dTuJTFEUjh49yszMDG+//fb7HgK+UyrI7ybFR8Tk5OQTn2SDIGBjY+OBFuJAxHfQQpyZmfmm\nWUV119os/cM9xl6axnNDvK4HQUh6MkevbmEELgKY/uf/EcmTM08VSnYch9XV1Qf8H1VV5fDhw7z2\n2mu88MILlMvl52KC/KSkCPHNefS//SeoJw8QJNOEHZduooDi+3QiEzUIWO+laIgcicjFCwWqkDQc\nHT0KyVg29zt5pIScFgzho2Y02D/ktZBQChQBI1pA0JSUnSazqsUkDmEjoOw0mNUtyopL1IuYS/SY\nCJuU3A5RzWMy6pCut8huVFm4Z3LnlsqdezrdZjQo6hg3W7RtHU2RzJVtmj2DyaKH6oXcuCHYO+my\nURWEjSbLqzoTYy4f/5H43HTaHbJ7MmzcjheebC5HYTbPxo1YBFwogtxMIUatAplyluzeEusbDgHK\n0MvR2ogrDjVlcv/iMqVDZZxajwhYv7iIkdQgk0QxVFxUEApK4KHICCV0CZMZZLVKNxTkV9ewUkmU\nwCeRzJAVKsmVFZTCGMrGKhgJopEplLV7AEihIMXmg5MIA6SMHTxeeukldF1/rAD302JA0ldVlYWF\nhV3TEbYKeD/JJeNpMRAntyyLixcv7lqc3PO8YVW2vr7+zBSQAXJ9//79j+RsPskS63FRLpeHDwEP\nU10+7MR9+JAlxXq9zuuvv86hQ4d4/fXXH9muWFxc5Id+6Ic4duwYx48f5w//8A+Hf/v85z/P9PQ0\nL730Ei+99BJf+cpXHvk5U1NTDyjgDFwy7ty5w/nz57l06RLtdvuBFuLevXsxDGNXHnE7jZt/fZXS\n8SlsJyR0Q0aPjgOQmiqg6QKl12Psze9l4oeOoev6+2Dog6R+48YNzp49y/Xr1/F9/wH/x6mpKZLJ\n5KM+/plC07SnLhhCCI7+63+MfmwfjpkhaFs0ghRoGr5QSRHQa0Q0/CxVJ0EkIauF+FJBESrtqsJq\nt4ihSCr9dmpW2lR7eqxoo0nWnb7cHJDwgwfYAprz4G84onj4oRgcHCNGiBfEryWCoGEzl+0xl+gw\nS5sbl+D+SpLVhsnqcoBhgKqA228+GIENPZe1Bei0ZCwg3unQ64Qce1nhzA+aJMwkypb5p5QSM58Y\nLkBaQqNyo0qykGTy5Wla3YCb31gmcENaKy2EqlDcV6K91CQ3W6RrBUSBxEzqaAkdkgkUXUNoKiIM\nSYznUQ0dv+fjCIHd69CptpBL93Hm9pNWNOT0LLlui97oDN2eg1hdRppJRK3/AKnHlfnwmPUUorVO\nVBgnHJtDKgkURUEIQRiGzM3NMTc3t2tOnBBiSMM6f/489Xp9x/uAzYoqiqJHKs5sN3EMgCkTExNP\nNfV9XAzoGJqm8eKLL5JOp5/JYmsQg3bq3bt3H0j+u3XHGDwEPKzS82FPiADq5z//+Z1sv6ONn3f8\n1m/9FsePH+cv/uIvWFlZ4Wtf+xqvv/76A9tYlsVHPvIRfud3fodPf/rTfO5zn+PjH/84Y2Nj/P3f\n/z0f+9jH+NKXvsTP/dzPcejQoUd+zoULF1heXuarX/0qhmFQqVQIw5BCocDevXuZmZmhVCqRTCYf\naN3U63VyudxzqageF1EQ8fX/4essvrNCKmei6QrJjEG7amMtNSloPiMfPcqBz34MgG63i5SSIAhY\nXV3l7t27rK2toSgKo6Oj7Nu3j6mpKfL5PKZpftMv6oE0Xblcfuq2oz94jPqNNXpVGy0KCZwAP5lC\ncX0CVSMZ+oRSI0SSVCVdLU0SFxkK1CDEDhN4QiGrBICgausUUj6hq+JKlYzhESHQA8Gao5FPhgSR\nIBlErNg6+WSIHykkkSy0E5QyAV6kkoh85psJRrMBbqRSVDzW/TRZ08cLFUwpKJo98jikQo8biwZq\n0qCcsVntZNBDl7GMj6ZJcppH0zbYP+lSrUgcX3D6ZY97Gzk8aZIZTaHpKpmRFOs3N8iMpslN5kiP\nZQhVhZXFFsLQMXSV7nqX8aNl6vMNRqZzmCkdRVPxdAPTVPHqPYKWTfaFSdyGRWkqQ2u5g2oKAs9F\nidoodhuVkKQISJZyKJk8em0DtZhDJDSkJ9EyWfRaBVUJCCf2oNZjLqTcsx+lWUGOTBOlS8hAwuoq\notECy0WmS8gDJ4bXmJSSVCrF6OgoV69eRQhBLpfb0fW0sbFBqVRibm6Od999lyAIyOfzO76OhRCM\njIygaRpXrlwhn88PkZue51GtVpmamtrWvrLZLMVikStXrqAoyo6+0wDBXiwWh8j0AWI2kUiQTqd3\n9L22hqZpTE1NUa/XuXv3LqOjoziOg2VZ27ofHw4hBKOjo8Nzlk6nyWQyuxqrfIviX29now9Vpfjl\nL3+Zz3zmMwB85jOf4a/+6q/et83k5CSnT58G4ovz6NGjj9U93Rq3b9/mT/7kT3jzzTf50z/9U/7m\nb/6GyclJjh49+gA45kkJ71sh9XbrP8xTubFBaX+J+p0aWlJn8e0lsmNpRuYKJA9NcfgXP0Gn02Fh\nYYHV1VXm5+ffZ301QLx+qy/gp7VPt4aUkj3/4kcIJgp0hYarm8i2Q0tPkZQhbV9FjyJWexlapDB9\njzACVRHUHB0zCEh0Ila8mP81YvgEUbxYFnCGlSNA5PWpF2r8D6HbR6/2CfQlLSCMBEEQP2GP6R5u\nIJCyv8B3PaSECIWs6nJnNV5QVSEZwyHXa1FdE9SXbASShCFp9zTSiQgz9Ll6XWFyJGA202P+dsQP\nHlvk1vlFrl9Y4/58CwuFSt3j/r0287fqNFsu96+sx9Vf1hwqy6h9VKqiKbgdl2rdw8gaSGDkcJns\n/lE8L6BT7dD1XaKUxBOSZNagXMpSGs2TzOTQFAVpewhFgtUj0hPI6zchCGDlPorrEBTLqMvzBOkc\n0exhZMcj2ujA7TtITyJ8H9GvSKLC+GapzGabLYoiTNPkzJkzQ2m3nbQLB+jTgb6oZVmPJMRvNwaK\nM+++++7QVmmnDhnwIMp1O3J1g3gU6GXgkPE8JN0G4KB9+/Zx7tw5qtXqM2MdyuUyr7zyylAs5cMe\nH6qkuL6+PrSEmZiYeKpw94AG8T3f8z3Df/ujP/ojTp06xWc/+9kH2q9//ud/ThRF/O7v/i5f+MIX\nePnll3nrrbe2bfcC35qkePEvr2JkDJIZk/LJSfxQUpgrgSIJuj30/+wAZ8+eZWFhAU3TmJmZYWpq\niiNHjjw1qX8r4mlJ0fM81tbWHlD02fsbn0Apl/BCFc9I4jkKDTWDamhEEpJKRLcDbTXDmmUigYQq\nkRI0RbC6qrFglwCFldZgARA0LX2ojTpuBmz0Nl9PJnwqHX1zZqeF3K6YQ/5gRo+4t24i+zZT5ZTP\n3UqCqH9L7Uk7tByVIBSMpQPurCcoqg4v5Lus3oMb8zojCYfFahLFczA9l+pqxPK6wkgqQBc+/+gH\n4zlZcSqH3dm8rmZPTBD2k3OqmGTp6jooglQxydp78T2hpkwq6xZOx6F+t4bnenihx+L1dXq1NlII\nrNstSpNj5PI5RvIGuhohiIhu3UMa/fPUqCP3HYR6M+6M5nIIzyMyElAoE+bGERsteo0eeC4CiUym\nYH1T0FvmxxBLdyF8MFEJIWLXkz7a+8SJE0Npt+3OCLeiTwfty60i3ruJwUyv2Wxy9epVXNfd1X0z\nQLnmcrltt0Cf5pCh6/pTQTPbiYF7x8rKCu12+5lBMolEgtOnT2+LF/lBjw9cUvzEJz7BiRMn3vff\nw9ZPTxvodrtd3nzzTf7gD/5g2L546623uHv3LhcvXmRycpJf/dVfHW7/m7/5m/zCL/wCL7zwAtPT\n099WqbfHRbfa487/e490OUMkJT3bo75Yw9cD3FqDPW99D/v37+e1117j+PHjTE1NkU6nn0nc93nH\nw0kxDENqtRq3bt3i7bff5urVq+/jPe7Zu4dX/81PwEgB21ORfoDlCjqBTkOaCCnp+Bqy5eHrGaJI\nktIkNWLEaVaN0HseG60MgZpmMPcqG3G7Mw5Bs6Mjh8NFgStTSGXzGsuLcMhLBBg3XLxo8xYq6j5O\nf903NUmtaQxnkXM5h7prEkVwuGRjBgFRy8fpSFQh2T/hEbqSkmJRrwXQczhxxOfl4y65iSxh/4OF\ngPra5mI/dmCE0A8BweiBEaIgYvzYOK2uQ69uk5lNYzdsXN/HtSXpUgZntUf+wATJcgar1sMwJKYa\nosoA0eugHZpFCAUlmyK0I6hViboW7D8AjkW05xCyvAeWlhBrq8jxaZJrS/TsPp1kZBLh2MMHCKkn\nEDKKq8xHxNY548zMzI6EvB9F3p+enubEiRPPRP0Y2CoVCgWuXbv2TIjSPXv2cOzYMd55552nulo8\nSeJtIOl28ODBbXMQnxSJRIKJiQmEEJw/f/6bunZ9mOIDlxS/9rWvcfXq1ff996lPfYrx8fFhslpd\nXX1sH9z3fd58801+8id/kh//8R8f/vv4+DiqqqIoCj/zMz/D2bNnH/n+2dnZXSVF0zS/aZViGIb8\nw/98jiiIcFWfhavrhI5HejKHYUsOfvJljn3spfdJw2ma9oFKihB/l61iBvV6nVKpxOnTpzl9+vQj\neY+JYobj/+o/IcyksBJp1DDAtyN8DPxIkjUifBQMy2eFEUIE9FulhgpV38SUEYmmz8XVDHXSMVXD\n35zRTJgBvrK5IJX8Lq3e5jGUEiFrrc2KIaVLau3NtlpWDai0NltRe9MWq31eoyYkjq3g+AIhINeH\nw+4zG9SWI67f15nIOxi6gmw6RL7Eqof8wPeFdBcXh5ZS08fHqS02YxSnKqjOx92OMAqoLdbJHi5w\nf6FGrxO3KjPZ+PulRgrU7zTIT+YYPTlFY75GZs8IyUKSjAma9BFEKMUC4fXbyFSa4MpNlMlRqNUg\nnSZyQ6KVGrLVgzu3wDCRqgaOgwAM06SbLsDCnfgESElUnkWsLfR/+Mdfh4OH3DAMyefzQ+Php5HF\nH9fazOVynDlzhuXl5V23HIUQzM7OMjU1xcbGxjPZNOXz+W21QLfDGSyVSkMO4rMgZiFOwvv372fv\n3r2cO3du12ClQXwnAG0+cEnxSfHGG2/wxS9+EYAvfvGLfOpTn3rfNlJKfvqnf5qjR4/yK7/yKw/8\nbWui+8u//EtOnDjxyM/J5XL0er1dEfifV1IcKOHcv39/mDyu/a83GDlYRHg65UNjJHMpgo5HYW+R\n4//s+x65H13Xdz1feV5hWRbLy8tDMQPP8x4QMzh06BAjIyNPnW+WDk+w559/jCCAnppEJk0UN6Cm\n5AikQk/ECa3X9Fn3M5jSo+GqIAQiHPyWCp5vEDQEt+tZqpUIv1+4agLur28eg6oIGv2k54QKC02D\nXlNwdTnFtaUUt9cyhG2VhUqWhWWThWUTmpJr8wkWGjlurCTp1AXzrQzLTZ2SanN7rY+G1XwqVpyw\nDpUcom5Ety5YWtdIaQFe08cQPknV483Xu4i+00TQb+eGUUT5yAidaqwnankOvq6xcLXB1IFxkskU\nZs6kemODyZemcZ0Iofz/7L1pkF3pXeb5e89+17xL7vumlEp7pVTlpYzbplxg2nRD4QHb0UMwwQAe\nBwM0eIJxTE/00NNNYyIa7AkGZpgIImbsmYFwf3DbBtMNZezB2FQppSopU2tJSuW+33096zsfbt6r\nlJSSMlMqU+X2E6GQlPfek+fcs/zf//I8D9iFGo4rqeeq1At1VOFjYiPq9YYJ8OYm2vHDBMUKytgw\nVCoE/SPImgtLK40JU7cOQQCaAQMjiFwjo9MNE0vTEM0J1G2j4Rb2MHWsKApBEKBpGmfPnqVWqz2y\nR/gomTdd15mcnETTtCfKhAzDYGhoiMXFRd58880DB6FmCVTTtIeq4OxVDLw5MSulfKJja06fdnR0\ntMyQb9++/USZ8Tsd76ig+JnPfIa//uu/5tChQ7zyyit85jOfAWBlZaWlc/qd73yHL37xi/zN3/zN\nA9SL3/zN3+TEiROcPHmSb37zm3zuc5/b9ffsnI7bD540KNZqNZaXl7l8+XJLCccwDI4ePUqX2oNu\n6BhtERRNJZywUE2daMzkXf/iww/d5m6UjLcaruuysbHB9evXOXfuHDdv3iQIglZpNxQKHVjMYORD\nx+j9J6fxpKBSl9R0E2G7ZF0THUndF0R0KJcDNt0oOVdHygY3MVNvPDwTRoCNSlxI2hWDy2tx5vJx\nrm5GKZdUbpXjXMvHuLwWoVzUubUep5oxiToaEU/DqeoMmAGdqocRCDazgrQhSRsSA4Frq7T7VQYM\nlw5LI7cakPZ9vCwoJZ+LcyEWyjGSlLmybKAqMJqsE6AzEc6T2YL2iINfCyhnXOKaw/vGl0kNtrF0\ntZGtlIpl7IpDOBWib7IPM55gfbaAogk2bmfwA0nXoXbSh9rJ5esU1op0Hukk0HVUAT3P9qNETHRN\nwfckivRQDBUZieJfu4nv+kgB3uIGQlORq2sQicBAP+Qa2YSMxGD+DjKeQPYM4BlhRCSB1zdOIdFL\noSoJrARB7yGCvkPI6OP78zv7jEEQtHrhU1NTVHYRFA+C4JHk/absWVN1Zi/6xPfDdRuiA5OTkyiK\nwvnz5w98n++UYdstM9vPUE9zaKaZ5R1EUce27VYQbg4reZ63JzPknfh+Ie7D21wQ/H6k02m+8Y1v\nPPDz3t7eVuB73/ve99AT9MUvfnHPvyuRSJDL5Uin03v+zH6DouM4LWHwYrGIZVkkk0lGRkYeIP5f\n++tb5PI2MSmIDyfYnM3Q3hvjyMunsNrCD/0dzQfMW4mmFNxOkfNkMkl3dzcTExO7PrSaJO6DYPKX\n/xG5W5vUbqxS9zyCwMUVBvlagFB0TMCVAs3xcYRJFYe4ChVfIY2PIgQ5TLppPGQ9XyUsXcIa2L5O\npqAzYNmgC0oolH2LlLadqQiIqgLHFxiqxPUDBiyfpbJGf9RDIhgIB9zKGYwnHVxfMhp1WSzqDMRd\nTKEQApL1KqobIEo+F0sWA+0elmVTcTUmEnXuzIdIdKuYvs3WpkZPoshof4SNuW0BglSDuL84t0wl\nyNI7nASg/2gXS9NryGGJMBXmr2foO9ZFabWAOZJgaXqNtnSIwA/QIhAyPDQ/QImF8OYW0SwFMT4K\n5SLB0iLq4THkrVuNc9bXh8hnkaOHCDyBrIGoSigVkO0GQq8R3LkJQDjeRj2kwJ0lJCCFQB6Nstcz\nvjMwNoW8L168yKFDhx5om+zlOuro6CASiTA9PU1vby8DAwN7vv6agapJhN/c3GRqamrPAtm7IZ1O\nc+bMGS5dukRHRwcjIyOt/dnvfdHR0dGibXR2djI8PLyvbey8P5tmyBsbG0xNTXH06FGSyeSetvP9\nQNyHd1im+L3EQcyGhRCPDEDNoZJbt25x/vx5Ll++TLVapaenh7Nnz3Ly5EkGBgaIRO4VgK5XbGa+\nNUskGSa3UsTzfNKDCTrG00z82DMHPsaDQkrZonxcvHixNdq9U+R8dHSURCKxa0BslsieBO//nZ9A\nxkJ4CKpWBF16uB6ARt2HNl1iKxqGlMxXIxTUEGndp+41blzT9fCCRoBJm5KMf3d9qCPwd5zGqOtS\n3BYY10yNsAqrskHzaMzlCAKvMQnbnEZtU6DmK9hegCIEphTYgYInod3wuLWlAwJLUUgRoNmCXE7j\nymwjmz2UqkHVwfc0kmGBIjUm+zN0H4nimBqOqnD1tUU8J6BzONUqq8rtHQ+A+WtboAjWrm8gFcHi\nGyt0jKcxkmF0S6PNqxIJK4jAJ6g46MM9BIECpRLBwirK8CAyk0GMjyMPH8XPVvDurOFfud2wi3Jd\n8AOkptEwHr57TmW4DUvb4UDSNwSPmRa/HztpG9FolLNnz7KwsPBYLc+HIRwO89xzz1EoFJiZmTkw\nTaIp6/Yoo+C9oJmZNb0en6TK1CTT27a9Z9/IR+33o1RrHobvh4AIPwiKD0Vvby8rKyv7/tzOwLib\nQ0Y2myWRSHD69GkmJycZGRmhra3tkSWgS391i635AuGYweDZPnxPommC539p9z7ibnjSbLFer7Oy\nstKSgmtSPo4cOcLzzz+/L5FzTdOeWPlHt3Re+Lc/QU3VcUoOJTWEbxgofmPq1BEaNWV7yMX3KZUk\nGSXCel1DSolBwFKlua+CmmyUkBRVISwk86XGa6quogIrlcbr7rbgdrhmU3REa8IyrQfczBls0xaJ\n6pJbGY3tWEXCDFiphFG2H67jcZ/5egzHF7RbAesFlZTi0GsE3F6wmCvF8Ws+hl2nvGZj+Tb2ZpXT\nbQv4MiC3sS3fpius3NzC9wLaOqOsXNugYzSFGrco52r0PdNJ4AUkRtpxbRfN0FAUgelU6EipKDJA\nrm2CZeBevI7aFiHI5FGOThAoGt56EW81S7CwDNvnVkwcQt6Zu3syBodhY6MVFOXQOCwuwPY5llYI\nf3kVz94/jWBnYFRVlcnJSaSUvP766wdqCzSFt5PJ5J5pEruVNEOhEM8//zzlcpnp6ekD9+3vd/94\nEjS31dfXx7lz5x6rErSzdLobmoHWcZzHllOfpPLzdsM7StHme4krV65Qr9c5derUnj8jpWRtbQ3X\ndVlcXGRubg7HcYjFYgwODjI4OEg6nSYcDu9LxPjf//Y3UVyfaCqM5wRYIY2zHz9N5+G9qVBsbGzQ\n3t6+L6K+53lkMhmWlpaYnZ0ll8thmibd3d2MjIzQ2dlJLBY7kNPH1tYWbW1tT8yZDKUiEDNZuriK\n9CWKKpCBxPMC6lIjKjwCPyBQVAqOICIDymhE1UYJ1Q0gbgQ4voopfWq+RBMQSAVPCqK6T90HDUFY\nBV9TsP0ASxFoimChrGAZgrBoREZTU6irGlHZeFinDMmao9NhNB6YEcVj1TFpU1xUBSzpslLW6Az5\nxPWAZTeC5/oMRX02itBnOSznNGKmRDgeNVcQC3vEemLcWvTxKx7Dp3pYn80RT4dJ90QJJUKsr5YI\nPImbr2GFdeIDSTLzOQaOdJCZzxJrj9BRy9DeHUY4NnpbGPfaHazT40jXQwoFMlkUywDPa/ydz6N0\npBCxGPLOHQBEewpiMWj+P9EGBMhsrjFUE42i1ErI3mHUrU08VeN27xCpVGpfD9CdZbkgCFpDWU2i\n/9DQ0L6vnba2tpbwdigUeqRSzNLSEj09PQ9c600Bb9/3uXbtGslkck9DMrshGo0SDodZWlpC1/U9\nu848bFtNlSAp5UO3ValUqFQqdHV1PXRb96vWxOPxXbmIUkpUVX07q9nAHhVt3lE9xe8l+vr6mJmZ\neez7HMchm82Sy+UolUq4rovneYyNje1qsrtfZFeKvPnaIu/60BhLNzZJtUdInexm9If27o3Y1Bt9\nVBAKgoBisdg6FiklyWSSzs5OxsfHn+rFvh9Vm8fh6D89xa1XZileW6FctvGiOopjU3RAoKJ4PiFd\noAgJCKISZrIGw+0KScNmtaYSUxveiJs1lcFoI4DFdcF8WSVtNQKeKgRzOUnKkrD9VfSHBBueQrve\nOJa6IylpFpt5n8CX6EKhLjTu1AVtukRVBLans1AO0WH5eCjYtsbMuooiAkIxja28TqgTxiI2c8Uw\ncc3B8hUWSwphozFBOqaucDvUyxJQKTWyL9fxQFV4c3qNsTN9ZBcKdIymsJIhqjWPwloJeShBajCJ\nvrxMejSE8FxUfKQn0Q8N4C9vgKogahVkqQKDnSipOHK50UaQqgZbm7D94JcIxE4uoe8jYynIzd39\nf2cPzDZ6koaiYBhGyyh4vwFkZ2Ds6OjAsiympqZYWVnZswTbTjRpEo8zC37c8EtfXx+xWIzp6WlG\nR0fp7u7e975A477o6upq9eePHTt24PuuKUBw/fp1Ll26xPHjxx84hv3onnZ2dhKNRpmZmXlo3/Ig\nbiVvR3x/HMVbgL6+vl3Lp80M6n6yeW9vL2fPnqW7u5tEIvHUHDJe/Q9X0UM6m4sFuoeTxDojvO/n\nz+5rG7tNoDZ9Hx9lEfVWScE9raAopaRQKDDxyWeoqoLAUgkqHhVVJ2oAPkjTwvUDYrqgJLbLfyjY\nVZhzQ+Scu7dARwhcdYeRrK7jyR3WUFYj42yi4itslXUuZ03m8haua1EpgwwMBiyNblNBoJCp661r\noVJ1UBSDsqdiCIllGUSkQpsK3UGdkNBZ3FTZLGpIV2Uua1KsKwxZLtIB/Dr22wAAIABJREFUBZNw\n2eWfjq4yPGqwdjOLFTNIDLRx6W/nCHxJfq1CreKQ7Gvj5uurCCnpO9GNW/MR2Rwp6ui6gmaoBJU6\nwnZwr84iuttRwiZKdyfK0QlkKEzgQhBLEKQ68T0Vd72MW/Rx6gp+YOLkHFwzgZfsxYukCBQDOTwO\nXQ3lKenJuxrhvsfIyAhDQ0O8/vrrFIvFfZ/zneVUXddpa2tjfX2da9euHahP3TQLbpZkdysR7ual\neD+avMgnscRyXRfTbHhOplIpzp07t+vE7V6hqirHjh2js7NzV4Hy/YqBN3uyTU/Ftxv/+WnhHZkp\nZrNZPvaxjzE3N8fw8DBf+tKXdp2QGh4eJhaLoapqixu018/39fWxtraGbdusr6+3nDKCICCRSJBK\npRgdHX3gZnnaUm+v/YerjD/Xj5upgBCMvXeIaHp/osDNoGjbNrlcjmw2S6lUIhwOk0qlmJiYeEsc\nMR6GJwmKtVqNbDZLNpulVqsRi8VItad4/3/3w/ztb7+CaipUbR/d0JC+JOb4rIswfcLBFSpIj6ih\nkPMgicSXOpdyHt1pk4RXZynvMxJpnNOYkCxUBYdaX7cgb6vcNi2cikda1whchaoUdEcbT37H9YlJ\nQcWHiAqKqtKtBcy6JuOGjZQQFgEZV8XSoVKy6YpCwdEomWCEDXpklcWKTn/cxY1EqVVqDREBoYCA\nTlWSKUs+dmKFP2s7yo0rG6ytNcbx+5/pZPnaJm2dEeaubtDWGaW0UaZ9rB3dr9Fe2qT9SBqlUiEQ\nGlo8BAjMySPg23izy4h0G4quIYM4cmUdUkmk7SKq24o1ikDp7UYWSuD5yHwJQpEGsX9jx0JyYgKl\nUkAZmkBxa4hCYx/b29sJh8PMzMy0yPF7RXPSOZPJkM1mSafTHDp0iPn5ec6fP8+pU6f2TfURQjAx\nMcHGxgbnz5/n+PHj+xYmh8Z99uyzz3Lnzh3Onz/PyZMn9yV7tpOj2N/fTzwe59KlS0+UfUJjPqJZ\nKh4aGqKvr+Gvats20Wh0X9tqeiqur69z7ty5eyZwf9BT/AfEXtwyAD7/+c/z3e9+l9/4jd/gl37p\nl/b0eSkl169f58///M/5i7/4C/7kT/4E0zSZnJxkaGiIgYEBUqnUQ/uC9Xqder1+4FHtnbhzcZUb\n5xapV1w6emOYYZ0f+ZUXULW9JfhNR4r19XXW19fJ5/Pouk5XVxejo6N0dXW95a4eu6FYLKJp2p4U\n/13XJZPJsLi4yOzsbIu60tvby+DgIO3t7YRCIZJDSdZvZsjPZpGupBooRCwF1fOpeBJbqsRVD9uV\nBEKl6kFUA0UobNkacaDiqxQcyaYtyKOS91VKdUlNt1gtSTxpUvE0VEUjrQpAUFVVwkIgRIChQEnR\nSCDZDFSSWkARjSgBUSSL9QA/EKQMQVgRbAmDQIWEEmCpUPU1MhWvkUEqUAgsynWfwbCPpdDQfS17\n2K6GME3smssz4UWuuQNsLRTQAkj1xUFC+3iaylqJ7rEUqqWTm13lmSBLJCxIdoXR28IogL+wihq1\n8K7cQm1PoEQsqFaR2QJKMobQFKTTCHxKPALFIur4KMHteUQkhKiUkdEo0gkaFlh2Y3BF9PTgbxYQ\n2QzBRg4/UyLoHED7oReARgDp6elhfn6eXC73yD5jtVplbW2N2dlZ5ufn8X2fZDLJ2NgY6XS6tVAN\nhULMzMwQi8UOtMiLRCKkUikuX758j7vF4uIiAwMDe9pGk45kWRYzMzNEo9E978vW1haWZRGLNSab\nmz3827dvk8/nSafTBw48hmHQ09PDwsICm5ubpNNp1tfXSSaTB/qumn3LK1eu4Hle6znyNg+Me+op\nin1OJb4tGJqHDx/mW9/6Fj09PayurvKBD3yAGzduPPC+JmG3vb19T5//1re+xa/+6q9y+PBhXnzx\nRf7wD/+Qb3/72/sqH+bzeTY2NpiYmHji4/zyv/tbvvu1azglh4ljnbzwiVOc/sdHHvr+IAgolUqt\nvmDzYREEAZZlMTg4+MT79DTQdEvfLUMIgoBCodDiPELDRieVSrUeUkEQ3ONx1yJ8+5L/62NfoJSt\nY3oeauCj+B6qJqjYkmRUQ8fFDCSaAjU/IGkIio5ANQWhIMAJJKu1gJFo45wX3IDAUOkWjcx205Go\nmkK35qIKwToqyUCyUnc4GoclNLq2S2dZVaDrGh1eI8Oq+QHLdkBUFRAycbyArbxNf0QhritYCiz5\nJkbg0G81ft+tYqMf2h0OUEyDrFTx63XaogqlgkNbskY0qfG5v0kRSqaQQYCvaagIOtpMkj0xQvks\nQ9V1NOHRe7gTI3CRAozuJIrnNIZrFIEaDiHqNZCNAEfIQLXrBJsZZL6I2t2OmorhX2/0CEV7ElHM\nIbp7CRZXEPEYaj0PpolvRJGVGlqwPd1pWfhKiMj/8tv3nG8pJfPz82QyGY4fP45pmnieRzabJZPJ\nkM/nCYVCpNPp1pDa/WgKiiuKgm3bB+Ii7oTneVy5cgVN0zh8+DBTU1O85z17n/Ruol6vc+nSpT1z\nB2/cuEE6nX7geSWlZG5ujo2NDU6dOvVEottSSpaWllhaWmrpu+72ne4VQRBw/fp1LMviyJEjb/eg\nuKede0cGxUQi0VKmaA6E7KZU0aQ7qKrKJz/5yVa2+LDP27aNpmmtIDg5Ockrr7yyr0yqWq0yOzv7\nUAm5vcLzAv71y18gHDUxwwbdXVF+5t/8CMoOgWopZaucmMvlqFarxOPxVhBplmI2Nzcpl8uMjIw8\n0T49LayuruJ5HgMDA0gpqVarrZKobdu0tbWRTCZb/UwpZavc2uwpCSFagwM7M/Yb37nNlz/9F4R0\nQVCxiYQ1hG0TKAoRAS6SsCkJB5KsJ+k1JSVXpaordEgXVwgqNkQMiSmgLMHzIaX56Iogr6iEPMmm\nY3MoojBbdei3LECSdW30sEH3dh/SCQIKEZ2g6FByIKSo5DwYCkNse501W/GxVOgOQ1iBuUrAQEhh\nyYXRsM+6rdKlB+QDQQD4rk9vGDYcgesLpPAZHa4QVD2ydPHFNxMoUYPM7TLv/+F+2m/doDMEiirR\nohbpqETvbcdb2UKJmMiVdfRDA8hiGRSBXN+WbDs6SpArNqgWgFQV9JNHUKplFENBlitQraJ0tRPc\n2NY6DVlofgVGxvBuzIGmoinbrYTRcbzrd4j8yecR2r2LTCkli4uL3LlzB9M0URSFZDJJOp1+KNf1\nfjQDY/OhfO3aNQCOHj16oJ64lJKFhQVWVlZQFOUep539IAgCbty4Qb1e58SJE48c2JmZmWFoaOih\npdtsNsu1a9c4cuTIvkRFdkOxWOTVV19tGYo/CZoiC08SXL9H2FNQfNv2FD/0oQ/tqnD/279970rz\nUSoKf/d3f0dfXx8bGxu89NJLHDlyhPe///0P/fz9vYiuri7W1tb2XDqBp9dTnP67We5cXufYuwax\nyw6nfv4wiiJaKjjNvqBlWa3+5sOGe/4hpN4eheaATLlcplQqEQqFWr1N0zRbNxnQCobNce9mVvgw\nHH5hjMH3jbLwd7NEowZBzaFiWCQ9h5quEXI9bmUDepM6ac2h6Dbo9iHXpyADTEWgKxpbQUCfKgmk\nxBIq81WH8ahGreoQMnQShk7Rc3asEgWG0PEC8KRkyZa4mka9otAvDPqs7UEbCVUpCFybNl1BFdBl\napQC8JQAfXtKtlMXzLo6hXKdrCqIRnSMIKBsS2pGGM2pkTYbfcY7d+IMD1RodzP88sAmthfGOyYQ\nm1nsqIpEQVUF7V0mmqkhXBe9vx2h64juBMHaFn4mj2LoiGQbalukMXgTtlAAqWuoQ/2412ZRdnoi\nPnMItVJFPTQOGxvIchlxaAz3+lzjDZ4PpkAM9ONeb9A28D3QVOr1Otlslq2tLSqVCrFYjOHhYVZX\nV+nr62v1vfaKnQM4AMeOHWN5eZmpqSlOnjy57we2EIKhoSF0Xefq1atkMpkDBaJmD251dZVz585x\n4sSJVnn0fjxO97QpBH7p0iXy+Tyjo6MHzszi8TiRSKTVVjly5MgTTY++zakY+8LbNii+8sorD32t\n6ZbRLH8+zC2jeWN1dnby8ssvc+7cOd7//vfv+fM9PT37DopN+sOT4v/76gwjx7txXJ+e0Tb0Lo/z\n58+3VtG9vb3EYrE9XchPa58OCt/3KRQKZLNZ8vk8vu+j6zrj4+PEYrFWEAyCoBUEFUW5589+8NF/\n/aP8ry//nxQ3y4Q0BafqUQoZhIPGtqOmSq0asBrWMVSXNr9Byci5km6z8ZCJBIKS9PGlBEUloRvU\nCTBCKvigo7BUlxg7dk3qGhsOCF8hpqoQwJoCSzWX4ZCKJgRWSCPs+RRcBUVtUD0ANC9gTehkqz6u\nVEhqgqQQhE2LioBi2aUnrNId0sjZHllbpSB1QkGAYmosFTX6Y3mMiIJT8tAsA1X6OCioBJjpKGZn\nHDQNP1vCu3oHggA1GSXIl1BSbagDXRAESMeBSAhZqSHa44hwGO/mfGOdrYhG7/DwIZzLs0gtwJMS\nBOjPjOMJIBKGynbZNBLBy96doLx1/QbZeg1N00in04yMjNzj7NLf38/Vq1cpFoscPnx43+e+KQ/n\n+z69vb1Eo1HeeOMNDh8+/EBZci8Ih8N0dnZy+/ZtCoXCPXJs+0FPT0+LtjE8PLxrdrYXMfCmEPjN\nmzd5/fXXD0Rtgbtk+9OnTzM/P99aPBykv9gsXX+/4B15JHtxy6hUKq0R5Eqlwl/91V+1Spp7+Tw8\nnJbxVkJKyeZ6hm9/7TKB4uLJOqPvad+3Cs5OfK8zxaYM3E6Hj62trdYxTExMEIlECIVCeJ6H7/ut\ncqhhGFiWhWEYaJp2oJvNDOl88JffiwgZuIFABJAt2NQUlaztowF5x0etQ60qmK06+EDa0HH0xopX\nRVDSdHSzsW7UFYU7lTrV2l1Vll7TouwFrAQB18oe9boGikXOuFtuF0CHbnGrsv39i0Ym06brZByF\nLRvmXYWarxO3FbrMELZusuVKHAS6IogJgeOrzHsm80GYtbKCH6goVoiyEWIl73NzLUTNMRCaQLUE\nCgGqKpD4hFSPZG+EYHUTqjX8+RX04W70YyMog93oE4MEhRLOpTfx17M4NxbwyzbqySOIgX5kfbvy\nIUGErEZAvDLbaKZsH6tIxKkvZKjfWMYuBciRUWRvN/VECpm9q6ySiMU4e/YsZ86caU2H7wwyzT5X\nJBI5sPvDThuqeDzOmTNnmJ2d3bNc2U54ntcKRI7jcPHixQMvMKPRKM8//zwbGxtcvXr1AdrGXoNL\nU590YGCAqampxyrX7IamdJ0QguHhYSYmJnj99dcPbI/1Nu8l7gvvyKC4F7eM9fV13ve+93Hq1Cme\nf/55PvKRj/DhD3/4kZ+/Hwc1G94v5aBWq7GystJyx/hP//41YkmL4qbDoRPD/PBPvaelKnEQfC+C\nom3brK6u3iMDZxgGzzzzDGfOnGFsbIy2tjaklOi6Tj6fp1aroes6hmFgGAa6rj+1FefkPzlGYjSF\ng0JFVzB1Bbvk4kZ0kBAzNDwBuqJRdBXWbMG6prBYuCv7FXECtip3/9+thylvS5llXYclRWHT1hGu\nSbseBgSB8NHqktXmw3z7GdxjhrkjA1zHZTXwWJQCJdCxrDCFqo8mFALAVAUxT2IIjSWhMeupFBxo\nNw1UqdDm+WiKgrQsqrUArepihEMIN+DqZjuuVNH0AFX1cIGoGWC2mdiZLFIGiIiFfmQIfyOLd3UW\nHB8ZgDbUixQCETZR+zpRB3uw33gTdzmDs1aAnh7UI6OIsZFGQNyGsExEJISvmAS5ElJVwPVwri9Q\ntAVOWSCHBhsis0C6LfHYUlvTmHdsbIzXX3/9QM4W99tQnTlz5kBBrRk8mhJq3d3du3L+9gpN0zh1\n6hThcJipqSlqO6219onOzk6effZZrl27xsLCwr4C/v0cxWQyyXPPPcfCwsKB/Ce/nzLFd+SgzfcK\nX/va1/jmN7/Jv/pXe5rkbWFmZoaxsbGH9jFc1yWfz5PNZikUCpim2RqOiUQi/M8////i+j4JLcRH\nf/2HGDlxcI5SE1NTUzz33HNPvJ0mPM+75xh0XW8dQzQabZVEd15fO8uhtVqNmZmZlpfi04Dv+619\nymazOBWPV/7H89QKLrGoDq5PKPCxTUHSh7qpEHF8Kh5IRRIWCnXpUfZsEm0WmpAUiiVSuo6LRA9b\nbOaLdERihP2GCPYmLrom6N9eX857FfrUCLbwiQqPiqGR8gQ+ktvVCiJkMMrdh1EdMKRk1a7TFzEw\ngfmqgyZU9JBFmx9Qdn2Kvkc0FcV3A7AdNF2jLhXqRRfd1CjXPVKpCAOhNQbTNfy6iuMJOkMuxqlj\neNkiFcfF9BWCpS30iUH8rQJqV7oR5EIm+vgAIhLCufQm1BpBXR/uxptfRSRi0JaAwEeLmpDLE2xk\n0XoT2IFAWW1MCivpMEqhjNLVTn2jgt5mEWQKaL1pzJSF9amfRe3s2PM5rdfrrWnSvr6+A2UkzQe8\noihsbGxw584dTp48uSeO3uLiIlLKeya3m3qnIyMj9PT07Ht/msjlcly9epXDhw+TSqV47bXXDjTl\n2pSZ832fY8eO7WnxvLW1RSaT4fDhw/f8XErJ7OwsmUxmzzzLIAgwDOOd0Fd8Zw/avB1w0EzRNE0c\nx2kFxd1oBolEgs7OTg4dOnTPKquUq1LMVykXa4y/0PlUAuLTQLMk2gw4TbpHe3s7Y2NjLSH0IAha\nK/FmAFRV9YGVZCQSYXJykkuXLlGr1ejv7z/QPpXL5db4vuM4JBKJVq9K0zQq/5XKN/74NYo1j0RY\nx6/5FKsSVxek3AAnCBColFyPsNHYV8dW0aqNG1woUTKuR4cegipoepQqCuHt+ytAEnE11nSbbgxk\n0JCBM6VKXgFVwoqQyGpAh9ZG2fN5064wGg6hCQU1kCAEnabFqiIInIBO3UIVgoIC+KCYGlqgUa37\nJF1J2RPkPUlchSBi4tddtLhFrepwsdzORM88FQd0TSPo60OpVdFCJqGVDHZHAn+8D13VULvTEAmj\njg3i3lnGnr6NcXSEQGgYR/vx5pYRho56aBhncROZWUEb6qR+ZR6JxO1No0VCmG8utc6JZplI18ep\nS6TtgtrgonorGaTei+60VPL2BMuyOHPmDNevX6dYLB5oIGSnDVVnZ2fLQmpsbOyRup9w10txJ5pl\n0JmZGfL5/IF6n9DIzs6ePcv09DSZTObAfOFmyXl5eZlz587tKeA/TM2m6feYSCS4cOHCniddv5/K\npz8Iio9AU9Vmv9B1nWKxSLFYJJfL3UMzGBgYeOTF/93/dA0Hl1RnnA984tkn2f0HsF8l+53qMTvp\nHk0dxeZAQ3MlLoRoBcDHTYnCXSfyK1euUK1WOXTo0GP3z7btVhAslUpEIhHS6TRHjx7ddVX74V96\nN6999RrVlQKFgoOm+xi+RtF1UGMmVkhFq0Bc1cl7NoZQSeoWFV0ScQWarlKtBgSaRBECTVNRHZUy\nLlFVR6gSPAG2RlF1Wt9FICXrlRpGPEJnXSC25eMUBF1GjA3hE/UcworO7VqZiLCQaEQ9jYzvkvdr\npMwot6o1uvUQUaFQ0mGp7pAwDUK+pKSquF6AreloHtiqTiAE//FWN+/ryyAsgxg1ZDiOu1XGGO2F\n63O4mkU5GcNYyqCN9eNtFNHHBnDfnAcEslzDvnwHbaQHP5HAef1GwyoKqHsuOqDEIpiKhagKGBlC\nrVfwV7dA15HtHfi3Gr14sZ09iEiIWqZK7AD9OFVVOXr0KEtLS1y4cIETJ07sm6u3Uzc1Eolw9uzZ\nVlCbmJh46HX3MN1TTdM4ffo0c3NzB1bSgcYC+syZM1y5coVyufyATdV+0NfX11KueVwWa9v2I4dq\nmn6PTV3Yx026/iAo/meCjo6OB5yxH4bmw7o5YanrOv39/fuWUJuemiVkmgweamf4mUevYvcDVVUf\nKwruum4rm22WdZt0D8uyWiPvO3mDe6VKPGq/Tpw4we3bt5menub48eP3lGGaJdFMJkMul0PTNFKp\nFIODgw8MaTwMv/D7H+H3/9mfIQyVAJBITN3Ar0lKbgDCI4mBLUEXDYqG5zUCW71mE1VDbAqbLkwq\ntTohLUpZb4iLVypVkqaJqWhsuDYCWHGq2L5Km9pGyXZZ0wK6PBVFCJTtDDPiqtysFgiZJn16g5e2\n5dWJYhFSdaqmIFOTWNJkyXGRGmi6gRMoZF3I1FwGA426ANULyNgekahFoeJRi8VYKtd4/kwbimXg\n2zaqZeJtldBPHUEubiKWt6j3tyNqdYJCGadQRh/rR+oayng/TqmKP7uG7Xpohok50IW8vUwkFiPo\nVXCrLv7CBsZ4L/Wby6BA6PAIMmZhn98hpKE2rgnZ1YV/YwnpHUzeTwjBwMBAa5r0yJEjeza/3bkN\naARGRVF49tlnmZ2d5cKFC5w8eXLXKc5HBSkhBCMjI8Tjcc6fP78vQ96daApZOI7D1NTUgWXmAGKx\nWCuLzeVyD82sbdt+rOqWZVmcPXuWW7duPfQ7eqsNzP8h8IOg+Ag0b6LdMqz7e2o7H9adnZ0Ui8V9\nk2K31gt88z9e4tnnxnnxp04/teOARvZ6f1C83xkDaDljHDp0qPWeZhBsTvU1A+HTaq43Hc1XVla4\ncOECY2NjlEolMpkMruu2epVjY2MH6lv0TXRy+h8f5vyXryB9SU2VJBG4lkCpw6brUVI8uqMhPD3A\nqIHhCVa8EiGlcYuYnkFd94lELLAh7OrMeTnkjja7aZosFGqMhxOY6vYD2AuIBCZLaoV+YaFKqOCx\nVq1jiRjRwGDer5LSNDwZUMYl63mkvQi27hJWdYSmUaq6hIRKSFPZsB3aoiGqukIhW0eLWJgBOIpC\noEhqjk/13e9HN28Q5EoIM4y/tII20Id94TrKyWfwfA1T0SkrPsaRQajYVLcKuLUaiqqjb2upxuNx\nagsZnGINY6gH4lHs2bVGaZS7mSAB+ELHyToYz4zhvXmn4a+oKqhHxijPzDfe94RC8MlkkmeffZaZ\nmRm6urr2rVrTvIab1/TIyAiZTKYVjNra2u55/+McMqCRVU1OTjI9PU1XVxdDQ0P7zpwcxyGZTNLV\n1cX09DQDAwMHainA3Sz2UVSLvYqBK4rS0oWdmpraNfA/iiv+TsQ7dmQom83y0ksvcejQIV566aXW\nQ30nbty4wenTp1t/4vE4n//85wH4rd/6Lfr6+lqvff3rX3/g80IIwuEwlUqlxbW7c+cOr7/+Ohcv\nXiSfz9Pe3s7k5CTPPvssQ0NDxGIxLMs6EIH/W6+cZ2yih46eOBOnD3ZDPAy6ruM4ziOdMZrHEIlE\n8H3/nmywOSFqmuZTnRKFxg26srLSGI5xHKanp1tDA+9+97s5fPgwHR0dT9TI/2f/00uEO6N4poqs\nwqbtghR4gU+UEDJQKVRgrVim6DdoFzHNwhONcp8qBSvVIsVyubXNiBrDDyQlzeNWtYBd1bDCbWyp\nO879dsyM+xFu14oULKg5Ku16HE/6gCAhIjiezqZjs2l7pLf7cEjJumfj1iGqmggJJQUiuk4Zj1Il\nQKo61AJsXSVfdAhUhWhnnI/89x9CnD6N0hZFbm2iDg2ClOhHh6FeR2oCb3ULa24Te34Dp1pHyVeI\nqgbK3Bba+CAiGqbpoqz1pAlUvTHYMzYA26o0YjsT1I+OUp6eBwml6QX8dAfaYDciFqVy/W7P8aCZ\n4k40+4zlcpkrV64cSFx+J9k/nU5z6tQprl69yvLy8j3v22s5s2nIW61WD2Q63Pw9kUiE5557jmw2\ny+XLlw8snH8/1WJzc/Oe1/frkNHZ2cnk5CRvvvkmc3Nz92SI308BEd7BQfGzn/0sL774Ijdv3uTF\nF1/ks5/97APvOXz4MBcvXuTixYtcuHCBcDjMyy+/3Hr913/911uvN6kcTUgpW6PJH/3oR/mxH/sx\nVlZWCIfDHD9+nLNnzzI+Pk4qlXpqThlf/9p3MEIaL/3UmX1/9mFwHIf19XUKhQJXrlxhdna2tfo7\ne/YsExMTrZVfsz+oqmqLKtEMgk8zM/R9n62tLW7cuMFrr73G5cuXsW2bwcFBXnjhBZ5//vmWNN3T\ngqIo/My/+CCuLwnCAkVXyZc9nLBAIPDVxt+GEmWp5rDmuRQ0j027Sj1wCZB0aEmqvktNuizZObKK\nw6bj41Q0kmoCELieg1ozWbbv5Y7lvSqBFiVXCqjJxrUhtoXd3cBn2S7jejohJcKm43KnXqDoe0jT\nYNOtk1Vc8iZkyjarNYdqTRJI0FWFTODiVgMUS6Pu+Pzk//ABhBDo/+i9+MUaykAv3q05arky1dUt\n8k6dYHULJR1HhE1Mw0TJVfEG2gm2OYn2m0tIRYOwhfHMMPWVPPWbKwgpG8EvlULr7wQh0J8ZpTK9\nnQluPyCd5SyV9Sp1teHC0YT09m+p9LDzefTo0dZAyEGoDTsDY7NUuLW1xZUrV1q94b1kivfvU3t7\nO1NTU/uyfdpJ3Nc0jRMnThCPx5mamqJarT7m0w9Hc5hnbm6OmzdvtoKZ7/v7png1A3+tVuPixYst\nmtf3W1B8x5ZPv/KVr/Ctb30LgJ/7uZ/jAx/4AL/7u7/70Pd/4xvfYGxs7LEu3VJKPvnJT/Lqq68y\nPj5OOBzm4x//OB//+Mf3RZbfb1DcWM+yML9G/6khjj23fyfxJu5Xj2kq4CQSCeLxOF1dXbuqx+wc\nknnaaE6JZjIZMpkMnue1pkR3MzBuTqZOT09Tq9X2pSj0KDz7wUMMv6ef6W/cIWaqeCKgUhGYpo9l\nG9RCLn7NI6JGkD5QDmHoKit1h7iq40ufsmqQrQtMkYQaRKIKWcUh5TRW3XbdRhgxLBFn0y1jqjpz\ndpaYkkSxA3ShYUuFOZkhqpvULJ+6C2mtjZxoPER1RUVoIRSpISoqujDJVm3a6wZIBVPVKNt1qhGV\nShU0XcfVFEpVj6MfGOXoD422+sPF952l6//5MtXeQazNPIovsKwMZz5ZAAAgAElEQVQw9YFeVFND\n6W7HKdVBUfCLNuV0mPBwN0okhJstU9usoIWMB8hYzkoW19IJ93dR/ftrd1/Yvn6EqRMk2rAzNWRb\nCtMI8Fa2nrh8ej/6+/uJRqNcvHixRW3YD3a2SABOnDjBwsICU1NTnDp1ak9eivejaTp86dKlPU24\nwoNqNk2uZjwe54033mBiYoKOjr1TWXaiKT6wszd4UDRl69bW1lrl1P1+5293vGOD4vr6emu6qru7\nm/X19Ue+/8/+7M/4xCc+cc/P/uAP/oAvfOELnD17lt/7vd8jmUwihOBXfuVX+KM/+iM0TeN3fud3\n9j1E0hwB3w/++uuvMTbex0/87P54Ss2A09RDdV2XtrY2UqkUw8PDrX1ZWVmhWq3eox7TvNnfikDY\n1LbMZDKUy2Wi0SjpdJpjx47taXLQMAyeffZZrl69SrVafeSE4H7w63/wUX7tR/43CqslEmGTWr5G\n2W9YN7UFFgEueqBQVmokCFN3bAQaEokqVDRFY6teptdoDCkUi2U6tXayVoVUcNcKS0WhLjRyfp12\npTHS7kgXXWjoQiMh2tlSc7iuR8xrfB+aIajZDnnHIa5GCXSfeuBS9lyskIHr+/g0+rwiYuKUFVzP\nRTVVarWAaGeYD//zk0xNTSGlJJVKkT77LNrsEvG1Am5HJ7qh4NcdZLGC7fjIUhX91GHs4ibUXdRs\njXxvEmN2E4HEGOqkNL1K+Eg/3sJ6g3IC6P0duI6knq0jBntQcnn8QqUhA6cqiP5uajdWiDzTT30l\nh6OrxI+OPpXy6f1IJBJMTk4yMzNDqVRicHDwifqMAwMDxGIxLly4cODyZdN0eHp6mkKh8NjJasdx\ndi3TJhKJ1nby+Tzj4+MHug+EEBw6dIjNzU3OnTv3xPdSd3c3sViMq1evPlX+89sBb+vy6Yc+9CGO\nHz/+wJ+vfOUr97zvcY1ex3H46le/yk//9E+3fvapT32K2dlZLl68SE9PD5/+9Kdbr+1Us+/v7z8Q\nLaN5k+0VU69ewQqbnHnh8ZZTu6nH6LrOkSNHHlCPaZZEm8M/6+vr9/QF34qS6KuvvsqVK1dwHIfh\n4WHe/e53c+LECXp7e/c1St/kX2maxqVLlw78gNoJXdf45597GT2sk8lWCUIStW5QqfqUPB9n27Ip\n5IXI+SU838eSFlWrkflXa3XiIsFG0FBZCYe3+zK2Rd4royCQSObqG1SrKp5jUlAb5S9/2z1DSknW\nqJHPe/hVk4VagY2gSKFSpupL4mqDY1Z3GgExooYoV2tkZA3X0Cip4Ncl+aCKFtYpVBw8Q/LB/+Yo\n8Xi0peI0Pj5OMpnE/NhPggBF16jPb6Gk2vCzRfR0rNEbrNuYve2Nf0uJkanh9iWRimgN1FSvL0Mi\nhjB1zOMjVJbz2NvDONVb69Q9FWO0B4FAOzRI9ca2PGIzE3N9yncyuP5b88hpep7WarUD9+J2llOb\ngda27Qd6aHuFrutMTk6iKArnz59/ZPXIdd2HapgahsGZM42WyoULF57IcKCjo4NnnnmGer1+4ONq\nIhKJcObMmQMrbb1d8bY+mqchCg7wl3/5l0xOTt5Txtj571/8xV/kx3/8x3f9bG9vL9/97nf3ve9N\nabW9iPVurueoVKu8/F+8uOvrvu+3qBL5fP6eSded6jGPE9RucgLffPPNPXECH4Ummb/pgO55Hslk\nkvb29l1LogdFk0zcnEzdr5v5bpg43c+P/vxZvv5/vIZdcdEsH0Oa+FWBb2hk7Q3ajTimZYHmQwVE\nRce2HGJWBCpgBXEKQZmyXSWqx1CliqcZlJ0SQtq0iUapy/MlXlUjGy1jBAqe8MkrDkbFQtKQCour\ncaqyTrZaQ1qSjCyC8Kk7LpqwqKsKWcemM0hTU1wCRyEwfXwFclWbWMziPT91nB//xAd3PV4lEUd7\nfhL7C19F6WjHfnMR/eRhqFYwJ/qRKNizq1gT/dRvLaOGTYLFHH5/ErvaGDpSQgZqqo2aK6BkI/17\ne4NeoUqhXKPtPUcof+fqjl++fY1pKkGiDb/+1skNNqXYlpeXW3zG/Qpc76RtqKpKJBKhUqnsShfa\n6/bGx8fZ3NxkamrqHqf6nXjcQM/OTO9R29nrPvX09FCtVrl06VJr4XlQfL/1FN/WmeKjsFdRb4A/\n/dM/faB0ulOp5stf/vJD/Q8PqmpjGMaexYz/9psXMC2dH/nIu4FGwCkWi8zNzfH666/zxhtvtJy3\nJycnOXXqFP39/ViWtS9BbUVROH78OEIIZmZm9r2artfrLC8vMz09zauvvsrCwgKmaXL8+HHe9a53\nMTExQTqdfkvknnp7exkfH+eNN944sO7kTnziv/0g3UfSuLpPWdr4mkTGAqr1OqoeoWZr5Owq68Us\ngQwQUlB1PPLb4suKVPBVFSTYwmGhvsZqsYI0Ywj37sNNQUERCqISYdUpUFICDLsZ1Bur9LrhYNcU\nNKGj+xYhGaVUFbSJDiLEsAkwTRNf+DhOgFAFjhBIdDRVJdwV5uf+5Y8+8njDL74L5ZkJVF1BVuu4\nS1tU57aw14sQDWOM9uBuFbCODCBCBkJXMTygJ4070oHjKxSmF/HzVcrzWUKHt6ejt8upiqVjjA1Q\nzdnoR4YQ+n3DZxODVGY3HwimbwX6+vo4fPgwly5dIpPJ7OuzTfWp2dlZzp8/TyKR4OjRo6TTac6d\nO3fgoZeOjo6WTmlTOu5+7CW4NLdz/fr1feudNmHbNpZlcfToUTo7O59IyxW+/4LiO1b7NJPJ8DM/\n8zMsLCwwNDTEl770JVKpFCsrK/zCL/xCi2JRqVQYHBxkdnb2Hg7Sz/7sz3Lx4sXW6PIf//Ef76oA\nUS6XefHFFx+Zte6G27dvt4ZJHodf/dS/5fl3neKDL50mm81Sq9WIRqOkUilSqVRLPWanSG+zz7lX\n9Zj7sbi4yPr6OqdOnXroCtX3/ZYgQS6XwzCMRp8qnb7H7ud7iUqlwszMDOPj4weyAtqJarXOf/3D\n/47ymkMgPdqiIQLbRtTDOFqJuGzDtqo4VY9oyMLxq/jCRvFUrJBFve4gTEi6dwcgSrJALBrCrAsM\nxcDf5riuORsEQiOihLGDIj1GJ9VQBV0Y1AqgCY2yLNKmxcn5FVQ0IpiUtQpaPUwQsamUa+hWGE8F\ntaxiaw5q3ODzf/EpOnsfnzVUvjNN4f/+OmZ3kuKVVfSRHmpX5jGPDlOveNizayimjnlylNLUTdi+\n3MRAO8FaFuEGmP1paosZUKDtxAB4Ac56Ht8KUVvMEj05SHl6gchoB2ouhzXciQwk2ekG1WHo0z9B\n+48+XaWmh8FxHGZmZkin04/kDtbrdTKZDFtbW1SrVdra2kin0/fce4qiUCqVuHLlyhMNvfi+z9Wr\njUy6aYAspeTv//7vee9737uv7Vy7do0gCDh27Ni+FqJzc3Pout6y1mtquQ4NDe3Lx7Jp7NwU9ngH\nYE87+Y4Nit8rSCk5ffo03/72t/d14hcXF9E07aFSS01R8Fu37vAvP/O/829+91P09nWTSqUIh8OP\nFdR+Gr3Azc1Nbt++zalTpwiFQq0MtTkg4/v+PQ7obxfB3yaXsUnefhLcmJnj0//lH6PVDGQN1KiH\nUbMQgYKm+hTcIpYRIxToKFKhrBeQTkBCaUzc5cgQCZnEnIYCSVkWiYgYrlYlKnSEVMlSxHITlESe\nNhrBqxzk8Y0aKdmNIhvn0lYquIpEtyNUghKRsIFf0xtej0qOwNGxIiGq5RqhuImnwK/9/k/ywo/s\nXuXYDWuf+SPc1U1EZwf29SWMQ/0ECMrLBYQi8PMVzMMDSFWjerlBswhCIYzOOO7yJlpbGHfrLlUm\n8cJhipeXcfONDCp2YpDSzAIAZmectokOsq/dblExBn/tx+n4yNknOWX7QhAE3Lx5E9u2OXr0KJqm\nEQQBuVyuVfrXdZ329nbS6TSRSOSB+7x5LzZVoaanp0kmky3N3/1CSsnS0hLLy8stlZgLFy7wrne9\na9/bWlpaYnFxkZMnTxKJRB7/ARr87XQ6fc+i0vM8rly5gqZpHDlyZE/3evPZ9KTtjO8hfiAI/jTw\nKFWbR8EwjHu4Uw9Tj7l06Sovf/Qlnnv+zL4EtZ8GOjo6kFIyNTVFJBLBcRxisRjpdJoTJ04cSMvx\ne4H7NVP/f/bePDyOu0r3/1Tv6m611OrWvtrWam1esOMMYUvIBMeePAQHCFwIkAnDMDCTwMCd5DL8\nCFxIyJC5AyQDDBkgBIiTCySEYbwQEsglieNNslbL1mLta0vqVu9LVf3+6FQh2ZLdakmWFPQ+D8+D\nnFL1t0tVdb7nnPe871KYqRW1Jfzd/bfw7X9+BovRwvRkAF1KCK0IGaY0zHoTckBHJDWEKWAmGAhi\n1TmI6SPooga0Gi2C34LP4sEaSVMFwfUxM0PSCKkpNkyheCCMRqPwelIelCLEIjo0UpSA5EavFdCb\ntRgkK17Ri8GqZcQzhdmchgggGjFo9YQDMYw2I8GIyC2f2L2ogAhgv3M/o//0HbRFKWjLipBDIQSz\nCdETwFSShegNImg1eNv6sZTlEewcRmPSE7wwgbk0m4grfu/qs9IQ0m14hv0YCjKJuuMBdPYeW0gx\nMuMXMOQ5CPfHh8evRvl0NhTvwd7eXo4dO6Z6eCpVnERUkmbbUGm1Wnbs2EFXVxeNjY3U1tYuWqtU\nkaxLTU2lsbGR4uLipIyCIU4EtNlsixr/mG9wX6fTUVdXx8DAgKqCs5DLz8Xf5Y2GddtTvJpwOBy4\nXK5F/Y5er8fv9zM4OEhzc/OC6jF//H8nePeB6xFFEVmW5wzOL7fHIMR3hBMTE3R0dPDaa68xODhI\nbm4uoVCILVu2UFNTQ25u7poNiAqU/qjCTE3W+BXg5luv5abbdzLl92C2G4gFtUQkmA6G8Ip+JCQk\nr5GoOUCqzYogaYkAMaJq31j2W/DpPAgIBA1+hkPjSNFUfD4dYXN8/lB+vR45EhnBKDmIhKNoZB1W\nwYlkNBL0mAj4NMQkA4PuaUw4kaJawkEZMSrhFX1gE/GE/VS9JZ+PfX7vor+rsbwI83V1SL4AMgK+\nQTdYzOidNkK945grCxE0AkgywX4XhgIHWmP8pR/oGiNlUx5sycYz5sfdPoIcE5lqGsBcUxzfh78e\nFVM2ZeMZ9iJGRKaH/Zg2x91erlZQFEVxzn0+PT1NTk4OkUiE0tJSKisrF6WSpARGZeNaWlpKXl4e\nJ0+eTLofp4xbDAwMEAwGk2aCKuMfg4ODCXkhXs4ho6ioiMrKShobGxMyHH4jBkXt/fffv5jjF3Xw\nGwXPP/88FRUV5ORc3sYpEongcrkYGBhgeHiYYDCI3W4nPz+foqIiHA6HWmqQZRmPZ4YTJxp53/tv\nQafTzVGOWa6bTSmJDg8P093dzfDwMIIgkJmZyebNm8nPz8fhcJCTk8P58+eRJClpMeKrDUEQyMjI\nUNWHHA5H0iy6a99WQ8Pps3R29aO3COgwQEyDXwoQJEiYAKIsEQgFMGGFmIaYKUgsEkODFp/sxh3y\nI1i04LegF1JAJ6IR9cRCOiajI5hS9ER1IoZoPHOMyEFSNBZ8Bg8EUtChBQGC+gBGoxFtTEfMEEWO\naBHMUSIaiaAUIackjW/+308nvVkylhbgP9lBeHgaWZSIzQSRszKRtDq0FhOCNQVBp0ObmoLWYkKT\nYUGXYSMqa5jpmsCY7SA6PgOAxmIk5g0RHJshtaYQQZbR2cxM97mRQjFMOWkEB6cJzURIK88mpciJ\ntbroCitcPGRZxu/3q/f54GBcWi4zM5MtW7aQl5eHw+EgOzub8+fPEwqFSE9PX/RzNrtypPT9W1pa\n0Ol0pKamLnrdioSix+NhfHw8aTlDrVZLbm6uShK6nCl5X1/fZXusJpOJnJwcOjs78Xq9ZGRkzHus\nsolfK22VBJCQMe5GUEwAr732GjabTRXJVqA4OAwNDdHT08PExAQ6nY6srCyKi4uZnJxky5YtaulF\nKcEq2eCRw7/nnTe+lby8nGXdcQWDQcbGxujt7eXChQuEw2FsNhubNm1Sg3NKSsqcl6pWqyU7O5u+\nvj58Pp8qZLAekJqaitlsprW1lfT09KSz3Bv/ahfP/+5VJsY9BGIBUtNMBIMhBI0BQdIhi0aiKSEC\n4ShRjYg3GESwSYghEwImdIKFYFhEsIbRRY2EYgH0QnwtISmCKzyNTq+HKGgFPTozSClRJJ8JWRDR\nCTpEWxjJrycQcSOkSMiSllhqCL9XQjLGsGTr+ObP7iEtPbH+0XzQWFIIT/nwnzhPSmUBkZFpgu4w\nsgyBXhdaeyq+cT++ATeBMR+6HAee1kFiM0GQITgdxFZTSGTMg6gDQq/bSo3NYC7PZaptBCkc/zdT\nto3w2AyyJBOYCuD4iwpSKxcnlL8QotEoLpeLvr4+uru78fv9WK1WiouLKSkpUe/z2fexVqslJycH\nl8vF0NAQTqdz0ZuL2YHRYDCQl5dHT08PHo9nwQByOXg8HsxmMw6Hg9bWVtLS0pK6h5VNotFopKWl\nhdTU1HlHUgYGBuaYJs+HRIKsEhRXorWzQkgoKK6bb7MQfv7zn1NdXa0OyC6EI0eOUFFRQWlp6Ryd\n1ESExZWxDEmS8Hq99Pf3c+bMGRoaGnC5XKSnp6vC4kVFRSppJRqN4vP5FhTUHht3sX177ZKvQSwW\nY3x8XC0VdXR0IIoimzdvZs+ePVRXV5Obm3vFvoVWq6Wurg5RFOfoP64H2O126urqaGtru0T8OFHo\ndDp++uxX2VTtIMWmZ8LjxmATEGQNgllGQsTnCyKZYsgy6DVm3J4wQdOf3DJ0gp6o18QUY+hNOqJy\nmECKBwQLRpOFmN9CQILhyCAe0U3AF0OSRaJihIDRTdgjEJS8GNONuAJevIKfKe8M+jQJS7aWR3/6\nWXLzly6rZd+7G21ZEdHxafQOG1I4ijErzs6WYyJai0mdMYz5w5jL/8RK1Br1TJ0ZILWuCP3rLiKC\nUYe5ugjPiB9z+aygN6siaCnPw+dJbExpPsSrK/GX9MmTJ2lsbMTn85Gfn88111xDXV0d+fn5VyR+\nKNq/2dnZnD59elEapQpmD/oLgqCyuE+fPp3wKJYCReItOzub+vp62traLhEmXwwUk4L5xLuV9SYC\nZUZ406ZNnDp1al4bvfWycV4M1n1QrKmp4ZlnnuGtb33rgseIosinPvUpDh8+THt7OwcPHlRp0VcS\nFh8eHqazs5Mnn3yS7du388orr6gMrYXUY5QgWF9fr5YgLt5RhUJhtmxOTuP04pdDQ0MDHo+HrKws\ndu/erfYrkxmbEASBiooKVXNREf1dD1A0U/v7++nv70/qHEajgZ898wB5W1Ix2QXGPBP4U8aZ9I+i\nSQuRYjIhRXRETX5kZFKMRqSIiZjVi4SI8PojJUb19Ht78ep8xPzxl3Tw9Rk3URNBNGrwhiV8ooSb\nAH6rm8lACI/sJ5IaxhsJYjAYCYphdBYByRrjewc/T2HJ8nhs6lJTsF1Tgd8TQ5/vQGcx4j83jLW6\nAFmUCfROYKuNM3sFrQZ3yyDW2nh2oTHGA+Fk0wAphQ5SSjIJm4y4moeQRInxM4Ok1sXvbeWFbCnN\nZuLc+KIFwSORCCMjI7S0tPDaa68xMDBASkqKqtqjuMQnk63k5OSwdetWWlpaEuqfXYzZo1CiKFJS\nUkJJSQmnTp3C7XYnfJ7ZEm+KS8bExATt7e1Jb0xnu3bM7rkv1h0D4kF2586ddHZ2cuHChTe0Qwa8\ngUYy3v72t/Pwww/zpjddSvc+duwY999/P0ePHgXgwQcfBOC+++6joqKCP/zhD6oyztvf/nbOnTvH\nT37yE771rW9ht9tVP7HHHntM3R3O3nFdblQiHA7T1NREcXHxHGbYmTOtVFdXJMxcCwaDqqB2IBDA\nZrOps1TJMteuBKUEW19fv55o10iSRHt7OzqdjoqKiqQeXEmSeP+7P0dP5zARH2i0GoSYDpMZgjNR\nbCnp6DQCsaAGDTq0egjHPJiNVgLhKFrZTFjwYJRtGC0i2oAFrTlCNCISkTTIkgZRCqEXTMRS/IRC\nEczY0VjD+H0xBCGGrJPQpMQwWQ08+dwD5OUlNxu34HcMR2n96LeJTnpJ2V2BOOUjOubGUOBkqmUI\nNAKWTVlozEammgYRtBpsmxxEAhGCwx7MJU5ITUH0R/B1x4OKNsdCdCSeeWVvL0AQRaIzIdzjAWKB\nCFs+fC2VH3/bZa+7x+NRxyU0Gg0OhwOHw5GwqfRiEY1GaWlpIS0t7YoO8wtBmdnTaDTqM19QUJDQ\nyFBrayuFhYVz5qhlWaavr0+dJV7K8zc8PExvby91dXXEYjGGhoaorq5e9HkkSeLcuXOEQiFV3cdo\nNK6n8unGSIaCoaGhOTdnQUEBx48fBxYWFr/hhhs4cOAAZrOZnp4eDhw4oO7aZgtqX+mGMBqNbN++\nnebmZiKRiLqOzEznZQOi4nIwOTmJx+PBaDSqrhJms/mq7NCys7MxGo00NjZSU1OTFJFgNaDRaKiu\nrubChQucOXNmjpbt5aCQklwuF1NTU/zj/3ofDz/4Y853DCGIRrRaHdNeN6k2C95gvL8ma33oZTuC\nqCEmS3hDk9hNGchhkOQYCALhgI6wOEFwegp7ah7E4jt1rU6DaAwSDWmJiVHEFC8BH0QFPzojSIJI\nRoaZn/7iAXJylzcgAmiMenL/x9vo//ZviMyE8XRPkuKwYrKlYCrIIDLhJTLtI8X2OjVfIyCiwVSY\nQUSrx9U9haAR0FpNmDJTCU940Wv1KLWFsTMD5F1XirffQywQ1+ucL1MMhUK4XC51w5eWlobT6aS4\nuHjR4w7JQK/Xs337drq6ujhz5gw1NTVJjVlAPHAYDAZ27dpFe3s7Ho+Hqqqqy5JRLnbIUM5XUlKC\nzWbj9OnTVFZWJiQEMh/y8vJITU2lublZ7Tkmg9kOGSdOnKC6uvqy8prrFesiKL7zne+cV5T7a1/7\n2mXl3RaL2cLieXl/6otkZWWh0+n413/9V+69995Fs62Uh07xDdyyZQs5OXNfcsoco7JDVlwOsrOz\nqaioWLXdWHp6OnV1dbS0tFBWVpb0g3m1IQgCmzdvZmRkhIaGhgU1UxU1k8nJSfx+v5qBFxYWYjAY\n+MVze/jGQ//BwZ8cJhwMk2LVEwzEsNq0hL06RFmHRu/FSCoadERjOmbCfrQaNxaTlUjAj2wKEQrL\nGKwpeMNBBF2AYGiatLRUZrw+TCYzWpPIVNAHgoxWrwFBy+aqLP6//30XWdkrd82de7cz9stXiUZi\n2Kry8TT1I4oycnoqvqAbY4oWvcGAbLcRmPLhPzdBxps24RuIlwdlSSbiDaO3paFN0aOZtRk3FWYw\n7RYxZNoIu+Mzu7IoqQQ1l8ulKiUpM4PzDc9fDSjaomNjY5w+fZqamhqsVuuizwF/KhnX1NQwODio\n2lAtpMM6X1BUkJGRwc6dO2lubmZmZoaSkpKkrk9qaiq7d+/m+PHj6PV6JElK+p2Sk5OD1WolGAy+\nIcun6yIoLlZi7WLk5+czMDCg/jw4OKjKGSUiLG61Wjl27Bif+MQn+Md//EcefvjhRVP/NRoNtbW1\nnDt3jvb2dqqqqggEAmoQnC0vpbyQ1wqUXl1TUxPhcHjOhmGtIzc3l5SUFDXbNZvNagY+PT2NXq/H\n4XCwefPmBV/In/+nT1C1dQv/+//7DqOjE1jMZsamXFhTUpFjekJhkAxeTAY9UgzC0gxancDU9DBG\noxVj1I4gaBBjUSQ5gt4URZA0eANRZI0GWR9GFmR0Rg0xMYzOpOem/bt58F/+kb6+PhobG6mrq1uR\nrEnQasn76PUM/vwE7o4RDBkWxFCU8IQXjVFPeNKPyRfGmJNG8HUlm/BMkLSaAtxN8b6txqjDN+DG\nUZ2D6I6XTm01+Qy3jpJSqCE8FsCem0ZoxMP46BgzJ0+Snp6+7OLxy4Hs7GwsFgutra1s2rQpoWH4\n2bjYhio/Px+r1UpDQ8OC2d6VPBsVA+Rz584tqvJxMXQ6HZmZmYTDYTVQJ1uWtVgsCSvorDesm2Lw\nUrBr1y61SRyJRHjqqae45ZZbgMSFxXU6HY899hhOp5OPfexjhEKhRa9DcZLw+Xy89NJLnDt3DlmW\nKS0tZc+ePWzdupXs7Ow1FRAVKCoy4+PjdHd3L8ly5mpClmV0Op3qhn7s2DEmJydxOBzs2rWLnTt3\nUlJSckVS0v6/eidP/uL/ULu9BEmIYk0z4Qv7mYmMIOn9+CJuht09eGIDoNcQEzWkZtiQBR1ByY0v\nMoInMEFU8OP3x5DkGDH8oIsRDEUIhH2Igp+MXANf+Mpf8/VvfE4toRUVFSXNkkwE9rdWo3OkIoWj\nmHLtSKEoYZcPW0WuchGZuTCJwR4vo2q0GsbO9GOriM/tavSvE2/aRjHmZWCrK2LozChyDGLRGFF/\nhOmZMNpUI+m2NPbs2UNlZSVOp3NNBUQFVquVnTt3Mjw8TFdXV1L3+mx2alpaGjt37qS7u/sSokqi\nUEqXOTk5nDhxAp/Pd+VfmgeRSISioiLKyso4ffr0ogXTL17TGxHr/ls9++yzFBQUcOzYMfbt28dN\nN8XdAoaHh7n55puBeEB79NFHuemmm6iqquJ973uf2mi+9957ef755ykrK+N3v/sd995774KfpdFo\n+NrXvsZb3vIW3vve9zIzM3PZtUmShNvtpru7W6WQe71eysvLKS8vJxaLkZOTs2olo8VCq9VSX19P\nNBpdEjNupRGJRBgdHaWtrY3XXnuNnp4ezGYzu3btIiUlhZSUlKReyFu2lPCbQ0/w0Dc+hzFFJsUi\nYkoxEI4Gsdg0pKXZkNESiLrRp0SQZBGdMUpYchPTRBCMMoGYh5h2mhCTRPHij04iGbxoDCK3vv96\n/vDy09z23n1zPjczM5Pq6mpaWlqW9BJbCIIgkLlvJ6l1xXjPj2DKsyNoBaZbhjAX2pFFmagvrI5s\nCBoBZIGZoRmMGRa0hvh1tG5xMj7mZWLyTwovBkO8fxV1R+LBCMYAACAASURBVJBSrWivQo9wOaDX\n69m2bRuCIHDmzJmkWNizA6NOp2Pnzp2EQqE5bNDFPkO5ubnU1tbS3NyclM+rwj5VyrLd3d309PQs\nOlAvVvZyPeENwz69mpBlmYMHD/Ltb3+bgwcPqiUWWZbnsESDweAcxf2Ly18XC3KvFyjMuKmpKerq\n6lbdZPRixqIyxOx0OrHZbHMe3uVgpkL8Gnz9wUd46uAz+P1hQoEooZCftHQ7sZiMLIEohzGbrAho\niYYFtDoZrQ78/jBGkxZBAEOKlm3bqnjw6/+L4uLLMxWXUwh9PrzyyZ8QcXmxb8pgomWIqD+CdZMT\nrUnPRFucgOasy0cCxpvic3SpJXYkQSIQkQj0+9Ga9UgypNlNBEZnSNuSyXTXn+ZGS95bz7WfvbzN\n1VrD+Pg4PT09VFdXJ002U4KfTqdjZGSEvr4+9dlpaWmZlzV/OUSjUVpbW0lJSaG8vDzhrO3VV19l\nz5496vGSJHH+/HkCgcCidFwlSUKv16/6s79IJPSwbyjaJAFBEKitraWgoIA777yTQCDAo48+CsRf\nlmazmYKCAjZt2kRWVhZWq3XerMRisWC1WmltbcVut6/Jsul8EARBlcjq6OhYkrxasggEAoyOjnLh\nwgV6e3uJRqOkp6ezefNmCgsLycjImNfSRpG483q99PX1kZmZmVQZSBAE3vKWa/jk332U4pI8LvT1\nEItF4v+TwqSYDWg0AiARiQWQpDDhmB+RMDqjhDMrnQO33cSPn/gWH/jAraSnp13xMxU1lsHBQbUE\nvJy79ZRsG73PNOAddGOtL8HgTEVAxmC34h2Ii1qEZ0KQpkfUgCbbQjgso8uwMdMRz2A1gkAkFENv\nNyNEY+itJkLT8flMe10BU14/5q020tLS1k2mYbFYsNvttLa2otPpFk3Agbns1NTUVNLS0mhpaUEQ\nBKLR6BUlJC+Gci94vV66urouK+s2Gxer2QiCgNPpRBAE2traElaEUtoS66yEmpCizUammASampr4\n5S9/yQsvvIDP50Oj0XDXXXfxwQ9+MCm6s+LsXVlZid1uX4EVrxymp6fp6OigtrY2qZdFoojFYipB\nxu12qyMqDocj6RGV0dFR+vv7F2SmLhayLPPqqyd46Q9/pKGxGfd03I5JlmTMFjPFxYVcd9217N17\nw5L0ZWdn6sm4NFwOxz79U6aaBzGU5zF9Pj5sby6wEQzEiAYiaASB1IpMJk//yXg7dUsmWklipncS\nQSMQFeOvidz6PCRvEE/vFBnbCuk/NcSWmyrJ+1Ap0WhU9RNcL4jFYrS2tmI2myktLU0qIFxsQ9XQ\n0ADAnj17kt4kTE5O0tHRwdatWy/7/riSb+NifBUlSVpvM4qw4ae4cjhy5AiBQIB3vOMd2O12zp49\ny+23385DDz10WWWdy0HpNSjZ5XqCz+ejtbWV8vJyMjKWLkEG8QfY6/WqpWhRFFWD42QVTOaD2+3m\n7NmzVFdXrxshdAVKWa+2tnbZmIATpy9w4jNPI2bZEE1aIj0ejFkWtA4b7rZ4DytzeyFSTGLideNg\n25ZMIoEootuHGIohCiC/3ior/osSIsEYA6fjx25+ZwU3PPhXDA4OMjw8vGwbkqsFWZa5cOECbreb\nmpqapKo7yqC/IAiMj48zODiIRqNRvRWTQTAYpKmpidzcXIqKiuYNsKFQiNbW1suWamf7KlZVVS34\nnL2Rg+JG+TQJlJaWUlVVpfYBMzMz+au/+is+8YlPkJGRQWVl5aLPqdPpyM7OprOzc105VUCcmZqZ\nmcnZs2fRaDRJ913C4TDj4+P09vbS09NDKBQiNTWVkpISiouL5xV4XipMJpMqxGw0GtcVzdxisZCW\nlqb2lhLxv5sPioD8hQsXGAtNI/f7AQ2RiRAavQadQc9U7zTpJQ7C7iCWXBsTXVMYU/SI4RimrFTc\nF6bIrMkjODaDxqBDEiWM6SkINjO+cT9hT5ytnVacwZYbK7HZbKqIe2pq6roJjIIgYLfb0el0tLe3\nY7PZFl0dUu5fxdXD6XTidDqXJAau1+vJy8tjeHiYkZGReYXO/X4/fr//smMmGo2G7OxsgsGg6jxz\ncSVCSaT0ev26KYG/jg2XjKsJm83Gbbfdxuc//3kikYjKXFsMZjtV+P3+deVUoQR1JZglYsujOKAP\nDg7S1dWFy+XCYDCQm5urGqampqaueL9Sr9erlkKxWOwScs5ahtFoJDMzk46ODpX+fyWIosj09DQD\nAwN0dXUxPT1NSkqK2gdP35SF6/QAM4NuHNV5hFw+QoEYxgwLYXcAS46N6b5pMsqzCI57MWfZ8E/4\n8I56yarKJuQLYy/Nwj0VIuSLEgOEqIgsSvGg+JfxTaPCAj579izAutoIKn3G9vZ2tFptQhtBURSZ\nnJxUr7vX68Vut6v3ubI5S/R8F0MQBLKysojFYpw9e/YSCciZmRlisdgVBTgUzoDFYqG5uZmUlJRL\nNouCIFwVtaFlxkZPcTUQCAS4/fbb2b59O5///OeT7jt0dHQgyzJVVVXr5gUN8UDX0dGhCovP/v6y\nLKuCBZOTk4TDYdUBXdl9ryYkSeLs2bNotdpFMfrWAkRR5OzZs+h0ukvWPvu6u1wuIpEIdrtdve7z\n9fWOf/UQPf/ditagxZxpZWIgPn6UXZ+PBhg8Mxz/uSoLtFrGWuM9xvRiO8ZMK72vxcUyLJkWPON+\nSnbm42oaovC6zbzr395zydrb2towGAzr7ror5UaTyURZWdkVr7vSArDb7eqxs3VTJUlSr0VlZWXS\n18Lj8dDa2kpZWZnajhkYGECSJIqLEzciiEQiNDU1Ybfb2bJliypMAKyb7H4WNnqKq4VoNMrHP/5x\nUlJS+Jd/+ZekyARK72JmZoba2tp1RUhQ1q7oPirjErN945RS6FqDLMv09vbidruTVg5ZLShrn56e\npqqqSu3Jut1uNStL9LqPnhnkj18+TFq2Ba1WoP9U3LTXZDdj35TB4Os9QkuWldRcG2F/FMmgY6ht\nlIIdhYycjKvdpGSY8U7G2acl9TmYUk3sfeS2BdeukIfWCxMb5q5969at+Hw+VTEp0es+u8+o0Wjo\n6+tjfHx8SaozkUhE9VUsKyuju7sbq9W6aKarLMuq249C7BIEIWkN1VXERlBcTUiSxH333Ud3dzeP\nPfZY0jfQ4OAgo6Ojql/bWodiazU5Ocno6CjhcJj8/Hyys7Ox2WzrJgsYHR2lr69v3TiEyLKMz+fD\n5XIxOjpKIBAgNzeXnJycpIlJ//U3TzHaOIjBose+NRdiIhrAmGYkMB0CjYZoVEKfZqL7pR7191Ky\nbdidZibaRzGlmfC54/1EU5qJ0j1F3Pj1Wxb8TGV2Nxnt0dXA7GxwZGQEn89HVlYWeXl5c7LBxZxP\nyRqnp6c5d+7cFVmlVzpfV1cXHo8Hg8FAYWFh0ucaHx+ns7OT6urqeeeu1wE2iDarCUEQeOc738nQ\n0BAPPPAA+/fvTyow2mw2dDodZ8+eTXgW6WojFAqpNlOKlF5aWhqlpaXY7XaGhobIzc1dVztLq9WK\n1WpVLYXW4tqj0SgTExOq83wgECA1NVXtxw4MDOB0OpMm4FizUuk81I4YldBnpjJ0egj3sBfBZGB6\nPMDo+Qk8o15SHFY0Ok18hhEwpJnwTYcw6OKltmhEBCAWjuGszqH0HWULfqbFYiE9PZ3W1lYMBsOa\nJD5d3BucmZnBbDazadMmCgoKGB4exmKxJNUjnS0qbjabyczMpL29HVEUk5rtFARBnSPu6enB6XQm\nvdmwWCw4nU7a29vJyclZj0Fxo6e4FiDLMj/96U/5zne+w8GDB5Met1BGB1Z6HjARKEQNpUSkuBw4\nHI55Jeu8Xi+tra1UVVWRnp6+SqtODoFAgJaWljUxKnOxtRWwoHIPxNm8zc3N5ObmUlBQkNRnPnfn\nzxhvGQG7BZPViLt3CkdZJpJBz3hrvK+Yt6OA4ExYVa5JLbQz1eemeEd81jEUiEuk5ewoIBST+diP\nP3DFz10Oj8PlQqK9QQWiKNLe3o5er0+6Rzq7nAqoRKrq6uqkWymvvPIKGo2GwsLCpO8HiH8/o9G4\nrlo6r2OjfLqWcOjQIf75n/+Zn/3sZ4tqdM+Gz+ejpaXlqgcXpTSnEGSi0Sh2ux2n00l6enpCD4cy\nh1lSUrJo54HVRjQapbm5GafTueAM2EohHA6rL+PZ1lbzUeXng/KCNhgMlxBBEkHfH7v57WefRZtl\nw5SewuTZMeybHQx1TpFb7sDV5SJvRwEXTg5RsiOXkaZh0kocuHriQbukLpux8xPYK7LpaRimoD6P\nv/7ZBxP6bEmS6OrqIhgMUl1dfVWrJKIoMjU1Nac36HA4cDqdCfVkZVmmv7+fiYkJamtrk6o0KIER\n4uzuwcFBBgcHqa+vTyr7f/XVV7nmmmtoa2tTBcaTCWzrdEYRNoLi2oNiP/XYY49RW1ub1Dmu1pB/\nJBJRg6DX68Visagv42R7bLODS7Ibg9WCwkzVaDQr6m+piMgrOq46nU697ldy8lgIs4lPyRjoPvM/\nnsDnjzLZN01WmRMxIjJywY1ziwNPr4u87fGgaM5IQRuLYc6xMdEZl33LrswkBgy1jQOQX5vDXQc/\ntKjPHx4eZmBggLq6uhUlZ/n9/oSzwUQxNTXFuXPnlrSRnd1nnJmZob29nYqKCpxO56LOoajZyLLM\nwMAAw8PDSekubwTFuXhDBcUjR45w9913I4oid9111yUOGbIsc/fdd3Po0CHMZjOPP/44O3bsWNJn\ntre384EPfIBvfOMbXHfddUmdIxqN0tTURE5OzpLKILMxn6i28jJezrk9RZBbKS2tp3GT2ezO5RRC\nV0TkXS4XwWBQHVPJyMhY1uxI6fvW1tYuKtO48OJ5Xv3uq4x3ucgszyTmDzM2EHfCKNyWi0an4cLJ\nOBu15E35hH0R3MMz2EuddDcOU1Sfx1BDnL2auzWbv/m/H1702j0ejxoMlks1aXY26Ha7VSGHRLPB\nRBEMBmlpaSEvLy/p53V2YFRKyxkZGQmXlpXRil27dqn/5na7aWtrW3SAlSRpXl3hdYCNoHg5iKJI\neXk5zz//PAUFBezatYuDBw+ydetW9ZhDhw7xyCOPcOjQIY4fP87dd9/N8ePHl/zZAwMD3HrrrfzP\n//k/2b9/f9Lrb2lpwWazsWnTpqRu0Nkzg7Nfxna7fUWb6LIs093djd/vp6amZt31JpTgkmzmcnFP\ndjl0XBPFzMyM+iJMNLjIssx/3fMsPS9fQJZkCt9USPeJeJBLzbLiKEmn53j8Z4vTTE51DudPDhKc\nCcdPoNeSk29jqn+anMosPvGLO5JaeygUoqWlRd0MJnOdViIbTATKHKlGo0l6/nB2n1EQBDo7OwkE\nAglt0LxeLxcuXKCurm7Ovyt950QDrLKGN3JQXHtUxquEEydOUFpayubNmwG4/fbbee655+YExeee\ne4477rgDQRDYs2cPbrebkZERcnNzl/TZhYWFHD16lFtvvZXJyUn1MxYDrVZLXV0dHR0ddHR0UFlZ\necVzxGKxeXfGZWVlK/4yng1BECgtLWVwcJCGhgbq6+vX1VxadnY2RqORM2fOsHXr1iuqyChEDZfL\nxeTkpDo8vxrO8zabje3bt9PS0kIwGLyi8DPE/15F15dz7vQw2ZsyEIw6MisyAQFBAK3VSO6OAqbH\nfYxcmMZaKv4pIBLfScd0WhBAEpP34DSZTOzYsYOzZ8/i9XoTCi4L9QZnyzReDWi1WqqrqxkYGOD0\n6dPU1tYuug0x259RlmUqKioYHR3lxIkT1NXVXZaAp/goXgyj0cjOnTvp7OyksbExIYF5ZR1vVPzZ\nBsWhoaE5nnQFBQWXZIHzHaOMFywVDoeDw4cP8773vY+JiQk++9nPLnr3qDTLe3p6aG5uviTrulhU\nW5IkVVZqJftiiaKgoACTyURDQwN1dXVJjw6sBtLT09m2bRvNzc3z9neVDYjL5ZojWnC1X8bzQQku\nbW1t+Hy+hMrYtTdX8ftHXuFC4zAGs560kgyGWuMei8UGPcMdE4S88UDonQ6SX5vDUEtcQFyj1TB8\nzkXl7nxCnuCS1q4El/7+fvW+uXhDdXE2aLfbyczMXHW1HEEQKCoqwmq10tjYmHSfUaPRIMsysViM\nrKwsVY5t8+bNCw7mLxQUlfMpAfbkyZPU1tZeVmbujRwQ4c84KK4FWCwWfvWrX/HXf/3X3HvvvTz4\n4IOLzhoEQWDLli0MDAxw5swZKioqmJmZYXJyEp/Pp2oqJsuAW2k4nU4MBgNNTU0JZV1rCSkpKezY\nsYOWlhb8fj8Oh2POBiQjI4Pc3NwlyXWtFLRaLbW1tfT09HDmzJkrqvdo9Vr23LGT3/7LH4hFRIL+\nmPrfJFEiuyKTvtdVbzQaDVPjXrR6LWJURKPTAlH6OlwUlS7dGk0QBIqLi7FarTQ0NFBRUUEsFlv1\nbDBRZGRkqNl6sqVg5XhRFLFYLLzpTW+itbUVj8czL8s4HA5f8Vrk5ORgtVppbm6mpKSEvLy8S46R\nZXndtTsWi7X1pF5F5OfnMzAwoP48ODh4SSkpkWOWCr1ez+OPP47JZOLjH/84kUhkUb+vDBIHg0GC\nwSAnTpzA7/dTUlLCnj17qKmpWfOD8zabjW3bttHR0cH4+PhqLydhKAxdg8FAb28vzc3NGAwGamtr\n2b17typesNYCogJlQ5Wbm8vp06cJBi+fxe28rQ6TzYQUkxjrniSvOj5aI8syfc0jWB3m188LU0Ne\nCurjFRWNNv4CD86E0aYuT5BSHB+0Wi0NDQ0MDg6SmZnJNddcw7Zt2ygsLFyTAVGBkq0rbFJRFBd9\nDkUSTpIkNBoN27ZtQ6fTcfr06UveI5fLFGfDarWye/duxsfHaW9vR5KSL3evV6zNp/UqYNeuXXR2\ndqoKLE899RS33DJXfuqWW27hiSeeQJZlXnvtNdLS0paldHoxNBoN3/jGN9i5cyfvf//78fl8Cx4r\nyzJ+v18tH508eZKJiQnsdjvXXnst27dvx+VyodFo1lWZQ8m6BgYG5mxE1hJkWcbtdtPd3c2JEydo\namoiEAhQWFjI2972NgoKChgbG1uzQXAh5OTkUFlZyZkzZ5ienl7wOIPZwK4PbAPimWMoFM8WZUkm\nEoqRURLPApX7rrdlFLM9Ba0m/nPm5gwmPeF5znxliKLIxMQEHR0dHDt2jM7OTgRBoKamhre97W0I\ngqCyptcLtFotW7duxWazcfr0aUKh0KLPoQRGWZYRRZGSkhJKSko4efIkHo9HPS7RoAjxmUhlFvLk\nyZOXrGu93d+LxZ8t+xTi7NJ77rkHURS58847+cIXvsD3vvc9AP72b/8WWZb59Kc/zZEjRzCbzfzo\nRz+6rEHnUiHLMj/+8Y/5/ve/z1NPPaXSpKPRqEoWSERUe7WG/JcDikuAyWSitLR01V9yoVBILYkq\nw/NOp3NB7celMlNXE6FQiObmZgoKCuYtnQH4pwJ88y+/TxgNQW+E4tpsBAG6m0bR6gQcOanYcm10\nnYyXUst25TM97CU1z0bbyUHSMi089MrfJbSe+XqDTqdz3uxbYTQrotVrUQ7xclAUq5YycjJ7bEP5\nWyrqNcePH2fnzp2Lvi5TU1OcPXuWqqoqMjIy1vOMImyMZKxf/OpXv+K+++7j2muvpaGhgYceeoi8\nvDx1ZjCRG1Jx4t6yZQuZmZlXYdXLB0XEOBgMUlNTc1UfwIWG551O57wSdvNBmalbbz1SiGdkimlx\nWVnZvN/3v7/6O04dOodvMkhuuRODQUNPS5x0s2l7Hlqdhq6TgwgC5G3NRmPS0f66lVR6jpVvHPvU\ngp+9FBUZ+NOmpKamZk3qpl4OyshJdnY2hYWFSQs1KIFRlmXa2trQ6XS43W7e/OY3J72upqYmsrKy\nKCoqwmQybQTFWdgIiiuIp59+mp///OecP3+eoqIipqam+PKXv5z0zawM7Obl5S17L/RqYGBggPHx\ncerq6lZ0bjIYDKrjEsFgcI7XYLIZRzAYVAkL603WTpZlenp68Hq91NTUXHINpgfdfOd/PIV7NF7m\nr3prCa0vXQDi/cTK6zYRCEQYGZxhfMBD5V8U0XksbiWVlmnh4ROfVs+1mGwwUXi9Xtra2igtLV3U\nUPpagOJHKklS0jJsF9tQDQwMcP78ed7ylrckrUYlSRLnzp1Dq9VSU1Oz6hWcJLERFNcbDh8+THFx\nsWos3Nraygc/+EH+7d/+jWuvvTapc4qiSHNzM+np6ZSUlKy7m3l8fFwdOl6ucqQyPO9yuXC73erw\n/FIcJebDbOWR4uLidXftR0ZG6O/vn/fa/+R/HaG/aQSz1YAl3YR/JkwoGMM9GSBnSwYtf7igHmsv\ntGFLNTJ4doLUjBTuO/KBJWWDiSASicyRFFxv135wcJDh4WFqa2uTvi5KcJQkiZMnTyIIgloGTfZ8\nsVgs4YrJGsRGUHwjoK+vj/e85z3cd9993HzzzUmdY7ajfEVFxbq7oZVyZHV1dVJ2PAo5SekNzlYy\nSVTQPFkoO39gTY5mXAnKtb+4P93TOMyD7/kJANmbM9DotQx2xF0yyq4pwDcZZKQrrn+aXpSKgMzM\ngA+jVcff/2L/krPBRKBkN6IoJp11rSaUa19eXo7D4UjqHIFAgNHRUXw+H5WVlTQ3N5OdnZ3URkGJ\nFevBX3QBbATFNwpcLhe33norH/rQh/jQhz6UdK9B8dy72n265UAgEKC5uTnhklg0GlWzwdnkJKfT\nedUfalmW6evrU13l15sP3UIEnK8f+AndDcNkFqWjSzUw2BofpyndXYBvJshoRzwoWvNMuAb8bN2Z\nz3jPNN9uvueqrn9gYIDR0dGkVGRWG+FwmJaWloQzXqUnrtiLGQwGnE4nmZmZqjTbuXPniEQi85bG\nLwelJLuWx7uugI2g+EaC3+/ntttu47rrruOee+5JOtu7Wn26lYDSI53PH3C2eo/L5UKW5Tleg2th\nE7CemakKAcdsNqus4NOHOvjep54jI9/GQN80+SXpTA54ya6y0dsyTXG5g/EeN5lbMhg4P0FmQRpC\nKMY3G+++6uufnp6mo6Nj3TKyz58/TyQSmddPMRwO43K5cLlcBAIB0tPTVYa0cuzFNlTDw8NqaTxR\nQpIkSeh0unX33piFjaD4RkMkEuHOO+/E4XDw1a9+Nely0NjYGH19fdTX16+7XZ/ycrZYLBQWFqps\nRa/Xq6r3OByONaulup6ZqUq1wefzUVVVhcft4V/e/TTRcIyJiSCbajMZaZ+ibHcBza/2UVqfy1Db\nONllDvo64lnkjrdu5nM/u31V1q+4VVxu5GQtQ7HQqqmpIRqNqtmgVqtNmCE9m53q8/lobW2lrKws\nIRu6jaA4PzaC4ipDFEU+97nPMTY2xne+852kX/5TU1OcP3+e2tradUNdlyRJdZ4fGopbFRUUFJCZ\nmUlqauq66ZWuV2aq0pcdGhoiEAiQk5ND14suXvpxM6NjXjRagdz8dDLybTS/2gfAlq3ZSIJMb3s8\nKJbtzOfLv/rIqn0HURRpa2vDaDQmZbq8WohGo0xOTjI8PMz09DTp6ekUFBQsOC97OcwOjLFYjJaW\nFtLT09myZctlnyFJkjAYDOuuNzsLG0HxjQpZlnnooYd46aWXeOKJJ5IOal6vl9bW1jWdtVw8PJ+W\nlqZ6DQ4PD+NyudZlKVhhptrt9jXLCp7N0p2ensZkMuF0OnE6nYTDYc6ePcumoi188/Zf0t8bV8LZ\nek0RGkGg5djrQbEuB1mW8UwGsOSYaWvq5zd9X17Nr6WaLrvd7jXb45VlGZ/Pp5ZFATUbNBqNtLa2\nkpGRkfS9c/HYRldXF16v97LP0kZQnB8bQXGNQJZlfvSjH/HDH/6QgwcPJs1OU4b818pM12yiwPT0\n9BWH55U+XX19/bojUSjsSGUmbS1kLYuZG1TKkR3/PcGRHzYBoNNrqbm2mMaXehAEyNmcQebmdF79\nfQfRSAyNRuDQ4P9eja92CcbHx+np6aGmpuaytktXCxc7q1gsFjIzM+dtB0iSRGdnJ6FQiOrq6qTn\naRVtU51Ox/j4ON3d3Qu6ZKxzNRvYCIp/Hnjuuef48pe/zFNPPZW0q7dCYMnPz1+VXotiduxyuQiH\nw3Oc5xPZlSoSWTU1NZe1vFmLkGWZ/v5+JicnVyVruVw2mAgZKBaLcez3J/n1w03xTYkAtkwzUxM+\nLvSMMeXy8aYbttDwQo/6O0eGv7qSX2lRUPpqmzdvTqivttzw+/1qNhiLxVRyWFpaWkLBR5klXYqC\nz+xyaiAQoKWlZV6XDEmS1qu5sIKNoPjngj/+8Y986lOf4oc//OEck+TFQBnyt9vtKz7sPFvOSxme\ndzqdqvN8MvD7/bS0tFBWVpZ01ryaWAmRgoWw3Coysixz3wf/kzMvxUumW3cX0nN2jMDr/oqbt2ch\n+mQGOuNlwEODX1lT2YZSyk5PT2fTpk0rfu/PFo6YvQlJttKhKPgsRdJRGfLXarVIkkRraysmk0n1\nXVUC50ZQvBQbQfEKOHLkCHfffTeiKHLXXXdx7733zvnvP/vZz3jooYeQZZnU1FS++93vUl9fv+TP\nbW5u5kMf+hDf+ta3uOaaa5I6hyRJtLe3o9frEzKeTRTK8LwipRaLxdQXcXp6+rK9IFc7410qZmZm\naGtrW/axgaVmg4mg5bULfP49PwCgfGceOoOW1tel3bbsyEZAoKchro/63/1fRqtbW30ppRwZDofn\nHXtYChQZQaUSshxSdhcjEonQ2tpKWloamzdvXpY+Y29vLy6Xi/r6erV8u95aFBdhIyhebYiiSHl5\nOc8//zwFBQXs2rWLgwcPzsneXn31VaqqqrDb7Rw+fJj777+f48ePL8vn9/b28p73vIcvfvGL3HTT\nTUmdQxHjVnoVyT60Fzt7WCwWdVxiJR8sURRpaWnBZrOt+K5/JaAwU4uLixd0UU8EgUBAfREvl6bo\nlfDJdz7KhfZR8srTcHlmiE0JxKIipTtyaDnTQ2lRwzumPwAAIABJREFUISO9U/z6wv0YjGvTxWJ4\neJjBwcElyatJkoTH41FHJvR6vboJWU4ZwYuhPLt+v5/q6uqkS/FKn1Gj0TA9Pc25c+fYunUrdrt9\n3Y1wXYSNoHi1cezYMe6//36OHj0KwIMPPgjAfffdN+/x09PT1NTUqOMFy4Hx8XFuvfVWPvaxj/GB\nD3wg6aDQ39+vMjsTaeIrw/NKNriaw/OyLNPR0YEsy+tSWm02TT5RduF8eq7LnQ1eCYd/dopvff5X\nlNbncqalk9razXQ3jVH2plyaGrrYtrOMrpMjPNf9JYwpa4/xqUDpUVdWVmK32xP6nUgkom5CFJZ0\nZmZmwn3x5cTo6Ci9vb1LGrea3WcMh8M0NTVRX1+f8PVYo0joZbg2t2vrFENDQxQWFqo/Kz5mC+EH\nP/gBe/fuXdY1ZGVlcfToUQ4cOIDL5eLv//7vkwqMRUVFGAwGGhoaFhzyV5znLx6en11uWQ0IgkBl\nZSV9fX00NTWtO389xeT13Llzqu7ofIF9vmwwMzOT8vLyVdkIXP+een74wFH1fhufjMu8KbdfS2M3\nxQW5a97NPT09ne3bt9PS0kJOTs6cZ1qBLMvqzOzk5CQajQaHw8HmzZtXXTA7JycHi8VCS0tL0gQi\nZf0K43TXrl1rVhBjubF+3hRvMPz+97/nBz/4AS+//PKyn9tqtfJf//VffOQjH+GLX/wiX/lKcsSG\nnJwcDAYDjY2N1NXVYTKZ8Hg8qteg8iIoKipac8PzgiBQUlKC0Wi8bGBfq9BoNFRWVtLf369ef6Wc\ndXE2WFVVtSZk44wpet71gTfR+EoXAGPDHsrLCvH7AwCIkoQ934Ikrf2Ck8lkYseOHZw9exafz0dF\nRQWiKKoEJWUT6HQ6KSoqWnOzjqmpqezcuZPW1lZmZmauOJg/HwRBQJZlRkdH+e1vf8sNN9xAWVnZ\nCq147WAjKC4j8vPzGRgYUH8eHByc18ewubmZu+66i8OHD68YU9JgMPDTn/6Uz3zmM3zyk5/k0Ucf\nTerBNZvNOJ1OXnvtNYxGo9qbKi4uXnMvgvmQm5uL0WiksbFxzcyjJQpBEMjMzMTn8/HHP/4Rk8mE\nw+FY1WzwStj/0d2ceaVb/VmbokGjiZcPNVoNQTGIJImrtbxFQaPRUFxcTGdnJy+99JL6LBQWFmKz\n2dbUJnA+6PV6tm3bRnd3N2fOnKGmpiahZ1aSJM6cOcPRo0f53e9+h1ar5aabblrRfuhawkZPcRkR\ni8UoLy/nhRdeID8/n127dvHkk09SXV2tHtPf38/111/PE088wV/8xV+s+JokSeLrX/86r7zyCo8/\n/vgVewySJDE9Pa1mgwaDAYfDgcViobOzc0k2NqsJn89HS0sLFRUVSfvJXQ0s1Bs0mUx0dXWtC0Hr\nR7/wa5768Yvqz3veVoXbP01H93kmp2d4teVH2O1rc55UGRdSrr/FYsHpdCIIAr29vetyFhauLFTg\n9Xp58cUXOXr0KKdOnaK6upp9+/axd+9e9fu/AbBBtFkNHDp0iHvuuQdRFLnzzjv5whe+wPe+9z0A\n/vZv/5a77rqLX/7ylxQXFwPx/tGpU6dWdE2yLPOf//mfPPHEExw8ePCSoKD0piYnJ9XheYWpOJsk\nEIlEOHPmDIWFheTm5q7omlcCigVSUVHRkpidy41EmaJrdf0Xo+lEF48+9Az+gI+xSRdbKnP544tN\n6n9/9vkHqaxaO2W42dc/Go0uOECvzMJu2rRpXWnWKvD5fPzmN78hGAzy0Y9+lO7ubo4cOcJvf/tb\npqenuf7669m3bx9vfvOb10UVKAlsBMUNzMWzzz7LV7/6VR577DHOnDmD0WgkJydHdT9PZHg+FovR\n3NyMw+FQA/t6gsLsvBoiBQthKUxRZf1paWlreuRk39vvpqcrzqreuaec7nMjuKe9AHz3J/dQWJSb\n9DzdUqFUQ5S5zWSuf2pqalJ9utVEJBLht7/9LQ888ADT09NUVVWxb98+9u/fv2b1d5cZG0FxA3HI\nskxbWxtHjhzh4MGDDA0N8Y53vIOPf/zj7N69e9G9KWXI32AwUFZWtu4eJkmSOHv2rEpmuRrrX865\nQcVfLxaLsXXr1jXZW3ziP/+bB+//EQDbrylFI2g4/dp5AF46/X3cHpc6C3s1RhZCoZB6/YPB4Jzr\nv9jPnz0PuFij3qsJWZYZHx/n6NGjHD16lK6uLt785jezd+9eTp48yalTp3jyySfXdDthmbERFDcQ\nxzPPPMPTTz/N3r17+cu//EsmJib48Ic/zCOPPMKuXbuSOqcsy3R2dhKJRNbsi/lyUJwSZmZmqK2t\nXfYX89WYG+zv72diYmJNuoTMePy8/U1/QzAYZvs1ZZzv7CLs1RCLirx06vtk5WQwNDTE8PAwtbW1\nyy7oMNtmbHJyEp1ON2eAfjk2QqOjo/T19VFbW7tmSCiiKM4hyej1et71rnexf/9+amtr5zynv/71\nr+nq6uKzn/3sKq74qmIjKG5gYVy4cIEDBw7wpS99iRtvvDHp8/T19TE5OZnwkP9aw/DwMENDQ8sy\nW7kaKjITExN0d3dTV1e3Zl7MCr7wj9/hmadfZMc1Zbzy6gn27N5F0+kufn/iP8jJi5O1pqamOHfu\nHNXV1dhstiV9njI363K58Pl8pKWlqQ70K3VvKtJ8q0lAm5mZmUOSqaur4+abb2bv3r04HI51V8lZ\nQWwExQ1cHmNjY9x6663cddddvP/970/64RkZGWFgYIBt27atywHfyclJOjs7F60AshZUZGDlNFOX\nirbmbm67+Z/UoFhRvpn+7mleOP5d8vL/JFw925lhMQSWi1WUAPX6W63WqxYMwuEwLS0tZGZmUlRU\ntOKfq5RvFZKMx+OZQ5JZj5vTq4SNoLiBK8Pr9XLgwAFuvPFG/u7v/i7pB1oJLGsxY0kEiuHylQLL\namSDiUBhpq41ZvD79t2LwSTw8qsnAKjbWsd3H7+P/MK5KivRaFQVtL4cgUjR1HW5XMzMzKgqSvN5\nDl5NSJJER0eH6o253OX4cDjMq6++yuHDh3n55ZfJy8vj5ptvZt++fX8uJJnlwEZQ3EBiCIfD3HHH\nHRQVFfGlL30p6Ze7krEsRylsNRAKhWhqapqTsayVbDARrEVm6jNPv8gzP/8dL78Slzvctaue//PI\nP1FYfGlGqDhVKH1qrVZ7icOKKIpzRibWwndUIMsyg4ODjI6OUldXtyQFJVmWGRsbU0ky3d3dvPnN\nb2b//v1cf/3163LjuQawERQ3kDhEUeQf/uEf8Pv9fOtb30qauBEIBGhubqa8vHxdstqi0SiNjY0Y\njUZEUVxT2WAikGWZc+fOrRlmaigY5lN3PcALL76MIAiUlhXyn49/leJNlyo9Kejv72dwcBCbzYbX\n61WVZJxO57qQ6lP6pFu3biUtLS3h3xNFkcbGRo4cOcILL7yAwWBg79697N+/n5qamlX/W74BsBEU\nN7A4SJLE1772NU6cOMGPfvSjpHejiqr+Wh8yVzCf32AkEsFqtbJ169Y1lY0kirXETP33b/+Uo7/9\nA52dHYyNT3Di5BFKSzfNOeZiz0Gz2YzH46G2tnZN9UkThWIBVlhYeFlvz5mZGV544QWOHj1KQ0PD\nHJJMRkbGurz31jA2guIGFg9ZlvmP//gPDh48yJNPPpm0VYwy5K8IJq81LNQbTE9PV8t23d3d6iza\n1bb/WQ6sFWbquXPdXLvnZvXn144forR0E263W/UcnK8srVQdknV6WG3EYjHa2trwer3s3r0bg8Gg\njjIpJBmv18v111/P/v37ufbaazdIMiuLjaC4geTxi1/8gq9//es8/fTTSRM3JEmira0Nk8lEaWnp\nqu56k+0NDg4OMjIysup2WMlCIRAtxhtwJbD3XR/g+PEGAB7/8f8hMzMDu92Ow+G4rOdgNBpVFYjW\nI6FElmUeeOABjhw5wrZt2zh16hQFBQXs27ePffv2XRW26gZUbATFDSwNL774Ip/5zGf48Y9/THl5\neVLnkGWZ8+fPE41Gr3qP60rZYKJwuVx0dXWtesaVLFaLmSrLsupA//TTz/GvD38fgOd/93/ZsaMu\n4WAwW8FnJZidyw2FJHPkyBGOHj1KT08Pmzdvpr29nZ///Ods27ZttZf454qNoPhGw5EjR7j77rsR\nRZG77rqLe++9d97jTp48ybXXXstTTz3FbbfdtqTPbGxs5CMf+Qj//u//zs6dO5M+T29vL9PT09TV\n1a3YS20lmaIKs3ax5Im1AoWZarPZVlRzNBqNqhsRn8+HzWZ7/fqbqat9BzMzXl5++ddsra5Y9LkH\nBgaWhdm5EhBFkYaGBpUkYzKZVJJMdXU1Go2G1tZW7rjjDh5//HHq6upWe8l/jtgIim8kiKJIeXk5\nzz//PAUFBezatYuDBw+ydevWS4678cYbMZlM3HnnnUsOigBdXV28973v5Stf+Qo33HBD0udZTvUY\nBcuVDSaCYDBIU1MTW7ZsITMz88q/sMawElm7LMv4fD71bwDgcDhwOp2XGE9//nNf5gc/eJL/9/+e\no6a2MqnPU+Zhq6urV93CyePx8OKLL3LkyBEaGxupr6/n5ptv5l3veteC6jbT09OkpqZu9A5XBwkF\nxY2/zDrBiRMnKC0tZfPmzQDcfvvtPPfcc5cExUceeYQDBw5w8uTJZfvs0tJSDh8+zLvf/W6mpqa4\n7bbbkso08vLyMBgMNDQ0UF9fn1T2tlA2eDXc51NSUti5cydNTU2EQiEKCwtX9POWG4IgUFFRwcDA\ngMp0TGZzEovF1AF6j8eD1WrF6XRecbNzx0fexw9+8CTyEvbWDocDk8lES0vLVSfgKJsKhSTj8/m4\n4YYb+Ju/+ZuESTKr2de9GFeqPMmyzN13382hQ4cwm808/vjj7NixY5VWe/WwERTXCYaGhua8hAsK\nCjh+/Pglxzz77LP8/ve/X9agCJCTk8PRo0c5cOAAk5OTfOITn0gqMDqdTvR6veoEnshu/2K/R7vd\nTmZmJmVlZVe9v6TX69mxYwetra2EQqFVJxAlg8LCQkwmEw0NDQlJ28myPCcjj8ViOBwO8vLyqKys\nTDjjrK2tYvv2GiRJWtL6LRYLO3fupKWlhUAgsKIWYOFwmJdffpkjR47w8ssvU1hYyM0338zjjz++\nrkkyoijyqU99ak7l6ZZbbpmzyT58+DCdnZ10dnZy/PhxPvnJT17yznkjYiMovoFwzz338NBDD60Y\nmSUtLY3f/OY3fPjDH2ZsbIwvfvGLSX1WWloadXV1tLS0zDvkv1A2WFlZuSZUZDQaDbW1tXR1ddHa\n2qr2jNYTMjMzMZlMNDc3z8tMvXh2MyUlBafTSXV19ZIcLe74yPuXHBQhvjnZtm0b586dU3u9y1UO\nHh0dVUkyvb29XHfddezfv5+HH354Tdx/y4FEKk/PPfccd9xxB4IgsGfPHtxuNyMjI2tKRnAlsBEU\n1wny8/MZGBhQfx4cHCQ/f64qyKlTp7j99tuBOGPy0KFD6HQ63v3udy/bOkwmE0899RSf/vSn+Yd/\n+Ae++c1vJtUfsVgsbN++naamJoqLi0lNTV0z2WAiEASBsrIyBgYGaGxsXBND8otFamoq27dvV5mp\n6enpcwbolb9BeXn5sgX9Awf2MTQ0uizn0mg0VFVVLbkcLIoip0+f5siRI7z44oukpKSwd+9eHnjg\ngTWhCrQSSLTydPExQ0NDG0FxA2sDu3btorOzkwsXLpCfn89TTz3Fk08+OeeYCxcuqP//ox/9KPv/\n//buPSrqMn/g+Hu4rMpFQQYsFG+gSIoo5iXbRdo0g0EJcgN1K3Vp21Z+Xttcu5xoz7bpbu3mSbPW\ndT3H0shtt+23J5nRNS9ZeFsFYQUrI0Ek8AKIwMgw8/39ofM98ktjGGaYGfi8/lPH7zyK8pnneT6X\nlBSHBkQrb29vNmzYwEsvvcSjjz7KX//61w5/gjabzTQ0NBAYGKjWMkZERLjNbtBWERER9OrVS/2m\n7Elrt1gsNDU10a9fP0pLS/H19SUiIoLo6GinlZ4EBPgTHR3p0GdGRETg5+fH8ePHbU7Aqa+vZ8+e\nPWqSzPjx40lOTuaZZ57xyPaEwnEkKHoIHx8f1q9fz8yZMzGbzSxatIjRo0fz1ltvAfCLX/yiS9fj\n5eVFTk4OGzduZM6cOWzbtq3ddly3uhsMCwsjKiqKkpISrl275vBhs10hLCyMXr16UVBQ4PbN0K9d\nu6bOHGxsbCQoKAitVktkZCRnzpzhypUrHpdABG0TcG6VHWytdbQ22G5qauL+++/nqaeeYvLkyT0u\nG9SWkydbXtMdSUmG6LQdO3bw6quvkpub26bXaUfqBq2NrM1mMzExMR55ZGVtSxYVFYVWq3X1coDr\nf683T6D38vJSvwb+/v7fSRSpqKigurra7qNIVzOZTOTm5vLVV1+xatUqddzSZ599xpAhQ9DpdKSk\npDBw4ECPTZJxhNbWVkaOHMmePXsYOHAgEydOZPv27YwePVp9zccff8z69evZuXMnhw8fZsmSJRw5\ncsSFq+40qVMUXeff//43Tz/9NC+99BLHjh3jzjvvVBM4bK0bVBSFb775Rm0E7Y53ie1paWmhsLCQ\n8PBwl32qNplM6m7QekQdGhpK//79bbr3tHbw6ejQZVdTFIWqqio+/vhjtm3bRnl5OQ899BCpqanc\nd999HnkK4Uw7d+5k2bJl6snTc8891+bkSVEUsrOz0ev1+Pn5sWXLFu6++24Xr7pTJCgK5zMajezf\nv5+8vDzy8vIwGo2kpqby85//XM1s6yhnFPl3JbPZTHFxMf7+/kRGRnbJJPabC+gVRVEL6Pv27WvX\n+1t7pkZHR7v1HZvZbObYsWNqkoy/vz9JSUnodDo++eQT/vnPf/L+++97ZLMF4XASFIXzbd++naNH\nj5KUlERCQgIVFRU88sgjvPzyyyQmJtr93AsXLvD11197XPKKlbN7vprNZnU3WF9fj7+/P1qtlpCQ\nEIe1QLOOABs0aND3jj/qanV1dWqSTEFBAfHx8Wonmf9fWmIwGLh06RLz5s1z0WqFG5GgKFyjqqqK\ntLQ0Fi9ezMMPP2z3c+rr6zl16hSxsbEEBAQ4cIVd5+zZs1y6dImxY8d2Opnj5gJ6k8nUZgK9s+5g\nzWYzRUVFBAQEdMmu91YsFgunT5/GYDCwa9cumpqamD59OjqdjilTpnjUMXt7XWS2bdvG2rVrURSF\nwMBANm7cSFxcnItW2+1IUBSuU1dXR3p6OqmpqWRlZdn9zbSxsZGioiKio6PdqkVWR1RXV3P27FnG\njh3boXsti8XSpoC+V69ehIaGEhIS0qW7Z+sMQKPRyOjRo7skCBmNRj799FP0ej2fffYZQ4cOJTk5\n2aOTZGzpX/z5558TExNDcHAweXl55OTk9IguMl1EgqJwrebmZubPn8+oUaN49tln7d7NGI1GCgsL\nGTZsmEcOm4XrHxJKSkrabW1nNBrV3aDRaCQoKIjQ0FCnNDjvKOuUCmfc9VqTZPLy8jAYDJSXl5OQ\nkEBKSgqJiYndIkkmPz+fnJwcDAYDAK+88goAq1evvuXra2trGTNmDJWVlV22xm5OGoIL1+rTpw87\nduzgl7/8JcuXL+e1116z6wixd+/exMfHc/LkSVpaWhg0aJATVutcQUFBamu7ESNGqFMULBaLOnPw\n8uXL+Pj4oNVqGTFihNtlfkZERNCnTx+be6a2p7W1VU2S2bt3LwEBASQlJfH73/++Qz1VPYUtXWRu\ntnnzZpKSkrpiaeImEhSFU/n4+PDWW2/x4osvsmDBAv7yl7/Y9anf2uuyuLiYa9euOXUmoLNYW9sV\nFBRQXV1Na2srjY2N9OvXD61Wy7Bhw9y+iFyr1apF8rfqW9ue2tpaNUnm5MmTjB8/Hp1Ox+rVqz32\neNwZ9u7dy+bNmzl48KCrl9LjuPf/QNEteHl58Zvf/Ib169er3W/sGdTr7e3N2LFjKS0tpaSkhJiY\nGI8IjIqi0NDQwIULF9QC+traWvr378/kyZM9bkcUEBCg9kw1Go3fm5lqsVgoLS1Vk2SMRiPTp09n\nyZIlTJw40eVHwl3J1g4xJ0+eJCsri7y8vNvOZRTOI3eKokvl5ubypz/9iffee69N95uOUBSFsrIy\nrly54rZF/iaTSZ05eOXKFQIDA9WSCV9fXzWjUlEUjz0qtNZjajSaNgk4zc3NfPrpp+Tl5ZGfn8+w\nYcPQ6XTodDrCw8M94oOMM9jSRaa8vJwf//jHbN26lalTp7pwtd2SJNoI97Rr1y5WrVrFO++8Y3eB\nP1y/o6mqqiIuLs7lEyoURaGxsVFNkrFYLPTv35/Q0NDbFtBbO/jU1dURGxvr9kent6IoCmvXruXg\nwYNqwfy5c+fUJJlp06Z1iyQZR2mvi0xWVhZ///vfGTJkCHD9+uHYsWOuXHJ3IkFRuK+jR4/ys5/9\njLfffrtTdVjWIv+4uLgu/+ZrNpvV3WBdXR1+fn5qX9GOFNBXVVVRUVFBXFycwwrvna21tZWjR4+i\n1+vZt28f3t7e1NTU8M477zB16tQeuxsUbk2CorBNewXFAPv27WPZsmWYTCa0Wi379+/v9PuePn2a\njIwM1qxZQ0JCgt3PsZY7dEWR/80F9C0tLWoBfVBQUKeOQC9fvswXX3zBmDFj3LZRQW1tLbt378Zg\nMFBUVER8fDw6nY6ZM2cSFBTErl27+PWvf83f/vY3IiMdOx5KCAeQoCjaZ0tBcV1dHVOnTkWv1zN4\n8GBqamocVi94/vx50tLSWLp0aadmP169epWioiJiYmLaHWHVERaLhbq6Oi5cuKAW0N9u0kdnWf8M\n1kbqrmZNktHr9ezatYuWlhamT5/OrFmzuPvuu295l3vq1CnCw8Md+jUQwkGkTlG078iRI0RFRal3\ne5mZmXz00UdtguL27dtJT09n8ODBAA4toA8PD0ev15OWlsalS5dYtGiRXUdv1oxIRxT5G41Gta9o\nU1OTOukjKirKqUk9N2d1Dh482O5EpM5obm7mwIEDapJMZGQkOp2O3Nxc7rzzzna/Njf/u3EHtpyC\nwPXj/HvuuYfc3FzmzJnTxasU7kSCYg9nS0GxtbF1YmIiDQ0NLF26lMcee8xha7C2tJo7dy41NTWs\nWrXKrqNIa5F/YWFhh4r8FUVRC+gvXbqEj48PISEhREVF4efn16X3Yzc3KjAajQwZMsSp768oCpWV\nlWonmcrKSqZNm8acOXN44403POaO81bMZjOLFy9ucwoye/bs7wRus9nMqlWreOCBB1y0UuFOJCiK\ndrW2tvKf//yHPXv20NzczD333MOUKVMYOXKkw96jT58+fPDBBzz55JOsXLmSV1991a5dma+vL+PH\nj6e4uJiWlhaGDRt2y6DS0tKi7gavXr1K37590Wq1DB061OVZoD4+PowbN46SkhJOnz5NdHS0QwNj\na2srR44cwWAwsHfvXvr27UtycjJ//OMfHf5ermTLKQjAG2+8wcMPP8zRo0ddsUzhZiQo9nC2FBQP\nGjSIkJAQ/P398ff3JyEhgcLCQocGRbgeDDZt2sTzzz/PwoUL2bRpk107FWuRf0lJCaWlpYwaNQq4\nPiPQuhsECAkJYciQIQQGBrpdIPDy8uKuu+7i66+/prCwsNP1mJcvX1aTZIqLi5kwYQI6nY7nn3/e\nrkYKnsCWU5DKyko+/PBD9u7dK0FRABIUe7yJEyfy5ZdfUlZWxsCBA8nNzWX79u1tXpOamkp2djat\nra20tLRw+PBhli9f7pT1eHl58fLLL7Nu3Tp+8pOf8O6779K3b98OP0ej0TBixAhKSko4ePAg3t7e\nagG9pwwv1mg0REZGcv78eY4fP96hdVssFkpKStQkGZPJxIwZM1ixYgUTJkxwy4YHrrBs2TLWrl3r\nkc0ThHNIUOzhfHx8WL9+PTNnzlQLikePHt2moDgmJoYHH3yQsWPH4uXlRVZWFmPGjHHamjQaDUuX\nLiU0NJSHHnqI3NxcmxJnFEVpUzLR2tpKSEgIvXv35sqVK4waNcrlRf72CA8Pp1evXu024m5qauLA\ngQPo9Xry8/OJiopCp9OxY8cO7rjjDrfbDTubLacgx44dIzMzE4CLFy+yc+dOfHx8OpUJLTyblGQI\nt6bX63n22Wd59913GTp06Hd+3Ww2t5k56OfnR0hIiNq42qqmpoaysjKXFPk7SkNDAydOnMDb25t7\n770XRVE4d+4cer0evV5PVVUV06ZNIyUlhYSEBI9OknEEW9qq3WzBggWkpKRI9mn3JSUZwvM9+OCD\nBAcHM3fuXP785z8TGxvLN998g7e3NxcvXuTatWsEBwcTGhrKyJEjb3sMFhYWhq+vLwUFBQ4Ze+QK\ngYGBREREkJ6ezrhx4zhz5gxBQUEkJSXx+uuvM3LkyB63G/w+tpyCCPH/yU5RuD2TycT27dt57rnn\n6N27N6GhoWzatIk77rgDPz+/Dj3LWUX+zqIoSpskmf/+979q2cncuXNvW3cnhPgO6WgjPJvFYmH+\n/PmcOnWKe++9l0mTJrFx40ZWrFjBrFmz7H5uc3MzJ0+eZPjw4YSGhjpwxY5hsVg4deqUmiRjNpuZ\nMWMGs2bNIj4+Hm9vb1paWsjKyiIuLo6VK1e6eslCeAIJisLzlZWVMXToUPVY8PLly6SlpZGRkcHj\njz9u93GhyWSioKCA8PDwW86062pNTU3s378fvV7PoUOHGDFihDpuacCAAbedsmGdyyiEaJcERdE9\nNTU1kZmZyYQJE1i5cqXd6fRms5mioiL69evXJvB2BUVRqKioUDvJfPvttyQmJqpJMp5QMnIrrmou\nL4QNJCiK7stkMvHEE0/g7+/PmjVr7K67s9bzeXt7O72bi8lk4vDhwxgMBvbt20dwcDDJycmkpKQw\nYsQIj0+ScXVzeSHaIUFRdG8Wi4XVq1dTVlbG22+/bXcJgqIonDlzhqamJsaMGeOwQm5rksyuXbsw\nGAycOnWKiRMnotPpeOCBB+xqSuDO8vPzycnz+WrEAAAFjUlEQVTJwWAwAPDKK68AsHr1avU1b775\nJufPn+e3v/2tS9YoejSbgqK0cRAey8vLizVr1jBlyhQyMjJoaGiw6zkajYaoqCiCg4M5ceIEJpPJ\n7jVZLBaKior4wx/+wMyZM8nIyKC8vJxf/epXnDx5ki1btjBnzpxuFxDh1m3VKisr27zmiy++oLa2\nlsTERCZMmMDWrVu7eplCfC+pUxQeTaPRsHz5crRaLWlpabz33nt2Z5RGRETwgx/8gBMnThAXF2fz\nzrOxsZH9+/djMBjIz89n1KhRJCcn88EHH9w2Saan6orm8kJ0hgRF4fE0Gg2PPfaYGhi3bdvGkCFD\n7HrWgAED8PX15cSJE7ct8lcUhfLycjVJpqamhsTERDIzM9mwYYPHJsl0ljs1lxfCXnKnKLqV/Px8\nnnzySTZv3nzbdl62aGho4MCBAwQGBpKQkIDJZOLQoUMYDAb2799P//791SSZqKgo2Q1iW1u1kpIS\nsrOzMRgMtLS0MGnSJHJzc53aS1eIG6TNm+h5rNPT586dy2uvvcbUqVPtek5AQABhYWEsWrSI4cOH\nU1VVxaRJk0hJSSEnJ6db3gl2ljs2lxeio2SnKJyuvdq1+vp6fvrTn1JeXk5raytPP/00Cxcu7NR7\nVlRUkJ6ezjPPPINOp7Pp91gsFoqLi9Hr9ezevRtFUfjhD3/I7t27WbZsGY8//nin1iSEcCkpyRCu\nZ0vt2u9+9zvq6+tZu3YtFy5cIDo6mm+//bbTd3OXLl0iLS2NefPm8eijj97yiLOxsZF9+/ZhMBg4\ndOgQo0aNQqfTkZycTFhYGBqNhsbGRjIzM8nKyiI1NbVTaxJCuIwcnwrXO3LkCFFRUQwfPhyAzMxM\nPvroozZBUaPR0NDQgKIoXL16lf79++Pj0/l/miEhIeTl5ZGRkcHFixfVwchnz55Fr9erSTL33Xcf\n8+bN480337xlIPb39+cf//gHFoul02tyJFfswIXo7iQoCqe6Ve3a4cOH27wmOzub2bNnEx4eTkND\nA++//77DCuj9/f358MMPWbhwIdOmTcNisaDVaklOTmbDhg1ERkbalCTjbsOJzWYzixcvbrMDnz17\ndpsPGxs2bOCuu+7iX//6l7oDnz9/fo/NjhXCFhIUhcsZDAbGjRvHJ598wpkzZ5gxYwY/+tGPHJbM\n4uvry9atW3n99dd54oknCAwMdMhzXcmVO3AhujPpaCOcypbatS1btpCenq52lhk2bBilpaUOXYeX\nlxcrVqzoFgERbOsek52dTUlJCeHh4cTGxrJu3TqH7cCF6K7kf4hwqokTJ/Lll19SVlZGS0sLubm5\nzJ49u81rBg8ezJ49ewCorq7m9OnT6g5I2M+6Az9//jwFBQVkZ2dz5coVVy9LCLcmQVE41c21azEx\nMTzyyCNq7Zq1fu2FF17g888/JzY2lvvvv5+1a9ei1WpdvHL35i47cCG6GynJEMID2dI95qmnnmLA\ngAHk5ORQXV1NfHw8hYWF8oFD9FRSkiFEd2VL95gXXniBBQsWEBsbi6IosgMXwgayUxRCCNETyDxF\nIYQQoiMkKAohhBA3SFAUwgaLFi0iLCzsthMdFEVhyZIlREVFMXbsWI4fP97FKxRCOEJH7xSF6JE0\nGk0CcBXYqijKdyKjRqNJBv4HSAYmA+sURZnctasUQnSW7BSFsIGiKAeAy9/zklSuB0xFUZRDQJBG\no7mza1YnhHAUCYpCOMZAoOKmH5+78XNCCA8iQVEIIYS4QYKiEI5RCUTc9ONBN35OCOFBJCgK4Rj/\nCzymuW4KUK8oSpWrFyWE6Bhp8yaEDTQazXtAIqDVaDTngBcBXwBFUd4CdnI98/QroAmQEfdCeCAp\nyRBCCCFukONTIYQQ4gYJikIIIcQNEhSFEEKIG/4PqRYdHKmsJVUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAGdCAYAAAAxP1VVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Qe0bFtaFgw/K1aunXM4+eamG7QBSSpIAyqgn2IY+in+IENRfpK0CcVf4P+kFRHEAGLAAYqCTfgBaYJ2Ay0NHW6+J5+zc67alWvl9Y9nrjWr1t69Q9U++4R7T7137HFupbVmrZprPvMNz/MqYRiGGNjABjawgQ3snEw9rwMNbGADG9jABkYbAMvABjawgQ3sXG0ALAMb2MAGNrBztQGwDGxgAxvYwM7VBsAysIENbGADO1cbAMvABjawgQ3sXG0ALAMb2MAGNrBztQGwDGxgAxvYwM7VBsAysIENbGADO1cbAMvABjawgQ3sXG0ALAMb2MAGNrBztQGwDGxgAxvYwM7VBsAysIENbGADO1cbAMvABjYwYQOh84Gdl+nndqSBDWxgb0sw8TwPruuK/0+n09A07XEPa2BvcxsAy8AG9pQZASQIAjiOIwDF933xvKqq4jFtAC4DexAbAMvABvaUGMGE3gkBhf/ysaIoAkQINrZtwzAMAS58nkAzsIGdxZRBB8mBDezpCHVJ70SCBv9tNpvY3NzE9va2AJxr167h4sWL4nXTNAfgMrAz2cBjGdjAnoJQF58jSOi6LoBmY2NDAAqBZWJiAi+88AJSqRQ++clPCkCZnZ0Vnx+Ay8DOYgNgGdjA3oGhruXlZWQyGYyMjHRCXeVyGVtbW9jb20OhUBDgMTU1JcCGxvd91md9lgAXhsQmJycFMBFc6N0MbGC92iAUNrCBvQNDXW+++SbGxsYEsNAzIaDw+enpafGXy+U+7VgEGHonDIu99tprAmSGh4cF4AzAZWD92ABYBjawt2moi0BC7yQZ6uIfgeZTn/qUeJ6vj4+PY2ZmBqOjoyeCgwQW2traGm7cuIH3vve9yOfz4jV6MQNwGVgvNgCWgQ3sHVDVRWOoi94JQ118noDyzDPPCEDoxZLAQrt37x6Wlpbw2Z/92SL/wmNms9kBuAzsVBsAy8AG9jYKdRFMaLKqq91ud0JdfC/DXPRObt261fn/Xu0wsPB4N2/eFKGx+fl5AVyf8zmfI943AJeBnWSD5P3ABvYEGsNYR4W66J3wMYGEgFKr1YRn8uyzz4pQlwQGvv9BF39+nsflGFZWVkRIjCBHG4DLwE6yAbAMbGBPeKhLeif7+/sCTHZ3d0Xynd7IZ3zGZxwZ6joPYKHxGC+99BI++tGPChCTLH0+L6vJBjawwzaYGQMb2GM0AoBMsstQF5+jZ8KFm6Eu6Z3wNYa3fv/v//3CezjtuOflURDYCGIsYWa12Lvf/e4OO38g/TKwo2wALAMb2BMa6uJftVrtJOFZPtwrWfE8gUUax1Gv1/HWW2/hxRdfHOiKDexYGwDLwAb2iIyLvQSTo0JdlUqlE+oiuZFeAsNQ5JCc5VznPXYCCL2l3/3d38Xt27cF2A10xQZ2lA2AZWADe4yhLsuyOqEuvo9MeBITyYx/0PP267Gc9H6Om+BBWX0JLgS8CxcuDKRfBvZpNgCWgQ3sIRhBIpmIT4a6uEizhJdgwlAXQ1wUf+wn1PWoQ2HSu6KxcIDg8nu/93sCUOhZDcBlYEkbAMvABnbOoa4k5yQZ6iKIEEx2dnbEzv9BQl292HkCi/SypBWLRXzmZ36mYPizKo1ClgNdsYFJGwDLwAZ2TqEuKgazWouLqwx1sceJDHVx4WWoiwsyQ10PcwFOehi9GFWO+X5qgx13vMNlzfSwWO6c1BWTnssAXJ5uGwDLwAZ2TqEuSqCQUEhvhF4JwYQJeRIXr1y5IqqqHmWo6LTFneOWIblGoyGeI+jR+zgux3LYCJTPPfccXn755Y6uGAF0oCv2dNsAWAY2sDOGumTllQx1EWxWV1fx+uuvC20thrpkn5PHMdajFnY+fxTRkgDBUN0rr7wiAOKw53JSzmZhYUEALOX2KfnCijbaAFyeXhsAy8AG1kOoS5YJJ6u6CCh8jkrADHfx/2mPItTVy7iT509qivH7HEW0JMDwe0qASL52nMci7fLly+L7f+ITnxCfleGwgfTL02kDYBnYwM5Q1cXdPhdq7v7Z8+TSpUsiFMbdOxPbT4q0PsfYT/UZy4eZFyJAfO7nfq4I6/UCLAQPhsQkMNHrkTYAl6fPBsAysIH1EOqiMQ8h+8NzR85dPxdTufjev38fj9s4Zmp6EQwZ1joL0ZLgI70PSubzc72UL0tdMeZb+MeEvnx+oCv2dNng1x7YU229hLrW19dFCIlkRuYiqJVFr+RJ2oUnq89kSI6gx/GehSjJ3BCBieXE9D5O81ik8T3vec978PGPf1zkmlg1NtAVe/psACwDeyot2YHxcKiL/89mWVyk2YOEiWyGiFgt9SQtjvwOh8d58eJFMc7f+q3f6jvPk3wvrwUBlF4LAYbg22tFG6/R7/t9v0+w869fvy5ASpYhP0nXb2APzwbAMrCnrmlWUl4lqXNFLodMcLOiiaEu6mHJKqdez/GwjUKQMiTHhZqhLlnmnBxHv57K4c/w2AxnESDoEfVjvH4sDvjYxz6GO3fuiPDaQFfs6bEBsAzsqQx1cXFj3J/Pk9jIhZqhrsnJSRG+GRoaeqJCXRynDHW1Wi0xTuYz6KUcV1Z8HuOXAPGRj3xEnL+fjpQEOobRpK7Y4uLiQPrlKbEBsAzsqQx1lUolsUjzX4IIFz2GkB4kyXzeQMRxyj72rEJjXoctggkqJ41Tek3nNR4CBP94rZaWlkS4rVcjT4ZhMeZcCFIDXbGnwwbAMrCnItTFf5NVXQQYhroYoukn1PUojB6JLBOmcTFmdRYX6V7svIFFHovX6tatWwIUZmdne/4sgXugK/Z02QBYBvaOD3XJRbqXENLjMgKilIFhuTAX3+eff15wZM66sz9v2XwpPMlSYoICJWp6NXJn3vWudwldMXowBJuBrtg71wbAMrB3ZKhLhpBYNdVrCOlRG8cpm3sRVLLZ7Il97Ps57sNQN+b1JdCxeyTBhV4UAaJXo4fI34yei/TABrpi70x7cu6ygQ2sz1AXme4EGIZouDDJqi6GuviYizTFH7lgP8oxnmYsEpBelGzuxV38gzb3OjyGh9WPhWGwpHxLUvrlNEvqihFcZCXbAFzeWTYAloG9bUNd/EtWdRFYGEIib4I76ydpoeJ3kDIwUvH46tWrD0Xx+GEBS3KcTOAfJf3Si0ldMQkucpwDcHnn2ABYBva2DXVxoWbehAKL3EVz5/84Q12HF0WOM8k5kd0WH7bicT/AIsNxHB9DhQxXHWVHMe/J8Ul6Lr2G76SumAQXqSs2EK1859gAWAb2tqnqktVS5FPwMau5+EeG+JNkHL/knEhuzKOUgek1HCfHyGtOT48SLATuw/1YeLyjeDF8LPMtzJuQ79Irs56fZTKfn5O6YtwoMMnfa/XbwJ5cGwDLwJ7oqi4uejIfwXJhho5YLcVQ0srKivAIngTjuDlW8jw4JsmNIag8ahmT4zyWwxIwyQZkElCO6sdyWIzzOG2wV199Vfx/r6E9+Vl6PAQ1KjATbBhWG0i/vL1tACwDe6yhrqSSsAx10ZJVXUwOM4TERToZbuHC+SgkVE4yyY3h7p/AQq+Eu/jHyY05DCwcI/NQDHcRrI+SgKHxeeZNDvdj4W9FOw4wpPTL7/3e7+Gtt94S379Xz4zjkZ/lPJDCnwNdsbe3DYBlYI881JX0TpKhrmQzKr6X8X7uno8LjfBzjwNYOH7Z0lcWDHAxvX37tsjzPG7CpbwmbEAmx9grf+eopHwvORsCwWFtsF5NfvbDH/6wUJLmGAe6Ym9vGwDLwB5JwymZN2HYK5mo5WMZ6ycxkGEZ7qYZpjltUeEx5G76UXyPZEtf7uZZMJD0oh530lmOke2Rabyuc3NzffN3mJSXngurtk7zWKQRhAgQUhuMitC9mvSeyOfhtR3oir29bQAsA3tkoa5kT46j+q73Swx8FKEw6UXxrxcv6nEYxyjBmUAtS5i5yJ/FZMMumVinNyafP80IClIbTFbB9WLyd2SOhbka2UhtAC5vTxsAy8AeSqhLeieHQ11yASTwHNV3vR97WMDCcUt5FdnStxcv6lF6LId5Mcm2w6ye42v92OGxJ5Py7Kly1HuOM4ay+FkWAnCj0Iv0i/RkyT9izkXqivH7DHTF3n42AJaBPZJQF/+4SHORYajlpL7rjwNYeByOT8qrMDTTb0vfh2298mLOSzKfvx+9j9/5nd/pXOtejyuJqr1KvyTDbVJXjJ7LQFfs7WkDYBnYA5XXSkA5HOqSGljcOZ+l73ovxkXoQXMszCXIggF+FybfKbTYb/fFh2kclywWoNd3Gi/mvICFxt+L5d30IO7fvy9Y870a8zuSBMkqs5PCh3JDIjcbMgxGYJKhx4Gu2NvHBsAysHMLdZF0x8RxUgOLYY3z0sA6L4/lMJ+D4ZdLly51+BwPYufpQXFsLBPmWLlrp85WL7yY8wQWGr0hei/UZiPQUNCzV+N1TbLzj5N+ka2Pk+OWCXwJTNIG4PLk2wBYBnaiJUNdDBHxpqYHIkNdfE3upmU+Qsb6H3bCtV9gkWEk2Xr4OD7H47SkugC/G8fIRbUfIc3zzjvxN+ZvLZnyBJrD7Px+qsyOKtDgOY4CTBI4JTANdMXePjYAloGdGuriv3y8vLwsdsxMtj8J+YheeCyHw0hcEJ+01sOHiwXoOVFL66y9WM7bY5E6Ydws8Dc+ip3fS5XZSdIv0mM56rMMxbGPCz870BV7e9gAWAbWU6hL8iAYlqGUCl9/3PkIVQ2h68yxOFxq4mfpRT2efiz9XANea/J2ZCKe4ExezHmA83kDS/J4srXwYXb+acY5xLwQq8wIEqwaS47xOI/lKF0xzjn5/JPUX2dgXRv8Kk+5HVXVldTq4mtyN03uCUMyUl/qUXELFMWGqjahak0g9KGpNSiKi+xMgJQOZI1Pivf5vo7QtWDZIbIqsDidx/NXr0BPTwHKw1MTPotAJXMnD6tY4GF5LNJIfGQ+rV/JfFllRgIlpV9YNSbHeZzHclT58xtvvCG8TsnOH0i/PHk2AJan1I4KdSVv0uRumjF17lQZ1yawcOf/cI3A1oSm70PTqlx2oKqeeMV3mN+xIddN3+HzUcze81y4loJ8LkQ+y8VKhebfAtxbCJCFF4wj0CcR6L2FcM7LeG1LpZK4nvyXISRKpzAs9zAWxX6BheOjnthxPWyOk8w/LW9yknwLwSUp/XKSx3IUMJFbwxDZQFfsybQBsDxFdlqoizcp9aWSpbfcJcqy1ps3bz5kCRUXurELVWlCN2qdZ30nDZgRsDDiFQYpKJotHmqKjyAwwHXPNHXoPhfAVvyFfQQwocKBihY0t4SUfROBmoNrLMIz5gHtfBP3yZyP7GgpZf4JzlxIH4WWWC/AwvHRc5ICmqw642J9VF+ZoyTzk+x8gkWvHiy/vwQXblpY/XWax3IUMN29e1c0Sxvoij15NgCWpyTUJYUfjwp1SQY3Q10nld7y8cMBljZMcxuaXoaihPDsg3yH0POBOO1g2xasZhujE9ETqljvuFC3I0/HqwOGHDerxtKA4sgDRZ8JmtCdNZjVN+Fl5uFmn0Oon49EC68vF2v+0Qt4HB0tT/JYCCCymEGOjwBBngjDTFzoGeo8zWM5HJ5i3oQ5lF6/I3MzLEVnOI1g0YvHchQw8bOy3fFA+uXJsQGwPKWhrsMMbhLSWIl0UrxctgI+N1NcmMY6FKUFTW93nw7YMZK74uixb9WhZ6Nx8XvkzeTioSD0lBh4AqiBBT8cg6pYUT7fc2SkDIrXRqCnoIY2P4VAy8Fo3YXeugc3dQ1e4RmEeu9lvYdZ+6w6o1cnZf7p8fWjffawgEWOj2DHfJnUZkuOj/NCLtacAyQ3ngYsyfAUVY1leKpXcCHYEozIsGfhQj+gkNQk43cY6Io9WTYAlndwqCspkyFDXZQlZ+iDyVcuLP10NjwPpntk5EVswTC3oSgBAi+NIOCCID2LAL6nQzfi8Fdgw3EyMM0QmWwGWm0fYTgqPsvAk+K2BLDwK4SEjEAHBH6G0Nx9hEYOCgJAUREyiR8yjBYCQSw/Q0/HKSG7/D/gjLwb7siLgKL1zNrnn+wlQm+P+ZPHaRJYOD6pzcbfnosvF+PjCKt8noUEDG9xgZZcldNyNsnwFEGpH3Y+83UEIybzqcXWjzFXxfEyFDfQFXuybAAs7+BQl+wPn2SZ82ZkVc9ZEsfnEQpT1TpMY4lLvgAGYUqI0NM64a5aoyEAY3QyquQyjBRC0GNpi1CZ8Db8FBS9LYBE9asx0BAoVCieHQOLIgDFRw4a6jw54DrxawE0q4TQTEGBH3lJUJEqfQJ6/S7s0c9GUOju2k9i7csqOS5wj7sXC8fHwgvmT/7P//k/4vfuR1UgyVWRGl8neSzSWNRB0GLDrn7Z+XwvvSleTxJE+yGD8ntxvPR6CG7cJA10xR6/DYDlHRbqkrIYDHVJ8UcZKmAlz4MsfDy21HQ6w4hhGGvQNXopjFDlOrPP9z1Y1RYKExGQcNdrqknioxqFtBL0jtALOp/n8uH7KWh6S3glqldFaBYEYEUnCAWYEDg0Zw9hhvmUEErow9eL0Lx9cZDAGIJq70B16zDXP4ogPwNn9vMAVTvQKZILNEM3R7H2H1dHSy7IMhEv8xUkE57l92aYjB4tK75YTizn1mnGRV16PP2y8/lZbo6k9EtSVLOX8fKzPC/BkMA00BV7vDYAlrdhf3jJOZH94bmIMNTF57i4cAHkwsAww3myzM/qsShowdDWoeuV7nexWkA6GpPnu8hoNsIwJUDHNFPQ2tsIQ45blCBBdaoIMyTjxf3X3QaQZn5AJmI8MZtDAguvU5gRno14r1NBmNHFcYQHo+ahhO0u6IhBKlB8Kx4cPRgf5u4rCMr38Kq1iN2W0nMXxkfN2Odvzo0Ed+8MK/G35/MPsomglyM7STJk2mve4qzsfM4rhsIk+ZIA0Q/5UeqKSWCSNgCXx2MDYHkbGBeQk0JdSY4EQYQ3GXeL581KPovHoiklmNod+P7B8IbVriHIDIEb01TKhGqxbDguI1bobHidxxFYEEiZSInBwm/ADyY6GX7VqQEpeg/xAugHCOPID5P1PphHisfue50wnGaXEZq8TgpUex+BmYfqt4HmLhxFQxo1vJjehjL/PMLZF/C47TjGPpnpkrHPPFq/i+lR76dHRpAicBEwerWzsPMJLPRSeE56HlL6pZ9EfFJXjOcd6Io9PhuUTzyhxgWENwlDMNyNMtQha/15o/Axe6x/9KMfFf/y5mXYgiWcvLEfhtRFf8n7EIa6hJR+SyzirWYDzUYXlLLZPHQlCiMxbyI+4cXTMV4ERLVXdObO69ILiR4bCJUueBCIGAoTj12y8xOjCXSRjxGv2fud5xUClh7lEfhqpSWPrwDZqEFV2tCQWfptmHd+XRQWPA7jXKCUDnMY9AZoDDtxZ89y26QMzHkx73kMerz8l/mPfrxV5vGYO+EiT3A6zeTcliXMfMwS5n5Ci1JXjGE1ghqPwT+Gih9XiPJptYHH8oSGusgtYShCJl1lqEtWIRFYHnVohuPozWPxobrXoaQanWcEIKoEkrjySybSxXoY3/SuBSRD6/Kx/G7i/Ynv6XkdhTBxFF/rAktowwu6yWrFayJUosWX3pCvZju7qma9Adf1QBjJp2Lw0U0giMfK/EtmGObaJ6A2dmE9/9VA6tMTzOf9GxwlnU9v9DTp/POUdOHvxvNxzr355ptivvV67H7Y+Ukey1EM+17PKcGQ52QxBTdaBJaBrtijtYHH8gQYF2vegPRM+McdHsMdXEx4s3FxoT4SvRPGzrkT/IIv+IJHTrw7zWMR5LutNXiN34GGEtqN7i6R8X6dISZpChPpLBvmg7gs2mV1VzdtojGvIl6XXkg3RxM9rnVBR4AHuSvdKR0G3fNrXq2DX7RWoxUfG8irForFqMOh6TcQaFmEqgatXUIgiJMh1Pa++LheWUbq9V+C0u4qA5y3kQ/D3ies6uLCymQ0QzvSG33U/VhoLP5gqJUyLL2aZOczXMdF/qRNyWHmvSxhZriPDPt+jMehN8djvv766+J6JLubDuzh2wDCH5PJyZ7knMiqLikHT5AhmPAxFxTGkPspxTxvOyp5n2zpW6vu4LPfrSKXCRGGKrIKp1dXiiUCjgmR62AaXeZRVOZRxDNRnkUigILodcQ6YeJ1v7vrVUMLvpfuzGICT6AWO68rroVAyUXclhBo1ppQXR2qEkDTmbvRxDE1nkftHjfQ81DVCAQDoygS/qrTgJ+fgtbYhmJVkfnNH0X7874WYeFgP/ezhlyO6mHPfAMT2mch/J23CCXzH4dlWM5D1Th5jsOAeVj6hSG/Xi3p9dy4cUOQfwe6Yo/OBsDyBFV1cccvq7qYW+FzL7744iP1SnpN3tOrkuQ7fpfF+TG8+FlFpM16J2+i2fsI06zsIhhF/BPfM6EZbYQyj0Iiv7jPuXj6Iq+S5CZGeZYEi9yPYKfzjOuBFJcAKYS+gbDpIGjZUNsVaNhD6LnQwyik5bt5DKObX/GNUfhsFpYtILSZaykISRjVbQqPRYzKqSE0Y7kXNbpdFKeBUNWR+c1/B+vz/hKCkU/nu/Rq3DzwN0/2sOdv/iDS+b2WB/dq0gNKyrDQC+lVjLQXdj7n1VELPkmb/CzPKcvme7UkcZOfHeiKPTobAMsjMJlAlJyTw1VdDHVxkWboizcSq3x4I7DHeL9s5EfRsZHJY6krRpb1xFgO2eAVhEKz66AFQRqa1kp4EVJiJbqxFacJpFkKTKKJL/IqYVIY0rEALRGbd9vxZwMEYQZBdR9+y4JuUQUZcDNz0Jo70f8HGhqOhtF4jR7K5xC2W1D8SMAyUE0Y9TWgsQsvNw1lfx1BuoBgSEeoqQLvVLsGLxWVzKqNbYQaD6YhNDLQGnswX/8Q7Bfeh3C8d0IgFzcCCQGllx72Z7GHJZvP35w5DElI5ON+F/l+9MgOS7/wOP3cE4d1xSQznyAzAJeHZwNgeUShLhkikQTGZAtaPuZOjHX/1HGiMRxCEHrcJkNysryVxiQyd51cIJTQQsr9BFRYQqY+DFnaKfXEVCiUtc90K79YkRVmih2XQ/VqIjxG8iKfYrgsSJAONbcCX+sS7chf8d0s1OoutPoysk4KGjkssTXKJQzH8i66pqCYTgGBrEoK4adGoLe2omNZdVHKrISB+Atyk9Aam8Lb8XILCGwDwfBYJxdDdr4/NA806tBqmwg1A4rvwPy9n4fzOX/y1OtIMOZ1ZMiLu/+H1Xys3xyLVG84bqE9/Bp5LbIsuJ9mX0l2PudOkp1/mrqxlH6RJEiC8Fl0xbhxY0HMQFfs4doAWB5CqEtyTpKhLk5gAoWs6mKoSxLauAM7vBBwsXmcycbDLX1lBRq9FQoUilCN30bK/5QAlchUkQPR9AhYGE5SnTLCdKGbNxF8FCoOR5+IwmMEI0GNjzS9hPS9fN1H6IdCAiawTWhb96HqWWh2qfP5pp9CPvaKTF2Fbw5Bd6viNa22jbBYgBJwTAoUJ/JWxGd9F0FmHFprhz8eV7fuBfAcKI0y9EYJfm4cXnYWmlOOPCZVg+I58EYXoTC0EnhIf+hHkL34h8jiOHAdGTKUvzl/z8MbiIdhvQILf2M5Nv4/QeIoHbGjjsccy1mafSXZ+ZxDMpzWi7oxgUhWmXGs/eQbpa4Yx0ugkTJIA+mXh2MDYHnIoS5ask2uVL7lDXVS+SU/K4/1qCY+b7bkWOmZMGEqyZbS6xIJ/NBFynoDitFdqAV73W4mZpUmPBo/YHOu7qIdukSQxE6ReZKkGm/CU2M/FdTbUHbWYIgwGGArhSgtE70bvhvEeRpyJDNRKbMAMSZkfPjmMDRrV5Ar1foOwnxehMMIfKEkwtBnqmwizOVEdRmZ90FhGlp9U/x/2Gyx+xnCWYZhopyN6rCyTIVaWkOQLuKlO7+OzfFJBFNT4vox1EUvhRsH9mFhQv5R7JBPmjPyN+bYZNMxsuy5eZASLodB4jhvht9JSr9woe/V85LsfIa2JDu/134sDL0mSZD9SL9wI8f7j9+dmyPO74Gu2MOxAbA8pFAXb1QZ6uJr/e5U5U3KG+5h198f1ZDqqAo0mfT0PRdp71NQAltIz2tqlLCnR0A1YT+cgqo4nQQ9uPCnutVSql0XrPvOY6eGQOsuEFQr9v0cUK1CK91HmJ2FGoOKGO/eNlLD0bE1VUGaZcbdQUJp1TpAw8qv0JUqxsSWAL45Aq29JQBIq28jZP+WOBzmZ8ag1dfF2BVZrkyJFzcU4pb6yk04E8/AG5qHXl2DN3JRSMiExTGYm3eR/sSv4vfWNoT8DK+jDBk+SjsKWDgfpZYY7XDTMal+LRfs5KbnuGKAw82+GG7qFTgPs/N77cfCc7LCK8mP6ef+4Dl47oGu2MO1AbCcY6iLr8kFmjwU7pDOWjIqb7KHBSyHGz6dFJY7OC4VBf8twVMJlCwUuxX12aLFH2N1FnSnS1YkXyXVDbGofh1+mACWoA0/zEZth+s1aM27UJx2HL4C2o06MpoCPc7TFFM6Aj0N1WtGuRS3gcCYEeKRfEJrlRCMTED1WiJsJcAjR7l8ScSUxEdN5Ej84kInoQ9qmIlBqVCrmwgyWa6s0Ko7CPKjUFv7UF0b6vYqvLFpBDw+37+7Ck9RkW5X8bkbryP8M38DivloAUWa3OQcLmGW85Eew1EdIcmLOqojpPTAjzLJlGfehJwRydTvlZ0v9ch69ViOIkH2A2gyHEmvbKAr9vBsACw9WFKW/qhQVzIpK5soceI/SJMnyWfh+c5rx3s4gXxUw6fT7Nq0hQyiCizRWKtdRpCZEu1/pSl2HdB5o8fAEpAFf0hryqFMvYHANaHs70D1HeitjeioqgmeJYMIWIJYhVj3o/Mq5NMI5nwTapy7CZQMVErjy5FpeQEs9FhUrw3f7OY+RDgsRzTsLpz0VmhafQfB0Fjk+dCDyY5Da+5Gx0wXBbCEYQC7MIn09jJsLYVGahQjdhmV7ARMx4Ouqwh/8cfh/cmvPxjye0TGxZrFIeRA9VrCLOf0USBxmmx+kjNy69YtAV69mgyn0ZvqhwMkSZAcaz/dK2VZM6vCkoKXA12x87UBsJzSNCvJOUnK0jO0IHkcfI27IO7yeq2Q6cXOK4GfDMvJHdtZxqq1lzGc7uY/mGhngjz0TdLku+9zq/DD6Y6OlzDK3McW0MWp1qHs3oMes+5dc7bzeui7sNohMnGoP5fNEV26x6KnQf0pla2J46IAq3lAR0JhmTIt5qOI06jRuYRcfmoMiBP5IsGf76rwBmaxk8hXGVaLG4IxBxMQvup1pJusZgPSqgLDzMHL5mG0KghVA+r+lsjJaB/+Bfh/+E/gUZj0QGVLZIZ4zqJsneScSJDopR8LNz8SXPj/vTY749h4Do6b6hKcl70SGM8i/cLrxM9JD415HoILw9RyPPL1gZ3dBsDSQ6hLdmDkaxJMZKiLekgPKykrE/hnMRkG4Q1LZjzH+CAJZLLaU9VPoO3wppcJjFiKpbUPFIxu/xMBDpxa/sE8CrII6xa08i0gFSsTxx+pl3YwnI162POvqHU/K3IjzbIgQnbDVNsIR/NdafzGLsLhoa7aMb2SQr4LJvU9hPREpPG6xt4EQ26+ke/gklovI8jG3JVWGXZ+HCnUoXo2qukxZIwU0tVt+OMLUCtbUMtbgGsDZgYBk/+tBoLZy1BXbsF/5RPAe34/HoYd1XKYHCjOTXonvUrWi2uQWEgly57gwpBRrwUkPD8JlCzr5THoKfVjvN9OYucfZYcVAQ7zYw5bkoiZDKmx2pEe0EBX7HxscPV6CHUxPk0w4c3LnSBvmKRM+cOyfj2WoyTVZRjkgcJpgY1U5aOi9Jd5DtvPI6UxmR7v5N06fBwkCKpWFUEq4how5BXWPajVvUizS5AEbbieiYI4Dols6Yjh7laiVsGtGoLRMai+hZAs/tY+gtwsVD9q5hWBwTDUIA6PMWyld/M2wisxRwAnYtqTTe+pyXDYNvzCVHfABIbE2J30UOfmaNo+DCHdHyBv6giN+HenFxt4gO0gmLmMzMZdNHLj8KcWoTTpvaShfvy3EYxPAvO9SaD0Ypyn3OAQUI5qOcw58KA7bgkSzEPIHGIvRjAjMHCh5pzrhczIOc7xnsbOP854TyZJkMdJv/A+P1wkIENqBEN6TLyvuRbQBuBydntqr1wy1LW6uipuJIaGZKgrKVnCic88xEn9wh+G9eqxHO5tzrHyZuFYH9ilD0OkKh+D6jejh+wbb7tANuKQRBpfIaiaopiJyi+vLrwA389D274P3bVgmZMdp8OxbahKN6/DBYEkye4BNIR6AfAtKLLMWct1gEWMJSCpshtiC312lUyIUPoMXybCKl4EhEJcxsiJIgMvMyN6t6BhwTEm4FttuJ6L+sYe8vowUpkMiqYh8iphoyTCZu7kVXEcrbyOoDgOtEpQ6mXhO6mei9DygPyIkH1R3rwN5X/8F4Rf9zeAfOFclY4ZbjquxfR5hHIky54JclYO9tqThWOSZMbjuDFJk6G209j5JxnPQSCk98HPHiU3IzdphwHjKF0xKf0y0BU7mz1VwHJcqIueCCciJ6eslDqP8NGDmtQPO8oO917nTvGkhebMY6hdh+5EjHsaYSTtlBDmJqAINGHbRleQDH2zq+MUsNfKXg169V7nuWa5hHRMmM5lM1AaTPJHjwUDvt3oPtZ0hDEQdGX1ozyOLGNWGhWoyTLm+h6C4e4Y1PouQiPbyZuEbSrc5qGWt6G6JfiTBrStm/EZFFSUIsa8fQF+6dGL0EtrUPYiT8YdvQA0QoRjkwh8FUFuBGqTKgIFXiSo9X3UCxPQ2KRMVaDcvY3wynMiV6OkTeAnfgzhN3xzh2PTb36Mf5yr9EBPIweeJ/eJmxTOQ+Zb6H30mpeTZEZJoDypm2UyPHUSO/804/ik3AyPcdhbksBy1P0hQY0eE/+foDbQFTu7PRXAclqoi4+5E6QkuAwfsT7/YYe6ztL/JCmvImvyH7SX/bHnb23CqN5FkGFXxai3iuB3kJQYZqCBXBWSIMk+d6J+KCJAVoS6fh8tNwMzUWw2nFIQaBnRoVEoBjNclpuG6jUi9WPmSUZHojJjVYfaLMXtiyPw0GrMm5C1H3NYmiU4qTEYQg4mgOq2ECSok4K3H2aAhgatch/IDkcyLHHYy65XRQWaGTjiOxUSOSIWBQTDs9B270dPcJGxW1A2lhBOXkRYqsMrjBBBgVRGgKLmuYCegrq9Bn9yDsrqEvyrL0JduoVQS8H/8IehffEX9zRfZX7sLErH502q5bG48ZIEyl7DqiQzJgmUx1UeHi4OOI6d3ysQ0uM4ylvivc975rhrw3uISXwpWsmQ2kD65WymP61VXdxNyUopTn6Gws4tfHTOHosULeR4GZJ4JA2+fAup7Y8g1DIIXb1bcSW5KY09hHkm7BOhp1YVzYaCfD3yAjQlDU/LQ49BiWAhFITZlyVO/Edlw3w9Lu/Vh6A5e1GCvlVBUJjtvFdxWTY8GS3msVlUS2Zvl/g9VDOmHlhoA9r9u1AmTGiVSJSS1V2Oku3QbsSONDcOsx6VOesirzMReTrCI5Jl1VHVmT82B620LsKDwegMtM07wN4W3JlnEUzkodZ24cWCmYqmRlVnezsIJuagsP3xy6/An1mA9vy1Iy85q7nknORvz00DK5f6zY+dBVhOej/vHXrD/LcfUqKsvGIoTbYaPspbOErZmGDKfEeSnd+rERCO8paOU1A+TleMgEKgGoDLUw4sp1V18THDXpIwxh0gXV56AXx/P8J2j4rZzzDX2tqaADzKUDwM0cKjLL3924IH4qspaLWNaMENrI5cPcmJnrIIKBGh0PE1NDbWUTTcDlEyk42X8A6wqFDsuAyYcivJsmBJroxTJqHo5RIDT9BNrIei5WSi9JiqB7zhfSCgCvF+C9rKrcTrTkdm3+O5W3XQieFjsZutd8ED5McYUWdJ5nXU/R340/PQKhFLv5MDIkt/ZxOhbkDxXCitJpTSDgzbEh4UeTCR1zILrJcECx/MS1Hv7Df+F9S5GSjFKKTEjQPnpCwTPo9Nw1mA5aTPyHuIC72soGI+o5eFlsc8rR/LceXMLEpIaoP1Ux7P+5r3NM9LcCEwSI+lnwIEei5cJwa6Yv1Z3xD8m7/5m/jKr/xKUdbIi/xzP/dzp37mwx/+sJiI3HmRmPSf/tN/+rT3/Kt/9a/EroihKE4ixlj7te/93u/F+9//fhGXTvY54Q178+ZN/PZv/zaWlpbERPm8z/s8MeF5I0s57SfBSGxjxzx2D6SWE68xd2zcRfGaPwpQMSpvQW+udKqrGGYKwzjtnvBQ7GoNrbaFhq1BLZUxojtQ0gcTvGpj/wD/RCVnRNE7hMToMRtuxe9v7h/gnwiZ/UTZssjDJG7urF2FixS8cBi4eQvKfkkQGaU1KxXU1UhGR1cVpDwbQTGRh9nfRpCLYvFMtqs7ayK/I8ErVONwKAU1d1ZFboWeD8NiwURU6cXvEk7Oi++gt1vwkYU/c4XCZayHhVIrI1xZZWIJ4d27cH7yp1GtVET1E0mM6+vrYhH9/M///HPpCnqe/d2TyseSQMnFnm2Kez0P70Pe/7wP+Z0Pf+4k1j3Z+fRA6H0wstCr8fqxgICbRQITQaUfFQvmKllNSXBhlR2vAYHqPK/tO9n6BhaGYrggEwh6MfYU+WN/7I/hD//hPyx+pG/5lm/B13/91+NDH/pQ5z3/7b/9N3zbt30bvuu7vku4zDz+l33Zl4mdXL+2srLS6Q+/vLws4qV0pznReFMQtDhZk+GFk5Lkj8Jkgy/eABwvwYUxdcaomcx8mEq4h02xytBriVawkpFe3URIOmNMFqRl/Qp0LYf8/g4MUb3lQ2klPIC4pS+7MHY8ltBHYA53PZb4sSRTkhPD1sCdkFstVh6OTTyOYYgJ95abRrBRgbZ0U3gZgeehGXZ/W+4404UIOCSYdbpFxucMpNwM4++OhWCoG35Tt1cQmhS2JPiFCPIjneMo+7si58TeLcrOugiDUbCSysfhnTsIVzYQTsxAqVaAS5cQ2hasqRk0Ntaw+VMfFIspF1xuHJikfhClhgfxWKRnf9yxxHWIF36OkZucftsUc/PGzzGkyzUhaaeFqGQBDe+PfjaAkqfCYzMcx8/2U9jCjRzPzTWJ656MhgzA5XTre/v7FV/xFeKvV/u3//bfCvXU7//+7xePuYug5/ADP/ADAjxo//yf/3P81b/6V/FX/spf6Xzml37pl/Af/sN/wN/5O3+n53PRhaUUxfve9z4xIb7hG75BnJtExpMmFG+WR+2xcHJKfgwTtYwDH+bH8LVHCnhhgPTybwj9KxEOEs/FABA4KNUCqLrS4Uf6+iiMRlO0GI4+70Nr7iEYj3S7JHkxUFLRDkaWCZOFHx83+phyQPmEfeYpRCk+4lki4S9NKBb7IQKzgKDioLB9F9Vit4Oj1W5CDbTOlonlwiAAkHUpGfS7GwjNhDR/mV4Ty7niL2bbAIUphbQ+e7BMU/8+/uyaIFoK0majimD+MuOAUOw2WqMzSHs2lN0dBAuXoK7cB7wQ9vg8wvIu6mEKRjuAmR3ChYYNIz8C/SGUr/cKLLJ7JXM6DDMxd3L4PpGLaPJ4jCrI8lzO214rtw5XfDG0SztNgJLnpvdwWq7mKJPgzXPKTWc/xigK1waZW5I2kH452R56Nup3fud38Ef+yB858BwBhc/TpF5P8j2cDHws33OSceJz0vz1v/7XBQhxN0Sv5G/9rb8lPBQm306bhI8SWOjOc4wsayQIcqJz4nPS0uVPVqI96p4sxs4r0FpbUO0WPD3qDOgniIMjqgMz9vQ8dRT6+q0oxxFv/UVISFGFbpcwuduNw2F8TVZ3RY/j9r9k1SfzJmwOlgiNhGFCJF/RELRd4O4KtO1V8Zxbi0iXtGwmg0ytFHkZcRWb2qwiKExEfBt6HlYLAcFCjq9Zi8JjMvy2uw6ITpGRKZVSV4rftRFmE7m4Zr3zuSzPKxeb2r4As+beLpqWA7VmozgxgUx5HylNhapraP7kL0Xcm0cILNyoMGfHe4aLNBd1Rgh4z6288b+Bxu0D7xctEhIey2HeCENb3Bj1arLi66233hLl8rReBCj5Oscp2fn9eA2Sp8JIgAyT92MM3zM0lgypDTyXxwws3A1xcU8aHzNuyR+Zk0sSEA+/R0p8n2R//I//cXzpl36pOMYHPvAB4Z1893d/twgj9WoSWB7WROHYGAJgKJBgye/O5OIXfMEXiFLh4whkDyLpcpYQmLn5MfH/LcuCvbcj1t0E3xCa1wSJ5tWWCX3jVmdHH6THu29inoLyKeJBvHDLcJjkn9ALISs+7iGvWrVOsl48Ztlxos892OOF1zEzBX/HhnV/TSTNpWUYospGQCi7Qfq5qOukXF9DPc4RifxJ5CUlwYznl33uI+JnYjPC76hn4E8swmepsRvCn7kMf/oioKeF0nKom9A9B3YMaGqtgsb4FFK5HIZaTWgKVZabCJ57AaiUEFBav91G+9eia/4wgUV6x1zMGS3gfUUvgzkdRhDo6X/Ws4soavtoNZYQJtoQHAcsNOYqZfM38r56NYa1pAfCz/UqmS8Bgp7WUbmak4weEkNbcmPXj8nqNnp1BGPez7IH0wBc3qFVYd/3fd/XyUXwxvn2b//2vmPMBBaZpDwvcuHhlr70RJig7ac/x6PI/Yhx1qoo3v/FKMzE8xomMk4ZfmpGlP5Kdr2wZgtDcXkuTVznDpEx7hpp1YQUfafESxImkwt5qEXeQ/xRdomUxgZafm4sYshTFsYO0K4ZSN95PTpWZhxuugjDijwVRVWFfIzQLJM5IEt6WvE8KO9E/8vfl4Vru+sIZ7syKyIxX5xAaKQQFCcRtH2EqUmgtAelXEJgTEO7G+ee0lkEhSnB1eGo3QvPIty3YWUycKptYGoRGaeJPDXDhqcRtlsIL18Bmm1WE4jiAm0oB3WtCufjb0B/7jLMi92Cggc1Of+Pkn45TnzU3P0URifHUPdslEs3MTb17s6xxFU85n5i+FZyVVh91WtXRy7ysuKL4+q1lPdB2Pk8B4t17t27J47TD/lSVrexiOCwrthJ3Jin1R66x8JJI3ulS+NjusSMz8r8x1Hv4WdPM+6Y5GSmu8pJzkRbPybjrucRDuMNzFguQw3ckclQA8NzjNf2w0l4mKGw5Dh3Xv115MPujtNgNROtvh95DvFO3jMmkKqV0Qi7i4cINe2vI9Dj52IvBD6T3V1gUUQ4rHvzqY1StMjLyivLgZeehmdOwlNGEew7CJYrQhJFe+M12PuNLtcgm4USeyhyDGjEr8uc0Paa8CK656vCL0yIyq9OSEuJXg/1FPziLHw/A3+rAdy4A6xvIFDMTitjlkkHIzFRz/cQsptkfOxGuYzW6BQy7TaG9stIwUSwXoLvafDTOYQTk8D9exByzeubULJp+KvbCE0dqhqi9Yu/CZ9dNM+xTJ3hLlacMSLAeUfvhN7xUaCiL38MStiCZqaQL46g2YhK8mmS/3XSwsnjE2C46HJe9WrycwS+fkzmauh58Hv2aryXuOYQFOjx9FscJPM1vL7UFZPX+nG2EH9qgeUP/IE/gN/4jd848Nyv/dqvieeT1SLJ93Ay87F8T6/GMk2ClIzd9mpSzfSswCKZ0oz9ypuZPcEZ6qKH0q90uTR+Fymcdx4mZWCY25HjvDI7jpfyFvx0FDqKLGa2M4RljokwkW+OQ1u/KcDCc5I3UuTNyMovGU5Sq1vJrAm0drlbzaXqCJGG72bhV0KE99agLi9DvXUd2s03oN27gdrGjmioJS1bTMpzhEAjbsgV526ihHxWVGV1ku75ySSWIdQzHTAT18N24RUW4O+0obx1A6HlQ4mvNT8fthJtl/n5VFyd57pQ90uoDUXXbGh4CBnHRSC6TgbAyjJAMKlUhZfiO4A/Mh15Ojz/6qooVtCH8kJeP9wro/Y/+y+vT5oM8TDUyhAz7ytuZrgQcoN2rCfuWjB2XwfyQ0JWmoVp8wsFsXCSQ9WLZL7s6siQLj2QXhda+TmOlfdPP965zNX0AxBSMj9JvmR/on6Mn6fHxHA2KQwDcDknYGEtOl1B/tE4mfn/3P3S/u7f/bv4S3/pL3Xe/9f+2l8Trif5JRR4+9f/+l/jv//3/45v/dZv7byHpcb/7t/9O/z4j/+4mChMxNPrkFVivRpvHsZ9WQrZr50lgc9rcfv2bcE5oZYSd4MMB/Bm5k7sQcNqyfbED2K8liwN5Th5M7B8WY5zvvqKkFBRapVOcj3JE6G4YqAPQ12/E7f2DVG0mDM5WAKtMnEt/ifOU3gWQjXh2RB+HB9eMASslaDdehOotwQJMSoTdtA0urmmNJtlxSx2YdQV6xwsgLK9LjwN8TBuyhXkxruhMNkSOWnlXTG+YGgKbmpajANrGzFXRghzic6TwgIf6tY6grHIa7ZtB+HyfVhmJsrBsJMmy3SlrH+ljOZo7GHzd5MMfL6D82BrG8GbN6FcfQbh/DyU0SHAtqBm09BSGrw378K6d3pO8agNDRdImbtjNaRs4NZLWMp48xcALeQNEJFAFQO6kcYLL1zriE/2simSpb0EIY6n19wDP8ccj/xcP5uoJEAwh3SaJcuaCbYs6WfOhCHrfoxAyBJxRlW4ttEG4PKAORa6u+SkJEGB9pf/8l8WxEe60BJkaCz3ZekwgeQHf/AHRVzzx37sxzqlxrQ/+2f/rLhB/uE//IciJsxqrl/5lV/5tIR+r5PtrMDSy46JE0iy9wksDL+dB6ntKJM7RY6rX46DZHRznLxxjmo9rO3dgb53WyS61XYFXvEKdOvg4haGKrBf6XI34IuujR6lWdxuyJG6X35hUezmO2a3EWomfGMU6tYGFLsMfbcrShmw+is217YRqt0wTdo0EQxNCgVhcd5WE0FhWMi8sKqAnklQmIS2v9pJ9AvV5QSwiHDY4qXkFYUXFKHdfkvsqIKxGfGnrcd8DCo3C3Llrgh30ZpuCMKd47mg3qU+Pgts3GUiSpAxw4ssEokW0XRlH4FOmRsTYHjn0uWo8mxzC7h2Fbh9B+G9JWBoCKFlQ1mYg/+pW1AW56EWdFR//qMw/99/EirlYE4wVjdJYUr+lsxXcJFkGbDc7PUyF9Xt29CtHYTDI91GOJxzioq5uRG0Wosib9nrvOaiTS+in8ZbNIIJvwMXap6Pif1ez9kPO196LNIYVUh+th+9Pb6XngtDyVKqfyBa+QDA8of+0B86cTdyFKuen+Hu5yT7m3/zb4q/BzH+qGcFlpNCYYdb+nLyckfIROB5kdpOCtH1uhOSjZ9k7xjJjTmyTbLvInXn16LzxIuxVlpDSKmR+KamV6KU9hCmR7s78857NxDmD4p0MgGvSK4KSYhtD+FuE3orjteTe5KNwYGL9t4OFMOEEThIGRrMVje8xZOxj0vn2AwLys/GYwi9eB5KcuX2GjCUij2YUORRAuiCSe8X5hFev43g4lC33iv0Ee4llQGAcGUFQcboAGSGWl9DeRTYNGwTUFZXEOaygK1GfJdqFQqBgnOIBMj5RZi1GHAZkp2MN0dLy8DoCNAMo0q6VguK40J94Rmg2YBKuRk7ROWXP47Rr+z2Ye/8XEf0rz+8UUjOg1MtDGHc/l90DZlUE0Ap+twoAeOAUEJblNlyPvF+OrwoH2dJlWACXS/VmQSW5OeoPMFz92okPCe1wSTAHrajiJiyRTE/S3DpR3hWllzzs1Isc6ArFtk77ts/iMdyGFgYq6aryxASJSzk5OcfyV0PE1T6KTnmTSVVBpjnkRIakhtz1DjN5Y8KL0MYa4hF+MpGoMlciY6w5UO1GlCctlAhFu+RyXEKQqYjbkhnrPsbIpzmZacRllrQ7l+P9Ltis9pt7CdUOfKFItRY5p4NsxhOC7KyWZcCVJmXSfRnaceJdFmpRL2uOMwWjd8RFV2dAgJ+NcuHVzeBN66LBR31dicPJCTt9/Y64a6mWOwdNHJjoqkXj6sy3MXXJYZR0HR8DtDjkB+9lrjEOKBidqMOf2gE4dQ0wkwOQSoLDMWtjrM5KClT5FTUi/ORN7OxCb/cgpox4d1fh/PaHVjL3ZwBvWKGWZkToxwR5zcT8QwB8f+P2tn3UhWpfex/QKntR6TQdDomuYaixw1LrRW1JY7BBDv/7SdMxQ0N86a8d3pJzEseiyReci6zR1I/Jtn5XOSP2yAepRWWLCWWPJV+jJEKRliYk+LmcyD98g4pNz5sDE09CLBwkssQkuzJ8jDbD5+15JgTmN+TNy6TrJzgvagM0JTGnkiudw/WPb66uwRv9lkEKECrLcdPamJXLT6beK9S3weKiV7x6SEEVRfmRqRuTHPqjc4kCwMf+USlGEmCoQyHxV5ZmBkGhCxMCLW8i2B6HGq7DkXkKTYQDhkdj4UtgJ3R2aiffeccmngvG3N5xUX4a1VolFSR5nkIJuehbS0jjMNd+y0PVDiTO/KszM0QPHjtuTjOznaPsc5xjCEsjEYeUTsU3SyF90I2/rNzCJZjrkRgwjeLgNcCWNm2eBHh8KjwdsKhLMJKDfrCDNyby0hdWoRfr2Hvf3wE4Z/6XGzvbneEKfvpX38asKivfxTG5g0oWRNBrQVcSEdqzMIl5QHovXSru7jgc5PVT5iKyXUuuIxUsBLypCZhyTJ/egEMp53UsOus7PzjtMIOtyjuVWDzsK4Yz83cS7FY7HguT2sZ8sBjSagis0qKBDLmiLhAc2fICceJ87hc28OhMFkwwB0s/+UkZvVcryoDtNTrvwKlWoKfGf10sODWvGlD210+UHWlVXfg5yajXiyyaqxBprkh2PBeegbK/SXAPgiCWq0ELyYnZtMpGNVdBOk4SS+ruchnCbw4wR/tNjtyMLl4QeJ76JEMTR2Qg/HU9IHqM2VvSwhFuu4wwtduiO6Q4WS3VS3Z8HYrOodQO+YiWKmK0mQZQlF2t4UsjUjCx/kd9lMJh8fgL1yDhzy8MA/v+jKC63cRVhvA2JSojxPnqDcYn4kH6CFstgU/BpU6wv2q8Ly8e+sI9htQX3oWYSYD/cos3HtrsHwH9dVVbP7wrxwQpuxH7fhEYFm5DeO1XxUFEALUgxCKmY5KvunpiU5llNw5uOhzoWYoTiarezHeQ1I2n4UFx9lh5j3De/0k5Xtl55+kSSbzQ/T+ZSlxPyZ1xQhOzWZTXCtuUJ9Wz+UdByyczL0CCycRwwsMITFxyEnAycUQEhN7j7vRl5zwHCcVcOnmS64A+TsEFHopx8WUjzzezh3oWzein54LHkMhCWDxc1NQ98vwCwkOkawWi8tv/QQrnYtk0FJF2IsJ/nq5hLrWrRgjNwLFOM8gWwxnpZqwEuVB5Ou63gGabtfIaGxCGl+AXNdjoamHKnrC9BDcHUd4FdETAXy3u8jWGw1o6xvwjRTM+JgqWyxMzh+ohhP6ZOxiqarw5y7DawLuSgX+G3cRbu3Cb7RJqIjf7CO4vwo3k+0SNvfYXTIdeTz7VagzM9Fr9Az2SlDGR0gmgn9vFc7uPtzr99CYykNtWhjJZDAZhHA++OqZwq3HAkt9H+b//snIEzPMKASWZqO2hmi2Rj24aPyU1GkfOBbnGMGFhQGci70aQ8aco1xw6fUcZUcRkwmqjBTIhbpXk+z8o5SUT5PNlwKbDGmxerJfY9iQoedPfvKT4hpxTXlapV/ekcDC0NBxJnuycDfE3Al3RJz4nMR0vekBPAnuqywY4E3FZCZDXkzEcwdLt/tMVWhhAPP1/xn9P/MB9T342alI4wsqAjMvqrcEY77R7MqqyCqyyib87ETHY/EKs/A3N+FKciLDJpk00vkE54S7flkqLD2NeKGQ46dqcnQCPQaayQ4IiTwK3yeBpVzqFBDQzP1dBLE0sjt2Gc6n7gtwSVabefdX4MV5lVwhDzUIgYn5AwAVNui9JBYACoBOLMAJivDeWEJYbYowVsf8AMF0HB6jR+k4sHOxhhjBo1YHZuaAWHomuLsE5crl6LUWAT2ETWFLsvEtC2E+hzHNQG58CKrlIDuWgfeJG9j4mf9zPsDi2DB+9t9AQdS/JnB8+A0XgWcg1Ibj0m0KfPoIAx2K6LPjH+CxMExFz5ghsX6iAkzgyw6UR+U/jtMKY1KeVaTcTHFzdRYlZelhSWWN0woQJIDyfutX+oVGr2V8fFx4LLID7NMILmcGln76p7AqTLJ3k3+U05f2tV/7tZ/2+pd/+Zef2WM5/EOy5JZJUIa6uFAfDiERVJ6EnixJohtdctlJkLHbBy0Y0O9/HFotVjiQgpCbd0VIjAtLaCtQnJZYcLXaLgKpGpxco2wPvqKhhiFo92/CbzfhSln8+KYWPU1kAl3ToZY2EWSGuuTF0gYCkg3jMVB+nsbGWeJfNdXtGknBSApISu9if08QIaVxaIEXwMlfhP/JSDrfKXe9GN91oDFJPxXJt2jxOQICRZxjEcdZXxe8GYKYP38Fdt2A11SA/TiEEwTwK82uV6OpCG4vkx3ZyQ9lNndgj5OUGQPm7XvASDe3ECyvw6KIoabCa7YQDBcQjA5B1zUY2RTUtAnvxn3oGR2o1pGbKaD2wY+i/NvX+/6tD2iF2TaU//wvobhW7JwyB4XIW8mm4Do2AoY06aWxDQAT+AG9TrvDvD8qvNUr/0P2RmFSXwpfJu0kKSVu+LiJ6jexTg6P9LDIzj+p3/1hIw+IwETuVz/eWTLXo2ma+OzTqit2JmDpt3/KBz/4wU7dPf+4YPLCf83XfM2B9xFIku/7r//1v/Y9Nu6M5G6KuxxWlxD05MRk7JYliYdDSI9DOj95Yx0WqWQZJL0TxpvPRb/MaSN1vatukFQkFuxwcwRaOQofdQCgvBMDRHdh8Su7aNZ8FPYiKY20YSBb3esCSdwV0h+KQj+SMBkwKS+Py90jyYyyTLheiXIpsUCkUidXpbv4hGbugNpxp38KvaZ0AXY5QPBGV5XXrtZhDUULeiaW0AnsGKjkV9nYRFhgH5jEd/M0OOYk3Ffvi4U9qLSikJE4QIBwZw/hhdhrIefD8xEwEZ+UY7H97lh1DYGiwb18Ec3JSdQ1Ey07FGE2teHCvLsBbXgEft2Bt1GGYhjQX7giAFcfzkKxLKQ0D1s/8kvY+B+nK30f5bEE3LH/0P8DtbqNwHKhDacRaj4CqHACHR4c1CsV2EJhOvYahYAb9a+infZhb4IbHG4qeU/12nzrpPzHSerG/B4M+/L+lBJJvZosBGBITAra9novsVBCqjD3o94sx5xOp8W5ZDWdVEV+WsDlTMCS7J/C3Qv7p3CHwP4pRxkXR8ZM5R8lXfj+w8BCryH5Pu5U+jUmOQksX/3VXy1Ujwl2dKcpr3ISkVFWXz3KHz7pRdFl59iTnS15s52XwrF242MIjQQBLHkNFANKnNAWJvuWtGtwMhNox/ySNhPlTR9IDIdJd9FNcXj24GFl6CIGC1QTApHiYAfj7QIs4pteAFqSdd9sHAAA5nX42Bu/AGu5hbDchpdYMLL5PHQZjpPVZsurCNPdBmLinOwcyco0w4Q7cw3Oto1wt5ssDhnCmI+FKuMFLdiPvBbpQQW3SXjsemxqq4UgnYc3uwjbMeC8sYRGqQF9vYR0rYViOgN1qIgwTa8shL++A21+ioxQcT6PXpCqwH35JtRKFbmL49BdG9Wf+Qhuf/t/gHdIZuYkYPE++LPAf/63oqW0aGPjsXAB8NoKPIaE2i4CvYjhdBqG5kfgws+q3HbwR47aex+16FP8kd5LP56EzH9IOZTO73CK+CvPz0U+qdHVLztfEj37KcLh95Pqzf0UEdB4TRgWYz5Udtt8mtj5fQPLg/ZPof37f//v8ef+3J/7tM6IbGHMBZUsYsq69BPH5QJNORmqAvBHZJUGw3W9tvSVCscP+4eXAoGyHwbPx8ozelFHiVSeh8Kx0qxCv/dJhPUWQiP20uJ7U4ANiXxkjUthR78LMur2KgJG5jMjMOsWzFYNKduClxk68N4wzrN01HB31qLqL9kJsrKLMNVlRSt7GwcWeeZhSILsyqB0vUnmWZLvDffLqJrTcD95Dxp7nfDJqa5SLRPkwUbU3VECi8iJjM0eCOsFm7uipbDlFuC+fl9USGGhq3hMoHM3y5EHIkmZ9FqYa+no8fMUCjA/h/rENOxGiMp6Ca3dKpTYk8nW29CfjVV4KT1DHbSJMYS6BiWTgr+0AW1sOPKCXE+Ew4znLkAZKyLYLiEznBafU5dWcf+v/Uvs/NzvnLi4Zpc2ofzQv4H6id+ECheBCnhU4TU9IKVAzetC4VlNazBzKSjsfJkaQeD7sBpx6E+1Rf3fccAi+R+cr/14EpILxhwGC2eSrY97ASXmHXmv92PcpLIYh+diUr8fYxhaFhH081nP88S14ZhJW3jadMX6BpYH7Z/CBZW7DrYnPhwG+8//+T8L8UlK4X/kIx8RnSp7+RHYnZKLM3f91BzjD8pQHXcqj0Ph+LBxQhEk+b1ZJsyw1+F+GMcl4mUC8EHMePlXRXxdre/DV4txGCxamHxjSPBEuFBKySzf6YY3jNBDxsxB29qFakVJdyZ/PakDFucpNOZRmAuRwMIFg7mbhDwJS3alCUkW2Y+YE7FE8EjsWq32gfcyMmYVp1AOxmC9VYW31925cz2Gn9g4cJGq1BCOTx/wkoJa95gil5KfBLUxwz1JFA3glrqLh/BKWB5MIEm0BggqjfikzDAvwqp65F3CXN2D6gXQNQ1mKiuAQxzHNOBdvwflysUIvHiMlU1oC3NQcmmo9FgKOcA0YLzrqlA/lrkWc3oEpmcjrXjQFR+q3UbjZz6M+3/ln2Hlm/4ltv6f/4LSf//fKP/4L2L/7/8gqn/jH+LK73wc2u4mAk2By94xTUeAtmWb8Gx2Pgyh50ixyUCFBdVuQFM1GLkROLaFdoP3gApVsU4sXSYYMEfZryfBaAW5IiyXlyrKPZXJp1IClLgxI4myH+OGlfc4CwF6Dd8liwgITP181otlmOSYky2ZnwZweeQESXorXPCTbT5p9GCk8XUCBd1tejFf8iVfcuIx/8Jf+AsiLMeQGyc33V8CIHcavRpvHpln6Ucz6CRjeaXMF3Fc3DkxCd9PD/sH9ViU6i60278nWOA0bWcF/oXouvjDC9CWo9xEo9XGkF1BY2IeOadbVcdcibJXEeEiMvPFMRUVJj2ZsSGodlO0MhZAoaQOSOWzJbBSSIQzWcGVG0Zo5oVci98IEBgzUY7CduC3MlDcMSimjrASIEwtIGhb8NoWqjfLGNvYhvxl0sXxSFSSFobwljahFXQovFbxos8qN63RbQcQrq0jHHkOYToDJzMD7+Ul4LlrCYmXEOF2Cbi2IBSI5XG8chOGmqgg2ymJijBraBLKjSgv5Wdy8FMmNNtBmoUg9zahPXcJ4e27UAyqOQP+8ib05y4iTJlQF2bhewHC4WH499aA1W2oM+PwNkrQry3C3y2LOelevy+AJrUwicZqWWwJTAH8GvRSBT7VCe7cFvL7qbDFXQG0tAIv5J8mRIspMOk7PlJDARw/gOOlo3bQoYtQz0Nr7SL0R6CnRpEpDqNeq0MzR2CkXASBeqI3ITugUoqFyW6Gf3oxbqYY8mUOgtZriEom1j/+8Y93Quf9eBA8r5Rv6acQhjlPKRvDteskKkIQK5J3CLdxIQFpDbIPzDtdV6zvb/Ug/VNYOvtTP/VT+Lqv+7qeShR5Lk7W04znJag8qF5Yr0KUJxl3IvTcGB7gzUb3maE95k44OfsBlfPoyWJ88pejrooJT0xdvg2Leo2rS53nUjEHI1srA7oZ7ejZrndlVYS7gky3uknwTwgkcZdGoTPF45LNnvA66CEFqgl/7AK8/DyCzTq8Uojw9dvA629B2a0gXNkAVtaArR3AV4H1LYT31wS/o7lVgbK6BWOvgmLmYJdNb7/Zzbtwp2w5CCfjKjaZ/9igmGTi2oV0PHRYVh7eraj4wNuqkCYevR6Hc3yOI3GccHsP4Vj0XcNCAfWxGWytlLueDq8ze9uPxSAa79zpdSiXFgWwiMONj8InU784AvfGCrw7a0CDpccq1MUZhK1oN+zdXhFl2spwAeZLl0FXUl9aRi5oo+jXRVUZw4UZ2NDJOWGvmMCFqbbhmToUI9JKUy0PLt/VDBEwb6PkYBg+DNOD1/Kgir47CoL0KH9UKH4LhpFCfqgg8iC+3+4pTCVLdOlF9NMfhV6EbNR1HMflJFBi+4eTqAVJ4z3E+5sVW7I6rZ/7Sob+CBKnfdaN77Vk+J2FBAREhsS4Vkrpl/NqifG2B5YH6Z/y0z/90wL1/+Jf/IunnocTlODAGGe/RkDqtycL7aw9WeiNyITkYU0nel4cz1l3Jg+SvFf3VqEtRV0XRVOQ2LgoNbbKCMgGj82Id2BMxPupMQRDs8AqWwA7YsFV1u8JEUjxHpk32ViOypRjYBE9TFi2qmrwRxfgpqcRlGyAcvF37kBpNBJaYFG+IZzsSqU4zAHJXIrnQsl13ysok+xxIo26YRNROFb2UAkoRRINMPqX4bCRbtvkYHYR7ZKKYDfRRldVEMTH6QDL/XVmfQ8UOLRLNdQmp9EoudBWSihmstAY2upcQA3Gyh7cmcnOccSxtsoIx8cQzs3BWt6Dt1mGV21DnYvPqamCue+t7kCZm4R2aRba1UUE5QbCWhPum3ehDuWhv3gZxrMLqKpZqJoCn50/jSwMlgRrIXJhEw2jgGLGEzwjJaWLMFsu04KeNxBoOuyqjfaeDS2jIDtpQMlQcoRVbOmowydJkr6DVMpAoZjG3m6ls7M+zai1Rc+FFVj9VFHJkHo/FWYSlNjLpVfZe8m6P42df5LJz/J6MKF/HCh4ntcpvEkaC4f4+adBV+xMq91p/VPYj4WJ9KPCYH/iT/yJT9MN4q7+O77jO8QOn4syQYpVXdzhJ+X1z4skeZz1W3J8uFskJ4jsFnlezP0H8VjU6x/rSKNw8WUSnmYPz2NUo8Ci2RVkTC4ejTqCajsCFVn5RQ+FbYIT7+2UFcs+8pQGafvw6ypw/TbUZfZP9zvAI95Ta3SJlwFr/LunbTUasFm+y7EHAYxEpZrICom4TmxUO46JkFLS31vejhj6Mv/BU7CzpQIEC1fQeGMPoeUBszMHEv3O6l6coI8XihAIiiPw48d2Jo06v5OtQ4t1xIQiwo01KKMx2Ma706Bqdc6vzk/Dzw/DcxS4MZhRRiVstODtVqFenIuABQq0y3Pw9hoIbQ8KczOUVmGIUAG0sSFgcxcpBBhDE6HvIocWdN9GUzWhGjpaWg6qzcdZGEaAgMrJdgv7jSx03RMhyuwo5ZtD1Eo6ovSWzzpswLdEDik0hqhzI8JkqXSIbFrvKW8qjVEDWUV1koRL0mRFGD/bL1eFLPdey56T6swnsfNPMynwSg9LVnuddK6jAJGeD68RAZGffyeCy5mAhf1T/tk/+2eifwqTd7xIyf4pXGxlUk4ad/Msqz0qDMYfi7uHr/qqrxJ5Eb6HP/xv/dZv9dXK9yyyLv0Cy1FdGGW3SO6gztot8jSPpZ+JJ6pfrr+C9q2bKOndHIdipEQXRH13U4SI1L1NkWeJXozzEvQoShUEntL1HuLVX1m/j4BlvMlGYGTGmxl4Y5fgM6G+soYw1xWmFIBGlrs020I4ES3sVqsFb3VNdF6UnRiNOCcjPre9izAXV5JRVLKSCJfoGrzduOe9BARK1NADSkqzrO/CW3wWjZfXRWWYKPFNECyFajKT8YuLB8Jm9u1V1FtNtKen4DZMGFs1hA6FGhO/resLLowcjzhcrSmS4rh8Ee17e3BXdhC0HSjDQ0DK6GihhZYjXkM+C2VmEs6tdfibJdG10r2+JBL+IUNhn3ENQaUGv1pH026jPlGEprpohqYo/x4OWwJYC6jDzeYwrFZgc5ymAd0MYSg2KvsqFF2FHaQxNBUidBzUdkPRi4ydPFUn6nED6oWxapDXM0ihOEQZfeVIwvFxxggDw1snSbgcJQxJQOJGrF+uiix7PknVWJ4n6UEcxc7vZ51g6I/X5agKNdd1T6xCJQ+Im2ZeI/bWeSey88+cOWLvFMZUGdpiUoq7dGlMuB/uy8I8Ay8cuSWHjTHPD33oQ4JzQvSm1/KjP/qjZ2r09aDActyOiROAjH3ZhZGxVtn69Ty6RR5ncoL2crNJ7TNR9v2RXxBVTSO7W/DHo5ANPQc/PQLFandJkPdvwR+djwQgzQyCdgClVRfKwcHEhQOVX1zAfD3blWJRVATZMfhNDcqNG6IvvOg1EiSuBTfJ9BJic4MAlXa0AHBTbnBXPiUZ/grCciJMRSb8uJwDIYK1bSAGGkVTEGyWEBSHOx6LuE5kjyfMG55Be9vtqrWEIey7W0Aq9ibjqjWr4cJpd3e9ahgiMzoP/3Yl0khjgcDWPtSr0TWR1W/O7TWoFxciL4Pfb3EGVsmBn7wGqiJCXer0FEKCGz8/XIB6YQ5+1YKSSkEdjz0f8lk0FdrCDLylLTiv3oa/U4FL7zdlYLhSRQFulLexbFgaxSOBhpqH3qxj1ytiKGNB01zUnDw8LY1c3kfbUkQCv9HQoaeoD0ddtbz4bUOjILpoKr4r2lCLTpI+CZI+JifHxKLXz86e5OOTJFySJnM4kqvC+7+fCjOZ+zgtb3KUTthhdn4/xrwSC3H4Od5zh89lnFIYQE9LytXwO/Mz7yRweUeWJJwVWA7nWPhjs96eNwjBkzswlgczEc+dUi+tXx/U5M1wHOAdpX32QiGFseo2MnFCHrdvCXChMrC6du8gWHDFZdWaqsNXclArcW6K4a0NkgpzUR+T2NT1JQSqDis7Ak8bgXLzFsIwccNSG2tlCWE2SraLG2VtFY7sWaIoyDWYS1FgxiGjMFY/FvEu8kSKccjL0BDGP4cAD4aoZD4kvi7B0BiUuIRXnH5tt8NV8S48i9rHV+FniwfzOqxcmI88NTcO9wUr2wizMShlM3DGF2EzdJ/uhjO5mFubNZFYTy4AbqUNpZBDa3wC/u09BG0b7Ttb0OaihL8kU7r3N6DOTEJ7/rIoAXZvr4nyY/fuupCLMZ6/BGViGBgbhvPWfbiVKHcQjg8hlUsj64YRgfHSAkaDGrSciWbTRz5sIqXYUFMGRowG9r00bFtFMd1GreSCvFB+Tk+rqO0FaFY8jC6yDNqMvouaFeXoiluNPBe2KuZ1Cgxomi94YAyJ9Vrie5qEy3GehAxRMYzNUuReTZY98zyMJBy1OB8nmZ9k5x+nHHKcsRCHwMSxJvvOuKd4LNIYnUmSTN9Jnss7ElgepCcLdw8kNHGiMdTFHQl3X0zE010/rrnSwzK5mzsMLMxpSfl8Vs4ltc8m3jooXCjAY2kJQStxjMTxhB5Xm2GtRFMmTRMeiJ+fAOLFVz7vWYC+tgt1J4q/K+wVT3Vgms98TAiX5cBUF2CPkrD7OJ3LQWs2EU7MdsYQbkfJ3k6Rl+w7zzLZdcrKMP8R824c2XErerNfc6AmZPQhOCZmB1Ro1lZVhIbEseNFrrYdeUZe/JiS9zrDcOOjaKII68628C7ojXSuk6HBL9WhXL5wIEEf5gtwmFRfj9nZzFe4HpyGA6WY63wvdbQIt+3D5e9A5ePEeJhPabdtVPYqaLH184UpaOkU9KsL0ClaWaoibLWhv+sZ6GkTda0Azwsxk7dR9jOoNlXYnhKRQ1VNgAw13bhk7+zqGB7hNQqRH9OhpQ14rgI9dIQopRAQI09HiIA2if5QNAJLGpoadIh+nG+95lySSfLjFnva4aozWWFGKaZki/PTjOAkWf03btz4tPOdpGws2fncnDGp3o9J6RfmW2TRgtdjK/FkpRlDgO8kXbF3JLDI5H0/Pw7DSAQU7vg5wTjZGeaiu8sk4eOU0JcJfOlB0X1mHT9BkOWTSfl8Vm+pSzcOlL3SgvEFoFyHPxEtlKz+keZPX4FCbazpRBvZuGxYWb4rGlqJYxTH4ClFGLUG7Hw3jyIS0KR3iy6Orog6uevs7qggxza+LGemim/8XjE0PdMVgaxWIzJjbMKjEAlxNhhrA5NdoqO/sh2BHuNoHNPqjlhIk2Y5qQ6oCCNfZC6qPmvGFUTaNgmUY8gleqS7DQ/1qgZvu5t4bt7bBSi/Ev0Q4p/2vZ3IYyIP4bkrqN/chl2z4U1H+SGCihgrK7uKQ6I8W7+2AKflw1naFol7zw1Ewt61WNWlojE9DNzbQiaVRnqrCm1pB/rsJIKGBT+g8nQamBiH99otQbbML4xgWLGxF2ZF6CqT1TCVamKtnsNMqoHQd9Bw08hmQxgZFfvNFHw3QCFvo1WysF9SoLYrQllaCWzRIC1U88JzZVEGFDsSI9UiEUouoLLEt9fFV3JceE8dx5Y/SidMVpgx5NyPFyFZ/QS/w+Gp4zyWwzL99LD6ZedzveF9KKVfvB7bOB+uNHsn6Yq9I4GlVx4Lf0TuMlg4wDAS8yicEPROmBOim/y4JfTl5GKCUXpQsgEUJ/Phnuf6b/9y8sPin6A4CizfjaqVVtcRjEwLbgTNH58HyBViqGn5PoLYs5AcDno7ge3Dn7qCYKMEdXc78kBkaa/c9a8uo8U2vAI0dKStNsKpBehxuEvZ3UUwOtnV2NrYOpAsDwRPJRpvuLYp8kEyb0HtrY6HQL4K5erlYhSEaEmpGEWBc+FZ1PnTJ66J47so70WLRTqxQQiHRjoVXMqFeVTuN6Ec6FgYioVdtBEWQBeDYtOCr6XhLy6i/tpqNGxVhVuxEWZTCN3u93LWduFl82jd3kLQjHM4poag3kb77iaqlFsZH0ZmM/KgjLhYxXj+ItybKx1tNP3SLFzyf3RNkCzV5RU4qSyCtosJtQ41dFAKi0iHFnadDGxbgaG6cDwVUyNtWK0AjhWiVE0jn/PFxiHIjwnJfsVrQmnXounCsCTnQpCGwvCa2vUo6LnLxbfXHilJtvxRHshxOmEszT1Lsy/u/um5yFYTvTT5SjLsuYk8Czs/2eirFa8j/VaacXP7TtEVe0cCC28AusTHJQ6TYST+SwChVpcsMHhYifh+LNnHnp4JwUP2sWfS70hXe3W5U3WUBJaQCXdOUjLkGcMlkz43hICeyNZulL8gV4Vtez1VhJ46jbVUDQEyCOpuh2TJfvDZ3W3YcQWX6BXPNWkoWpQVNvcS1cSs800w1tPFLmBRWHK0u4iH5f1OQlyU2U6xjDkGFrb0TUqzcPFLVn5REEDX0Z65isqn1uE5HtzJbk8Y1TBg7DShDBWo2dt53qLnQUHJS4so36oiaNporu53Krxkwr95d0doeon2yHFIq0Uhx0aCG8TjNGy4IyzZjfNX2TQwPwNn34J6YVbkjMR54x4tzKcUwhTUmg3jhUsibEYzX7gkKsNEPiVlQH9mEd5NPgbUi7NRV8zZOeSmh5HLKNgJ8qi1VFis5DNNtDwdQ/kQBbONVtVFwzFRyFIcLESj7CCTCTA64SPQDDiWjZqjQ7FLgiApANxII3R8ASwKWTGJa83Fl1VNXEA5L3vNRRzngZykbMwNVLIrY68m2yJzkZZ8ttOafEnj+bgxPa3K7KSE/M7OTt8bUllpxqgJvbu3O7g8MLD005eFlWKHe64c7n7IC8oyZlZaMflHcct+EnnSNaUlSZKcWLIL41FhJJ5Llhs/LhdUljJLD4rhPF5bhiEIlgTAk0z5Xx9CePMuvLGLCLm4kycydQHKerxTlIt6q4nA4mY/A6XdOqhozCqyyUvitwlT2agR2J07kYBlzEfxnEjaxY71uYrsScKd18ZapCAsd2sEOj3hIWxsHuCYiHa48r27e0I2pnMt2JNFeggbO135ep5/u3Kg6lerO6gVF1B/PSpxb9RqsFktFZsplISBkFWGydxIw4KbKqD8VkmUDvM1r9qCdmXhoMfXtIEL8yKMp82Mo2lpcPdbcKmIJK+plJFZLkG7NAdtYhheJg/r7jasdhvW7U20ijmEaQOZQh76xRn4FRteuSG8IuuNZXjU9Mrn4IcKtCvzUCdHoYwWmQ2G9sxFaC9eFbcsmfmMVNJrsYwMfFXDWMbDuFaH42uYTTew7xgoWXnMT7jYq6YwlA+EkGduJIVmU0Um7aNSKsEhmdVT0PJNhKEK1a2ThM9vEvGNgk9f+KU33w97PemBcPHsVdmY818CWT/NvpLhqUhF4ORQ2OF+Kmdh59Po0RmGIbylfoFJenfJUN7bFVweCFj67csidxPJniuHK00+8IEP4Id+6IeEFD9369zt8Jj9uKayEyTHwQWaktnk0PDHPimMJL2A85Cp78foOjMBL0uZGWOmB8WkIMfLcZ06uZhIf/NVsQAr9+7DD3JRHqPcjYcfkJ5PFRH4WkdROBmWUu7fRWBm4XspKOtRGabbbGI/E3koWrzgZku7CEYmO4s8PZpgnDvzuK9KwN4jiaoqMu8VXeyqCXxBaR9hgqck8zTi/6nZJQUsWQ2WkHQRHhf7v5gG7AtXUN02UK52b+JioYBwu9WV4Y8X/fY2m3t1gUW9soh6Qwf87kaC4bf2TivyiBIbjNbdXdFOuL5rRw2/qAS8UoLxbFySnbi2dsNBO5WBux2FcPx4PunCaxqGNjkqWPhC/t/ujtu8tiCkaqw3l2Dd3hD5dL/twbm3Bef6MkBvlE8aOhS2MtA0FC5OYU6poYwsvEBBo+oKrPNdD27bg6b40Pw2tutp6IqDQtZCdddBpWVgTLVRKGQxVKA4TApV9p8RZMlQFAGEfh4p89MlXXjPUFGCdlJi/iQPhHP+NI8lCWS8n7nG9HNvMjxFaShZ9txrJOJB2Plys2ya5pmA6XAJtPRc3m7SLw8ELP32ZZEXPtlzJclV4UX8F//iX+A7v/M7BfOek5eKxwSEn/u5n+t5XKwo4XnI8qe4JScjfywm4o8NI8WxTiH89wgafnHCEVhlKTOBU5Yy82ZICmH2IuuifPjXolBSvLNXSiUELQVhUkIlDgMFMxeB23eA/X34h7gqtHB4Al7FARKx7UBRUSzvizJiXQIJFYyNiNnesc2tqFd8roBg9iL8tgJ79BIscwatVgF2RUdrHWith2jdaqCJaTSsEbTMWbQbKtzFZxEsXIr4HuRUyDG1EmGX0RFUbBXbrTyqr2xDcQOYheLBrpINOwo/0WS57+Z+p3cKOSS718vwLA/6/MSBkmJnuxJ5LYkFRZ0aFbv6IO6HIvko9esb0CZHuiXOU0OoLpXR2qkDE9G5sukEt6aYh113kXpmPpKToTQNQeX5C2i/sYzQixcQyq0QEOMxmM9dgHdrRYCKQZHMbAYh1R2UAJaio4Am9r0cRgoK1lsZjJhk27tYrRcFMLdcFZ4TotnWMTocwAsLUMlhCVkP56GYzyCw22j6JlRKPquWAGFd+/RGX8m8AL2BfmTs6YEwGiH5G73kPiSQcRwywd2rMRrBdYb3Vz8A8SDsfN/3BR2Bn+l3vDR6g8nQ4dtRV+zMwHLWviz8oWSSjODBOKg0ojTdwOQxGQZiiO20Xi90k6lFRql9slr5o/L4nPSclPQCTjNO4PPof3KccUwMA7Ackh4Uk5m9lDKfOqbKPvCpj8s3R+fK5hHsV+HfXYE/d7U7hvwQgrW4ZJQJ8nt3xetCFZgL4+iU6EFS29lFRSby6QVms1C5c6KibwKEsLwUERkVBcHkrBCutJVR2CtNOK+vwL+7KTbBQhCSZbNcOCU5kZbLi0S2t16Gt9tC42YJlU9uY/+uh5o7jFpmAc2JK2g6adSnLmHHHsHOXRflHQ9KvbsBcEttwVYX3zEuTfYQa5glpPs9SqDMT2HvfgNhLM/iS75PIkFvN7xOibN+eRb7d/dhVSzoU1HYj1I14l/Xh60aYl5bkwU42y0BdIaqC7KpPjHU8ZLM5xbRvLEujtt4Y1WoGRtz4xGoXI+q2AL+Dgpgzk3A26a3qUCdHIa3FCeiM2kEfiiqy1SwckiBfnEOLcdAi8RTxxWeC/XEihkfds2Br+oYyfpoODqadap/+zBVF0FxAkqTFXAqNK+BoXwBzaYDO2AILEWXExqbfh2TL5Ds9eMS88cZFSpkKE3qap1mskqTXDJGIPohUPJ8NC7U/XgQssqsX3a+67risxwvPbN+xiuN0ZRkFd7bDVzODCxn6ctCl5bezM///M/jJ37iJ8RF4g5dsl7l587S64UA9ff+3t/DF33RFwmAYu6E4a7DOZzT7GG0KE5qijHmS2OYi4n4XkqZT+vJovzmb3QXe9nTfWxKdGlkOCq8cQf+7FURrvHVnOCdHAChO3fQzuTRyI8IgqHmOMhncyjs7CIcjVV95a7y3l0EMflRWL4I1zPhBENwb27Bf/OuiNV3jDmrRNtiUSQwHzPthbZWq1vhxbAIRRxjC9ktZG0fzRvbqL62gUrJ4tY7Om06B3W4u1kgmGiLsQZYfPM17uxEBMdkmKpio7zti2oqafWbm51jyUo0a2VPyK0Yl2axf28/SmYzlR23HwgS7Yjd1TLCQh7BNvXVYm02QxP5GiH3ZRown+2CigzN2asluJoBl9pcz12ANj4ktMRSL1yEcyfqtR6Q2JjPQr8wA+XqBQSBAvfGMvTFaQT3VsSCZQQ+RtIBFgsW2qGGK4UmdhwTVSuNmckQlqVhIteCqpN976Jla+KnF03e6F1qFBLNQvctjBRSaNgB3CYLMlqCIHnSwn9SYv44S4bSuI70KtDKe5NAxkrOfmVYaDzPSeKRRxkjB/2y872YxyKBid+x3zzxYV0xblxkWOztUIb8SKvCuNhToJIVG3/wD/5BfPCDHxRkxh/5kR954GNzoZZdJJnsO6vC8XkBi2zudZymGGPGvVaOnOixtJrA7320+5gLxcg4wrv3OiXFYjw378ALMsB2F6DjNVCEtKz9FrRWCD0GMI3S7H4A36dgodLpXa8IUraGRm4I3uRluBsNhHt1IAkelH+XLRSYfLy/CsR8FprPvvByXNyxzsfvJUFMDooLPvuNpGLJeT9AZqzrQbEMWpvphrC4Q/ckoMULBwUd2fdELuRKIYv9qgZ1unsc0YPFC6HOThzwWGiWDZTv7yOMx0vhxsbtbbizI/Dt7rU1r84icNPAZDfsKKXy3b06HMOEw5bGHYWAaDz69AiszSrcnSoab6zA2qkjHBuB23CEjL6yMIMwm0Pr/g5a19dEToUaY+L7hp5g+5PfEi6voTFSQM3V0aqH4jSqbiCl+iiaNpp1Vn5FrZC1rIHldQ0Kf0+GwqiIwM0H83FWG0ZQQy5fgNVsiBBZu3V0KKyXxPxJJkNp3HT1Q0pMLvQsxunF5KaMHkC/Hk+/7Hwe10vwWJKEz36bk9G4lkntNakr9nYQrTwzsDxIX5bkIs4fTPZckZ87yzFlldmjEKI8yThxuZtiIp4T8Tw0xU5SOPY/8cmDZbtU/U2xPWBIV6n7/PgUwv0mvNE5BPEYWnFBhD82hdw+uRBmVwI/1t9StjaFMrAMJ4Wj4/AtFXZLi/q98zy+L9SAO8bcQbyzF6W3DAXNzHaOK8I6hdjbYM/5VKYDMu37W4IwSNNUFcZC/LuHgJ0gLgrNr0S5LxfdOhPsKeNAgt62wshjoQJwdgztzSpaiRCaLCmu3dkTDcYkgOozY6hVApjz3Wtbj4lzfs2DFi8c5qVpVO6VxTmtsgsMRd9FlianLk2jvd1As2Qh/WysTkBiZSEjch6sOJMgpI8X4WyUYd3bhnV/R4S8vFJdHFvNZ+GvbIlQIsmWXhCiGRiorW0JAuZoijUIOi4Pu1hrU5yyjVIjxP1yRuRhdpopzOVbGCm4CGyO34Ba24q+rxpACVyEQmdNh6lp0DN5sAjLVL2eNkC8PxmCZnir194q3NETlKjye5jQ2MtCT4DoZfMoN2VykednyHPpx3pl58v7VE9UoDEMT0+LG9/D4ry95omSJd5vB+mXMwPLg/RlkcYLxB297LkiE23JYzI5yOR2r8d8UOn8s+RYTmrudR6aYscl77kQ+y+/BffWBtzRBYTTcyK5Hi7FO6PYYyHYUEqkVa9DWV5Fg/3NdQOFoSER6gq5eHF7XiojnI57vicW5/DeMkIjBW/uKtzVfSjLG6JEtRNiohLx3eVOwyySIBmmAfNaoqBAhy/FJQVnJgSm414qqgJrZUd4RQ75MCz7nYsW80w2Q0H5zji8ugV9LvY2wlDs5NVCdG3JxKeHwnBYmADh1l2y5FV4C4uo3ytF+Y3lEox56bXEUjENC/qVeeGxaKMFVKs+7Hob+6VGLDEfLRDivfttGBdnYSyMo7pWF2Ey4fk0HThGSoAbj2POjqKxURNhNyocV97cROqFC+KuU4aLcPdidWbyWwimmVQEJDSG5FwPQeyhmAvjgpjZbrRQtdoi/KaOFpCDFvWF0bLIzozCVANULRVDmo3JIQ+2oyGlBXBtH7tNA7tlDRRaFhsxnzkZW/TXUdya0AujdL7a2kYma8BuMxoY9aTvNTHPsHUv4pPSOA568v3IxciFnqFu3nOnSfTLyjP+EVy4bhHI+hWe7IWdf1STL9mcjJEaCmyeJZLC88rWAlL65UkGlwcKhfXbl+Uf/+N/jF/91V8VO3r+OGz4Rffw67/+6zuT7Fu+5VvwPd/zPfiFX/gFATo8BssGWeHVjz0Kj4U7rWRzL/7wBJMHbe7Vq8fi/+6nENajCR4sb8C5vQXX0RHGvBJRpqvpqBTGoO2VoMVAkN2jKvAU20YKdV3EpZ9gGfDtewgWrxwoPw5nF+HaBoIb9zrhHKNlIVy80OXAeAGC8Xh3z9MwST8d5zwMIyofnpnuAJZH0iPzIO0WlHob/uQYzPh6aUI1MTKW5XbKhk0NGIrzOxxHAGgxCEl+jMvujwlQZClxW8+j/Hp30VJ1HYEs5kjcl82dJkJTQ8XT4Oy34bJd8m7X09BigqN4714TNkwBGNF4on+8rQa0C9PQ8hm0mz78lnMgH1N9bQ1uKicIlx3Wv64h/dyC6Asjiht0Fenn5uFu7SOwXCizY3BuLqM9WYSVySCzVILCUNfePsK2IyRtgpUNFHQPm7aBXGBjK8ii5mdF75ZsWsVCoYlKW0VWCzAz7kVzozDBZJEoABAkWrsclXyLajwP+bQJOnGMKPQCLjJRznBVr/L3fA/zNP3KxdC4LiTDRMfZ4cozWXV1FuHJ09j5MgymHOHlMewvwbDXkOFhfo3sYMnr9iTrij3QytdvXxZOGpYns6z2j/7RPyp2GgwZMUEl7f3vfz++6Zu+Cd/wDd8gyoO5M+Ax+03CP6xmX3yNOx0m4jmh+QMTSBju4qQ7S/+Ys3os3q9+OOI1xBYuXBQVVu5eG7XxGaEkbBVHUNiOdkipuCGXeG+pDNdizD5xc8Rl2CGTwpmsEFf0pi7Cv35f9AnBhW7HREq7U5BRJN7jsQX3VlmI3/FkvPXdSNdLSv+ns3BjcmWwsQe3mEcmF4WODCoaxwuwvVGOGPFKKMp79YWpzsJu7cUM7HjRcq1Y/j9epBtCx6s7rbXnLwlWetIIUPs3dqBmSSLtLn7WThWbbR/ebhTKScVhwdpGIwqTxbkRrZAREmZWoEXeRlJMkmO4X4LD71qOxhrQo4kt8+IFONU2qm9tAiND4rE6VkTrzW5VVeriNKy3osdWq42WqcAZHoa6ZyNrxxVm1+YQMsF+YQHB9btQZidFebg6NgHHU1B2Qox4NUwPOajZOvKpQPwO7ZYHJzBE9ViopQHRmyaIwmBs6OYRXIcQeob47bge8zfrNS8hOSCcr73I38tFn4lqevn9yMXIKIf0ko5TAjiKdc9N4FkkY05j55+mbDw7O9vpxdLP9zxKV0zmc55EXbEH3lL305flB37gBzrvpdv7S7/0SyJWmjReNHo2fJ07gl//9V8XbmC/xt0BXc5+L/hRPVl4DIIUK8/onXBs5MMwEU+QpJv7MDXFjgrP+ddvI1zd6JS9sjuktV9DtcqQhofMyg68/CTM7HBXVj72QijXQk0wgkUwOtut+JI3hMvJqsOj93M/WuD49ch4RwycBBaQ4HjxUlcp2XYRTM91i7BqddFAK5S9Su6vwklIzhhT052WyO56qQOSQaUhkukdiZd4UyGaVa3vQxsrdgCheW8bARP8UoLf9qGMRvke/bkLWH95U4SBUgvdhL2qqwgcD8rCBNqJnW5wYRrZYrcgQHJVnFJT8E74vehd+KPDsLbraO81kboWV7jJa6xA8GLaZQvp5xejccXfOXVhErXr6x1uirNbR2NtH+0ay7iHoF6cgXJtDjUEaI3mYeeiJmD63TLC3TrSz8xHzc2Yl9rZA65eFiE8eppaMYtgeh4jORWeogp+Th0pmFqA+r6FhqtFPJVQwVY9DaVRFd0iBYWf3yvwEKb53RWEmg61uQUlbMK2Q7z04nOiEosJ817nq5S/l/nT4yypbsyQmOxR0ivLXkr00+uRCsGH7TjWvQxt9bvIn8TO70XZ+FKcMzmLJpkseuDnpK4YgbHf4zxse0dqhZ1V4fiwx8IfizcTOTT8EZlXohfFBCB3Hv0IzT2IHVVu7P3ah8W/ftycqjYyCqNcPcjXyY3A3WkiuHQtQob4e4WLlxCuRPHlcGkVwfSFSBtM9OZQEVy8Bn95G8HwweopVGuibzwtiBcDn15JwhiSSzL8G6UqLMby+T1cH9lEKTl5GhKQIzCZ7OhpgfI1cgGOGeyyFFidHOss+qzocsapQZYQnWx7gkS49upOVMrF4xfiYoJu1ArlVXZOjP6fuY/K9TLshovMM1EIT4K2eO+tqH2xfnUO9Tt7HYDae20dmWdmOx6LcmUSlRtMiisov74O88qs2PnrIzlY1YjHI0mQPLU2Wow4CqUGWnd20GhZUMtt6NtNqG6AkOKUuia8K295C0HbgvHsIvziKOyNCvx7a8BwQTRd8zZ2oW1twRjJ47mci1LLxZ09E5eHPNzdA56bcDCcj3u6tFrQmnuUVBBSL9QJExI7HJoXN/+Ch0rFQzoVLWZMePeaB5HyJNxInpTLOMy850JP7lo/LHvOIe7kea8fxZQ/iYTJKEO/YHa4B0zynL0qGz/zzDOicKGffNRhXTFGgFgQwBAiI0NPkvTLOxZY6FoTGM7ibvJzDOsRUBiuo+tKEiNdYO6MHrVxonIC80+QLG/fhf9KRCwNbEd4K3nmFkTON+amDA3Dv7cqEuneW/fgsT1wykR4+SqCmzEHIL7/wjtLCOcvI8xmEYzPwb9xV1SUBbfuA/RIkrpZt+7RHeyIVKLWQDCWqEqzbFQtD83hITTHx6Ck8zDnFoDLl4FLF+D7KpSJUbFYBpRmkYKPgtSZ64SW3HK9c053pwZtahRqvDg4DfZp74aehKZjwmF0FBNbyyzvlQcGSrd2hKowzZcqyhUHmYlRpC5NYfP17U4RQLMe94mJCZTiM00btpFGOdYjE++Nx76/WoVqGlAujKJ5M8rrScCsXN+COjcumPsyNCZB0XhmGs3bW6g3Yin/sQK0zSbMuOFY5soM/FoLaiaF1JVpBM2ooZjb9GDfWoc5NyaugzIzLZqG6XPTok1zcTgt8HkoHSKnqxhK+WjwM4EmKsEzaRVBpgg/Oxp5hTZl8hXRi4Wl5GpzE9AzCJUMDPjQlOBMsvnc5Mgy3eMS1ocX/STLvh85FbmTZ97zcD+W0xb75CLfT+GO7AGTZOf32uRLURRBimaI/yzSLwRubnIJKKzC46b3SdIVe8cCCycKJ2evCXxODlamMJbMWC3DW6xE481EkDqvRPxZTE5UqXa89//7UPc10vYuXQb2onySvKFC9kthCEbmN5Y3YIdZ+I1PVz8Wr5dq8NQ8gpX1AxVl3uo25Q+67w1C+DC7eYyRYRFRac5dRDU1gmbLgFsJEKw7CO834N7Yg22nUX11E9XXdlC/sYdKI439WhqN7DTayALPXIE6MyEkV6hELE7PPEvMpKepo8MdjklrabejRya+xlYjKuHNpBBeu4CVl3dEFZW0eq2KoO0Bc5HicVp2ihTl4SH2Ni3h+dAIB/WVfWSfnUWQ8FiyV6dQrbrIXExwZ+LxsFrNUXW0NhObmATQhZk0GqU2ci8tiOeZN/GHUmjdiby9Ytwx0xjJCYKkkMYfL6B9M9rpk7zpLm0JBWRW0/ksfCAwr20KBWWfGl/UHGvW4Swuijq6kpZGI9DQ9AO4gYL5Yoj7++zDAwyb9HJVkWNxtJTgM4VKGoq9L/rpUNEYioOw5SGfCaEqwafJ5p+ULD+qekuKQR62o0QoJcuem8J+5FQkIZGLbbJ8+TRlY7nI0xPotejgOHZ+r02+HlSTLKkrRkAh2D9JumLvWGDhRGKC7iRgSSoeS+0iJhCli9xvwcB5myRZEuxo/P8L07MYrQCWPgx/8TIZVJH6rjSS3S5cQkBSIk3K31OYcWcf7r1N4Mq1+L3xBJybhVexENTawJUr0XNcVBlealvwKQCZVAV2fTS1LFqZEVgbDTiv30ez4cEoN6H6IbJmCtqVuGxZqANzmxznZlwP6sRI1JJ3pwanGWD3lS3s3GmivK/BX1wQ6sAECla0SXPrFhA396InohS7IT+y3Z1UChW9gO3XtsWxyzvdRSydin7HwI2uBRno4nNssBUaUYWWPFYcUqtX3U4ozBjLo8QEfsiWC17Hq5LcHjVjoGkFEUFSAoqswLs0gdJr6/AsF6VXN2CNZOGnNej0zuKQGBe27PPzaN+JvSZdg0EWftzXxZgdg58rovbqKoJaE0rKFLkdXstgkZpmlOAfFb1VCPIMoeUXZnEBLjJqG3etDFRdQ9NRMJwKRGvpsLqDZmkXjWoVjXZbNByDaojfOdTolZNA6YK0IJVodEg2X94vvRjDxswr0CM4nAs4ToRShnu4YPfDcZH9WJjbkYVDvSgbcwz0rrgw91J0cBxpkwu83keIPKlJJnMm/ZhUPOc1epJ0xc4FWPqRzmd58hd+4RcKj4J/1AU7/P6v/dqv/TR5/S//8i/ve1zcLR12wfnD8cc/TvFYSu4/aoXj00iWBEqhscTkL79HrQX7xhqstgZrpQx//gKUK5cQUEFqJxGq0OL+KrkiwipDLgrct+4juBjrh128CI+Jc5LaGDa7tQwsxLLxcWI9XNmI9LSuXoU7Mg17uYywHSCodXet2bothBGFBT68apIkF0KLBSG5I3fWS908jO8jdTHKu3h1G5arY/ONfVTMMbR9E/qlGVGRZS/vHtD8cpsOlLQhdLbKw6MoNzS0drrcAnvXgjkV8WrkDrJ2vwxzhs29ImAwn1tAfasZSdNLi8fVWN1H9plZqGkdbiYLt2aLBby5WUP2uShhL8fD8bd3m2jdq0C7nPBoMiZqJYaXqHIQ3+i7NvT8CALVQO5di0jNUsBSgb3R/c1InvSbFtIvXoR6cQ7tzRrs9TLSl6fgru1F6saWBX+CbQBIs1ehTYzAywxHoOkFMFnwoWuYL6hoOw7qbQeh4mDXBfYsBa4fQjPSGNPZnyWLlt2Cq48ILktgFKE06gj1CHCFB3OEbH4/u3sKq7Kg5nC46STZfC7Y9FySINGLMWwnOSPcjPUidJlc5Lk+9CvBIkuYeT67j1wNLSn9clqxw2GT+RlWuDFMyUT+kwAuD5x9ltL5VDYmqFCdmDL35HfQdT5srBT783/+zwu+B4Ho+77v+/C+971PoDV3QtIIJP/xP/7HzuN+y3gJRslOkvyxpVQ/fwyCCSfR4R4n3LlIheNeXdrzMNnNkkDHycGx8wam18UxMWnKG9L6ld9Fajjul86E7V4Vhm7Au7sO3q7au5+DzgWHW+dqTSRmcfkKQuZNaAwvWTb8m0vw3/U8cH9JVJFFX14RvA8CjT4xAdDT4AZqYVFIznu1FsxKVH+vMXyyMA8sLUOfzcG4NIzUC9PQFAvaNMl/LaRfeE/k6VCK/l4d5vgFePs2rJIDrxLCvrULz9dhewmRyLgtsVNuobbeQH27jcBJYejiKFAoQnk2Dc8LUKX4cpiH86lol+8bOsy0jtCKJerZIGtiBA7Z+h0pFQgQUVo2MtdmsPLyBjJTQ9h+awvjo7koB5IIYbGainItu69sHBC33H5tAxOLYwJYCi/NY+uVTaRGIu5N41YZwy9Mix2oPWrCX43AN5PPos3jTQ2huV5BQBmX+DwkfbpsPTwezXEKHjfvs2ChguJnLHb0x2ToTR0pwm20RKOyVFZDeG1UFFO4S5vQ8zr8AvlId6FOT+G1mysYzqpohRou5Xys2RbmitMwxoqEewSpAtJ2XYhi16oVDKWGRcEDw2JqdkREQJm3SZrMg3BDyMWM/39aVaTs705gISDx3hPXNDxZMkaCBENpXAN4P/RiBDFWi/Fc3Cz2Gn3gOTg2hpz5//TQejWOjePd2dkR4MSNc79ejzwvK+R6Ma5TvH5czwig/L7MvXBdk2KYj6ML7gN7LP1K5//kT/4kvvEbv1FMFu7Af+zHfqzD2E8aL25SXr+fH0kaP8NyZXJmKLvPH5s7J3onjBUf1TiLP8LDEKI8LbfDMmZ6KRzzUSRL7qacN+/DW4u6HtK0q4sIdisdVV9lbER0W3Teui8IfuGVKwiocixBhSYFL69cRrBbRZjKIYwZ8506YQKPA3iz87AcTZzXobejsC+6Cm08jdHPGcb4Fxcx9c++CBN/97Mx/L4ZGGMKMp89A3MxB61owivb0IZT0PI6FLa4zZvIvmcCo18yh+zzBSz8g/fi0j96Ac9+9zOY+8YXMPbHF6HqfuRViKqsAJkL4yKJXrm9h6alYPOVTey+sY3S7T04he6+KJNOI3+1K/ujGSr2l/cFWEpAoJXvlqDl0theaYgFlOcIqEbMRLiA4+5NyES5k+gR0+nISdIlUyFDGey8FRHs/EQ74spbu+Kz/lrXoxP9Tfg/rO5qdkNI6bkR2DVLSM20t2rQhnOdogGtkEbr9qbwOo2ZEdh3NwSrn43A2rc2kb46g7DZRmCYsK+vCqFKtW3Bpkio50MzQkzoBubTAcr7TYynFfh+iIxJ7pEjPB3K/1BVQU2NIG0qsGs1qI0thEYRamihVAmhihadRyfLuQnqdZctw03cTTNiIBPNp3kTEiT67UfPai9GUrhh68eSEiz9qAHI7zI1NdX3WOV5paBnr+flteR6xXWL3/dJ0RV7IGA5q3R+0ngBuIgf3onQs5GkKTL6+2HR84f523/7bwuw+uVf/mUR4uJizUnNH/20ifywgYWeBz2TZG6HyUM29+KNcJR3xjG7//vl+FEouvuJJC5NysUXit3WxF4Ad30PLuXfr17phKmELtWVS1HIi2WluyWEoQaMda+/NzeDVt1BmWW+duQB5IZSKD5vYvz9n4WJ978H418wBo1NoFLxtdRUqGF3AWJ1FazujSWqnXcS4THXgXUv7vM+bCJ7dQgXvv3deM8Pvxsvft9nYOqPz0PPRAuhtHa93ansEppZVOeVxyceJgoTmOi3yi1kL08eyA95bRd1GLAZ2hJRu+i1rbe2oRe4q437n4zlsXlnH/vbLej5OD+UAKjmdh0txeiQH72kKOVIFoFvCK9Iz6U63kbhpQWhZ+YnmnsxidEpnSblJRFCzF6aFMx7AoAxmoc+OYxgagJeTAplPxWGxQKFXqgDNaXDmppAULcQEFAVDZmxYaRURYh4bjoaDD+ErrNTZAtadQ+a2waoLdeqIau00fY0KH4boZlHgFRUxBG4J+7uTyspPirclOTF9FIYw0WT3kO/3A8utNy199vRkcU7sgquH6I17+3p6ekT2fknGTeW8ry9rHmHIyvMZTGnJcuYH5f0ywMBy1mk8w8bAYAXIglODIOxwReBgaGyj3zkI6LPymmldPwRKZvPH4aT/Su/8ivxp/7Un8I//af/VPzQvdrDABbZi4U5E3onvBGTuR1OqJNcVrPlIHw1KhOmBAcbUfnb0YQno1q5MAfvzmqkWyWWRwXh0IgoR2X/dM9VoTxzFeH0NLzbq5G2VRwCC9m3pWGj4bqojo4iXNqGXm9hSNWR/pwrGP6/5jHxf08jfTkLfagLyua4Bme13gESc8yAfSvOFShAejoFZ0sulApSQ0GXhc4igxi0aMwNWKsREOUuZTH2+eN4z4/+Plz68xMY+szIgyGZ0ZyP5WqE5lcFWsbskljv7MIcjcrB1TjB7utmZ+EWY35mHlbYvRFlgt63PKQuTkYIpSrw8yzrdeDZHtJxJViSXa8uDmNzZQ/qYuT1JvLbQv7edwKU3tqGl0ohuzAKNZdChTL+Ccn9/POzAmiCOIlffGEO1mZFQBvf374b30OGLp6r79nQqBYg+C95ePc3gEuLsBuWaCfsbGyiXfWQKdWgzM4iVbUxPDOKNUvoTGKt5iCXVqFk8kB+BIrtQG1Qp02LGPiaiSG2GRALFttXBwKEELo9lRT3uvmTYpBS7bfXikuW/XMD2i/HhREUgku/FV/c2DKqws/16n3I0uZrJ7Dzezkvoz+96KDJcFfSZAid535cumKPtSrsn/yTf4Kf+qmfws/+7M8eiIGy6+NXfdVXiYQUNcJ+8Rd/UfSppxdzkvEYVAJgpRePK0lE/dp5NvuSvVgYO6UMgyylZC+Wk7pZHrbsK1QSjm+KMIwY17GFFHmMwythPInVZ67A58Ij39OyBP/BswIoE1GBQpjYZdfSabjtAOm4a6M5n8bQ52Qw9qUpZF4cFtVS7DLs3E60OmYLWwoXssdIXLGlaW60s48T28FerInEz2cJRHF4SFGQGg47QMNdvLvdvXnVtCZCTnPvm8Jn/6v34oW/+zwufv4sjLjCSx4jJ5PlvGlCBam4pFgm1vdu7nT4Jiz3XfnUJqyGg3z8OYbBpG3f3hM5qcKL89jj/8eexsarG8gujAjtMHHsqSz2b5aRy2fRWG0jd2Es+s5s0HVlFKXr2x0QYkFBea2GMFHizHFq+VTUZTIeAyvN2lvxtQpC5K5MIWg5MCaL8A0D+69tCM4S2x1zeTBnRuFdmkOtXEejXIU/NQplagZGMS+IqEF+SJSga606mmYOQ1kTiqZHqtP0dNicsjiOIDsOtU7pHQW+Pgy9vQtfzaDZdKFaZRRSbHh28r3ABVQuhOSR9GIMQ8sGXL16BMmy4H76qvB99HZ4T/fTSpnGDSnzHb16H0mtsBePYef3Ysw3M2zP855U2i1DYUlLnluC6aPWFXsgYHkQ6XxqjBFYKEopm/4cZ7zAPFcvsdw/82f+jJjoD1Mv7Cy9WBjionciK2r6Oh5JcJsVeBemYTx3MWo2lUlDm5uAUswBQ8MItkqdqitlYgwuvZIEr4VaUtTuIsB422VY87PwbBu+psKan0d2u4q8mYKu2Bj9swsY/zMM4wSw7hyUqk9NqHC3253iAXPUgLPaFsKJ4tqNsIKrCSXe+abnTLgVF2o6zgOxnWRsWkoRnSaFBQFS44kQpamimTi3OaTjhW+ax7u/fQ4TnxeBgmbqcBzJ8oz+re+2DiS6CVxKMSPKfpfIxBcvAp7Q/uKi3r3h3boNzzSw+kq3AomS9CzoKrdsOAw3pXV4tibAQTcM+G6AasWGOZyFNpJBPfa6kgUDhSsTqJcttDwVxXctCq8qe3Ua9l4sIOr6wnsh+z66FKEQtzSemUe1bHdCX9krM3B3a2g1WqjUa2jf2EYqYyKbziI9MQrn5qZoJcwzB/RmiwXBS5mfmkC72cSk2kbLswXoKu0aFKeFUM9Dseoi/KW4LpSQPVqGMYwmqo4h9gd8rpeFkIs3QzC9VkUx0c31ox+PQDLeucj3ql/GBVWG7ZgT6qeVsvSUuJb04n0kCZLqMez8Xk2GtbipPu6aHldkJM9NS+qKPSpweSBgOat0/gc+8AF893d/txCXpFdxmjFsxIVayuv3akz68XMPIutyXr1YCLRn6cVCq37sFvw7ZTi3S6i+tk6lczRubKOxVBHCxGyjG8zPQX3uMpT5qWhXKiu9mKMYHYLP2L3toMmyYj+AsbwFzM4DCxegL21AMRRkFxxMfOUw0nN616sYCzteRphKx7kTC4EXInBjpWPTQuB0d48a2p1yYlFht92CF3sGqUkD9o4TCUDy9U78XkGqqKK13uok0cnil6anFTg1D6MvFfE5//zdePHbr6F4KYfy7R0oGfIvYmBZrSAzNyIUB6Q1qw62tqyOd8Ixbb25jfRkIQqTxRFI1dRQcxRoJG/EZjsRENpbFoqLk8hcmUZLCmHGn2uXWgiKOQQsE27FgpzxeBiSIzmS19Jrudh8eR3tUEfbDpB/aQHFdy3AnMiL0GXhMxYFn8Uv5LB7Yxf7b22icG0afhwybFnRtaEWmLrRhkp5/o2yCCm65Yg9r23vRZuGRhPK1JhoJZ2Bj0KuiNGMgawaiN8mNLNQq1tQnCaCoWmESHd4Qixl1gIHqUzkZUnh0F5DVb0y2CW/ROZOegUkyXHptZOkLDeWMjNcT/ppuiUr2k5TbZbqGEZioT+Knd/PebkRPUkV4KhQ2Em6YlK08okPhfUrnc+cyT/4B/9AVI1xF89cDP/kjoX/fsd3fIfoa0LSD0GKves5aVnG3C+wnNVj6TUUxonE8kK65rIXCyvOzqsXC630Ky9D6JdzbAsT8Crd3Z15mTpVUQ/01hsr8EID7Xs7COdmoT13GY6qwPZChPVoMTTTcTJ5cQ7hekn0mk+/dx6T/9cIMuMegpoFnwl/Gne2igI97cLdczrJa3NIhbXUEDt58baMCreTS+HrGuyVrix4ZswXnS1pXLrcfQtOvACnR0M4+xRDjK9nNU6qWx5yM0Yn/6ClDVgbCd7MZApf/CMv4aWvvwhzsXggsc5+KmocCsvOj4COACvBpPFUHLsxFTHeSR4U47w2hdJODf5Et3giJxuSiUZfHvZXukq4ByrIMiasUBUeDU3mdYZemBGJ/mT+LD09JEJkO6+sY+vldTjQsf3yOnZeXkf55g7cWtera26WUa1UEeZNaJs1mBcmkBoeFWBC/kzIQoChIrz7mzAvRFGCVG5YNGxr2hbcpR1gexPDM/O4UW5Bp/QMfRojFcvmM5Sahrq/AdXag5+egErdMEVHWrdEKfj22nZPZEgZquKC1ssOXXJY+gWkZJ6ml06SSR6LbKVMr+VwpKUXljyPddx3O64Xi3mInd+PyWvKY0i5/NNCYUe1c05ycx6F9MsDA0u/0vn/5t/8G3Ex/vSf/tPCA5F/PAZNTkrmWLhAf93XfZ24ML/1W7/VN5dFhsL6JQpxYpzmsRA8ZZkwQ3SsIpFlwgS085KAcXaqqH/qbtT4SSxg6Y6IoVLMwr693i0/nhqBfXNVyLi4y9tCir1Ss+AZaYQX5qLQVSoN9ZnLcFe2AcfCyO/TMPZuG3qBKrchjJyCsO3Ca4Qd4FANoUMSPd8MYa22oDSasG6X0L7XRPvNErTqPuqf2Eb7egmt13fZIwHN2000b9bgVT14cZiHlh3xRC938R1UBa21NnwtujlShe6E17Mq6nfjz5FflEgi8zWv4eOlv3oRX/CBFzDybDeHUeHirwL5q5NY37LRpKjjSELjLb5em9d3oTP3oCvQp7JYeXVL5EZqK22kZRFAvCDpWQO1ugdltJBg18uxmCit1dDabcMrpGEOZ0T3R3pEO28eLGLJzg1j742NDphpORPVpe7mp/jsNFpxtV84nUWw1xKhrsKlKaSuzKC61YZbjcN9YSA6XXpavFkgqJF30WzDzOWEeIKTT3M1xXhIT0eHb0R9YBTPRpgZEiFIxW4jKExGBR3g76DBS42Ibp/s0llMBz3nCZJyLNTsOskk614unrzvZNim306SpylsJBd7egC8T7nO9JODlRVtTKgf1iOT5+F30Y6ITCTZ+f02GJNhLV6vw9enF76dBGFWxkkVg4cNLuey+vUjnc8vxgtz+O8f/aN/1PkBPvShDwkvgADE9//oj/7op1We9WJc4Hnx+u23cFwoLFkmzLinLBNm2O+4MuEHtdKvviLCPGSfB8UMrNvrXamP+YloxypKSxX49Ao8H2zuKOzyLIqhBn2zDP/uJoJcAUGhCOfeOox8iJkvNZAeduGQjp0QVdTNAGg0BZ/CrQZor9jwd5rwNyvQ6mWkUxay2TY0u4WU2UJmLEQqa0NtN5Ed9pAbD5AruAg3d5HPNZFq78Hc30Tj1Q1UP7GD9rYDJVFGnM75nTCVmVPQXG13ku8BBSe5CDke8mMhvFbMfUjraK5GXlhuOoXLXzmFz/yWywIEKWdPxd/7typwmo7Q/Nq4vgMjdzBk4BIox1MIdQUtTwcCBZl0RlR0GbNR9ZkaS7wwmd4qNbF9YxcjnxG3GI6/QuHqJFqltihxbm424egGjKwhwMyXVXoy3JZLCe9K5oCKV6dg78ehRoWguCtyOeK4MhfHnIuqYe/GLrIsFLA9qPk0/M0SWo4Kh2x8Hr/VQuP2Lry1LdHNM1tqwdUCNPOjwPoGnp0ZQd5QRSWc4llQ7Ib4jbV9bkY0BOkJhFYdzVYbdXaqbOpIG2kUM4a4R3tNfMtd8mHNrsOWZN1LjgsT1f2EjE4rHOBxjmLecz2R/V/64Zscp0dGO00nrPAADcaS0i/J68M16LhQWNLoqXHc9Jjo4T1sXbF3rFaYLIXkYt9vJ8kksDxomfCDGBegMoElXvT94Wy0yLi+KGm16J2IMmsb9uwIwvWoksnIpmE8ewG4sxF1cozLj7WpcQTVFrIXdEx/qQmjqEDVQhiGA2uTvemjMAS9EnfbAljRVa4hk7ORHgqhqQSZbkiE92p7uRu2SReB1lpcOcUK1pQjdu7RYwVh3cHwhI1CsAttcx3Vj2+hdrOOVIHJ6i6Qt7YacP1Ya2uim4RnSXL1tkzoq9C07o6Lm/Zrf3oOX/YT78XwFy6iYnUrvvgv+5MwiU5rJBYgqxKicHUG9VhAkpVotLVXN5FfoPyLguLlcay8vC4S9bSVVzZRuBgViBQujGI9ZubLyrj6Vh2tUIVP1YPOjwkUr01i/2ZXD0zPmeKxOKeqwLw4grDqwFB0pKaKaN3ZFrIwytgw9j65Fqk1s+LL8ZG5MAnMzwjCpLtdhT4/Cc/MiXbIFB8NWFJdbaCoA616G97EJPLT80ilDSi+h8DMixwLS/1YbuxZddi7m9Bt7uBVce8Me6UodBZ6YsfM+6BXMiRDwFxE6dUft4ge1gmTgMTQeD/6YCwcYKL7qMqtk0iYsv9LPwUHh/XIuNGU1ouy8WiiwVi/FavJkBpbGMhz9lpZWiwWxW9Cb4v5qYcp/fKOBhZO2qP0wnoFltXVVSFbwfCe3FFRLqGfMuEHsfon7ogqIGFpE+pG5HkFXDiK2Q5oONTb2u3uuvTJMTgUm6S5nqhsMq4twr15H4WxfYy/yxOAQmMsnbiYyliw19to3W5AtxrIFDwhPkiug9eMJx45ASM+rO1uw7DsaAC7HDfoCkJoSlRuzDU1lVfQjIGIj40gUTbpezAUB0PpCrzba1BaTbR3o5t7aFrt5ExSBRWNNUsssMLihL5nuyhMKbCrXUCqrloYvpzBH/neRUy9y+h4KPR2aJvLEQNbNhejmUMZUOZMmiwTFvpeKVMk32vMOYVKh13PwoVqPfIUbT+qGhPfMfay+K/lBFh7bRv5Z6aRYZEAQjgJ3o7t2ggmUvBjQNUyBrT4q9DLSU8UkHtuDpZmwpdFEqM5tO5tw7d9URVYfX0NZjEKAaqTo2i8uSZyUUIfju8ZKkDNDqGYMVGl56XoGJ6ajhqn+QG87CisvU1UkIHd8qDkuEkCMtkCjOqmEKVU7bIoN+aCyfnfDxmS4WG5iB7VivconbDkot0P611qkR2u3JLActyCz3A7x9mvZD4r2ng9mBSXG9delY2np6fP5C0lQ2oEXqYZ+pWeIrDJMODD1BV7RwPLYb2w00x2iuRugBOSOy3uatgpkhOBiP8odXdE0p7GU+azcCcKCK5Mo1bMoF5pwR4bgTsygszIhJBuwdQE1CuL8IW68AL0Zy8gyGehX1mEd3cZU5/lI2U0EFRsWPs6fDvazVsVDe6ei7TRhqlYsEtxDkdl4p58lwCerXRaFxuqBbdBlVxNAAbDVVxcSdxMFRU0trq8FtNk0j9Ka2SGgVasrsHHfhzWSmUAw24gVd5E7bUS3LoLr9X1jOqrdVhxsr84rwsviOXLqqagvh6hguMEcKnOzPFlNFz67DS+6O9fFu8RBQAKYJdcDF+bQCoGFiNrYm/fQavtd0AhWQSwdX0XQTaF6noE7jKsJca01YBjmFE+55Ay8vhLM6iuR17R9ls72N+zoOTTcNjeWZqpItjqPs5dGkdrlW0DNKRmhtFq+th6nQ3DVDRWoxxMbmEsCotmTey/HFU1udvUwldg7bWEVxTulaFeuySukT4zDnevCdNqgdBWqVShVPfiPkUVlNsBUnYD2aFxFN19pDRf5OHo8SiBgyA9DiX0O+XGXPTpufRDhuQiyuQ8F1FWTfaibHyW3i+ycov5hCTHhefga8flPPkawa9fbozM4SaJjL02+aJxXTkrO58hNYIvFUY43l5CYYfDgFJHjcAmw2LnWYb8jgYW+eOfdhMc7hQpK7k44VhYcNYy4Qcxu9yAU2uLboGtbAH7Ow24Ky20b5aQUtNQtpsItuvQh/MIGm3RstZZZ8fMSOrFenMJ7RtrUFIp+GubmPlCDdlJkvgUME+eUhuwNyzY2x50pwmD8ixaVLxlGC5ajF7EN5lheAj2Wa4bhxVMBX7F7jDnM0Mh6hs+wlg1OK23O7t44bVsx4ll3uhVWaqrIJdvw2vHDcQsB/VNH0OFBvLtDWB3D3VSxompUdRJmJlRUL7VQLse94tpxl5QCIzNK/DinvCK5uHCZ+fwlT/8HFJDOjTZO4VfUHY8vjiO2haPZWP8xZkDEi/ivNMFVNsh9HjsYlGPwSM1lEaj4WLkpUi1OTqnAi2jY/tu+UAvFx5zfX0P5c02MJbH8LvmkJ8cFYn8wtUJ8afk0qIHTBMaXN1A5XaEwIXFUXjt6Lu6ezWkZkYQjAwjoCLA/Bi83SpSL12CX7egTwwhqNThhmwMF/WB4Y8ajoxB01ToNQst24FS3hHgOjaUhx74MBo7CNLDUK19BJlpwX0R3yfulBaoGbEAc+Hh7r5fNjrzj2STH+6WeJKysZRzIiD12qxPJrmT0ve9LPbycwyH9StdL4mMUp+rH8n8aw/AzmcIXhJMeyWlJo1RFzluAv5564q944HlOI9FlgnTTZedIvlDy06RnGyPSojyKFv/jTew88omym9sCrVaLS7XJbPcvrsjCIlMFlO6Xu6y0y9cgH1rLWK9U1LluQWEK0uYerGNVCbeHbM6yFZh1XSkDAd6wIZODqy6SbV7sSDRm9Bhw6mEaK75aJd1ePsO/FJb5FSsLReotuFuNtFY81C/70DlMbYcOE16DASTsCMUoPkNkeOhFSZYaaQIT0dj0rz06ZOR70xrHvKNdex9qgwzo4qFVJpdaXey4ROLGpxmRPoyTAW71yPvQtdU7N1qYP69Q/iaH38J489EVV6b7Ohoahh7aRZLL0fhQpYmb6/WREJd5liEFbNwLB9Dz3YLR6RUTOHCGDzHx/Kn1jH+njiZrypILRRhVdkXpTve7KUhsRmgNbdb2L61J4iPGzf2xF+j7aO8VMH2m1vw2h5aLE8mECpAi8TYtocsxTj9ANWGD4cqzMzJjOYEmDjsykl156lhqFcuCjViemnkLnlZHZV6A1X+Auks3HQeXrYAPdSgNbbhj16A4jkIcyMIMuNR++rAQ6iloNglIaHPahDZvoL3DTdb3HFzUeq1DJk7ZIZxDnsTJ1VP8hxcuHs9j/jddV3kERh5YDitV8l8md/hWiHzF70a8zv0Ahg676caVHlAdn6SYHqa9MtJBEwJbLJD7RMHLP30ZaH99E//tEBdvp/eAQUjk8YvyTJmTmRefOqJ9dsn4bDHwt0PJ5wsE2Z4S3aKTJYJ98NlOS/jxGK1CW+ku/8zStrTMqqBNHefojw1JcCB5LjM8wtwd6piMdRnRmHfier5SQ4kyIT372FisY6UZsEru2hvenCqHpwdG0YY7/RVDaoaQm3X0Vp20VwL4JYcaI4N3akL6XzDrSGdcaG4jiAAmjrJcz509ulotJEv2MhpVYQ7dRi1CuylKtRqHdWVAHY1APuENbe7IG0xJxMv0HoYh0cUIF+w4MqogBKituFjsliBvroMd6sCtxVzQ+jBsOuW8J5U7N2sdxpc6vHz9CzS6ehGHZpP43P/X9OYe08eoQ+4qoql6928G8Ngte0Gxl6c6fBmxp6fwtobOwJk731yAyNXxjuqycXFYSy/utEhQd7/xBom3jMPJaWhFGulyeMQiNol5wDnZYgeSmIBMovZTvnx8DOTaG5UoaV0DF2dhLVTF55iarKAusNjKGje34Wapnp0DU4mHxFJDR1q4KN2twR3ew91erG3V2C5DjJpA2P5DArtBij1ZisqbMcW4AGnLfquKIyLVspQQopO+gjSYwj1LJTqPhTOgyAqpeX9wQWIu13Zm77XMmTeYwQI6RWc5LFIkyHofhZeWV7LHATzNL16EfwcwYX5i35KgiVw8jwENL8PgHgQdj6vJYuTZBO1Xrt6HkfAPM+N9LkBi+zL8l3f9V1iEnASkdB4XEUI2ensy0KeChGXmmD8owubZOj/0A/9kJDiZxkzS+Z4zH5ikgQLTi6C3s/8zM+IMmF+njsFAgp/lKN6NTxK6Xy6soyXsvEYb4Z8XYO2H52bO9X2ckm4Ef5ILKPO8bEq7PZGV/LFNKCOFmFcnoEyUoAWWpj7DAtGNq6qYpLZCaHaDkzNg18P0N4B3Bbj8yFUJoxNFwZcuG0dvs/8iSIAxG4pcNkzRVeRyXlo1WO1XwpPwumAgWH4qG+zGixEjrmczQpSzQpat+siZGM3o8WVJcghVRP5/YoBGmVVnIuRtGa83jOp7TUjYDeMEEarCtxfxtpHd6EboSBQdoyKzvH9ODITdsJhExcN1LftTkjuj33vZTzzZeMgBzN5/2pxeGtrKe41Y2rY2+6G2BjWq9Rd8TyBIjCoSHwwH3PvE2to+K54Xn5ONVQBUK29rleppTSU7+93OhSkR7PYfWur03ZZiwFXNXUBLuI9U0Xsr9dh7TaQXxgVx07NjEIdHRINydpxq+aWF8Kl2ky5Dp/9XbJpFPQ00rmMCIkiX4BipDGshrDDAC01C7WygSAzjFDUqCtQmrsCWISx5Fw1odqVjsJxEly4mNJ6LUOWJbMspmHZ62keizwfN520fhZeKY5JL6KfvEmyJLgfuX2Ok2FC/vvqq6/2dc6zsvNl4p4gz1xWP+oFyXGTMsE1kOmA88ohnxuw9NuX5Qd/8AeFijFZ9pyglHjhD/rDP/zD4nVeXDYN+87v/E7BvGclAxWPWd7H3iqnGT9PECFz/4Mf/KDgwvA5hrp4IVkdcdJF7IUk+SBGb4i7Inp1klHLG4HilP4rlFaP8xmx7HoU24ryA0xc69MjSF2bhXF5FspIEa37u7BYNWYYUBsVTKZuQVddqPDQruuA5cI0PLFTdj2CZhoad1aWD8UPYDkZeFyVVA2magv2vVUjB0CBqboI6kzoRtcrozXQ2FZEVZhuhnAacTWUacDUXfgxkSabdWA1NWRzLkYzLVh3a6hcb6JVVmHXusDgNn0EkoiodK95ccTvAEAqr8NtBliYrCO1uQpno4T9uOJs4oLWWbgZDtu7GcX+OYr9pSg+zyR+Zc3CV3zXIubepWLsuW4TOpm4r+82kZ0bwugLJCLG+YN4iuyv1TDy/DSGr4xj62aEfuxdLy0/V4Bj60hfGhYcFpqZT2FvKfJgZM5p9PkZWJW2xEEUL4wJ74YeS3osh/KNqBIqNZxF7da2UDwORofgxKVrfty1Ux8vYPeNLWQWx4Q+XNm20LyzB3OyCLWYQ9bIwliYiXhOmibyP0o+J/rca9US8pm00A9TRPxTg7a3hLAwFn1dxxZJftWqIUxFygNKQohSgov0Qljx1WskIcmY50LaS5hKSpPIDVivxnucoR7u5PsJFfFzXCMYtjuqmu04I1AyfNfqk4tzVnZ+spEXIz/0IPutbqPxd+T6yiKL87JzAZaz9GXh88n30+iNyPdz4tHTSL6HF44httN6vbB5GN3LL/mSLxETmSWF9Iq+5mu+pufSvIclnc8SP9kWmd+PSTSCHcGVLj/Jj5v/+4ZQ+zVGsmjcijwU0V+DC/mVaSiz42itlKMe6H4IZzNavMzFCQQraxjGCry2CqtCwl4o8h9eS0VrTxWlwe5+AGpBOg5LWRW4tonACmHXQjT2/Khyqx1Ab7tgHp3dHtEKROOu+hpbd6QRtDx4rAwLFGTNNuq7esTsNwO0qvE1VhVY5Xiny5lmtTFcsFBwdqFtb6G8FIrxF7PNDkckn7fRqsalxikf1djh9T0ftZ3ohtHIvWnWMOasofnyEkrXa/Aa3UVei8Nh4njFWLNLU0TbEf77vr8+islnfeGBRGPrbjBK202sxcBx2JZe28Z+ol+KH4e7xDmzKXGD796qws+mMbQwjOGrE2jvR+9nMp+Le3lFVjkpguRZipP0HENxcbST46GXkn1uFquvbkaESlaLTRTQXNoTSsjlrZrgs7TsCDiz2SJU26fiF5TFWVgruwgNE1rcdpnseqW0FYlAT84Lz7WQMWApJoJWDMRuXXBaAq0Atb0v8mKq4LUIMtCBayE3ZTKnQU+71/ARvQICEiu+et1hS11Ckvv60fniuRjpkEnqXo3hdy60/YSYuF5IscudnZ2+5VuS7Hx6WqdZUs4lWd3Wb3sACd78e6I8lrP0ZeHzJ71f/nuWXi+csN/6rd8q8hXs98LJ2+8FO09gSUrn053nzcgJxD/uqJIx4J3/czfSigqiMFhqoojsSwuiS6C30kDj1k6kYMxmTWkDQb0t+nsIfaxGDXNTJWihD00J4HsGUkYIXzEFiIANoRQDnpqDawzBy03ALkyirhVRdVOwwwygZhGqaVjttGgbbBo+PIfZFBMaG06FHpRmExnDRth00N700Spp8GsO7Dh8l9PrsNqmqFArDrtotwwoaohCwUO9FpVGmloAtd5A+04F1R0mzbu/T3U3hEphSSbq4+ZdlOhP6YnOi3kN9YqCQiHAbKEMLG9h83e3sXOnhZFJr+PBjM7p2F+1xK59fFZFZTNayK69N4U/+DcufBqweKaJoctRPkWcN7HpTM1lsFem3EsUOjX16LuMXRvHxvU9pOKQanWzgVLZhgMVqWL0HL2S8ZdmOwKW3GSMPjfd8UQIFtX7EYOenlGt4mD9U+uiyox9XBgay05HTHx7rgArbpuQafpIzY5CJR/J1OFX6oL3wjbSwRrJmCz9BkJWOmayUS/7VAaKY8NsleFkxgVh1M9PQLGqCIwxqAw7csz5KShevBgfIZ0vw1hcEPstQ2aImuEqRiB6rfpK6nz1ylznukRw4brRb/UV88UEGNmM7zSTPJbMA8i3yFAcSYynfcfDHBbJtePzZ1FTPk8qxQP3vH8SjeE1af3wWJL2oMl7yYkhuDFWS2+LE5U31Enu//qvvNHhNVi2j/31KjKegvxEVAKdvjaJ9u0dZJ4ZQ/bqjNADM2aGROnsZPtNpODD8lXY1WhHbDUyUDM6lIlpBM9dg/HFnw8nmxY3NMfGySj12ujdBdQQ+tin4L/+BoKlZTj1JlSTWmE+1KyKNPknjOX7ZkTEcz0Ypo2UFqK8a6IJRVQp6aNk9PN7+rD2baRno9a8PkGzSH0oIGxayA0BOW8b2/tZlPwMxuZV5NIW6gzfFYChPAmXugCK0TEfzWqI3BDzMRralQCF4Zgvkw4xMdyGrlnYfsWAn2VfFlOEdmrbFlK8Buz9sdLG8EwKZkrBlffqqH3NGNZvR8eYfvcsbr28KXTMFhaKgr8iS2r1rI79DRvFiRx8jSXInvCiaCRDivfECXhaYaGIjbv7aDU9XHj3vMgDVbfqB+ZHM9F/hnpj+QtjsDcbqNQ8FOPc2MjVSZRe34DtOXC3WlCvjMHU0silTSimCW9jD8rcFALPRfrCBJRMChrbEl9ZAPQ9KD6l8HXBtg+LI1Aau1DDKsKJWUHazPk+mqqCuh8in5uF0mxA9ZoA2z7H8zRUda7QR87XZBmy5EawEypB4zTj7p6eCL0CfqYXPgYTzZJ0ybAx76uTTJYby7Ex7EyScy/VWzLExJwsx8jznXTvJkubC7GOGc/H78n7vldLsvMJUMe1ZSeAEGyTJjetFMQl0PN79woY5wks5+KxnKUvC58/6f3y37P0ekkaf1DGV/v1Ps6aY0lyYvjDcvfSq3Q+uSskw6WfnYVrptHarIuy2vREPgq7aAq8uIcHPRQywc1r8zDHh1DcfFXoPlUraTh1LrwpuFoR2le8D6l//r1I/f1vRvWL3ovXVpbEpKN7z0l3uIBBNQwYX/g5SH/j1yH1gX8M/dv+Jry5ywi0LIJ2gOqeAcfLol0KRKLa1H1Ydlrs7DU9hLUfoGi0ka2XULkXeShDRReNRpQrKg65aLUZNgoxVLDRbEU7Ls1pQ9vbx9ZrLeHNOM1oIUubHip7akdbq7IVPe/aLjJ6N7RBjbC91aioeXrSRbi9h93XythbtTE07MOLOThjk92bp7nXxpd92yye/YIUMsMZLN3YEyE5AmctiHaocqEYf2YSVt0R3s3uUgWFy2zuBUy9NI2duwcVtJmg37izJ+4u1/Jx5xPraKsa2r6C4edmMPmeeejFDDLTRYy8axbpi2NotAPc+8SGALPMCD3H6Fi1ckTANIdzyI+PoHxzHyobrGkqUmM5ZF5YFB0D+KcXUqjd2oG3ti364SiT40CKMfioPYHS2EdQHIfSbgAEnL1dqPvryKUzosJN37hDhAZYfqwZUFt7CAy2KC5CcY8OWSXLkDm/ZRlyLyEuWbrcb9WXJF32EqaS0vwcI8NvPGc/zb74OeYfCESnCWQe5syMjY2dKVfTKzv/OGXjs+Rr+L2eOGA5S18WPp98P+3Xfu3XOu/nYseLm3wPAYLhpJN6vRw2uVN4EL2w04zflV7JYU5Mv9L5a791Dztrdey8sQXfckV4JDWaQ+3mlqj80i6MiAZQhXcvit4ejRubotw2vXYLGc2B76jgf156COGXfgVy//TvI/iyL8D9pSVRXs1Jxt0Qx8UdESf+aZPJuHYJufd/I8x/8B1wnvkMIJUVLHw9ZH92oFbNiN14bd+AxiqkjIO2FU123XWQajZE2TEBRxZRtfddKHF+o7kfLSYsx3VdA1OFOsK1XdGjXVpjz6ZEljAWB9AIAIWsg/JmLLNCMUW/G65Q4CGnNjDmbWP/VkXI4NCGJ3Xs3IvCSHOXNbhWgM//Czm8+NUjaNeixZCaZOXlNqbeNQ1DN5Abz+Leq13OC+3+K1soLAyjwl4rsck1Z/rFabjkm3jd8XC8++s1rL6+hbsfX0fLDnDv42tYeXlDqArIfA3zMDs3t1FvNqHlDXgkVdKDHRvC5u0y9GwKtXu7gpEfWC727pYRtiLlAx8aUtND0CZHhEBlaFHs04mBIgWl1YBarSCYoAflIRwZF8l7hixH6jtwFQ1KdUMk6oPcFMLUMJRqtLk5ru+9GPMZy5Dloi+rvvpZ8On9c304rUyWi73czMkigH6bffFz9D4YsjsuKS/Z64dLm2dmZsRawHH2GvKTRpA+qXvlSb1YuOb0k6+RG4TzsnOrCuu3L8s3f/M3C3n97//+7xfxRKob8wJSKZnGL/kt3/It+J7v+R78wi/8gph0PAZzEixL7tXohtItfRjAwt0SyVQsnWZVzHGcmF5t81NrInmbnxtC9e6uIPLlFkZEQt/3Q4SaCjdkBVTEAk9fGIe+dAfFnAcnyMD1U3Df9ZnI/n+/DdXPiaQmkuXVDDewqdJZVJi10WEU/sb/DfNvfxPc0Tm07UyUkXdChOSXtANY1XiRt0m0UmAYCqplHfmUg2FnD9v3dFTLGobzbVhWNIlHcjY8ljKTx6LURMQlbQRIN6vYeKUJ21YwNsJwWMwvGWHOBjDy0XewWlK7XsX4iI1WI2by+z7Ku1zwFFxZaMNb2cXya9GNbVXIK6GUjIq1t6LnLr2o4MXPjzYAelzmu7FcEQs9PQsvDndpiXBXreEKHbCuhdBTGrbuRR6MbkTHmbg2ju173fk3NDeEZpzUp+Umc2jHC0d6Liu4QkPDRYxdnRYhQLLva/sWfMvD8OVx0TaB+TVPY9lziNbSDjyKpb61iVQhhTCXjxa6QBObE4bHyKInoCh7GwjSQ1C3V6A4DQTZIdaNC4n8cGQWalwvHUKHsrNKCWiorAGPBUqPs8NlyHx8GlDwvfyMXPC5q+91wZfcEYaCjupTchi8pCWbfTHv2aslvQAu1kedh3aUB3Hx4sUOEbHfcmB6Zsex80/TCUvma07rPXPeXSXPDVj67cvCXfN/+S//RZQBcyEmx4RlxHQdpb3//e/HN33TN+EbvuEbRFyULiGPeRTv5DS9sLMIUR6VY+EEYvEAJzO9p+NCSv1a5X4JtfUo7JGZiBYrPZtG/fYOii/OwZgcgn2zDC1vovHWmkjU5nMBJgtNWG0FjlYE/sqfws6Xvxcf+93fFSQvhih5nXspr+7VzIUZDP1/vhn6n/hjaDkGnDAFxzNFZ+KgTSDJwHU01JpZhIaGQtqB5cZNylr/f/b+A0yytCz/x+9zKlfn3D0zPXk2L8sSJciSM7gkAQUE/yAKYsBERhBQQFFRvogoKOBPBDEgoCBRUZLA7rJ58kz3TOdQOZ7zvz5v1dtT23Soqs67/exV12x3Vzj1nvd94v3cT06thbSmzrlKT1nWWU9zyahBaEVCnuYTlfVDidKkWT4/q/S8FlJj2Oqx00VlqtFF1KkYhnyGngjp4inLSk1j6aVDHHaK2hOd1tjNs2pvRwlVDlI8Xh1eFpIe/5IuHbg6YuhPkMRU1pB/nr75EljEcqCBLpufy+m2b41ozwMu0egPXD2o1HQlPROrzrnPlQsqVeHjSOtA60IDJenNsbsmFvaarU24bkD5+Yw6LxtQolBhpzafXz3/XiCoyR+NGpZlDI0Ti8mDi8yQtpUVHu6V54WkdMpM/CSCo97it7TLTczI6x6Uk5mXF2iRm64gv4LVeTfjXrucyXPG2Hhtg3KKmZpJn8tLozDk2j4Wq7hR+PV42LVpKt5nOSO2VOe9BQEAXW6Evp60NpkZIv9aVuOVhnxZIa3VDNnlSt35qw35Wkw6udzQQ5sG25YRS6NzWRDgv9xcnk9j5FOf+tR7/J0v+va3v90ocrzuL3/5ywY6vJFElMvVWDBqeFOklKzSBiZcb0ppNTn5xTsNp5QZj3uyAkEN91QoO+ZH5g1BIVqFOfHM+QgGPcUnzihVblVucK9OveQJuik3ZzYtG4m1J4xulKCuXok99VE687zHqdDep0IpqmQiVEGpFaUwhHaJonIpEMe+0gn3Ur0kFVN3JKOO3LwmplqMAYj6GZVtnqw6Utk3YVnQpPh60hflp7KGbQSJBDlclfXu7ixrYvTSYYuFqofW99XbVdRM1Z8Aonz+ZElDnSlF5saVn6ko/4H9Ac1OlBVurdDJv+K9ezRw6NKapUu+Bi67hBKz93nPtUOarE7JvP3bIxq4bq8xVRPVvhXzmUFXHXvaNX1yvpLqgsczHtLobReVTFQK+Z2HuwwZZ2tLq6mtTN9VufdwqwVbozp315Ra+lpNgyx1puTpKVPoN4TNvmM+I9zbZlKFod42lT3HMFKTBlMmJ5+ZLrms/KIvZ+ai/IH9dGGaZkmD+uL/C3l5rT1yUlMqt+1VayCofA3XmZFVIpblYMgYieWQUYs771H4pJwsrXs9YpsuSW8tZcSW4wqrBQE0Uv8gK4HjXMtqXPs5y+kBZw1kl0t15/P/fGY95xvnHhAChmk5XrFtG7FsZ2nGsLAB8A7AzROG8thIpX3yS3eaPHz3FQOG2bf7+mGlpzOaPz2ttuEu04kePdorLxpSdE+XYhfPqOSENLGnXxef91ANDlf6YWhOtR3AGy6tMQXf8FL5V1/NUHplk2woX4lSXBEVlZuWZlNtigcKShVpInHlVr01ggLGGU+fAgTgK1+qpLY6I2llcgFjNjpCqYqidKSWckGpO2Y1dsHVQF/hHpxeialLDsCe/qLmYGeuHpTUXJVIkdECgcpntxClTM7q3E0pQ4GfmCyokCtp+GjA9NW87G29au8NaN/9BjU3kdbYWFKxjiq4wTAEOJq6mLwH2/Fd3xtVORZaoHlBKPS3DrQtsAJgGEIDYZVyZYWqUOWAU1F6vKzzUE/FuQi6KgdDOvXDC+b68iDpnAoVDHsjcqi/QuHv+MqNTCsw1KP06Kyi+7qVGZk1URa1t0AcNBcHAISc5Hf0yknMVFBecuWMnpU7P26gx368Q158QO7YGcXzpABDyiskNzm2LNx4OakXhrxU5z0eNh46Cr9eckXbO4IRWxztrMQVRo3G1j8aoUOpZTW211gv2eX111+/4Eg3osxru/Ppg7Pw53r78mBStjNrlvqu2zpi2a5CvaMR6nyK7xZNUTvYa6OU9vjNo0pdSCzM+6B2UmQGh+Mo1tequdsvyIkFVc6WVJzOyD15UoV8UfMPuFoHXv+STZ0Rs3iz4zk5L32KJh98nXIlV3OJqPy8lC5GFY4HlZ8tqZAIKJMKmXROS7Cg+UKbMRatTkZtoaKCUwllJyqbnd8nMlHDKBwOlDVTTY355bJyKV8DmTGN3VlUMXPJmPR23DNNM3meQVeVQ9sZzVbmxAQC2rfH0/RExdB09gYUL8/r4k2TagE6zPA0Cuenc+rqD+jZv9Kj6cmkMTTzExm17K3CWl3HRCtTIwnzvhgZc92uo3SmrOlEQfsesK/CdBwJ6NzNNfPY0W+WGs131DbUrom7K545tZTMZKrCCNDdrlwOzhhH8Z64Zk8RdjkKRULqvG5Y+UIFudZ6oFehrlaVip4K8zn5chXb12WstmFzTiXlFXxpesbwmHlELdRY6Hk5c5f8of1yaLAkGkmnFBg/I697WE4xq3AkpmygVU7VKtaTClsKhkwhv5aivVaW4wqjHmH5r+qlb7IULoujndri/Xr0qiw1XIzGy3qGfNVGWKSlGuU9tOlC23xp61P1CsAK28/TyHdtRu4ThqWeiMUO9qLYzSGwuWLqExuttEmDIZGeuMaPT2v65JTy0ylzOOOD7Yof6lG5JaDChXmjBEndx5/3JF3x6y/c9BkxVtiYHFoOMt6X87jrFfv558iJx1XyIsqmABk4ioVAHQXUkpzX+FhMOWhjkhmjeCNBXzOZuALy1ZZNavRczBTrW/y0CtVowKlGAEyANEV+FE94VqHphC7emtXxW8sKBfwFChyk0/S+VP6/vc3X5FgFHIDMMCnTeLK+ZsaKGh4sqzUzaUYUIH17gM766t0b1ROfHVCpWgs5edNF7X/gPmNAiFasWG6vfdcMKJPMK5cu6rZvn5fbHdVMBjDCJa+081CHEhcryhVj0DZE4bzyNz/kmgjw5C2TBqRh2ZE7D1S4wTCUdO+fvfmiQuGKQY92xYV9JUr0HEfpO0cVbIkY7jOg38GutsoUzTQkna4hLvXjrXLIyuEQwGIcDKvcuU/uTKX+ychiI25A7SblKKWDXfLKjamK1WDIdmTwcgAXlCDntpGaRG20YylcFhfvlxLSRBS6G2UY5hrtOAC+V706IlqltUHfNAIgQGzzJZmURsFBFvCAzlhqXXcjlnWaycLmpkuffCm1EzwBQkY72GsziChRFme+etyw45Zd+LAK6rm8X6nReeVVUgK47lRChdNzar+iR63FjOLPvEEDNz5Cmy226RNDwnqxMYkG7aiBvkffX+2veYHybovcQFBzM64KipkiPxIowD8WVj4X0Fyu2vDpMwOC/3PkZXylR0uiZaLADHoUayChPKy+jtRtoo/KtYTDjtqV1tHotOIXx5Q9P6czdxZ14o6yQq5vkHRWcok8gYaRvXsqCDsAbcODJRXyvuIRT/7EnI7/IK2OLlfjZ8vKJXPadzCgRz/1kkd4x/dHDBqNaGWxYUkkcspmL3nX85Okr1oMvQuNl3uuGVSstUXh9rDCbSFDUEndZfD6fQr0t6voBnW2ChJo7WtZgGYXU9XO/GBAkxfTplCfODtTGfkcCil5fk7pM5Nqu3yPAgwTm8sYBmaD7komKjNk9u2Tf/6snMkReb3DJjrxSIslJ1WOdhteMAXD8tr75CYq6CE/QC9NUCW3XYHpCaXG6iuo1wtDtmmg5TxuW7TGS2+E1HFxtFMPbb4FASCNdKzXjgMAKdZI9NDa2roAIFgNsbVYMIJ8R85fI+CD2u9q6fbXkyp/Uw0Liuhnf/ZnjZUkjQSb8UoDgng+SDAUOzcMT+dXfuVXfqzAZj2i2scnP/nJugwL3jYgAxoFUZJsXtJJhKi1g702w7CMfOesYvs6de7mC5qv8kjls1k5EVf5YlHZkwl1dber/UivohfGlbpmvwZfeIM2U2rXCyNsxyKgKNjktZ5T6/VH1fMbL1TKb1EwFlFiPqBCIaCU36pIxFUiHVCsWFJ2xpfnO4q5Bc2ViLp8xYtJxQMlRaeT8qsDwAKur6lkTMFwwMxo4f+Rcr6k8alLnmjcKWk4NKsj0Wl1zIwpe2ZOx7+f0ZnjZfV1XEKHxaOeTt9dMrNUaC86c6KKxmrx1aGE7vouFPFlEyEcOOTohqeFdf0jK5/J+ZsHCjx4qaucVFjXwTZdOD5jmjatDF87ZNYlNZs19ZcLo0mdOw1goaCJ6aKSjnT790Z153fOa+ZiQrnUpdQEYA1SY9HOmGZOThnEXDkcVmoiZeowzKMhkpq6e8LsiwBz79MFRQ70m1SiK69COhmPyT91Rv58Qs6+/fL7h+WU8pWZK509hhqfEcXu3IT8QFh+tPK9oNH34TYbH1Vw9qKcjn4lZqYaRlYuB0NGeVtveSVlbIvWpJqIjOtVgLVjiuud6lhLdMln1SsWAYcBs9MY6xUABBaxVe+kTCucQYwTRrfR13LNfFd0m0XT7bgaC0YFZUTz4+c+9zn913/9l4EPLyfA+HgAXUbpgyQDYoxBWiwf/ehHDYTZPpbrb8GwcCg+85nPmD4bvG0MGBvQetuLqRE2y7Cc/J8zOn/TRXUe7lRqKqVgT8TwbrUd6lNLpEU9Vw3KjYcVmp5R7KGXKfeY9WMgbSQ6qV0vsPU0YLFBl0odxK8+oP43vEhpxSpGxwsokw6i7tQWKqmkkDoKWY1MdylbCMhLF0zvSCzkabbYbkgkqbucOAHfmBTwSipUSSqLVUp8+kpaqsV4i/qaoFmzKi1hXwc7kjoQnFJgdEqJC1mdO1NtQizD8lx5Xmu48h4cqfmpsq4Yzqg4mzKKNRZ3deFUUa94U7f2Hg5p/3VDymQKShd9xTorYIMy/1UPZCRyCWo+N3nPAmnP/q6F6AapbZ4cuqJfuWpk0nO4R4mxpEnHdR3qMR32sUN9BlyAxDorkV6ou1W56Ywi8ZDC+3qUPjVuwB+htphJg7lwuhG5XHbE8M7RkOqPj8u5eFbKZuVnMnLGzxtG6srFx+XOXpDXMSTPaZGbzVR6W+QonJ1TT2e7UUKNzmhfCoZMmopZSMhq6Rw7gAuvHjRmvZ9HPdT2a9WrMG0NA11S72chGC5qFxixRtiXEV63Wof9UoJewrA089raWg8Oe6PXvOWGBTQIRgG2YTxcUkx/9md/ZiKLxThwK9Q0MADPeMYzTNf6Yx/7WL3zne/Uv/3bv/1YTpAIiPytfSzVQ4Kn/fnPf94gKX7jN37DGBgaBSn0cVNX2tgbOewLxT1xcUJnb62kGIrZgklz9B8bVNkJVninHMdQr4e8otoO9mrg1U/d8OFj5Io5VHZMs41Ollov64kuJfEr9mvPbzxHqUCrsqWgQoWixqYjKnqukiVG3UpuKm9SY3jNqWIFJeVXFSg1kmApoPOnQuoMpFWkCE0ePZRWqVxBivVEs5qZryjrUg7G5hpq91JJFyarhJdBT5pNar87rQs/mldhLm8+E9kzyCRRFJ90aL+nZNLXge6kYYTO53x1d3sKRx099xXtGjs3qXQ6o6kLCeUCvqJtYQ0c7NXFuyv9R7Y3Zc8VfQtNkmadgq5Gjk8tdO23dsc0f66GjiYYWOi8j0PnYlBsvrx8Ua1H+pWeyylXJavMTiTVeaxPeYr71bk1xUJZbixsyjXGoPieiQCdmWkpn5PX0SX/wkU59JRRq+kekjt2Tn5rp5yJSo6fpkmvdVAaOSsfGuiqeF175eSSikdCJntA+qSZwu9iGLI9//XUCchc8BqM0WoEtFZ4X4wLQpG83kgChwmFy2vq/axaehq+15kGjFI9HfZLie1haea1i5tFMdrNjDfeMsOCckL5c/FWoMHnptPnUq9gVUmlLQ5pX/3qV5toBHI45r7Ubp6vfvWrespTnmKiEYwLoS6WGePCRq1HNiJiqVXc3/z0t4032dIXV2Ykpa5DvZq4Y8IoounbxwwyKgN3mEq67G3PN9+fDdwoJfZqwrqRKsQjhUWA0JqopDY6WUpY05WKne3XH1HPSx6vQiCmhGKKBF3N51rlZfPKORHFg2VlyxE5CWnOorWCGaXLUQOldYpl9QcyGj/tq1QtHkfcss5dDMivcoclqlxjwID7g0ll85Xf+65jjIuVWKCosdmw9nQUdGXXnBKnU7rt5qJpm8kmKs2V1F7Pnq4atvS8xu5IVdJldxbU2unqac9EOVb22OyFrMI9rfKqqDCkXDVWdLub96giBvZdPaAkaL7qc3sPM9bYqww3izi6cMfEAiJw9mwlrcG6Ft2Azt0ypjYaKsueWgfblZvNKJUpa+7srNoOdKscDCoUdNR+bFCGTo6ROiC4OAu9vXQmS9RjMqkKImzosJzxSl+J39krB0PT0c+0ObkjxysTRefGFuDaTvX+EuURsXKe6cNodIzuYhiynddeb3qNtCtpI/YoPSuNGLNGxw3zWURWfFa9aSYcPs4JBvB4g0aptsO+3kmOtXQuvBY92Ch7M8I100TNfd0xhoXFBTVRKyhH0Bv1LjwbjyFgi9NnNE5+6lOfMim25zznOXrVq15loiErQA6JkCiqMd2SBW/U01qvYV+LFTcHg83gnXMVjcbUNdxl0h7h7rjxejuG2tV33R55hZI6+6I6+GtPVSAaWshHN3OoVzNyRJdsMhudcN9W8yZXilis9D/5AWp54kNULAdUdEMqea68YkjzpZYKBVXJp/lcbfmiRrMVFte5XMgo4W43o1QhqP5wQeFkQeMzVQ4yDFoVNdbuVrw0UmXUY06fryiTbLqgfS1pTc9bxe9rduJSraXFzetYe0Kpk7OVIWixytru7aO4D0OMr3w6r6njcwaOW8iWdMVVQT3+cTXNk6m8UoWyevdXDiXGoWOgVadvqe7tqnIuVBFrlkhz5kKl+E/tpPtgp0GAgRKD+iU1lVa0I2rGJZz5YQWpBdW+4UYbalfrkT5Te8klcooPtGvq9jEVZ9Iqp/MqM+3RrfTB0KoCT5hz7KjhcnOGD8nr2WNYip35GfmxNrnToyoPHJbnRBeu1euvQpBBosU65cxV2TKqo4ltFEAGoJmir4Uhs9fYzxiper1lImYcRVI/9fSdWESYHTcMkqpeYf/bNFM9HF+2loOCvq5qlJbrdF8JrECGoJ55KrV0Lva+LNWdX4/wPuuNLG3KsLzuda9bsnhe+2ikALackIt92tOeZhYNLrFaefOb32w8apQgM1egf3nve997D4qZN77xjQZvTpEMJbiRRJQrMR1jTKziJg1HQbKztUsn//u06TinUDs1ljLeaqXLujra1itp4In3U/uxIfN+1rCslc5/KSPXKGGmvZ56oqfhlz1GwQdcpXTelee7yoVbFJjPatZvU4sKSrothncsNS2dnmhRh5+R50CtD517JS1Dd3pxvKTzM23qj9A4WXnvjnBeIxMAlivSGbnn2kzPVqNc39Hhnpwy+coawkd28qyrrhZPBwLjOvfDWZ0+7amrw9GZc5UGzsHOgga6y2p3sirmijpylCa1ki67qvKeHUOthsNrZHROB6/fY4xD93BnBbFVjW2697br3O3jC1HVwLEezYxUgCjBUEBBZuQYzrO8om0R9V3ep7TvKFvt02kfbDX7AnZmnAtIK4HGFbMlZebzZphYqL9dJeazgLZyg/Ln5uQnMzCEmr4bn078SET+8eNy8pVcvNe/T177oJxTd1cgxlXFQtqrulHkY1jsypaLC/ec/cu+aXSQlXl/xzHngv4wPG646+plQ67tO6nHs7fKHoAJ14wxbEQHkGKi1aAejq/aPpb+/n4TkS3Vu1MvEGA1dNpiOhcLdOA1jc5i2TaoMNJJKMqVHnYO82I4HDcbS74a9T1eDKOL2RT//M//vCpGHE+bzbrUBuCGY1w2w7AsxXQMDY1V3DYNd/y/TqmYK5ni7IW7ptR9oEvpiZTa9nVqbnRe5UxebYd6tfeZ19/jUPJdmolYWJdaOv9aI1dPdLKULFe8X0qOvP7ZcvfvUbIcViZZku8AR5bGC3FlEiUTobR6RXXK03S6XVmvUi+LVenrUdYZv0W9yTmdPhVUqXjJw6JT38pgPKeLU5e+y2DcQpR9kaE6fbaa4nEwQpci2P7Wova6c7rjh1kFGZQWoAeG5zvqa8srP5ZSNuMrl/X1a29s1b6jrbrj++dNI2I+W9LN3zmn7kNdunj6UurENAgOtS+wHhuq+yp5poUVX6xSuHAuUoW8jt82qWLBWzA+ndXGTGowo7ePm/To7PFJ9Vw5qOTonGLtERPlxoc6DOoO40b/ihMPy4+1yjl3Rp4bkX/n7dLwfjkzE/JbO2DQlHP2hDEw7jRRiaNyz165iUpqCtJPd35MXmufyp37VQ5cItvEIODQLeb/W0lYC84FyhaHhnOFwwhslrPZiKeN0gZss5pnXws1JlVkGzUbqSdwdolCuL6VHLrF6LPh4eGmah+2BoXeWKmovhSzsUW22e78egzGRiDCmjYsQPm4uSs9+NIQM+LZ4F3U1j7YDLU8YouFRX3iE59o3gNm43qIHQmp2aDLMfcu18uykjRSvAcSaZmO4RRbjen4ji/drfahNgViYeXTzJP31HusT7Mnp9VzsNukVK755cf92Oeweeq9JjYNqUQ8GK5rMZ1/vbWmtaTCrJhw/R0/Lb8lrqIb1owfVUvIM1T5IMMybkyRgDSnFrXlsspNl03NoNXJa7oQN0FcS5UkcX84q0BauvtcxEQuQ7F7Htz5hfSXTGf/mYsc+Moh649lTY8IzxjoLOvEaOW+hFTQydGgrhzIqq8wo5nxitHp6yia1FhXS1knf5jUYH9F+f3s/y9qIL+2boJki2VNzKd16CH71NYTN5HouTsvdYFjhEbuuORodQy0KdIS1vAD96nzaL9O/WDSvGbwWI9xOpDcfNagyVoP9iozk1XfZX2mNkPPSrgtasonoZCrgDwFvIKKF+fkjU3IDQXlwtLc0VlJf8ES4JTl9w4a5Jeqe4hJpAv3yK3WhmLt8p2ovLzkjJ6Xc/a4nOQ94f4gkuC+QoGtVPPAs8ahYRQ3Dg3nghQ1Dg3ndTEMuR5laHsxOAcrUaMs7ron+rARUr3K3nJ8sddXuj47PbJWjh49atL+jRJP2qI6QIClmJRXYjZe3J2/oyKWeoUNQ9Txile8Qt/97ncNbBWiyhe84AWmkQkh74kh4u+1RoW85l//9V+bn6nH8LAeDQgxkGZsKpAiH/zgB/Wud73L9L9sJBHlYuFQcAPxgmqHZ6G4V2I6zqcLGr11TCU3aOjTISrMzecU6Ywq3ttivMXLXvige8BTa69pNc+uNgVHShIlQHTSLJ3/crJa8X5x+u2ucyc0f8MeZZ2QvJyvQiAiXwFAyZqtElUGq+SHgZynU/PdxnBky2GFW8JqVUEzxUqqzs976srmNX3G1bkLQRVzlw7H3tZ7Rq0hM66y8veeVk8nz9OJ7y+gqhBSPgOtRfN58WBJ7mxap48zDrmsu0+WFYk6CpYLmjyT0/SEr4ib1eMfEzDpLQQDc3F0VplkQT/8n9Mam0kp0B7RwNEeDV3Wq1hbxBBQYlwGjnRr//2HhOmayxR167fO3WNAI82ZxXxZLd1xTZ+aVjfRSZUx2XUYFjao1IV5xfd1araKNguGHIWCriJDnXL27VHpxNkKL1hbp3T6tPyhvVg2eeOzJmqBiNLvHpALNb4xu8DCyyq375M3MSNlsnKTleiLpkqGhC3lrOHR49TV1jxs4zGKmPYCMhQ8D4OCQ2PPhYUh2yFcRBL10ubXUqMsV5hfquveKvvVIpCl+j74jsvNY1mK0sVxHINyRdk3OofeotPQb4ujQj5/JWbj2tHIWzGLZVNGE//d3/2dMSaPe9zjzA2i0P7+97//HjeEkM9uTEtHbzdBrbBQ5FhZ0A984ANmrj2LzPPe9773GQO2nDRLnb+UYeFa7WhfNhM531rc/Gpy4r9Py4+G1dIeMZ5pz3C75sZSmrprUgev6tHwww6o97rhJV+7XMRilTfXxb8cHg4z33u9DEmjEQvpN7tOPA9n4sjPPEmjzv9p7vPfUzpVVG+0qGw0rkgxp/FAhwb8eSUCNOrlVC6GdGq8Rfv6M5rIu+oKSDmPNc6YGsNkqEWHwkm1lUs6kWnT6JmQZnO+IV/MlHydD0VNbSAaySjjXzqEQZ85IJX/PzZQ0thMyAAISI2dGW/X4aG89nSXlUwllTovlfx2lSMlXXbA12w+rxI1kLyvpzwxqH/7uifU2uHrhvSj759VpEoqCQQ4nS3o1m+dXfjcwUxRFycz5jFwqEvx2axJo9H8OXrXlOLhgJnnMnFiWqFo0BCSeurS+bunVUrnNBAPqJQtKJkuKTs6p70H2tRxoMtAiyOub1iNvakJ+S1dCh3aKy+dkZtLVxkuu+Xd/iPp4BE5509KQz3QCUs05/fvl1cKyD132kRy3uBBOdmagnWpuCy7MSkfzgPGhfQYZwxlxr3nfhO1L9UjtriYzzni9TiYKFXet17ySfQFypR6aq0sxRNmlT0pKtLVfGY958P20+BAYhhJ9VuxSM2lGjHdKvEk14gjTPRTrxIHnWZHkGCcOMuIZS5YiQTXzmIhWmKdFoOoNlo23LCg4Ji7spxgKGo9gEc/+tGrhmZEQTwaEbyrRlAadjOxYaxXTo4YRUkUxfuB4iCcb9Ta3/aN0xo7MaP9V/eZRrz0XN6kTgL9LWofbNNlz7sEz14sbN5aw0J0YpU3gpHDoDQ7F6YRWap4bxsruSaUDOtD+s3O7eb5B1/yMN186zkF7x5Twgkpms6oPeJqbs5XKRxVq+MrFA4qksmqLexrLNEqz8xNSaqtmFE5VElltUJ6ZaXgKBIp6UisRDiju3Nd6ktUvey0dDEd0Ph0SdlIXDOZnNI9cUU6XbXFPE1Nexporey5mEiROAqGpPJ8UX2DAfV4c/remYgODQaVzrg6uCetb5+V7v/wiMqBrL7zVWk+mTVBEYaBrv69x3o1X6XmR/oOdKpYQzPT3tciv9oUCRz51A8uqL0nZqKbs98fNRFLMBbWrd84rYMP3KvzPxhV35UDyiQKah9olZMvqlwqK9oSViTqKhgoVCKifX3ycNLQ5SAQLpwjdSCNjZvCElGMuU/BsJxiUuX2IWlqTk5fjfdbyMmvDjQDiuzOXJDfsjwclT1H5E66C4VGumm1MdxLOSiWDRnnkv/njK0mtjBPRMCet8p3JZ6wWmVPBIJTWM8ZtvNYrCHjeyP2PC4XQQSr0RVGCShyI6M/yDBYJmXaKkglWnTraowC6F47GoAIxp7BpWRb1Fh2ojSbCkMWz2FZy/CsXLqg6ZGE2vviGr97Sp37OjRxfFJesaygI135ogfLXSIFtjhiqQUIUKwDGol3iCe1GUZlcfF+KegyB4GNjedlOYl4DZ7Wde/6aWXj7YYWv+CHlA3H1RYoy3FCyhdd5d2QotRc3BZ1FAvKpwMmTRVRWaOZuGlObFNBk4VKnaiYKWgyV0O1UshrNn/p4AWLvqnp7FFS18RzKk4WFZtO6+xdRRVmC5qYqdzHgdaCRuZicr2yjvSXdWKk0jzZXsroR7cUNNie1dRcQG3Bgm76QUFtcU+/+JoOnb1rYgHphUQ7IirVjFfuqqWBCToauXvKNEYiFkVG6rNQRYN1HGjRHd86a4xVIV1VJG1RTZyYUmY8afjkeBlkpcGAV+EGo5se8sVwWN6dJ0xNRUeOScx+CUcq0cr8rPyOLnl+UDp7Xs7FUdPPYmsuTJl0Z8YWIhQ/HFuSNp/7iTNDhAFxK0oLZYviI1JphDdrMRsyirQRGHJtYb4WhbUST5iNQDCIjTQ02nksRB/WUSWrYdN6G0E8ubfKpEz0YZmU64UIY+BX6s5f71n39znD0kjxng2Jx83NQPAQ1msOy61fP2VuZv+hLu29ZlC5ZMH8C6XJ/ocfVNfBSx7XYmFT8eAg1AIEuDa+30alvJYTNiRrsxi6bEcg25k2Fs3GuhGWc9hjbXFd/as0T0ZUjkSVMs69ozRTD/PSXLY6p6Tq5Jfmy7pzukMFj2pISKnqBMmsXzWijBioSVuW8p7mCpdSMH6poNNVCn6ky89pOuNob0tJ17RllLpQ1MXTRd1+JqR0sqDqVOGFJsuhzrJCvq/xkaxOn8moszOoYDZrOvivubKk666tKDDSWm1dMd1908hCJ34w7OrMHZeIBg9cM2g4xKjLUHsZub1ilFp74xq7a1L7H7BXwbZWAxWOdkY0cXxKbYOtmjw1o679XQrFQsrTic937ooq6JeMIXRjVZqZ6Tk5B/bJj8blZQvS6Ij8UFhOclbegcvk+RE5zHdmXdq75IyeurTQ9t6Sbom2yZms5uir60DaC6+b2gnFYXpLHvWoRxlHC8WJw9Oo4lzMhsx7NgpDpjC/mEF5Ncr82o7+etFtNorAkFllbQv3qyno1hriyUbJI2sp77kHjeigerrzdyOWJoXNsFoqDA+Jm05Ib+ewoAi5Kes1h+WHXzxuFAJKJ5XKa3YkoQBjhrtjuuY5FYbV5eDLhNIoarzD1QACGykYE4ybnf5ZG52wToujEx4cvMWGb/+jL1Pb/fcrk/fNQKrJQKuBF3tOQOVkSbPlsFrLOWVVSTF4bkznZ1sVL4DsqtyLjkJG9EqW5KvdKWokW/Gw4cnqKmVVZZ83oLDWGsOD3ThbA0veHy8q4vi6PJrU4dyMbj0pnbwY0OG+ss5OhhQJ+BqIZdUbKepwLKOZqbSuOuQpUkjr/Nmcnv+ssOJRIhZXey7vNTUWS9Ny8NpBpc28lGp/i+1qD/DcPtOjYr7LQKv2PWCvbv3OeeXmC4q0RBTrrTSLwsrAPukYaFHJcTR/ZkaFgqdw2FXIrzAHuNm0At1tKo9OmfEF5TtPyi1WDIiHkSm68u+8W8IAVaMpv6PbIBIxHIwrdier0x7LRZMGc6zBKReNIsWBQLFxr9mD1oFA2It48xTTG1Wciwkrm4Ehk3K10GBeUw9lvq1jEIE0QuZoEWZW0ddDdLl4cmW9DAK1TMoYJwx7vZ9nZaXu/B0bsTTKcGxrLYubLn/xF3/xHs/BM6KBEsVGceq3fuu3lkV6WCLKxfUbng8yjXCeDcmmJv9qh2ehFNeL1qWYL+nWb5xSMBrQ7GRarR0xtQ+0KDeX0eHHHFW4JbIkfJmNxNpxkPFaNqJTdjWxtROiE9KCHEI7p2ZxdIKXWBudrBRJPfhNT5fT2aZcOKpcuqxZL6JUAGMZ0FS5TcliQAk3VkE+FYpqk6/xmZhK5jlSxPF0Lh01MF0kV6wcuEKhpKg8nZyvrqnvqy/s6WSi8jNXdDReViJfWcdY0NfFVOU9eauuXFb7HZBhJc3PeoKrsSPq6fhFV90tvgqTWR0/XzYD2Y715OQXS3r+0x2FoyGdr46WLlURbhBXVq6hwhN25tZLDZPZap0l2hpWrlDWbd86p+49bbp4fNq8V8gPKrIvpjR0+JGA3HDQ/L73in7jnPjhoFyaFzNp+W7AsBmH73+5/KlZBS47BJ+J/KOXS8CXGYC1d5+ckbOVZkqMymgVzsq5CVeHqvE+4RaVSyWl2wY1E+7RVKBLHVWoMAiu5cZxo6ipPaKom+GfWsyGvBrMdyVoMOe2npQcTmcjXfaLEWZkDxpJ/Q3WTK5s5PMszJq1QD80AhNeqTt/xxqWRhmOrYDyqmUvfs973rPwNxYGo4L3jPKFtRgm5Le85S2rRizcEPjHqAWgJEl7kRemk98OwqklzVsv4sfb/uuM6VnBV5wfT2nuQsL0MQxdPaDLnnj5AnyZ/HItfJl0Fx4cirrZBsn1osxnY2J02eAoEa6F9amNTnjUm5YLRUO6+jWPUzbvKRAMKO+ElU4UFIyFVM4UNJuPKlAsmX6LVqesmXJInSFH6TlXd89W0gEhM2q3IgPlnJJ5Z6FjvMPSGFd/9nJVPi/5igalE+OVv1Pn3uemBaoX1Ndwq68fXXC0v72ko86c/u926cSYdKQjr9mUdHl/WeVUWflcUdNzZUVd6QmPcvWQn4hoZtwO8yqrb7hdZ6ud9zAWDx3tWYhkQrGgLtw9pUMP3KtIX4vmpirRRc++SqG8pSeuWEdcc6N5jd81qUh7VBfvGDcINtPX0xOVmyvCcaNgPKpgyJdzYL+8cyNSW4ucYl7lnkHTqW9I0QyjQ2XvYAj9ti4TrfgdPWbmPW1C5XC3vGRZiWRJgbvvUuzcWXWOX1BnMKYjBw/UFSHj/LBfqXk0Soy4GIbMPrOZhHrEFuZ5DSCbej372i77eqmfLMKMz+R7NgInPnjwoKmdNJLuQzBgrC+ftRz0eTlZqjt/x9ZYmmE4tkIkUstejMK38qUvfck0Z33iE58wiwXhJJxiwJCX2hi2xvL7v//7BqaM8rb4dBQlN3mpTbieRJQ3feluHbhu0BRrh68eUPf+TuVTOR178jGTr8ZAku8lqiM6wfta7Bk20iC53pT5GDgOBIYDgwKMFFQO18zvVotOlpPhnzymtocc07zH1EmTx1LCD6s14MsLhTWTDytZrqxBoUqBUkRflWM6mepUIFeU71RrHI6ji4WWBYqXHqeoM/OX0DoHIiWNZUPyqyMmD8bKypVdo6xp0Dw76ajkVT5rMOSbVFpJroYDeQ16eZ0+L9111lM8LA3GChpSUmNjeYWLCZ0b9fTwaxJqba2sAV3wXXva77Guc5MVD9U0OUZDat3XoZu+ddZEMmacMBH+aIVLLG6imwkNXzlgONVmE4lKOw5cYL6vlqBn0mDMpimNgPpy5ZIUnEvIb2tXaXRaIs126mQl9XXgsJyJi/JJxUZiZsJnKdwp7+KUGV3gnDkpZ3qSrKRiFlFnpltGDMX+PZptVhH2CXu3WcLKWscOQ0FWod7aDXuRwjzKvpF0E2gtnCWUfb3XzH4HHca9bZQ/7fLLLzc6rZGeGsRO5YSVuFFancXd+ciONCxrYTimBwaDgFfw+te//h5NWLwvihfrbeVJT3qS8VLwrK1wo//7v/9bb3rTm8wNgR6GUN1OiUQxriTrZVggKDx900WxfYCSAhMtUJ8YDutM5uw9ohMO5XI9MRsZsSw30AuvkZC/tnbCunCNpEWI/uppxFpJHvmmp8htiyvrBFWORpVJFlXypWzJV7ToKZ2rGP2WUkGV0SyO0m5UbcWS8umYCm6LxjOV7dxSTUFZISl26eg4mk5UaPeR1pB0y4VLnuYVbZ5mqnxivTFfJ+ciynuOeqK+br/o6vK2vA67Gd0yEjGzZc7NhvTwvQVNTRZ1qDUjv5DRc24s69CDBzRwqEPpVE79+zvVu6/DpEBbuqI68IBB+a2OgSifPz5lrmX8zKxJ9w0e7TGGpaUrprmZnOlzAfHWd7TbRDqte2NmL0VagoozWQFa/Lm0Igf7VZ6cUfnUGbnXXill80D15MZDJmLxTMTiyTtwTF6wTX7JkU4clzM3q2xnr7xzlzq8nb2HFMxnTUoM8RgQloeLrNRwTYD9aodJrYUNGeNC1FI7z34lwenhdTRW11vvqbfLfrHwPJtqb0TRO9WIjM9rZEom+gin2zZBUg9uRJrpzt92hqVZhuOf+ZmfMdHI1772NWNUPv7xj+tFL3rRPd631qgg9mf7vhgU8oo/9VM/tVCboKeGFFu9OdH1Mix3ffucnGjQpFyyuaxO/WhExXJe1z7zCpOCWyo6WUrWO2KxXdJEJ0RMRHW10UmtIautnfB7DgT/z+GgDtToJLvFKbErX/QgZcu+5pJF432POzG1eiVDH1/MOjpVjCvsSNOBuDHMsUJBZTkKuY4Ss668XFx3T8V1etJVXjFdLEZ1JumolMhrvhDU8URIN08END/j63y2TbfMhPW9C44y89JtcyGdSgU1k3M0U2UBQIYDOSUYjcysoK6yLiRcE9F0FXM6cbasNqeg0RnpSEteIzOO3FxOB/s8+YkzSjoZ/fDWk7rr3IiOj4wqFyzrB989rVu+d1bde9oNJQyy/6p+zYwlzdTHtu644h1RdR3sNNFJe3+LZs7PKd7dqkgorkK+KCfkqyXiKOyUDVdYsC2m8uiEQr2tcob2yEnMm/6owLGDEkpn/wH5rV3y7j4r/84TNDjIG6l23ENvU4YOxrsUnUxUWYCDQfmBoJzJi/cgoqxX2B/sDeoIdrBXo2JhyHj2nGUUcL21G17LHuY1OJz1CHvcptLqJdLlPOKEESWh6EcbYFG2WRNqJvVGPLbrHqeYayUrVK/BXdyTw/fcVpQuG81wTA2GCASFS43mYx/7mIk2GpmrQM6USIUb/ad/+qemztLoDViPYV94It/78p06ffu4Ru+cVCDsaOhIj6555BW67hHXNgQdXK+aD5uT1ILtCMZAgOwiAlkqOlmpdkJEShoBL6+RfHGtYcOrneqZl3rj8lBoLXHlM57GCkGlAqyPo5wf1t2JoPwiiLqcIq407VYoXsqFkib8iDoDroZDESWzrQokgooXWhTPx5XOd6knF9KwIjocjCiVDOhg2dXloYiOBCNKz4c1kHXVmgkpPlfW906GdMdMTLdPeJpMVulmXClFI3sgpMFIUXNJX13Q55wvqadFKs8kzAyZ3lBBz350ULMzl5geWtqjmqM4U2NI7XmOklerpsdmLyYV6owaJBg/Dxzs0sDl/WYQHEzYhcmCsumkQn7e8IOVE2n5M7MK7B9SaSppBn555y6YkQsgDqixlBMZ+dW0sxcIKD8xbqIZs/7DBxWdnzFzWfxgSP7g/gUoMrQv3sBBOZnqdTex79gzpKo5g40o3NVgyPXUbjgnnHloZGwPSKOTJIngVxNL52IV/e23394Qy4ftqUE31RNB1PKE4YyS0SHluHh8+2rC9XLeN6JNoenOexiOX/rSl674nLUyHNeKJa3E82Gj8FrLL2aFnCNi35cCIg8rKMz15gtbSSz1y4XRC7rlf05r77FuRUIhRcNxtcRDevBP/zi8eL34uZYSk+OfmzPXxCbGC7S5cHt4a5FdNiqp14izsTEuHJLVXseacnAtIzXgCe5x4cj1+vwv/L0S6ZxiLsouomKxpEhryMyFbwsFNZfzFIoxQ6Rs6hgKVBoTy6R3qja6kMwp0RlUu0k+SuVkQbkOV9Fqt35XvqQ511Wn6xmyyyFPmiv46iQkcsNqCbk64GVNs+FIUvreJN68r/5u10Qt/e3S/bp9TRdCOhgt6aZzUR3uL2g6X9TEnK/+rqAeczCpT52KmCFdh64aVGa+ogxbO2M6+aMLuvaBBwwa7MytlQg7HA+rHMiY6ZPZuZwOX9mnQMjVOVBk2aKueNRBtbSH1BIpKTs/ra62uCItIXmKmpkr9KL4Z8/JPTAsp71NpVtvMQV7f7BP3tysMYyZ/n61jleMjOltgVrfSrxVopZiJRiSM1ejIBtIhS1OSxG5UMzHU+YcrgWGjIGgLoEjtFJx3sKNeQ1nEeNCj1U9BX07tAu0KNHI4uzIcszGnKWrqg2e7OfVUu2L+b1w9Pi8xfQ0KzEbU+PhDNnv18joi43gCUOaNlUbzXC8WLhRiKVR4H3xcmuNFqgzGzKvJ8NxI4aF74WBY+Nj+PCsIl6P4vEWdXS2KNYelVcqm/np7f2XurEbjVgaCV+5fhudsGbcFwALFjZq0SH1RCer5dS5NtJiKxk26jcgA0lZYthosKPeBUa/+2C39vzkUUM5kgpHVTaIG0cZP6BY0FEyGFHcc5UpV2eieEVNe67yJSj3S5qrFvejsYjmnEt1Ks79SLUfBnHl6ORctdvcwJYdnazq2DKElCrpppmKAffkqN0P6Iqoq0FGAs/l9YPxsABxlfO+8n5IlwcyOnu+ZKY1XtVZUCCb1/33S4f3gm6CWWVaxWrt58AVfabPxfN9HbhqwMyz7xvuUN4ra+T4tOl7Sc5kzMCu83dOat9lvaaJ9tzNF+WDNGsPqyPgKj07Ky+XN+zGXr6k0L4+OYND8tkjoAwkpQZ6FZiYkFsoyO/qUuv0pfPiDx82NZaFn7sG5OQuefVe16CcmiJ+s4YFwZigE0hLNQKxXcq48D44PivVQfi97by3UFsUNnqk3loGkTgGkc9ZCQSwmNl4b7VTvlHK/HojnqUIKDlHOGf1zI7ZDNnwGkszDMeku0B4YYxoxIM6/yUveYlRQNxoBAZkNsuLX/xis1m/+MUvmrQX44qXK3yjRJvhC6vHsHBYUKh8P8LZWuqXO75zwXRk0xBXypXU1tOin/iZ+6sZsZ7RaoejVolzTUQobD4LXbZ9J8vVTpoR3gdjRURUWz/j4FHcBxSA18rz8DZ5LEX/8ejXP17llqhS2bKK+aLpQJ+ZK5n+EgaA4YbPzpZ1dyZkGiUT0JMYBeNovrql09msWnJFpap0KfRktOYgsaw2JxJRR6KaLDnmfZFjsZDGClKhqkAHAyGlir4xLEPRgO5MVta+VPTlJEtqLzhKpQIaTwcUDkidrtRfyujERFD7lVKsXNLzHunr2HV7NHFhbqERcmK0YsGIZLLJnI49aK/mc5VCvVlHxirzCLlKTGWUTxUUiAbUM9ypaHtYXraoFjdg4Mq5Yk6FsxfltMZUvP2USjNzKp8fUTmRUqGtRW3VupcTiUpDe6S9B+Qfvkze4SsN9Lrct1+l7n0qDhxSKVVQuXu/yv2HVd5zTF7ZNYSUfkevfPbEGlOwKFwiW/ZAo9Ncl2JDBtm0HAzZpnLtebFQWxR9I+iteqZWLsVsfPjwYeN8NzouGB0FuAgDuFRdyGYVluIlaxZltq0ilkYEdBeGA4bjpz71qQaR9Zd/+ZfLMhyj5L785S8b48HrSLvBigxdvhWUET0x/IuypLCP8WFk8XLCjW52JstSG5EbjALlRhIyc1gwJISjtdQv3/7SXWrtjOjMHROmM3vvNQOm6NqMrDZFkrVEiROd4GnZ6IRDtV7RyUpCGM4acHhZG/4lOsHYsCY4B9zTlVIE9LNc//KHyQkFlQ1ElHMBEDgad6OK5vPKVadLloNRnSlE5WRLpisdac+XlalaipAcjbn2ADqKydE5v1rP4HMcV+fmywvcbPw8lZXythM+FNCdcxiWilwWlk4mS8bQHI0H9IPJsva7Bfmzef33SUeJrHQhHdFAoKibz/pqKRY1EC/puj0VD50o5dDVAxo/X/F+PcjqYwH94Duntedgt8rMte+K6dxt4zrykH2GV27wSI9CLSEVEnmFY0G1egVFVVawK654viwnl1Npf59yd58zEOpC0JPLKOJIVNHDh+QcOCivZ0jengMqn7mo0p2nVb7thHyoXmbm5J89L42MSn5ATjJtUmn+yVPysp40Pi3/rtPyzk2qBES7UH+fxkpNhdz7RlBQSylBC5tdDoZc6zQtJoPEyVpuzslqUyuXMoiLh3whzUZJCM4WhonPW2zMrJFaqi5rUWZ25HM9zudGNVpvOLtxMwzHUGZ/4xvfWPV9KeR94QtfqPs6iCIaKf7XMhzzsJuU6MQyCnOD2Qh27sJiGT09rfPHJ7V3sFv7L+tVS2dUNzQZrSAYgMWTG23DJ9dEatAyzPJ911o7aVT4HEJxPoe0GweS3HFtD1I9cv0zr9H3/u4mFS/OKJEpqbUtomSurJGSo66esGKtZePhd4WldDkqw6bvFyvGxKTDKumAeMZXMe4vwI1jGU9FaLhMp4ujY7GYRtNZHaneu0PBkG7OFrS/ao+ujId1ugxfSmUWilMOyKsO97q6JaSRUkAlL6+rWkNKl335OenOyaIeOSh9d1rqHvR0ZeuU2mLwqhVN0b5/X4e69rUq1BbQzf95xlzbxMi8hvZ0avjyXtPLWciXDCx9DySlZ2fMa1r9nLpiQYUcX14ip3BXXOULaYVGJ9A48q89oLjjym/pUKAlqvLZi/KnZ+X090pnzkoDlWmUzqGD8k+dlg5W0spmVgu9LocqGQRTxAfk0lNzzwaGsYxr3B33pK3H6cA7b1S52ZQYSpvUEQqYGgWOoxXreC3e58sxFK8mdtQwDxy12vddashXbZREJqZRynyyCkRXfDdKBla3YNhW6hezDaJ8JtkK1nq1z9yxEct2kWao860nwk3GkHCjbXRSDzHlt794py67fo+h3yB1ccVP7DcF27WIhRzb6IRNRHTCtaLE2Vh8VwwOB3CjopNaAbYI7JHohGvC44IXieust4C5WJ7wWzeoyKZ3A0qXpQhTEAMhw5GVLxbVHnCUDgQVDQR0YcrTXamARhVQKFNaYBluDQZ1Hv+penbagyGdKlFhseIoXQ5pxAnqB3N5fXemqOlkSN+f8nTTtHTHXEDJbFQ3zzj6/qSnC0lHM5mQfjhd0oQXlJ8pq1DyFHNApnnq8IvqCsV000xMh+NSuFBWf9jXK54a1zDz7MsZnRod1a23nNTMVAU2e/iaQU2OzFfGCocD+tF3zxlG40wmr/HTM+rb1yHX8dQf8hQO+CqMTiiVSyt393mFAp6cwR6l9vfJHZ9V6Y7TBhlWBlZMl3woCHLbGB4H5RePy7f5+0DANEvyN8S33v2+g0zcQ0uZHz2YkS+MrjkVVrt/UbicxUaYhZeDIWOcFsOQbeF+KaVZy1BcL0Tept84T7V9Ofy7VCpsqYFkjUCubc3SjmC2juRykyOXQpmRnVntMzdsVpPuQ9JM8Z7ohJuMhwX0kJ4c+k7YzPUQU37/68cVboXfKaBy0dMjnnvtmr6DDV+JvKidEKFg2CxlPobDemscYOoma62drMYCjWHjYXnWSAUSdVo6jmaVx6EHDavzskHl3aASiYJJSRXCIeVzjsqhinHOVk2EGVAVjsrNhjSeCysVjOp80VOSgnm6rBANRJJmiyVNz5V0yg/p+7Mlnc1GlE+FNZMOan+oS4cjnYoqokQxoAORuPaEonI8R+lSWEejLbo82qZQOax8Pqz2bEixbEST80F9Z6Kk2VJAF3IBJebTOlzOa3TW19x8UYXplPaXJnR195huv/mMIaO87Np9SiUrhfJwpKIonJCj2757XgPDnWbwV//BbiUmU6brvjU9r3i8oOTkuPyIFLowp9brDivoBM39bRuZUhYbvG9A5VMViCyGJHB4v/yJCsSeor4zNCglq/BhelQOH5UsAMZ15cdb5NvUkqXDGdpvKPkb6bxfTbhm9gopKYvmbBaGzJkk61ELQ16N2bgZfjCbfqN2aQEqVuGvpOwj1VHDpOwaaSS2xqyWgmWpWfcr0fTzmc2wTa9V7nOGBc9htcIdm8VGJxgUFDKhKdEJCnM1j8HK/ExaJb+kfIq8vPSAJxxtOlphQwHNRYETLXFNy0UnlqJ+o6ITDiI1MaITjAbwbmoni40tn49xAczQaKRo5elverxKchRujWk+GDawWhDD4zMFpRgOlS8q50gtbVGls9XaSDCii9MlhUpxpYstSuTjOlOOaCQbVb7Upi63W9OZkIbD7Yp5ATPXxCsGVbRNgqRnw606R/c6xqxY1IFARCeLtvDvan8kruOpvFzHVbsTklOMaI8fVk/G1XTS0a1zZQ2FgmovSzOzjloK0oOiE9rbXfmMqfGECrmi2nviOnnLBR25/5DCbQHlMkX1DrXp8PV7NHFuTnuv7lN6fEyxQkKhUl4dLTG193ap9WCf/Mk5BbpaVTo9Uplp39GmEvsb/HQsKq+zQ974JHzt8mMxqbXN1E+s+OGI/FpFRxqtd8+lHhfHlUfRf3Tk0iTJdRQiWdJDpGwa7cFYjBTDsNSOHK6H2RiHzPJ11QsmsFMrMRA8rBO32me1traas0pvXyO9dNaY2YZN0sz16p9amv6ljPdG1ljuc4ZlpYgFlIkd6oWVt9EJBWk8gEZvwg/+64TuPn5es5MpRWMhPbLBaMXWTshFc00UwzkMhPJ8l+Wik6Uo6tcqdrATaUDQXRxE0glESlzTcpsd7iXy03hczRAS9h7o0vDDDipT9JTPlk2vSS4SlOe5mnIjSpR8Tfme5pMpdbquUqFqM6PvaqZaC4kHQpqbLylQjW5g3I8WXEFkb76bfLV6Qf2oyrhNeohCvgIRFTA2VcRZWymgWc83s+V5rzY3qoliWSHH0ZFYVLfPo3gdDQQjipRjSiWZaR+Siq6i5bAy4yW99tGejl27VxfOTiuXL+rAZf069sC9Ojs6pnPHpxSJBpWaySiRTmv81Izmpua1zytoeLBd3T2dBsbszM2pcHJU7kC3AR6ELj+g0LVHFW9rk++78gBTM0kxk1N5JqXyXEZeKKZypqxisE3lnj3y9h9WORiTBoakjgrppQ+78emaGiT7fXAYqu3KzxtAJWQbGCk219vAWA8MebWIxYqldapNN60mtUaCjIGFNK8m3d3dTTUz1jZs8nn1GhaEdLSFTC9O+21UD8umGpZGqfPxhJfr6P/0pz+98Lyl/g7B5XKbmBtaC/+z6RwiEx5sSMJPoLA2OmmW1uXb/3WHhg8MaPiyPh15wB5DQ1KPcA1EJyhxNiEbl42F94FB4XqIGjYjOgGVgrG1g51Yw5/8yZ80nma9Y5nxCjHSbO5mkEDPeMsTVI6EDMOxHwop70ktHVGl0yVlSkFlMyXF4lTvHaWqiLAA88IgG6tKZySm8ZC3wDIcc0M6nq4akurT9oW7NFHIK1YdX9ClkG5Jpk2/CRIPBDWRZvZJlSDRCWgsK2XKvqY9X52BkO4qBhV2He2PBJXJB9QBBb8T0alZR34moECqrBdfXqlxFPIF+QFP3/vOXTp4dEhzs2kNHm3X9HzSgAuOPHiPjvl57ekNK8Y0yHJJ0d5WBdpb1PKAo3JyeRXuPKvyTFL+yJhUKBnDU+hoVZlIpfq9/EjYLIhPaJbOyrswIZ++/URWhTvPqTCWVDHUqTI5tv2HaAKqvDAQlGojmg0iP8UxYX+w15thlVgKhkw0UY9hsUgq9iU1l3phyNZIYFwaocwfGhoyyDgiq0YMKc6trZs0qouATC81RXIjqFw23bA0Sp2PUq+lzOfxtre9zXgLMBnXykc/+tF7PO/GG29c8j3tDG1uDvUSO9SLTUg6h+gEiCBedq3CbMawwOl08q5RxaNRM3b4CS98wIrPr6Xy55qITsD80wuDR1cbnXAQMYZszI2KTgidSRHAH0akweHjWiy7caPCxuZ966U/r5V4e1RXPOlypT3H9LHk6G/xPbW5AXmhoAJ+TJnq4K+WvJR2PDNfvrUU0FSgsmalUlF+Dm8e+HDlQO0JdWjGKy4wIYfdgMbzZZP6snIk2qG5QlG3JJP6/nxS2WBcZ9JlTeUCKpai6nM6VAp0KJVxFVOL+vIRjWUjupNoJR/QhWxEs25EwQLTKEMKZqIaKs7r129wdPiB/fre/zLLgwmTF5VhNkvAleMF5JaCGpyaUJeT08C+FsW64nK9kgqnLyhQLqpw092mWTJ0aMh0z3tzSfllT+5gr6KkCwtF5XN5gYdzh4bkjWPMqt+0t0fls4voVfr65SWzKt5+RsX5ksoDB1QOxi9ZXWSDyE85a+wPom0K4+sBQ6YOUu+ZXap2Uq+R4MHnNGIkDh48uDANshG9gl7CoOGkN1orRmegU23Tpk2D7eiIpRnqfG52LWU+D7jCfvqnf9oYl1ohAqp93nIzI1DMbF4aNuEhI1ohnUN0YodWLSXNGJbvfed2Q4NeKpd05fX7DVdUPdEJRgLPhI1OdLBU7QQDSdMWEUAzjWbLCYcDFAnknUQpbGKiE8tuvJZNaJsnMVirjUtYSp7z+scp3BFXho51N6Cp+YJRevkgaauALs4WdNbzVHAcjQF3rhrb+eoMecd3FPeCOlVILxgSXjeazitqop2KDEc6NUGzaymru8ueLmaDSubjanPbdTjaq55SRPFyVHdAGlaVTrkqloM6n82pIF/7w1G1+GHNFX21+q72Ub8phOUVGRrHvJZWPWwwo59z7lY0Iu072qX0XEHX33BYk+dS2n+4Ww8Izmufk1b/UEyhckEeIJJoWPGjQ3IiIYWvOSyno1VuS0yBg/sUvPyQPPZ9JCy/WhvKpjPyjxxQ+VS1eOtBkRM0aDDlWb/qF2hrU5mIx2Llyp68uaxKsznlMwGVh4/J7+ld9xpLrbC/iYLZg+y9Zt8D4fzTAkBUX289w9ZOSIE3whbMuUA/4ITVqyOcGsSXHS5Yr1i9SOqu0UFq6Ax62bjWRtk7tqVhWQt1vhUWA8VLCm2x0G2PssVAfOQjH/mxBeMm/NIv/ZIxHtxEDBue+FLRyXoRP37jKz9QV29rZSDZSx5yj79xfXTV2uiEKItro15BdMImr62d2K742ugE74NrbyR8X0rscDE2OHUcQmU7VsAOF1svoW8A5UH6oNFDQfrpMS9/sMqBoDJM0vVdTYdcuemSSgEpHAgqT10l72o+VzaULki/26JpB7bkyvtE6Hmp1l6Q4WinRuYThsZlxKlEJjPZsMKlFvWUYooHwsYATRU8FaozXEh8HI726OZqZ3TYl9qCIbUF4xqRo0S5rMli2Ribcwrp9oJUjMaUDUZ1OuVpdLKkc2MRDbV5+uOHJ/VT0Xm98MGtapuZ0WN7MvrJxGntc5Lqj5XVHSopHA3KmZpR6faTyt98Qsrl5U3PqXTyvAq3nVThdgryvjSbUPHUmMoKye8blNvVoyQklZ2V/hUfB+XwAfljVRSY3TfdvVIme4/oxIu1VUZpZvMq3X5KhTOzKmv99sJSwv6mdkG03uwYBgtD5syic5brYF+pdsK5rJdEkvNNer/RRkinBr7cCEU/jiQO52IUXL2fydnmTKMTd3zxvlnq/Fr567/+a2PlScfUCp32n/rUp0yKje78V73qVSYaskLhGyWJN0E3P4oNBoBGiPCaiVj+66s/VCad0/UPO6rugbYfG4PMjeWm4iXxsM1dSyG7lsrh2s5eaiCNdBFbYUMCWcawoegxUqwTEZxtrNwIwWOyVOaNrumjXnh/te1tV77oKdYaUSJV0lixqBS9HLC6lKSA76oz0K3j8xkdz6c15ec1mcwpXEXttAejOp6sdL7n/bJOZBKaKQY0VgoqkmvRUBhCTsYiewu1FV7bF2rV3amU+Z0FARyO9eiHyTmNFnO6OTmnu5IZZQpB3ZEsyFVYw5F2U7gf8KLKJEpmOrA8VyGFNT7TqXw5pI42V/fvTeqh7rieGRzTla1phZyCokFP3W2Oor0tpqcksr9PsasOKPaQK+RncyqPT6s8l5ITiyh8xQGV7jpjaFyMFEtyu9oVmcsofmFG3nRSfleP/LYO+ZlcpShfNTTOkcPyqvDkhQiGbv0z91Tszr698uaXpjRZT8H5YA8StTTCELwYsUjkwT7GOcJpqlcB15JI1uP82L4Srpn/J93v12kkbAqOFHi9UZr9PBzQ5WbYryS2aRNd1GxkuOGd91Dnv/vd717xOVj/tQrhMZ37b37zm3/sb7W/w9tgY733ve/Vr/zKr5jfsUlIv9j0mR3I04g0alhOnRg19BoMyH3icx9oPCbSP1wHRTiK2RgSy1TMTbZd8fZR73Xh9QBBxjtbzViy4cnNEuqzBhwijDX/blSj1FLCYecwEW2xyRsxYs96/WP1t6/5F00nMurwgwYVlSwUK6zRuYDSLb5awB8XA4qFWlUuuCqUXZ0s5tUS9M3+KHmu7g4V1FaOqc3tVdKb12gxo0PupUbODj+uW1MTul9bT5WmkuimWz9KTWhfa4fuSs8ZhuWA167ZotQbjBqY84ViVgejXSp6ZZ0o581LT+bKImHZlgtx09TuSiNzRf2wFNMN1+TlhMsKxQLyHE8dTkHzTtj0trQe65da46Lxv3DHaRNRhA8NyhubUqAtrtCx/XIdv5rGkvxU1nCMBS87oOLtJxXo61r4PtlgQLGJWflnx+T2dCs42C0/7N7TgED3A9PE1CIPH/qcvK/ABk8utcJe5txSb6HLfXHqe7HgjJHyIsphX1G/QGGD9mJf43zVw4ZshfOJzrFswSuNY7Zd97wvnwli8uTJk6ZAX4/YHhdeh1GlFrKS2D4W61jyvXBSeY96z7C9VtZtW0YscHhhOFZ6rAd1/j/+4z+azQEX2GpCDcdSsVup3ZibwXBMGuzgkUENHGzVyORJc+Ot4SM6sdEbRqWe6GQl4fBQ+OQQLsdqyu+JaohO8KhYD4AKXA8GbjONSi2tB0q+0Ql2Vzx0v3qO9coNBZWPMlrXkZsJaRpPnFSBCQukeCyiZLBSbI4HYkqkPMULMfWFetUZ6VHGCYhBvkixVFR7uU2juUokQwMjMhzt00UHcsjKe8+6RaVLIZ3KlzQU6VWv12qeSbotWw5qRDkVyhXW4pF8WtTiU15Y+XJYwViL5golZRxXZwJBZZ2AZvxOzWTCCrdALlCArV+xaFllx1fPwXa5QUdKpFS+65TCe7oUueaQ1NGq0FWHK9/1B3eqNDat0sScnP4eBS8/qMBVR1W6s9KQCvOxWe/9exSYmFUhVYk4SKPl7zirUikkv7dfzt4qrQme9vAh+bNVKGzV8XYOHpQ3Oi4tmsy5kUJRHCXL2VlpX7N/2Nd43zhI1ATZWxinWhgyZ4woud5ogoigti9mOanlCbPDvs6cOdPQ7BlqLbbfZKVpl7ZB0taCa6OPRqd0omswZBsla9Iom0WdTxrsmc985j24gJYTQlhgsCsxHDdLRFmPED7/z399XxcvjOvI/bpNEZHvT+GMjbda7aQZwcPie9Uiamx0wmGiGA+GnWFcHDy8qY3cVI1EW6DzGo0gX/qepwozn8x7SiVy8oJSMuNpIlBSsOxqxskqB518xlUhUFGGncFWTQcryJ1CqaiWXFSz7qX0CEYm79EkWVZba0v1t47KmYAm8hndlUpIuYj2hHvVVW7Tndk5lXzPoNOQlkBYbi6o0WxOd6RS6g91achtU1iu+kIYtqI8L6LWbFDhvKOC56pYcvSts10quSEVgsDFfYNu6+h01doRkn/ipAJ+XtH7HzMTxrw7TyrgleUQDVP15wr5N+Aq0NOp4okRlUYm5B7cp8CRYXm5gtzhQZXHpuWWPZWyNd/3yCEzmKx4/LzypyfkDe1TOdqq8okalgQUFfXFSTtPYHMiFis4pRgI9rDtMbGs3ex19jX/T9Rta4K1iMVaGDIAFJzTeocPWudnNYO0mM6llvp+ugE9Y/tN+KzlKPptwb32O1rKGF7TaGprx6PCmqHOtwJKCWjyy1/+8h97X9iOQZqRUuF5H/zgB/Wud71Lr3nNa5a9FoxTM3xhbKDlNhc3nFQXtZP/+ea3NDs/Z6KS5z7/aesanSwnbA7WjsIecEk8JtaYw0fqjboUHhEpgs2OTlYSDiF7g+tsBK7Zu7dT1z31CijE5AUjyoV9tbXFlcgWNV30NZVOKxaNmj6Teafq7dJdn3VVNmDjSsNjvgxlPrN5K4erK9Suu9JTSqcrnv2p7LTG8mUlC2FFXdIhjsq+Z2osQ8FuncmllS4XlPALOp6fU9HDjETVE+rWaDGvuzKzSvtlTThSr9Ni7vd0TDqbSiuB4Z/Lay4V0VgiKjfsmcR03nc0eFm3UejhKw8a+pXij+5WkGbI7nYD+S3eedqQS4auPCC3p90YFQr41E+cSFjFU6MqHB9R8OjBSl2l6sxA0GmW4sghFUmt1UQgxZEJFbNSuX+PnMFqPZTi/cFD8meqhmUTIxbEpnsQzjiZCMA+RDHWYbXoyeUUZC0MGYVf71TIWkLHlQzSUszGPdU6TaPIrdUo+tFBNmW+VDqN9an3uyEbZVSQTdMyjVLnWwHlBWIKCv2lvN4PfOADZoMREn7oQx/S+973Pr31rW9d9jqajVjs4KBaYdNwzShxbqphSi23GPrzZ//0YxaezwZdr+hkKbEoMyIiipYcHqISaFbYqI1MlNtssb0AtV5pPfKKdzxVob64SgFf9DkSqEXKEblOQBG/W+P5lPJeUS35mFLKy3FQ+RGdytC5XFEEwIaPZ8YVb7mUQx+KDEjxiEb9gjoC/eoMtSvuxjRXgncsK8+55FxEnYjmQgFNO44GA90K0VdTjRhLJV+FcljKRuTkgpr1pNOFjDTvKuBEFPNiynu+0kXpc99vUdkJyAl62tPvKNoZlzM9qfL5MbnRoMIPuMJAjYODvXLbWxS6+rCC+wdVOnHeGBO3u0NOeyXKwrD4AVehKw8rf9tpFU9flN/SrsBlh83Y5OJQv0p3V+fd1xgKE8HMJlU6fVG5czPS4aOm3lI6fQkaXvv8zRLSXTggpIhwHtEFRN2kf0khNQpDxlDg2a+UclqK0JEztRTn3XLMxnv37m1ojPJiin6K8otbCeyAr6UMgk2n8d2a4V7bsYbFUuejjCmwYTBqax+WOv/Rj370PV5HBIKyXEoZEwVZrwCYLGmwV77ylSsq7mZmsliPBONX26nPprHEi2w+PI5v/vf/ac+eQT3uyZVCoTUo6xWd1ArXg4cCnBvIIpsLg8JhtDnmnSCk6LhWvMJ688Q8/+fe+iQzeNh3pQvziYqB9bOGjiWR9jVHg2QwpwuZuQpFC/sw0KNU8dJB7wn1ampuTrC5nS5Ma6xU0JmJlPzypftl+MACbUpRF8mnTArsztSYcqWQvLyrUDam07mEppVRW2tc46G8Qk5cfaF2hRXQRDGl+VxRrZEWU/cpO65Gc2nF3DbDc5Z047ptrEWBSEjtVx2QOz4iZ6hfwd42+RBGzs/L8TxTkC+fvSA/mZFHHw2KHor9O87IZ4LkVUfkdLQoONinwu2VYj+pMm8mofztZ8CoK9jSbubbIz7jjA2N/n4Vbjt9qQHSl/J3nFG+HJezd9+lRd+k4j33kWI8njttAexzYLJ2dEU9BfjlYMgYKcuGXC8M2Y4pJhuwWGmvxGx89OjRuuo0i8XOK+J1tc7WagSUK9G3LJaNhBpv2jyW7STWsDSysDyPzQPag9dSnyCFR5rLIrvsBrjt1rv1/Bc+U/H4xtQwbIc+ERKbHAw9uWV7LQhpJTZXI0iRrRSukQNBmoOUKF5pPfKARx3VsUfs1/H/Oat4pE2JQEmRvKNStKy2SKtSgZzaU3GF/LDuzk6qJRxSuVBQyc/L7Qyr5Pianp9X3vPUXpDa/coslKCCSkIH4+cVC0QUgTbel2IeEc6EMsGghiJ7FqZAIt2BTo2n51SOSaVsWWFl1RVuUcrPy/FC5qRNzM2rI94lxw8r6AaUi3iinu4VXX3rfKee/LCINDcrZ2hAzslRM8ExdGSfSmnSX6cUvvqIiqcuqpSelROPGo4wmhnNGvZ2mtEMzKlfoL9HqgPQAoeHlT8xZrmlK4YAAGtkSURBVAiLQ4f2qzQ5KTeXV7ijXcULVSVUfS/zfgf3qTSTVOHMiMJHDyqUmd2wzvtaxcn9Z29zntgHdlgWgoOG88jPKNFGxJ51y4ZsUV9kO1ZCfS01phh0GfD8lSKW2joNn4MhwwGt5zzamhCpdT7PIifrocyvpW8B0bZcVLeR9RVk+2udLZzJUhudsIF4cJOJTiyazQ7QwvDccccJdXd36pnPumHdr9vOXrHjffk8gA/AMQmdayMiNhbX1Qg9xVYLh5seI1KLjRD0veYPbzTporxfNA583gtosjhvDIGTZSiXZyKOoNOmaKlTre6AfL9DF5N5eam4ugJD8hTWmXRNP5XjKFyKajSbVNkvG+bgklM2RiXkdMrLtehkpvL8XAFKGF8nMmOKuR0qpDz1BXrU5nbqgl9QINcu148rLUfFckiBQlD5UlGZckHJOU9+yFXW9XToEYcVf/RjDEOxzpyS092hQGeLyrfdJTceknPsoGnyDF11UO6ePgX6gUE7le77/XtUPD9peMPoYSmcnVDwyiPGqBjq/MsPK39qTH6+YLr2C8dH5WV8pbvalY/E5VfRYguprmhEham0/CrvWuHEBWVmy/JaK8p0vYXIAbQitVQiFTx90l0gs2qVPmls9jZKerkxwfUSVtpBeI1EEyhtrq12suNSNZZascgtDBko2UZ7XMjE2PrOUrPulxLQdBhl9NZyiLqN7Lq/TxoWIhZu8kozGGpZji2PGKEpG4toBaXNjbHILjY/N/xrX/2mHvDgK9RWzXevh6Bk7aFbPN53OXw/14XHYydK7hQhbYAyaYSqJt4S0bNf+5PKgnpCETJxK9+irPIKO2FlgnAY+6bj/mKxsha+X1a5EFIZYseqc9AdGNJkqeJwBKtGujfcp4tKaTw/p+l8SX3BAQUiQQUUUE9wSCfSkyqUi5pycxoMDxlkGYCBokqaCeRVgiJAjuaDWTMnpqOtRZloSZPZjIqwZMZdTSWyCsbDevl7ni496CdMessZ3isHmplIVIErDsthamCpqOKdZ1T84R0K9nSoeH68QkA5Omlo8t3OmmFqnm/qK+rslN/dpfztZxeiEQyLWYNiSeFQq1LpgtTVdg/D4gzvqxBb1kQwfq6ofHrto4kXs2UD1sEzR+kTCeAocd6W8+xRmDhSRC7NEMPWGheMVKMwZFL2XB8GCaVdDz1/qFqn4Sw20syMbqmt79Q7i8Wml4myLH1LrWw0T9iWGJZ3vvOdBqVE3pIvXo+wEG95y1vMhkKxQwez2Buvlz3Zcl4trrMsnsFiWY5JJ7GRLKOwjU6WQnZ97Wv/o6c98541ombE8ocRnXA9fCYHjgiFomA99RpCYNIIGKVmvLutEjxJ7mEjuPwnv+DBuuKRe5ULlDSbTMlRQJOpvOZDWTn5kFJ+xYloU7dyyskNuooHWjQXqKyLGfXK7JFSTJlydsGw5Ny8Juazmsoy8rhyoDPZS2tZ9gOaLTpKlX0lglUP1i8r4ZcUK8RMLWa8NKtQPkKHi+ZKeaVnyUVFzMlLFz2F4xG94C2PUSQaksPnPuxRcvJ5OcWcHNeXP5uQ4lGVSUldNmyiFi+RVOjAgJxQUF62YCDGMBdT0Le0LMEjew2goZTIKVjte0GcqhKEW6x8fFThRF6ZuYKco/tNDQXesdxtVWRRjWEJXH5IxYnGZ6YsFgrZFulJD4qd5cNerXfSKEoTPdAsW/ZaYcg4dXw+xg2pJ4qIVUcik05HzzTKaoy+w8mslzKf6yQDwPOXopq510UseKLPe97zDHdXvfKe97xH73//+/UXf/EXJg+P0oREshZtUS97sqWSsYZlqRks5F3xZmqjEzwllL0NRxd7VIn5pFpa4jpy5OC6jPfls/hMe+ganRmPEGFhjDmAjSCutlIsnxHeIIewXnnbX75ULf1ROeGwCvG8YmpTtlRSMufrYmbGcBozbTHpZRcMcyTbpgu5sQWUWNSNaTyXNKmq2WhKqUxAXYFBdQf3asJPKeflF0Yen8mOKKJOdbZ3KpSNy8vEdLYwo5lyUTTYz4Yz8mK+SqGwpvJ5XcimpExESS+lYDGkRCZngAfXPPawbnjmdZe+yPUPNhA3t61V/sh5ijjS5JTcqy6vFOivPCQ3HFLp1KiC+/rkV3tLvERahdEpPAoFjuxT/sQFlcZnTVove+sZuccOSLGwMUbBq45UivkogHBIbrGs7J0X5O0ZUiFZEylWlZFDpHVqomlUWG1PFc2MnDmUHg7mSrN8VlOanMVGAB+L32MtMGScThsx1ev5t9eMRG6k5YF6Dp/HGjYCArBpOM7SYqqZjY5YHH+jTdcy8jd/8zf6tV/7tWWbgaxweRTK6fL/zd/8TfM7S9vAe9ALgzJG+RJSW6JL2JSBNaOgba+MfT8guDfccIPxmLgGvCaeg8dk2YSRWpoVbhKeFuEskcPiqOGzn/2i+d3Tnvb4htYBhU8RnuvEsHAtGBQ24XrceL4L68L70TOyUwTlQ5qE4udinrnl5I5bzur1L/or+XNupWadd9QSDatYKmi+NKve9nYFfF/p3KyGI4fMa3LljJL+lIZie5RQUmXH0VxmTgdDFQehQrJfcSKySsoPpFUseep2K3tq2p9Un9unmeKsfC+ieDBmqHxmS7PKuUX1qU9JB2MSlwIF+bGAplNZtbe0qG1vq97/H6/+sfvs/+gmeV/7igrpgBwvr/IE81JaVBiZkdvRKgfG4kTOoLucWFiFbFEqlFUanVRwsKdSI7mtwmgQufqQMSxIoL9T0UMDyn73knce7GkzjZIMN8sPdCvmuwp7FZLLQF+nnJkZOZcdVua2c4pcc1iD73hl3ffQ9ndZh4xom729Xs25OJY4mkS5pKiaEUtrwtkjU4ECr3e/UQ8io4A+IYVbr5w/f944s+iR1ehqaoWGUL4zBrleqDXCa8h+sPbUiNBxPJoZXnivqbGQk4SokvRXrQXnpgCzbYQ9GQP02te+1uQr//Vf/9WgJngN0Qkh5+LaCY/a6IROYH5eaqbInXce15Of/Ji6v5ctyi013rcexuVGEVesYb2En9tBOHCsBZ5WvTPJr7zfAT3rFx4ht93XbDklr7Vk0mCML4gFulXOh+RlWw1R5LnspGaU03Qhq1wwqHkGxmc7Fch0yCnFNKEK3XqJiGFBAhqZTyqZL5uR00gQtuVAWo4Xk+sEjVHJBXJyylFFI1Gly2kFylH5jq9UMKe5uaICXliloK/f/uALlrzPzrX3lzq75XoFlWezZo69d2FckSv3G+iwUll5mbxyt51R9v+Yy+KZOS1eOmdqJ9kfnVH4qsNmFsvCe7bF5bS2KT9fUOjI3ksfFqw4SKHLD8odmVPh4oyyqbKCB/eYek9g/5Ayt5/7sdTYanvbRt5EAih9ivEo4PVkfLB9KTiIzdYSWX+MC04lTkwjMGTOFteAjmpkFMTw8LBR8hil5Yrry32eJZ5s5HW1VDMY+c2IJba9YbHKkAilVvjZ/m019mQ2OkqbTYiXQZHw13/91/Xbv/3bZtFrkV21tZPF6S5+ZvMRYSxW0sPDq9c+bB2HCAKDh0fHNa023netwmHmuqGZqFdJbwfhHuPlNpLK+7lffrL2XtMpJ+Qo4xeU8Yqazk/L9YKazVVqBG6AAjtF/qDibqdSyYIu5C7N4GB2S7TYo7PZcyqbhJWUjaWUL1K2j6gzsFcz+ZzmQvOaS8+pmI8o5EKt4itTTjPI0fycSqaV9Yoqt5R1Ln9RfqpF5XBJXntZz/vVGzR8uDJ4bkl5yMNMKowiPkO5AkcPGc6w0NG9po5Snpg2EQjizaYUOrDHNEb6+Up6higlfPkBwzEQOrSHRKByx0fNa9Mnxitd/XzXUEDhKw8pc2vFePgUtlM5JU9NyRkeVD7HaObKJdkO/pWGw6H02NvcL5QZDiDZgI3o40KIxHFASC/VaxCWK+YD7MF5rLep0RbTSTfhADWS3rrsssuMA7m4V2W1zyM6w4lutDcGwwnKDIOPDtzINNi6GRZYjpcbI2wf9RbHNsr7hRIGjPwnPvGJhbBypehkJSXNRuYG2aL4iROn9bjH/eSyr0GZE/rymXhXGMFasryNvskIhwZPaSfVWxBCd+4LRrEeTwsF8Tvvfb4CfUVli3TKu0qWSsqE5tXidisbTSjeElMEVmKnwlHGve8I7FUyXFEM8VglzdAV3KdUJK3z+REV5+Ny/dDCULCIG9fkbErJQkhzfkKJ8LwmsxMay0+rGCopFU6oHHZU9CJKZIqKhdtUbsmrECrp6kcN66deds/xD4slcMUVch74ILkYtlRaTjgof2ivHCZMMqI5TXHfMakwJxpS/jj9JsPyGOBVleJUQn5rq7JnpwzFvhH2WtlX6kfnTVQT6O1S6o5LRpWai5Gyr0IxIL/9EsAG9FkjRJC212MzHBB6uShSN9LlvhIMeSk01WKxUGOeT0GfNoCVxq3XigUO8Ln1otKsIaO+hN7idY2AF+w4ZXQARnjbo8LqZTluRmy/yOKOV362f6uHPRlmZDY98oxnPMOE6YSwy0UnKwmGgaK4JX3E2PT39y473pdUXe14XzZvM+N91yrkgTkIW2nkm50syL1cafhTrYI7c+aU3vn+lym+J6S0P6/W9halnbzmg0nlfE9TcxXgRqTYrcniBYMIQ5x0h8YLIyrkCiqEMpoPz2pyuqQ0TZeBSuohw0AsUIjupKLqV3usQ4F8u0rpmLxYTFF/UPn5sMbm5lXIuyp6RRXzvtywq6SX16HrB/X2D/z4sLqlJPDQh0iRmAKXHTId+C4G5M7zFdLJy2GqkEL7+qUq+CB/5zkFhwcUOjaswOF9ylGbmUwqeGDIvMZ8xxplUkjkAWVXOMHsZ1YbKvN9bUrcPqrEzefM54vzsQIRJIp1KSLIzRLSbZxvjEszjtNiGDLOzGqKu7Y5sja9VagTKm+5yHA8VzuTtgnbOr+8rtHeGAS9Ra11PQf4bZhhqZfluBlho2IcvvKVryz8DmtLuE0KCWmUPZkIC1Tay172sobID2uFfDE3FBjgnj2X0nS8H7/jwPEvXgJpuPUY77teSppQuBFa760WDgFFVdazFuzB+mNw8MBqFRwjAR744PvrTz/yqwp3BTWdn1I5H1TOSSmTCijpFnSxfF6pyLTSpbwS2YRSwRnl4vMqhgNKR7LKpMPyU22KRKJqcfsMBf5Y/rw6Oto1kjunYK4y+6Zc9FR2SibdlpqvsifHUmpxexUMhJR3cirF8popzan/aLve97FX1/29g9deKa/smCjDiQTlT02bwV4U1lH0hbE55S/MKNDTIfV0qxyOKvXDMyqHwsqduFCZr1L2lL17VMHD+0yqbGFNLx9W6vyMCrNZBY4eWDA8GCm3PS4/WZJXTaslbx2Rc3DYZMTYN0sRQeJsbeXetuN+cZwapZBvFoa8mM6lmfRWeFGvykqfhVhD1mxvDGLbNu5VNRYgvXgV/Mvi8/88akNIlAPz7RFuMsitd7zjHfrsZz9rNg3RB3nbG2+8sW725FrhPeEg46a+6U1vamoTEuWgpDloKOra8b5sSEJOFNxWeXD1dLg3Oh54K4WUIcYcLxIPj/1jOdL4TpbBGQVno89jlx/QW9/3UkW7gkpHxysOdyyvaDSmctBRMRtVMNArvzWsfNFVLhGVsh1KJ0KaKFSgp5lcpSbleAEFQx06OT4CAMugxSp/kOaKs4q7XWppjWmuPKliunK/S9GiCiFPs8WEoh0B/dHHXrUAba5Xwj/1ZJXvPCW3o10qFBU+vEd+rqDiyRFTY/Eo5KdyCmAMshVPmS776BWVgVEU85HsXSOGHgb0V+Tqg0rcdUF+sSwn4Ch1+4gCh/aZQr5DMb+nW0oVBN+mX7UV6TsvaKrkm3VvhghyM8TCgNkfzbJOLIYhU0tdTuEv7rq3MGikkXHDK3GRLTZitZkV2xtDpN4IeADZETWWRoRGR24YDMQYE/6fB0U/K4tpPSiyQ4VPXwqNgrwOOHEt3cNq7MlLecGQYvL4/Oc/39R3YfMRhaDs8GxQfnwum5uwfCs9uJWEayMdx+ZvpAC41YI3yJpDTFiLNsJTXI7B+VGPeaB+6+0vVDDmmkgiG0oqncvI9eKaKVUOY7HgK1lKywtV0l1BN6JYYEgzumiK92W3oFx8TpmCq7aOHoXcXiWU1UxgTBeyo8qVqZ2kDUzZp3elPa0x95wSjCN2MmobDOqVb3i8Lo6db9iJCV53tdxD+6V8QaX2Lvm5nNyOFlOkD8TClWiGgZljswpAq8+hjoSUOX5B4QMDC4YFyZ+blNfaosStI3Yopgx5GEiuOy/I3T+kwFCvMsdrGvjcKtW+I0XiHQZJiWFphghyM8SOCbYw52ZkMRsyCn8p1NlSPGGWiiWZTDY0H6WWi2ypFozl6FwAL6BvGgEPbHQPy5b2sWwX+djHPmYQYuC8QSCtJiwXg6nYtDQsoaQtTBno8nY1JouF6yXCYrPiZW3X616qzwfmVtKveMz1yv/+7/f127/8fuUSRBsFeTlHsUCrgr4jr+Qo4nTICRTl5H1FAx3yHU/lSFolN61C0lVroDJkLlG6qM7gHqk1q0Q2p6BXdW6iOc1mptXmDirnzsj3QmrtiCje7+jD/9+b1N3TvtBzwaMRKd10q3Kf+6oK+YByd5xR9LqjSt4CL1hZkasPy/McpW45q/CBfhVGpuT0dalwYVaBtpgig53KnBxT7Mr9Sp+ZUmR/nyn6A1VG4lcfUPrWSnQWu3JYfjSi4i0nFuouTiQgp1CSe2yPchfTuu5Tv6WdIChZ0nUYGVtbbURsPxtGhowEqLNa8kmE84NjuVQPTTqdNjqFKHu1ccO1QnREBIIBr3WWiJxIedn0/2LhfODc8rrVemM4U2RRNtI52PZw442WF7/4xSbCgQJmJe+9tjhMwQxPwY73ZfPiUTQ6ZncrxTKvoqSb9ew2UkgnWiTd4j4f1hyPtJG5Ew9/+AP1lx9/i+JdvvKlnIpEIU7ezGrJR+aVDk6oHM8oE59XunVc835C6byvPAomwJjjMeW8pNpaWzXtnVMiVVax2ome1qRSuZJisRal/SnwzHJb82rfF9Q/fO73NbSnb6FORJNtw2Mb7n+NnO4ulY6fVaC7Q7kfnlDo8sMKXnFIXipj6i8I5JMYEIvscvi3vVWB/YOa/9GISsmcIZZM3HJOsWuqyrDqT4SODGr2jouaPjeh3FD3wvCzAJ353W1KHp+UtwXzWJoVFD4pciKAZiD2S8GQMSS1NdmVCChbasYNY5jWOo9lNQJKokgcFl63EjJuM3jCkPu8YWGBGRZGauWP/uiP7pGqWDzelxAVL5l0FwgrWwBjcxHGogBXm4OwnQRlx3WjwJvpAVhv4RDbWhXpLoukW9znw6G1zZP1wjuRq64+ov/vn9+t/v1xBaJF5b15+a6nfNnTbH5KSYyF72g2nddcGWPrKZmswjK9mErtKZ1NnlTGz5gIJRRxNO9dUMl3FYyW5UbK8qIFpd1JXfvQA/rMv79XLa2XvE683WYmZiLBhz3IFNhDfRWPGZLI3KlxpU9OqljwFDi6T6HL96vsOXIxDD1dykymNX/zOZUDYduKskAsOX/LWUWvHDYKqzzUocTJKaksxVtbVT6buEefi9/WJqfkq1woNgXn3SqhvorCJXKpF6nVCBvySpT5CNT+jc5+qZ3HwnVbEEA9lPlA84nOVutx2W2Q3CQh+qBG84d/+IcmfKUgD3iAQjwhcO1439ricK2wEQh7URrNbOKtEjY/3hieXTNsseshtdEgHh75ZmonKyHpuA8YGw5tI3WiffuG9JVvfEJPe/Yj5cRK8iIJpQuzisbiyrszyuQSJlUUCncoF51TuCWgUnxW8/6U5rMFBaNxueEW5YJpJQNjygUo0KeUdqc0l5tRrNPR6972Mn34Y29bsikQZUf01SgsNnz/K+RefbnKY5MK7u01PF6Rw0Pmb/S0KBJW6o5RJW89p1KqoHK1tuIXSkofv6C4jVBs97zvaP72UaWoIo3DFFD5dbAKLpi9ZcTQwYQODip9slJfgEKm0UmfWy0oW85moz0fy8GQSSHZ91ppyFft/QbA08gkSYtK4zMswq0eZmPLs7cc8WTt83Yjlk0SQAGkxZ7+9Kcb3jEMjZ0LUe94X7DsGKnFhG/bXQi/iQI287pXggpj6OrB2dt5HY1et0EF/sFv6W/+7p3q6o3KCxRUcGaU89IKtOfkx6YpzSuRTygXTGomO6lMeVqeXzIklAV3WolMUslsSsGop2x53owVHj7ao09/7n160Ut+asXPB2zA4W/kurnm6MOvU8GJKtjbITcSNH0roaFug+7K3Dm6EM2o5CnU27EQpVDMT/zonILwhDF50ryhFL5sryKhDoW6236sWI+kZ7LKFWsUULmSRqm3WXU7pXxRss1edy0MmXqkhSHXE0Ug7GfSafU0XS4GAQBiIqNQ7ywW2+OCs7bS9901LBsspK7++I//2KQo/vEf/3GhK/5Tn/rUinMhVvIYSM8Ay9wpYq+b4vhGXzeHsR6ocL3XzUEnzVAvM22tPOhB1+lr3/x7veGtL1f/nna54ZwSqTnNJpMq+AmFoiUlEkmDiGrpDMuPzSpdmlDZzSncmlOsPaBsaUYHL+/Wq3/9p/WF//zwPXqaVuNvQ2ms1LuwWFp+8jpDuZK++6KcjriJPgItUTNimMgEyLFZl4BjkF2t11ZBAkHX0LJkRmZMHwxF/eDhvZq/dVx+yVfBdxSoMgpYhRPsbFEmUVTiQlqxy6qgFs83140T0Mh1b7WgpKmDctYb7flYCobMXqWYvtqQr9rX4qwScawUSSwWnCsAQdRA2eP1Uj5xTcCQARktZgjfLIfgPm9YWHjSXsCguYEgd7D0f/u3f9vU+1mUFUXa7VC3qFfY9CgNrns1xum1TgnkUNYDFW7kurmPjXA11R76V/zCi/SNb35Gv/uOX9XRq4bUDolCKKdkblrhlrLKgYTmklPKMyMl5MkP5FT0M3rgQ4/pnz735/rPr/ydXv4LL2j4uinmo+hQAHVdayCgjhtvMGSTckNyD+01sONQX4V2JXviomJXXUIgJW8/r3JnVOVARSm6nhTp6VYhFFPirirwwfeVuzivwJ6eSrRCmiQcNLDk/HTa/G7qxIwiwxVmiXAgaJQ0172ThsihpLluDGKzZKzW6bG1SaTemqpbpbAnHdZIt7wFAeCsNlLfqiWeXNwMvRkI0Ps83HgpoUeGmTFf+9rXjKfRjHDwuKHA/7Yr5n8pIZpgM3Lda23stFBhqFg4GKBdSBfWO9CpEcEpwChy3fXMMF9N7rjjLn3h81/W2XMjKuSLSiRSBih19TVX6iUv+WlTq1kPATRCWgWGiHoMLNHJyC/8gZzBAeVTJeVOXVTLNQdUyJZUuMDcGV+lgXZ5JyrIs9BQl9z2FjOiOAGxZDCgyN5upX5UiUzbrt6nxG0VVGD3dcMKOHCE+Zq9tdLjEz/Qq8zZKYW7W9QSLOmav/kV0z/DfcVRIIW8EfdzowSEFnULlG4zXGYWhkxqipogEcxiGPJKAmiDOi6OFbWXegUmESIk9kkj1w34iGI+6THABxZCvdGULruGZQlhSX7rt35LX/ziF/X1r3+9KfoD2yeCcibHu137RJa6bktUyWZs5rqBd6LogQSzge042Y1ib7bXbdmbSR80klLbagGwgAJAQdXjhMx/5mtKf/+4srM55c5MmnpJ/sAeFU9MSJ1RhQ/0yk2XVcoUVUzkFLtsSPPfq0Dhg61RZRMFdV89ZIr9bVftNZxgVnoeeZkm//tS13rL4X6lT1Uik9YD3bruz1+qUGvlPBAlco9RdtuJXaIe5wnHj/Vu5mzbdC7pV+p8/ItDU+97zc/PG4YQMhuWy3A1gdIKIADRViOfhXCPOBvcJyIgS7y7kbJzTt8miqV8wfN94xvf2HTBD4NCeqZRuoWtFJsPpkDZSB7dQoUt6SbFQ1I9Gz0SoPa6Kf5zHY10PG8HARyCAa63mN/2lIcZTi/6Vvy9naZ+UppIyI1H5MzlFS65YrBk5vysivNZFedyiu6vpLK8KloscXZG4d42M9LYiOuo5dr9SiWKiu7tWvgsEHIL/9/RKq/k36MojffcLOJqq4SomXoe9Y5GEIWcCZwAIhUiH84Je7vRwnxHdSIkkVM9aWeLCgPyzHXzWY0gOC0yjR6XZrkRG5Vdw7KMYNGhe/n7v//7pilfUBYUxdmMjfRbbLVgBMghAwFerW5hRwhbqDDw5dWgwhsleGIcWNJLO8mYW3JQ6lCrFZfNTJ/ZaY23Vwx1oAofDrkBtR6two/Lnkq54iWEl+uojEEIuPIYFgNwDFZN02MD83JQ0cv2avIm5rVIvDQQqzoC1fdoOTKg8VtG70Gdb0EfXFOzI4K3QrhuoMOcT6LzlYyi7WWjp4TeKvY7kTzeP3T9vJY6Ie/VSGG+v7/fvI6shh2/sZxYI4JOAmREtML1NGLMLTKN120GjdOuYVnFk/zzP/9zw4TcLBsweU08JLyTnYT/BzbN4eO6F0+rs1Bh2zhKaG9p0+uFCm+UcOhQ0ii6nUSyaQdGESUu1altmQgAP5CG6X7yQxW+5rCcWVBbexSIhsxclZCJQjzlRmfVfs2wea0LSmxkVq1XDxvD4YYq/TWpU5OGd4zC/cxtVX4w31fm4rzChwYWIpZge0zzUxn5kG8umiJpEVdc80pjDbarMacgvlSEi/JlnTEm9LJRR2J/4zDZGUqLYciNFuYPHDhgUsSrUe1jWPgcO94D54nr47oagasTYW3k0LVa2TUsq8iLXvSiuihfVhLysNzMnZaigTuNqKO2SasWKowSr4UKb5c6EsacQ4vh26qmz2YE5cXhR2FQK2LNUdjWW0ZxocTJsR+4+jIFBnpURslFwwqEA6afJdzfYUYKI6kTYwp2xhfuy9yto4ru7TY9MBiM9muHlZjOmW79xTL9owtqu3bY0PMHBrqUn6l41YsNC0LK2I41aJSuZqsjc6IPgAgWZm9no9ixyqSQiMDpaVsKFLKYDZn3OtsA9B2HjLrHShGI7WFZgIIHg+bM4dwBWKlXMEqci80wLLvF+zqEFAUokhe+8IX6nd/5naYUqEWDoDgWj1nezoIxxZCwmfGaUX42R70ZG7RZYVuTmkBQxtvF6NUjKDYUFOtLlAv4ASO/WLFlz0zo9l/4f3KCjuIPukz5s9PKX5wx/StTP6xED+1XV+awzNxUQX7F9/co2BlTajKj1MicWvZ1qVT0pERKXr6kruuGNX1T5bVuyFX/Qw7p4v9c4sC74e9+Qa3DlVk0i4X0I+lQiuLbiU5/NQEyTEqKayZlzflkj1MLqXffYBR4LlHy//3f/5nIpt5zzhmjmA955FKEsNQucUqJmGqFz6I9AuPEHqkX0UZGYaPP7m7E0gDlC1xiKNlmBO8eowI6Y7MKaGsRFBqKwobpeHKkBlEahO/b2ajUgie47mab4jZbbK8PaVcUAMbc8tIt5S3HDvar/UFHTZNjOe9p9ty8nD19hqE4fmRAseEe5aeSCsQixsC0XDOsdKqoghsyRgXxyp4yYwm1Xlatz9T4mW2X71Ey55sIx8pSEctibi4M+k6IFG26izOJN2/HeKDcGx0ZznO5Zzhe1157rYnoa0d/1NPQuFwEshydC5/F9ZJ+q7sXahPoXJBdw1KnoFDf9ra3mZRYs0STeDDAC+1I4+0oKGK8TlIB5PtRFrAKYxQp5u8kEkLSB6Ro+B7bNUXDPiDlgsf6ve99zxx69hoGBcW3GjJv4HkPN/+WMwW1Xjao9NkZzd1+UXkFNH1mTrMXUsoVfF380UVN3jyq7GRKmamUor0VanXSZ8jEzSNqOzZgajBI+9V7NfqjiypmS2o5dqlnx1+F4ZiUEf04232P16a7qAvecMMN5l+MzOKaYqOcYr29vcYZWMyGvJIQRWBcSKMtrueuROcC6SRnE2O+nWqKu4alAXnta19rUBlMp2z20IAEIRpYTLWwlbIUVJj0EVBhUgJsagwMqJLVUDTbTfDqSBU0wyi8kYKBxjsF/IDBxumwBpxrtgOrUDQrdbi3X39YscMDMPUvKH2QX+XcpXpguVBW1zWXZg0RlIR6K0PBPIvy8h0lp7OV2ssVQ7p427gp1qMwR384qvbLK/0WC/DkZaS2kN3sFMeNEFuvQtmTksZoo8hBdxGBYxSop4BqbJQgdCnjsr8JGLKNQDButY7QapxkpElpuKyX6HI3Ytlmwqb5m7/5G6N8+bcZsSONQdBstRfNJqyFClOot1BhDtjiDYiC5sA1UjDcDoJRRHFvNTNvLZqONcfDBK4LAIKi6mLlQc69nvEAA899uLlX6VOTajnSr3KuqNTZaXVcWYk0HPlKnZ+VG628vxsMaOr2i+bvtTNWcpMpebGoLt41dY9+FWRqJKlQR6yumSykdjCKRANbPevHAk5gKkdhUzchGiRNuriD3SKnOOfNErLWGpfLmoAhE4HgvFLMt/e8HmZjIiReu5Ih28xy+q5haVBIZWFUXve615mN2oygMIDygv5pJuxeT+VGHpiNzGHDY1sJKoxRxOgQqu8kniiE9ebAY0A3WzjoOBIWTUeqyA6JI22ykgdpC8krIdy6H32NIaNcaGj0fLlBV/n5nCHQZLhXfjajjiuGFuDHSHI8tdAA6QRdddxvWDOTWbUdrDRTVv5Q+XtuLqvAYJd5r3qE78heYb23YkYRSpnaAxEh3eooXpwm/l1pj1s4L/WuZrMKTg0MmTVoFIZsh3ZhJNAP9TAb256i1YguNwvEsmtYmpAnPelJprflZS97WdPpFbxoIoRGsOhrEZQSaRVgq1a5WagwIXu9Gw7kDIYIj247pZbqZRTGIG6WF41ys7l8gBCWeBMQRCOUHChD7tdyewX+r9YHH1UgHlbq+LjiB3tNX0tmdFadV+9dGDM8c/tFhXta5QQqxz47lTKULbGBdgX2dGvkB6Pmucm5nNzwj4MzZs/OMQ25bmF/Y9AxipuxV2y6C4UMWorolHSXBZzUS/Nje4pwBppttHWq58nS2LPvGmGyoFYFgIDUXSOU+ZbocjnK/N3i/TYWbsw73/lOg9R5wxve0HTIjILmwG0kBXktqzAQVgqUjcyYWS5q46DuNCoP7pf1outF7DQqrAfrbJVbbS6/2eY0i3AD7r2cFz3w2GtUiMTUdr/9hgI/UEVyZSeSC/sTOHFsqFOOZentblHBc5SPRDR7qsKwQESSGkuq86o91Q+v/EMEFOzvUCnfWCoR79sONtuojm/rNNl0F2nc5dJdjWQV2CtEGs1GXG4NGzLGhRRyveO0ba2K9yBlWi8lEs9jv2Fgl0JD7kYsO4Ty5ZOf/KQ+97nPNfUe5KLZPBRv15Oq3kKFUWxg6i3SaD2hwuSPed+d1vSJF00EQNS2npM+eS87BZM1sfWqtSi3pRBueNFLKadQW1R9DzuisR+Oau5CSrEjg2q7bFClTEGh9mp05DpKj8wq1Bk35JOz0zmN/N+IabBcDCcevWlUrcNdl1BiV+7V5F2TBp7czF7hvKx3dF6b7mJN7GC+9WJ/oGZhI67VaFdWgyG3VntUGoEh22jH0PhcrDIj1CFEwxgXSxJqZbfGsgMpX5pNr6B0OBCgltaK/V8JKrze1OY2tcSGb3a+xVYJ+Wt6k9aq6HgtDgH3DuWGZ2unYFKvWm8G2dWK+Yee8yDzb246ZVJWF26f1OxsUXNzefl9HUp7rqYmc8oWfI3dcnEB4UWKq+eqKuqrmjbjb0U3YEosPfcf1sgPKxDYZgyL3Stc81rRkKy5RTDadBds1jhNjQ7mq0csMzfF9GbOp7MIhsxZbwSGbPcQfSqNdPSzv0mLsVdq+f52I5Zl5AMf+IDJVZPWIL0A/n8l+fSnP20OO8/HY/jCF76w7pQvz3jGM9ZE+QI0EaXRzOjU1aDCGzkLBs8IRWfp6neK2EInh7sZRYcyA8CAYkPhEE1As4KX2OgUzEaF98cwLtWE2Ha4Tz0PqEyNzM+kF3pVCom8ov3tC0ivYrao7isudYUHQq6SUxlTV6k1HLOnpuW0RnWualTuAU9uUCx8moirEe/bCt8VZ4l0F3Wr2ogQJbqRQsRFbbHZ1K9TY1wsa0W9DMXsNXQC0SqRcCOgGWqn6D6LMNus+sqOMyz/8A//YHpJ3vrWtxqrz2JTSF9usSlUQ8OC0mdxb7zxRvPAU10v4Ub92Z/9mQnF3/ve9zZdb0HRESLXG/k0ChXeKOGQ4NXZGS47RTC47B+gqEuRPi4ltUSQeI/0D7Dmlu9ps4RUD46I5XCrlYPPeaD5F7RXC5T61abGxOi8GVlcEUf5TPEe9ZPkWFI9V++5R2d97/32anauoEh15LF5ryYiFis2HUT6qt50EAoRx4U15z6RJbAIxs2aAWNrXDiOjaC7ljMufAcc3XpgyDZdS7TD2mHcGqkPYsh4WITZZsmO4gojQmFiHeknxHoAr3nNawz8d7E8//nPN550bQ0EzxLP6S/+4i/W9dromn70ox+tf/mXfzGpkGaEkBUDSFi/VOrKQoUxPhwyjAnffzXI6kYL94GNCxgAA7mThDQeymK5CY6WNt32HVlDupnGeyV+KbxSFNXC9Xq+vv4zH5LXFtf0iWkFQ66C0ZCmx9MavP9eTd08qt7779PoD0Y1dL8hTf3ogqJ7OpUcnVcoFlT3/k5N3T2p3vsP68z3RjR0/V6UhGZ+VMnVP+YdT9PRJ125pmvHKBN9sOZLUdVYdBdrTqqRFBf7fKMjk3qcOdacDANZk2bE9/0Fzi50BvuIVPVyewnwDc973OMeZ36mIG8nvNaLLLTD+4jQ0U2bMdF2x0QsWG6U1+Mf//iF3+EB8PNy/F38vvb5CBFOs3xfKwkG7+1vf7uJjpqZvY5gKNiwbILatFotVBgvtVmo8EZTkKMMdtIcFASlRS1qcfNkbeqFPDVKzdKmb/acmZUiLpyM2hoXkcqBZz1AAWaw5IrqONqvchUjnLiQMAV8e+2J8aSJVmxfC/Qtbjyqnuv2GaNixJfO/fCCuo72rjlisYJixhlabs2JwmvTXTgrW21UEIwgTikgjWb7uJwGYciLocboh0aHfdmIi5TeZk1W3TGGheIVm3AxYyg/L1c85veNPH+t8uu//uvmELz61a9uGoZrES0cLELexVBhivFrgQpvlNgaFte9k4aaIawnitqmaOyaYygt0mg5IsitFNJvKAxSRbU8UcNPu99CH8r8acgJK0mJzERSvdfuWUB6pcdT6r1mjzEuSNfRPiXTJc1PXSos24RGJls2qbRmayxLQe351157bboLBbjZ6a56BQPHmpNOJ5pYLxjy2DI6aTGdi127elNptZ9JX8xmyY4xLDuJ8oWi7kc/+tGm3sOiR9hoQIV5z1qo8Hae5Q48E28UT3QzptStd+TCmtcSQRKFbgTSaD2FiBUvFiVj8/Gh1qg677dfkc6Y8nNZtR261EmfvJiQby0Lc1dOzyjSHlPnVUM6e8ekps/Pyg/9eKpk+uys+q7duypXWCNCjQqPnfOCAbNrjvO3ndeciAEnj7R1s6SsTg0MmSh4uTHFS9G52EZI7nejgJ/d4v0iQdnSf7EYw8/PHP6lhN838vz1EA7F3/7t3+r1r399Q5QvtVBhUDMcOgRFvd5Q4Y0US5nRbJFzq4ggbTEeITW2k9Yczx5PupZReN9jr9DMbIXxmM78eH+rwm0RZafTCsZD6jjQrb7771Ogt025YEjnbq4gtbyip4t3TqrvykqkX0vhMnrnhLQAAGhOUIbUCUgxklJizVF2GMidtOYg89BJzTZ+OjXFfBwyC0Ne3C+zXNe9pdpfrhFysWz2WdwxhgWrzUJ+5StfWfgdN4WfgdYuJfy+9vnIf/7nfy77/PWSJz7xiXrVq16ll770pSs2VtV2aVP3YRPZCYGEuxSJtzP9+Eodw9SZmh3nvBVEkBQ1WXPSMNS4NpvDbS1iUYVcs2UU7j7Sq4H77dXY7RM69a3zcrraNDNTUCLra26+qPMnZ3XyeyO6eMeECpmiwi0Vr9jCjZOJQoVHrEYh0bGfaxL4xzqTYsSIA4JgnVlzEHU2tbSdaN9XE5uSQuk32w/lLIIh45RiXGprJysxG5MOs42Q9UC4N7MuuGMMCwLU+MMf/rCJCPCIaUzE04ezC3nJS15iIgUrv/qrv6r/+I//MAO6yP3/7u/+rkkvQXu/kcINfMc73mHqIEtRvtRChWu7tFHItWgji/bZad3tRCx8FyKwZvPQG00ECaJmKSJIDji56J1m0C2jMOAJq2Sueu79F/7u1ygVopKBqy9F7eWSp97L+yt/q9ZQZs7NaeB+exbsSrg1LHXElUvVz1ZgHSfSi6CpbIqRhsbadBf/b3tz1pMNYaPFNn6ig5odEeCsAkNejdnYNkJi3FajntnMPpaNx52towAfJvR7y1veYvLhLCiGwxbo6Umozc2CnIJ25U1vepNR8Nw44MB4SJtF+YJH8djHPlZPf/rTTS4ZY8N3sPTYK0GF7cbldRgfcrs7Rbhe8tAocWCl9XIdrbcAJAA5hcJl7alHsF+Wo7Wx1OkoQtJkeNY7Rfh+ljaEwv7BxxxTrDuu7ExGiYsJdR7s0tyZWfmep2zqUvqGyOTCHZPGeBRSlUjF96TxM3PqH25XKBZSsLddY8eh01/d2GIciFZtTxbGmrO60h5gr6CgiSQ5M9u5xlIrfCecE/YL61/PiODljAsOKPcPQ0wanSiUtVyt6E4aEeoZoh2yHcv1VG1mxLKj+lh2onzoQx/Sr/3ar5lIBO/j3//9301OvBF2W9trQQpvuyGTVhK2FgVOS7e/WRsbbw8Uoe2DsNTzeHf1XgNKDmWBkal3dvl2EXLuKHUM+s1/9R3d9NHvKNjfrnhfqyZuuWCik3O3T2royj5N3TVhUmZAig89eJ8u/OC8Kd5bssljjzyomYmURu+oNJE+7td+Uo98+UOX/FyiU9ac/YoyZM0bgcOD+kSpcp8samynCNECih0D2tPT09R71EYpOJNEcUR86It66sJkZQBDYFwWRzmsLVHtZqHsdoZbsAOFlNvP//zPGwgyRUkMCeEqiqoRo4KwqYhWdlp6xuLnUThEkxsttYXhWjYCSwTZiKLC67O8XDuJrgYhKuP7ErlcfuO1JgJhuNfY7eOKdscW6ii2Lu9UtcCFOyYUaYuY2SxI+552JfNlTY9eSmd6i1Bhtekui6jDoFl6m0bWHAcExWybI3eS4DhiDFnzVJNwexulofyJgkiX09RYb7RP1IKuwcAtxYKxW2PZ4UKOm8ZMag2MQWWDcGigfmk2QKTIiScDkmYnCYeE8J600noyOC9HBElhngO2HkSQKEY7ZGsnwadtMZ/9ciExpuFHHFYg5MgrltV1qGehyXH8zknzs5V8qqCeY30KBAMaum6PJiczmpvMqPdY38JzrFGqZXOmvkBkYglPgdA2K0TkNH7ynls9YbVRAU3IfrlpDbWixTBk3qdeSLMdLMaZWIruZzcVdi8QNkNt2mo9KF9AzZCewZvBG99JApyXqAVvdj3CcTwyUi54tiDv7KFeb84uDrklmsRA7qT0DN4uKZXOVKtu//htGr97UtGOqNp64ho9USn07rl2UMFIQGe+V0HwtQ+1q3Vfu+7+ViVi6DvSo4lzc+pqDyszm9VDX/YA7XtSv4lSmkl31SvUxIg6KfZvJg/bWsUq9Xw+33StyFK+IF/96lfN3iMNXm9TNJ+NQ0vfm60R8n68z2bQuSC7EcsGyeJayHpQvhDm4o2zcXcSeqa2H6fZWeKLiSBre0/wlDeKCNLS1RAVbUY6bz2FlCvXPhWdU6ClolBy8znFBy7Ro1y4dUxuKKDeIz3qu3ZIFy4kVGSecVWIboq5slr2VnpMRs+Pmui72XRXvYKjQCF8KRbnnRAtep7XFFu5fQ874AtZCoa8kpAp4d7gdPGw/GS7Ecu9VNhsT3va04zH/nd/93dNezMYFlIzRC47yYO2RUmMAWmqemUxESQeMp7yZhJBQvVC3WynRov/9eFva+rbs+oebFO8I6pctiTP81UslBXpium2r1xKsXYf6VZuIqV8uqD2oRZNjaTlBmFWiOq6Z1ytJ/3WYzblurnvGBb+pfayU5BiNmogu8BeB/HWaJ8VTgx7HQOLM0nthr81EgXxPvTIWUABBmeXK+xeTPnChvvIRz6ypsYsCsqNDP7ZDkIoTg6Y3Hw9UVvtyFkiHSIeOKTIwW82ESTFcBstNkvjsZXR4hVPOqLkZFpnbrqoM7eMaXY2p7u/O6LTN11UNlVUS/clQAkNk637K9FfqVQpAnslqXN/c2intTbbst7N9olslUQiEaPQ2b/1cBPaGT+ksNhjdq9bdBzr0CiFC2eE6Ika4WY3n+4alk0WS/lCXw3Kci0KGlDARs1u3ygBSkre1+ahl5JaUkLgk5YIkn+3Em6N94nnh/e409B5D3j49eq7rnuhIdINX8q1Q9tCKsxKoZTX9Nmkqb2EgpcQSSd/eEGhWHhLGj8BxDQ7pXWrpK2tzRgE9vJywJVaWiGiFJyA2r2+mA25XgoXK0Q8wJYxbruosHu5POEJTzAMyKtRvqzmQdvZ7TspB42QO8ebqqXCQFGjPGyXNrLdiCBttMi17jQ2BOoiN7z04eb/S/mSzt86rta+SlSSy2Z19tYLckOVNaZWlU0UteeaoXtwhUFAWdiCxDlFaxwpivmrdZdvN+mtjiMmpVc7jhiHEOfK0grx/eg/wXlZ3LxbC0NmVAYOZSMM7aTiuIbNlK0/rfdBQUH93u/9noEUQkHTbJkLTwQlsBMIH5dS0HhrKGjrsXFgKAZb2Op2JCW0zZ4YwWZG7G6lXPnoy9Q22Grms9BBH+6pRB/U6wrpsobvN2R+DlT7WMZOzSx4uYFQQAPXDmpybGtGIuCIkIokrVPvvPjtIvv37zfOEQV40l04TtQ+yDzADmLrditFFBaGzHlfiQ15uddinHYjlvuA2AL+pz/9aX32s59dUwMiXtx2JHxcTjCCNE0S6tsipSWCxFhuFf1LIx40645B30nEidDlX/6kw2YeC02Rs+dTcoOOWlsqfSfTFxNC9xjySbzqybS6D3Yp2hpW+8Eu3fl/o+sy6GstkS4KullG4a2SYpXvC0eK7nicJzvSul4I8WI2ZOiplmJDXun1mym7hmULhfD0Ax/4gEmLNQtlZcOi5EgTbPcBW4uJIIlIOCB4oERvOwnhBjINI4gHvd1TkdSyiAaJCqNXBqud+I7yiaKGrh5ciHZnRhLae83ggmFBUom83M6YTt9WGT8Bkmwrhfoce75ZRuHNlFQqtVArBKxiWTfY7830k9QaF2tk650kuWtY7mPyMz/zM/qpn/opvfzlL2/aC8ODQcmhrJeicthqAcGGp8YBI7LiWvHYUBLQj6Ckdxpdjc1d43GutTdnI2QxIwE5faLCxz7tMTr2qMMKRypR4exk8h7Xns+X5LqOIi0h7X/QPp08Pq1IxyXABIX/rRRLzIrSxlhuN2Etp6amTDRRO8AMRmcaFu044mYpaxazIbP/aOBd6exsxd7cNSxbLGyU97///Wazvfvd7256E6DkSCERuWwHYaPznfCogFBiNCk80li3uEBJSoC/U2vZSWJhoKTDVppbvtnrTtc6eXyUm+3aZu0tk/YDnns/Baqji+fOp+QFaiZKjswr3t+inBvQLf97ToV8WfPzl2oaWx2xIHwnkGIo5+1S57LR+P/+7/8aRwNwDXBhjHltrZCIBbg8ex2E11qMC0K2gohlNedmsyOWHUWbf28VNh4U+zfccIN5sCEbFTYamwwlTiFwI6dkNkKZTsiO8l2JxsUWxA39SGfnjhoPgJJDUdA8CZS6WWbbtQr5e9actSfNQsEYD3mplMuxnzykfffbo/RcVqVCUclcRnvuP6BUoqiR49Pqy3uan84scIOdv3tKl187qJE7Jre0xlIrpE7tiAC8dhT5VghpLQwK647RsEzE7gooRvY4aTGiSVCPzYBUMBQYEgtD5uzQHwZSdLnnb6bsGpZtIoTKIMWgfKEG0Ux3NxvbMvKi5OotDK5V2OCkWlBslkMKBA8ecr0wYdAuHDbbCNkoA/RWCmtN1IWiICLbrGu36059jugQo4ZzsRrCyA246jrSrW//v2+bnwcv69LEuQkVs5U0ajKRU1t3TMmZ7ML8Fa86knirU2G1wv5CkVLMZ903q8fJphlZd6IOUrlEUOz7ehX44OCgKbxz7aTKaKhsVGxKzMKQ7UwYHIqtGvC18Jm7lC7bR9gkDATDyySCabZ3g3oGCgdvaCP7P5YigiRCWQu7LUgrEGMbfe0bIRRqSYvhJCw3SGy91h0DjmLDY7YEnI04EuOnZ/Smx37Y/P++K/tVcksavbXChnDw+j0Khlyd+G4l6sx7FYNz4HCP9l7ep1d/6NnaLoL6Yt2puWz0utsRAXTTs+6kdFn3Zh0J3/cXxjI0e+2WsJKzArqSCI73gu6o9u8Yro1cm8Wys07ufYTyhSbBv/7rv276fSjqsaE2qmbBoVqOCHItRgUh0uHad1oDIsL3RzaqzlXbpU1Nh3UHBMGaNRqdDhzq1tEHVaYdonjS8zUTJR3p3N2TClQbJolwcD/j3XHTJLkde6L4t1nSx9XEjghg3fnXrjvgk7VEp051WinnvlmU21IwZIr5tTDkrYhYdg3LNhPqC1C+vPGNb2ya8gXPhPwzqalmC4TLoV3YtHB3YVyoi1AYxmtbLzpui/qhKIt3uJPEXjtpqfXqK2Ld6VPCE7Vd2tzb9Vj3Rzzv2spnlH2NnZnVnssq9aFCMa/5qYwOXlup0wWqabC7fjiqSMvmUrrUu+7UuUhPrSeIgrXmDGJQeG/SzDQ0rvd+v+6668xnNesIrgWGvFGya1jupZQv1CzwoDkYayFN3AoiSLxvDjEe6E6b3mip6klHktJrViwpIUVZ8vCkMmyXNp7peqz7g552hSLxkMrVgnyktZLnz2Ur+yVRRYO51U586it+0NnWpI/waGHY12LIeT1gDGoWdiJmLapuvSVcnRiJIwiibyNgyLsRyxYITYr0U1D8YxNZrqql5MMf/rAJg8lh8mBS5ErPXwvlC0r8da97XdPhPbl3DkMzYXYtESSRA0XSzSSCJHIj5bBde3NWEhQ/8G+aJxudm2OZfGvTjM2mu1aTaEtYD3zq5Qvjhk/cfMFQ6seqn3PurintOdZjUmEI/z+bbc7R2QzhvOCQsN8bZUQALmwdKJwC7iHrvtaJmPWKpWqhxtjsvKbFMGS+01b1WN3nDcs//MM/6LWvfa3e+ta3Gtw/nviTnvSkZb2er3/963rhC1+or33tawa9RVj8xCc+cd0pVSzlyz/+4z/qX//1X5t+H6IWOq/rGWmMd0MxfjERJA+QJptdTMeIkdbbLr05jQiOCoquHqNu010YItJdRGkbkWZcSh7x3PstjBtmNsvey3sVjV5CKIVaQgqGAjr20H2688QFTU8ktz17OGtf73hgMgK2eRcHij1HRL7WsdbNCMbMzl5pNlKvZUMmgqOgT1p5FxW2yUKEAgLpz//8zxeUK4f5Na95jYkWVhO8aSIXXv+Sl7xk3a8P4/LLv/zLxojRm7CWkcaE8xYtslwPBIqc70+0sx04u7g2enMolHJNO0lII7Lu5LyX6i+wqDrQXXzPtaKMmpU/eO4ndMt3KpRC/fs7NLCvS7f8T6VW0bU3rvY97brpOxXH5JqHHtAf/vMrtJPHA1tDToSC4sUYcba2qhdmsQBcoTaKQ9fsGUSPYUyohRINbfaeuk9HLHg0FLlIZ1lhE/IzirweweNBgWzUVEEoX2688UbT39JsMc5yctWONLaT6qyXjPHZjkSQpN0I6/EqtzsX2nJzc1BgtSAKDrtNd2FUMCag6taKMmpWHvDkylx0ZOLcvAJhV4euG1TflZ06cX5SmfKl9JdNm+2E8cAYbvaN9Z1rh2lZrjqiE2pi28WoIJxVjAFns1maI8uGjM7YChDMfdqwgHJis+Gx1Ao/1zvv4Hd+53eMJ11rnDaC8oVrXQvlC8qLRj5SM5YIko2LIrNF4Y0qTq5VuC48SpTBTmK1RVBewGEx6qQkWHPy+DgkdgYHSJ7N7DFYLA96+uU69hP7dOBBg+q9skspFfR/PzypO2+rpHfHpqYXiCl3Cp8b60kqyA7GsjBtjDxnYTsMjluNKoi93sxIDJ7PGX/zm99s9h415M2W3c77Ncgf/MEf6JOf/KSpu2zkBrWUL3i1UL5wKBoVFBk5Yzw2PH9SM6RotlKhNSJcL5BPDhoRzHY0gEsJjgsP26uAgSQq3E7MAt2DHco7pUvprvb9ammPKp2ooMOKeU8Dh1o1djKp8g6IWKyQCuPsQFaJU4Wy3uyR1ms1jKRSgVBT86nHoFAfJS3/b//2b3ryk5+sf/mXfzF6Y7PlPh2x4AlzAxeHivy8GtfWH/7hHxrD8qUvfcl4nhst5Irf8Y53GBZk8sLNEEGi4PBgSIdx4HaKUan14kjf7YTZM7aJlKIw3iOGkXQLqYnt6CU//nnX34No8uBVl/jawuGQvGB10uc24QpbDYBih2mBpCO1hGNVO+p3J0g0Gl2AUK+UzmJPfeYzn9HjHvc4PeMZzzC6CycGo/LoRz96Sxgsdov3D32oKZL92Z/92cLGxKukYL5c8f4973mP3vnOd+qLX/yiSWVslnBtbBw2yt///d8vu2FqiSC5vYT+FIYtyoWNyt+59o1EHG2EYFjA5wO4wAvdTmKLwtRNSF3CIcXaA5hAoVGgpy8FKDK/306STef1wuverVymoKt+YlgT07OaOF5BgPUcatHouUkNdvWqpS2sj3zzN7edgka5sqctHT1nuBaAQk0LJ2stBfGtkomJCWMoAN/AR2aFCJ5m6r/4i78wP9P79opXvGJJgM5my87SKhsgQI1/7ud+zvDrsOn+5E/+xED9Xvayl5m/g/RCKf/+7/+++Zk6x1ve8haTmgLWaGsxYN03Gu+OIfnoRz9qvJi/+qu/0i/8wi/82FRGDtZqRJBcNwp6p6WVEFIZpAWot+AUbAclQSRI/YS1J/3CfmHtF6e78ECJboG1YxS3U8E41hLRw59ypb76mZvNz2dOjumyowc0cmJKbsCR5/vac7Tb0OrXm5rZDCGty7rTWMh6su4Y9MV7mnoKz6XWxfnZSTx0/f39JsNASuuf//mfze8++MEP6uMf/7gBKaCTnvOc52yLs2DlPm9Ynv/855sCH8YCI8Gm+4//+I+Fgj7eZ+0m5IYSETz3uc+9x/vQB/O7v/u7m7LJPvaxj5nhYBTdMRLkVVFilggShbuSkbMjjUmPcSBRhDtJUGp4azRwoqi3yjDWUqZjNOxs85VSjHiTKDmK+ESMm90rsZI87jn3N4bF5jDaeqPSiYpDgxw/Pqq9vX0m4kXR4bRsheBEkQ7mbBIhsuY4hSvRz9tUKikyohcM0E6S66+/3vSS0duE/uH8o6fQAdvRMbzPp8J2onDLfumXfkmf+tSnTAqAJshPfOITy87fWE5I1+D5cyg3o7t4PYXDhWHEsDbb39OMWJg2BoX1w9CT1mqEMt32WfAdSG9sF++ZVOuLH/Re9e/v1Pf+7w61tMUUyoXVfbBFp45XqEYe/+QH6ZW/9zgD48WB2azRDDYyxBHCoICYAk3HoxHKeZwvjAvGnddud8nn86Z+ArKLJmeiMmDpGJXtnMbeHjt6V+o++GyoZz7zmSYlhuD1fvWrX22qQxuPk9eh5HYabQqePtEK3icjAjZaWB8L02a9MMT0QHANtobSKKsthmU7jdfFwD3mWdctwFvTyayOXDtkUmFWZubmjANDZEx3+2bAv2uBEESHRKwgIwFENDrHBEPIPYPNgWhnu8r09LSp5ZLqAiREup79R6RL7fS3f/u3tZ1l17DsIAFCyAYjLEYhkQLj8dnPfrbp9+RwkrrZiTT1RAl4nkRdjXJyNeLhooSsUiNCWo8eCJwA6IPscLRthQ6ryWGk8xm5jqtA0NU1Dx3WmZkKJBmkFUp9o7io7DAt2/eDcSFNTZSEUVtLlEedjlQY7837bhfxfd9EgrB+kIWANgroMPvv137t10xdDifm85//vKF5slNat6PspsJ2kOAd4jnXemmgw171qleZWdt0zDcjHC7SSnjRi5tFt7uwfVEQ/IviWY98s013kXLBcyTdZSk/1jufjVGhVkQ6km7r7SDvfNXf698/+x3z/67j6CGPuUy3nbxLZ86OaHCoR1/73ofM3zDmoNyo0YF0247DtFYSlDhRCwjDrUwreZ63YES+8Y1vmPothoQWg+X2Gynw7VSsXyy7hmWHC7cPuhe8mi984QtNbzar4EitbafmvXqEQ2YV3FrQShhui+5Cadoc/kb3nZDOs9xQ2yFv/rm//7Y++w//o6Kf0/HTp3XFtfv1P9+4xfytb6BL//X9yuRJBCogomYK46CxmhXWGw+ctWcNMOSN1gybUehA14nYiR43uwiezWYNCe7/+3//z+w7UJ5AhndC7Wc12TUs9wKxY1mf9axn6U1velPTBwT4sR2tu10KyvUKdRZmaCxHtLlaustCVjGqKDUit81qIEXBAUGmboSC3mqUz8T4rB7z4Fcu0Lc86GHH9P1vnzBOTG9fp/77h391j+eDpmTvNBN1sd+IDHkP7hvRyWZSC1mnBGQZ6c3NkLGxMTN+gymxMBr/yq/8imlr2C4R63rIztIeu7KkUEiGBRlOMfiQmhXQJqTatlNBuV6xaJl66y21EzFJI/Iaalc2h7+p88GrkyepKaBkt1r6B7r0kIdfvfBzOp3RZVdUGjrtULBaQSnjZZOSrKeYv9IwraV6UDZSiPBJoeJYEDVslPhVJOArX/lKU5DnuwPAoUYFwvPeZFSQXcNyLxHysbABNEL5stxIYw5Zs++xlYJyw+vlAC8XiKP4UN4YEw41BVHLcNsIZHijUG6QJW4HtNLTb3zkpR8cR9GW4IqULhbMsNL8ma0eprWc8Nncf6Ku9UYYlstlU2x/2tOeZuhVuM8YU6ig+N1OywzUK7upsHuRkLoAioxyXInyZTUB/YSCo97SKJxzqwXlZVMbtTNQYFOw6S68Q1IuPGe7HWyukX6FrV77ZCKtR17/chXyRV11/2HdeecJhZ12hUIBfff2j62YVqI2Urv2pBox5qw9SpxUI4CI7bb2GD1YBYie1lpXS6fTJotA/QRGjF/8xV80kclOA8c0K7uG5V4mFIEJ7X/zN3/ThN3NCFsCz9M28G11zr9RsQVlSw6KUgPltd0GOi239kRSFHaXGlK1mfKal79HX/6P7+qaB+zX9753sx720Ifo7jvO6/t3fWLVtSfdQ5rJ8qbtlLUHwGJrlo2mQ3k9TtmHPvQhk+bCefnVX/1VM1NpOxKPbqRsL5dhV9Ys5KihfKGIT0qoGcGQwIKMcsOD22lCAZ4CMPUTDCTKjJTLdhvotNLaE3mBFttKefqNlfEMTlVNpLPJVdmNaUAkYqHWRc3FNpLupLXnXwxMvT43z4NJ+ed//ucXmi8//elPm/3H7+5rRgXZNSz3QnnsYx9rkCYQaTY7OxuYJ8qAtAxF5Z0gfFc7vxwmYWomKDogyDsppWfhr6SO6h04txHy6Mc/UK1tcUosRm699S519y5tHFhvO0yLGhGGnYiF3qqdpFiJEFl79vxqThXGH2r6Jz7xiXrKU55i6nuwEfzbv/2bobDfbqm+zZT77je/Fwse19vf/nbjITLhstlsJ6+nKEvk0+xY5I0WvhvpP+C6NHly2EkhAX0ljbdTUW4YRIhCbWpmKyQSDesJT3moHMddqOHtHe65x3ModrM/KMiTBsMZgSiRdCy1rJWK+dtVcELsHBTQa4uFmgljNjBAUKtQhKc+A309HfPODksdb4TsGpZ7qeAtUjyEZttSbTcj5MVJZzSSGtgMwdBZhBHXhhEk5YIytikXPH9SExTEa2fO76S0JutPSmmrDPvTatFh1KtGzi90x9thWuw1wAbAtUF6oVgtgzaF+51o2GFKpk7EuAwACex9DA2OGnQw//iP/6jf+73fMxH9G97wBvO9d+WS7BqWe7FAswEqBe4hlHAzgoLggOGZbgduIrx3YKGkXFBuoI9WIiTEayZvjue8nXih6hW+FzWjjeLkWk1+4hHXKBaPqK0trgc+5HJNzp3RN7/5TcMtR0GetcdLX6oPA4ODV29nBO00sU2yzDrhQQRMcZ5UF8bmRS960bYae7CdZBcVdi8Xbi+9LSjjf//3f2+a8sVOblxt7sVGiG1mBGFE7psDD+KmkWIw358UBrxQOy33bTm56NPZigFb7/79/6f3/9mHlM3mzM+33f51A9WuN+VjJyDupPEMrDmRPvxdABGAR3/5y1/eTXXVKTvrhO1Kw8Ih+NM//VNTUCWsb9aPgBEWZl8O2WZQpS9Od2EYKI7iIdemu+oVuvL57juRxRmvGM+ftMtmNa5aY07tqq09uGBUEJvuqldQyhTxKWxv11pdrQP1R3/0R2aPUacEKswexJC+733v2+rL2zGyG7HcRwQFgVJmaBAjTpsRC6skNUN6bKPHzUKxQXREdLIeDXXk+/H8dyKLM0IaBggy9YyNQlotNUwLcs8HP+jJGh2tUJ5cuHiLotFIUyzU1GeoxWwnr59rY11JGzNynMI9/Sdw71kSTPYj0S6zUV760pdu9SVve9k1LPchIXJ573vfa+hMmh0rC6wU9BUFTPoV1hvdxQEm3YWHiEGBcmU9hbQM9YrNnn64XgJQAfTVeqf0ascsWyLOWmaCN7/53frAn3/E/P/I6E2KxxtnwMZQUfAHlMA8l60WjBzQdNJdX/nKV/TsZz/b0NWTslvK8IF+I/Ja7z15b5Rdw3IfEg4Ss7KRtVC+YAA4ZCjntZLnkRpBmaHU2IoYEzzkjSyK2umBKOfNJJtcr4gCAkOUG6CEtQjrDSiD6ASDa1FoS3Gm/eAHt+jxj3ue+f+z576vtrbWpnuNMC5cO4ZrKwTniLHeRCgAUqhB/vIv/7LZe9spktrJsltj2UBhTjV1CdIWKGEOVD3yyU9+0mzwG2+8cV2vB0PykY98xKTF/vIv/7Lp90EBofwxLpZavZl0F943HiOGihoIcGGK0xuNtMFbZi0wMDtNLIQalBUpq2aEe0aakf0IIIP9+YhHPMLUcZYbs/yAB9xPBw9WGI59r3lfFEfE9ucQeW2mYDzf9a53mVQo9RLmn2BUGQGMQd01Kusnu4Zlg4QBPq997Wv11re+1ShyDu2TnvSkJRuuaoVuX3i+qIdshGAUPv7xj+vNb35z05QviE1lNFIMr6VLt70BpB2IHKh5bBZay9LUcy0bSZW+UUKqikZEWAYaUc4gnQAAANXmX8YDsM8w6vUMd7vxxqeYf8teec17EIeLYv5GjZRezL3GlFWiJIAgcHkBBiFK2SkotZ0mu6mwDRIiFBQm+VvrJRJq01Pyute9btk0B4V1+IU4/NQaoIxYb+GWv/GNbzRwSiKGZtNZthhOIZ/i+nZKd9UjoJ5Aue0kGGytYByIWthrK8HIa4dpkebCO29mmNaPfnSHbnjUjTp+4lvq6ele07WzDyzCkGL+ejsVnDfgwZw/+m6e//znm4L8dgMO3FtlN2LZAMELAz31+Mc/fuF3HBx+/ta3vrXs64A3oqAZNbyRwsF629veZtIea6F8ofiNF0hag7z1Ugptq9Jd9QjKFSWLgsOo7zRhHZejTVlumBZ0N80O07r22it19OhBeWtIhS1uvM3n8+tKtomzw2RGnLpXvOIVBkGHAf7bv/3bHcnUvVNl17BskCeMoloMaeXn5UgF8ao4EIws3QzBw/3EJz5hopZ/+qd/avp9KMCiqGy9xdJ9WIWGbEW6qxF2AowcqZGdFrxb2hQK4ijP2kFmGzVM68ZnPXXdjDBQXqC9RF1rTUnyHr/7u79rGhjh7Pr1X/9103/yjne8w6T87uv1209/+tNmbXg+adQvfOELG3p92+uU30cFz/7FL36xMSrNwoCbVaof/OAHDRPyWujx2bBEadSSUGjUXfgeVqFtdqd+I4Kh46DReEi6bqeJpU3h/lGzIDrEeYE8dCOiw2c966nrErHURr12eiPMCI0IjgDfGVQXBpbIE348nBwK8zsRTr4R9VvaC174wheaTAhgDUBBPIh0N0p2aywbIChZNjVEdbXIrp/7uZ8zdZN//dd/vcfzORzkfmuhrxZtZdFLtRP51lO4/aQMKHD+x3/8R8OULzZ/j8fJe2GsUGbbLTKpp+Oa+0BktZ0NYa2w3sCm7TAtBCW90c2fREW2cXC9BIJHoL9436sZQiImPG68diJjOLuon+DE3BdSXQ9tsH5LfYmo9nOf+9zC70gREi0S3W2E7KzTv0OEg0Eum6YrK9x8foZSfCmPHy8LxWYfjBh+zGMeY/6fTbNRwkH8kz/5E9PPABSzHj/DpruYFFibv6fegnLYLMqX9RRLWUN3+Ha/fhQr0RWNqnjp1FmITuiSR0FvdL1ovY0KwtpD08P3WQ7CjhND7wkKkVTXE57wBJPuAjpPvea+YFQKTdRv+X3t8xEinJXqvWuV9d8hu2KEUJUIhRGn1BhQ3ngNDN9CXvKSlxhkFPxd5D0J5WsF9A6y+PcbIeTeSSGgnB796EfrhhtuWHZTW3QXhxiDxyG3UQ7vg+dPiL0T0TdEWkSURG/Akbfb9QOQwHDzwHkBeAD7gY10AUfgwVNb2Wneuy3m46jgsOCoIDg67DdStkxG5R695S1v0Qte8IIdNbxtM+q33PelhNRoI/Xe9ZBdw7JBQvgJEopDwA1EAZNqsjeY9MV2ShdhCDBy5KvxZGprPeS+OdwWrkqEtRSyyI52xZPGk8QL3YnFcK6f74vi3g5S2x1PZEW6i38Xr7/tzwECjgNABLOTBAPJd2MvUvfDISPdQwrnyU9+sgGaAMffTudmV5aWXcOygUIDFo+l5Otf//qKr/2bv/kbbbZwrf/5n/9pmsmAZ0LIh4eI14hnjBe5GrKI6AXlhucMnHm7zzlfLEQCXD/pBq59q66fdBCOCQaFFBDIJvLiq/UcWdQPRVpqRTtt/YlC4Ox6/etfb74LPV1EwIARdlIEtlGCw4cBXjzfhp+Xo8jh9408fz1kt3i/K/cQ0DkoMMJtFBMjWMllN1rUB6Vki7HNzoDZSuH6iVpYi828/tpmUoSoCaPSzPrzHvUUw7eDkILEmaIrHiFyxDjy2IlM1Bsp3FOiOc6mdULYJziGyxXv6e9hQJmVhz/84caB2i3e78qGCh46dOCkIfAOUXBg35/61Kc2pVhhgQUZtxP7Q+z1E51t1sx2OxnTNpPCHk3Ni+todv0hqgQUsl3Xn+tibDEURnzfz372s3r3u9+tEydOmPQX4JXnPve5G077shPrtx/+8IdNVoE980u/9Es/Vr8l4rMCYo40PHNmqMPQ70NGYblsynrIrmHZFePxkHLAEICLZ9Nx2Km3sGHXUq8ADrsT+0Ps9aPwmx3r3MgwLeoiRInASHnAwLCW1E9tZzuKervtNyiLKMADbsGQovio7fE7DCnXj/Ik7QOYYlfuGYH84R/+oanfUrsFObq4flvbcEp0Qlob9Bw9L7RBQBW1kcCg3VTYriwc9tqiKBELCDGQRhRQm1VyNB4C4d2pfFwUzjG00IFQM1rPYVqkqlhniuw8NgLlhGEEaYUSWYnPbTMEI8egOfpPgEXjzNB7Achjuf2Fetqtrew82TUsu7KscPhRqAwIIyXRrOAxg2giN7zT5p8gGADWgnrLWuoVDNOycOGlhmltlFCohbMN477W+TnNCFEZ4xrwmImKScFgVHYHZt17Zdew7Mqq9BG/+Iu/aKhamoUPEw1Rw0Gp0V+x04QjQq2C6KJRIsNGhmltpECzQ/SIcdkM4873hjGC6IShcqT3yPUzaG4nOhe70pjsGpZdWVHYHvAuoVi/+MUvNo2QwlunP2QrJweuRejGpw7CtddDr2PZCTAoIHJAdmFQ6pl7shHC9VDLId1GWmyjjBqf87Wvfc2kT7/xjW+YSJdxvzBR7Ka07juya1h2pa48PZ7u05/+dEN816yC2Onz5uknoSucAiiswUsJCCZSXaTPoD6BnQCjshE0KM3UODCORJ7r3fyJ40B0C+UKhWOckVe/+tU7rklzV9ZHdg3LrtQlFOBBl4AoWY7ypR4B7khqiNTITuygBuFGzQjjSAPfeg/T2ox+EdKSRBCWNmgtwvcFvcXIB4wtHfPAXbeilrMr20d23snelS0RvPQ/+IM/MNTbwEPXMtIYX2a7QWDrFaIPFCipQdBd6z1Ma6MFY8I9wFEggllLzemVr3ylqZnx/T/60Y+aaJSeinuzUWlkDsqHP/xhMzoCNCEPiCBXm5tyb5Fdw7IrdQupDfoOoHxZjoG2Xj4o0kVrMVBbJRgLFDN1E5oZN2KY1kYL6Tm4xlZiEl5KMKSf//zn9bSnPc1A0UHIkRr80pe+ZH63EyPQjZyD8vWvf93MQaHmRI8O6/7EJz5xR/Z1NSq7qbBdaRg6SlMWBVkMTLNCHwdIJSC8tSml7SwYE2onKAaK8DSPQoux1f0hzQhGAu8ZA0PX+2o1NtivYRiGkBSUIJHJfY1qpdE5KEutOZELryddeG+Wra8o7sqOEuoGH//4x00h/xGPeITx2ppNKVmK/e2MGFo8TAsjAuSYlBJFavpD4FTbKrRXs0LkyL2jmA9R5WKkHt8bAwqXFGkuakYoz5/5mZ/ZMY7ARsxBqaVKWW0OylKOCZB1jPm9Xe7dseuubIiQBmHQEtxieLPNCvT75PlpPtwpw7SIUGzRG8ZnDA31hmZTg1spIPOgffnqV79qaEGsQaFmAu8UKUuiSgAbkEHS1HhfNCqrzUGpd67J7/zO7xiHavHQrXuj7BqWXWlYiC7IMxO9cFiazaYCwUVRY1iICraDWG4tuKzgCCPVQf2EuspSSpU0Ekbl+PHj2omCYcRowD9FJAqTNcSjeNUU+GHEfdzjHnevr59stPzBH/yBPvnJT5qZMvcF47ybCtuVpoRGyU984hMmjWVZaJsR0kgobbz+tVKmrEWAQNthZhTjlxumtVRKyQ7XIpLZaXUHaib0mgCkoG72pje9yRiT5fp07qvSzBwUKxBGYli+/OUvm71yX5BdN2RXmhaGgJGDp3dhLeksogJ4o4CrbiaWxHbHg2wif04E9bCHPcyMDkCx1lv3IaUEIox6C3n07S6sMfeLaJOI65/+6Z/0x3/8xyZ6oTN/16j8uODw4ER95Stfucf+4Wf2zHLynve8R7/3e79n2IdBVN5XZBcVtitrErYP/QykTYCdNkv5QlGTegZzRDZ6JPDiYVoYtr179655oBfcWKT0QA5tRz4sFCFrDCrp3//93w1EmCiF2hGpLmorNL/aWSi78uNw45/7uZ8zw8hgoviTP/kTfepTnzKQcyJVkF7so9///d83z2e2DNT2UNYDdLECJH0nwNLXIruGZVfWLMBuUaYoKoYINYvwsl3hvNdGMN9ynaC7gDrz/hgwGhnXq36A4kY5ozS2E9kmiCZy+zT3UQsCdEGUefjw4R+7VwyPIqUHWeSu/LhglN/73vealCmw+/e///0GhmxBLTRP/k11rDj/v9QsH+qTnJN7s+wall1ZV8oXpk5ywJoVUjREE9Rb1oNfi+0Nqy8GhWgCzxKDslGU7XBmUW8hxQRqbCsFODdQYTxsojHo6mFOWA8ql13ZlZVkt8ZyL6eVsJEAXfMoOnLoDO/6whe+sK7XRE8EoT9TJ9fSUc/3oidkrSONgYaS6qLHgNoNvRqkfGD23cg5IFw7EF6ufy1Q7GaFNQMiTIoLODeM1NRPiFR+4zd+Y9eo7MqmyG7EsgPzvORyKZpjVMjzEiWQ31+qA5w0CPld/vaGN7zB5IAJz1EwzTY3rpQKetaznmVqGOSem00xAfmlFgBaDNz/ThimtVhQ5BjYzRpuxtpDMUOqhoLys5/9bGNcqAVs1+bTXbn3yq5huZfTSmCAyAlTYFxrcboRyheGOhElreV9aEysZ6TxdhmmtdRwMxvBbNR15HI5Y8Shq8eYEjGS8mJP7BqUXdkq2TUsO0iIPoC20gl94403LvwepArprn/913/9sdfYZjdex99RutByADXdKE8a8j0K+eD21xIV4fVjYJaberjdhmktpfSptxw9etREiuspGNC/+qu/Mg9SexTjKcrf29FGu7IzZLfGci+nlTh16pQxRLyOusqb3/xm/dEf/ZHe8Y53bNh1AlmFBXatlC9MasSgUDNYbGD5XnTHnzx50tSO6I6nYL5djApCDYyaDmlK5rWsVfABqRdB/skkTsZFU5innkOUcm81Ko3WFK3Q6U7UVuuE7crmyK5huZcLXj31lb/8y780DV5Qd7zxjW80KbKNEg4z+H2io9/+7d9uughPXYQOeIwmkQnKGcWKQQHhBaSX+hFRynaY0LiU0GxIbw5pPcYbN3sPKcI/85nPNAaU9cSowPF1b58h3yhVvZUzZ87oN3/zN8167crmy65huZfTSuDNgwKrVT54uyhrPP+Npnz57Gc/a8AFzQpeKmkkKF92yjCtxUK/CN+DzvxGjCzpPVJddGwz6pcObyI1ek1gWN4J332t8r73vU+veMUrDCkmjgQOEWndj3zkI8u+huj8Z3/2Z/W2t73NrP2ubL7sGpZ7Oa0EHj2kirXsu6SWMDgbzctF+oJUDegkFGIjgndP7QTPHCMIpxgMw0Bod1rKBwNA5EUdjAL7akIDJx46qT3WD48dJB/py0ZRcvcGqvpaNuB6qOrf/va3myidnp1d2RrZNSw7TFAyjDzFayW3zsAlOsrx6BCgyLUzI/g7jXKgtDAoTAB817vetSbEViMCOSXpNyjX64mQ8NKpSQCdZd4JdRb6T/Da8fapqexEwYhbGnoQbIuF7wbLMMqQugwRGlQg/Eu0gpd+X5Nmaorf/OY39dd//dfmjOzK1smuYdlhgpKGLZUaBrBe5mhAcGcPH14+CtkKsFPy8xAtwqwKeggjU8/Eu/Xy1klnUMR/5zvfuWQqiN9h/Pgu//u//2v6WEj1kPIissJLtSONaXqkk34nCtMDMZRMY7RNpChO2ISf8pSnGMp6IjO8dLi8qCXs0tXXL9TgXvziFxujQtp4V7ZOduHGu7IpQvEayheKsZbgEKWK54kxBJoLfTuGcKV5FdC9kNqD8gUWgZ0mHDeMCKk+mkmpGdDUSWTJyF/qRrvSHLwexwRm6tp6ok0BY6CJhDHsu7Lxsj2hNLtyrxOiJWZS0MCHovjYxz5m+jtQBKC6iEzqQTfVjjTeaQVsjAoRF7UT0jXUTUhLvuAFL9iRRnIza4rWsNiaIvDqxUL9jdRhrTBfhkjmT//0T43TsiubI7tx9q5smtDoCCwYCCgRDCgfQAdEKvVCZjEkoNrw8oGU7hSDQqMk9S/gskBl6c3A68a47hqV9akp2r6h2gfsC6QX+f+tGiJ3X5TdiGVXNlw+85nPGCJEUhXUiAAQkAZqduYHxol6CxT1///27u9Fpj+O4/iJsi3Z7AWNJQl/gCSSH4tLImVJil3FUiijtX5FwraKpCiutLXrR5Kl3Kx15ULcSSxu7LYXMlHY8qtWn2/Pj++ZZsbM9zvOnDPnzJzXo7757uzMfM9Ovue9n8/7836/6+vrI9tYkZ5pbNcQRDhqzBYOKy2CCQGS7TA+D5L22gLLj8+HfBQ5RbdVfW5OUXmo6FGORQJH7oCGkm7LdrflS39/v71ReMVWEjcW8i3l6INWLFYizOTgqDA4gUctBkEwE//r0XGYz4V+YiLVQoFFyo6/ctRp0HKD46Fe61J4H1ZB/MZKDifMfIt7FPry5cu2MJRAQf3O+vXrIxX0RMpBa0gpO7flC9sZBw4c8NzyhffhBk5dSDGFh0G2qycBT9dpai/YqqGAj8cUVCSOFFgkFORJuru7bQ1HKS1fSMiSmKXw0I9Gj8Wi1oZ6FIo3CSBs9TGagBb2dDuopNNqIn7TVpiEiqPH5Bho3VJKXye2oUjuUlQZZENKViRuZTc1Fhx7patAkFMpRSqNAouEir9+HCGlc+2DBw88HwnlfTIHa/l9jaxGON1FXogtL7oXVHtnYRGvtBUmoWLLiPkw1CbQZLGUfAtbYhxNzWxpU2r+hGFlHI1me4tKcPIpnGpj9G+1BpW/nX/CKThOvlHkSk0O3bSZ/SPxpToWCR1di2/cuGFbvlDb4rW+hRshqxWqr9ma4n29oPiSlQnjftleowkkbdop5Kx27vwTWs0QVC5cuGB7ltEOhY7BuQi29Djje2xrMuKAY+BRrS2S8tBWmETqN2VWLZyoyncTKxY3QQaBUen/N8VzBBEGopFDoYkhDTup7PYaoCoRwYStvkuXLqVXbbRC2bt3b97GpQSgs2fP2q1CnYATl7bCJDLItVDsSEFl5vyYv8UJLeSONM6H36tY4ezcudO2mCFPQ3Ejkyq5njgFFS/zTxjkRlsetsI4Ps52JP3PaDAq8aXAIpHBTYyJidzU2YYq5X0omCTXUmiELTc+WsvQAWD58uX20ACjBThAwGNxbBPiZf4JA9zYAuN15FWOHTtmc2asPCW+lGORyM2Ip76FmzsJc7ofe8FRYJpVUpnPn25nW+bCUH9ChfzIyIhdHZFXyL2ZSnFYWbJtyRYihxnoRsxoA7bH6K4g8RS/X8sk8hobG522tjanpaWlpKLHRCJhf4vesGGD/c2aFuq0rGeri3wB3ZFPnDihoPIv8koEh1QqlfU4X/NZ5sNJME6BZZ6QI5CzwilmYqhUJwUWiRyODrOlws2slJYvvI6jwhRP0q6enAvbNnQTpqjxvwaKxX3+icudf0IeJR9WlQxey8yJ8TkTcNSmPsY4FSYSRUNDQ6a+vt5cvXrVfP36teh/vnz5Ynp6esyiRYvMhAkTTFNTkxk/frx5+PBh2D9S5N28edPU1NSYrq4uMzAwYFpbW82kSZPM+/fv7fe3bNliDh06lH7+8PCwmThxotmzZ4958+aNuX//vpkyZYo5ffp0iD+FhE2BRSLt9u3bpq6uzjx//vx/A8q7d+9MZ2enmTlzppk2bZrp6OgwHz9+tO9z5coVk0gkTCqVCvtHiryLFy+aGTNmmHHjxpkFCxaYJ0+epL/X2Nhompubs57/+PFjs3DhQhuQZs2aZT/30dHREK5cokJ1LFIRLV84Bsv8ltztFb5ProRkPEl/9vtpt7Jx48as5/I8hkaRv+ForIgER4FFIo92LxTuUQF+8uRJm4NhT5/aCgr5aFPPKTLmn9BtuNBRYSY6qohPJHhK3ktJfaJo+cFJK5o/cqQ3mUw6P378CKTlCxMZqTOh3Qorj6amJnutjP1l/PGyZcv+s/5EQUWkTMLei5NoJW7ZVydZ/vLlS7Njxw6buC2Ul7h27ZrdV+fPwcFB09fXZ6ZOnWqSyWQg18fe/ZgxY+z+/7lz58ynT58C+e+ISGm0FSae+0Qxi+TVq1dZx1OZ4f706VM7cthvVHefOXPGaW9v1+pDJMK0FSae+0TRjZjXuNtlFCFSkLhq1apArpEivKNHjyqoiEScAot47hO1efNmm0wnYc7Nfvbs2bbv1pEjR8p01dUhinktkVIosIhnDLyiky0NI5kAeefOHdvY8dSpU2FfWsXNP6GvFp8hHQI4/Vaoeeb169fttiTPZxuSFv+8h4K5REqJORqpEj9//jRjx441vb29WY9v3brVrF27Nu9rlixZYtra2rIe6+7uNrW1tebXr1+BXm+1oABx9+7d6a/53BoaGmyhZz48d+XKlVmP7d+/3yxevDjwaxUpllYs4rlP1Ldv3/443us2I9SZkOrIa4l4obb5ksaWTHNzszN//nw7fZG9fIoTt23bZr/PNEVGz3Z2dtqv16xZ45w/f962tic3QDNCmkfyeLXOgy9XXouJjIXyWryOvBbBe3R01Lb+11aYRIkCi6TR8uTDhw/O8ePHbcJ+7ty5tqrdvfENDw9nrVBoQ08VPH8yg2Py5Mk2qHR0dIT4U8Qnr+UGc1rYkNciqItEgepYRELcCmMgGa38161bl36cVePnz5+de/fu/fGapUuX2vHNDNJy9fT0OK2trXaIWRwnX0r06G+hSEiU15Jqpa0wkRApryXVSIFFJETKa0k1Uo5FRER8pRyLiIj4SoFFRER8pcAiIiK+UmARERFfKbCIiIivFFhERMRXCiwSG48ePbI1Hw0NDbYW5O7du0X15po3b55TU1PjzJkzx+nq6irLtYpUMgUWiQ0q2hmkxcTGYgwODjqrV692VqxY4Tx79szZt2+fs337dqevry/waxWpZCqQlFhixdLb25vV/DHXwYMH7UTMFy9epB/btGmTbRBJdbyI5KcVi0gBDNvKHMIFxgYXGsIlIr8psIgUQO+ufEO4RkZGnO/fv4d2XSJRp8AiIiK+UmARKSCRSDipVCrrMb6uq6tzamtrQ7sukahTYBEpgGFbmUO40N/fX3AIl4j8psAiscHoXo4N8497nJh/Z+YJDh8+bAdruXbt2uW8ffvWaW9vd16/fm3nzN+6dctJJpOh/QwilUDHjSU2KHakJiUXExwpfGxpaXGGhobs8zJfQyAZGBhwpk+fbqc18jwRKUyBRUREfKWtMBER8ZUCi4iI+EqBRUREfKXAIiIivlJgERERXymwiIiIrxRYRETEVwosIiLiKwUWERHxlQKLiIj4SoFFREQcP/0DcG+NU84dcXYAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "source": [ - "%matplotlib inline\n", - "\n", - "fig = plt.figure()\n", - "axs = Axes3D(fig)\n", - "\n", - "axs.view_init(45, 60)\n", - "axs.plot_trisurf(points[:, 0], points[:, 1], function_values, cmap=cm.magma)" - ] + "execution_count": 8 }, { "cell_type": "markdown", @@ -180,54 +210,53 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(496, 2)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:03.198931Z", + "start_time": "2025-06-25T21:43:03.141011Z" } - ], + }, "source": [ "grad_values = s.grad(points)" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "code", - "execution_count": 18, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:03.265491Z", + "start_time": "2025-06-25T21:43:03.213916Z" + } + }, + "source": [ + "%matplotlib inline\n", + "plt.quiver(points[:, 0], points[:, 1], grad_values[:, 0], grad_values[:, 1])" + ], "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 18, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFNf3xt8FG7ErsSC9CipFBIHYxYYtGo1iYkw09oI1\nwRpb7L3E2Htv0dgRY+wtCiJFsaICgtKkszvv7w/D/kB2d9bEfBP1fp6HR3d4uXNnYc/cOefccxQk\nIRAIBIL3C4N/ewICgUAgePsI4y4QCATvIcK4CwQCwXuIMO4CgUDwHiKMu0AgELyHCOMuEAgE7yHC\nuAsEAsF7iDDuAoFA8B4ijLtAIBC8hxT7t05sbGxMS0vLf+v0AoFA8E7yxx9/PCf5sZzuXzPulpaW\nuHbt2r91eoFAIHgnUSgUj/TRCbeMQCAQvIcI4y4QCATvIcK4CwQCwXuIMO4CgUDwHiKMu0AgELyH\nCOMuEAgE7yHCuAsEAsF7iDDuAoFA8B4ijLtA8Bo9evRAZmbmvz0NgeBvIYy7QPAa165dg0ql+ren\nIRD8LYRxFwgEgvcQYdwFAoHgPUQYd4FAIHgPEcZdIBAI3kOEcRd80ERFRemle/DgAXJycv7h2QgE\nbw9h3AUfLCqVCs2aNdNLO3DgQERERPzDMxII3h7CuAs+WBITE/Hxx4Ub2mzatAmpqalYtmxZoePV\nq1dHXFzc/3J6AsHfQhh3wQdLXFwcqlevXuR4QkICnj17VuiYMO6Cdw1h3AUfLJqMu5+fHwwMDNCu\nXbtCx4VxF7xrCOMu+GDRZNyNjY3RunVrNGrUqNBxYdwF7xp6GXeFQtFaoVDcVigUdxUKRaCG75dX\nKBS/KhSKUIVCEa5QKL55+1MVCN4u2twyCxYsQIkSJQodE8Zd8K4ha9wVCoUhgOUA2gBwAuCvUCic\nXpMNBhBB0gVAEwDzFQpFCQgE/xEyMjIwdepU9etz587h7NmzePr0KVJTUwtpd+zYgezsbPVrkoiK\nikJUVBT279+vPr5582aEhYX985MXCP4C+qzcPQHcJXmfZC6AHQA6vqYhgLIKhUIBoAyAJADKtzpT\ngeBvcOXKFdy8eVP9unjx4jhx4gSOHDmCcuXKFdJu3boVeXl56tcKhQJnz55FZGQk4uPj1ccfP36M\nEydO/POTFwj+AvoY9xoAHhd4/eTPYwVZBsARQCyAMAABJKXXB1IoFP0UCsU1hUJxLTEx8S9OWSB4\ncy5evAgfHx/1a2dnZxgaGmLgwIF4tSbRzcCBAwEA7u7u6mM+Pj64ePHi25+sQPAWeFsB1VYAQgCY\nAHAFsEyhUJR7XURyFcl6JOu9nl8sEPyTXLhwoZBxNzIyQv369fHll1/q9fOenp7w9PREnTp11Mc8\nPDxw5coVkHzr8xUI/i76GPenAMwKvDb981hBvgGwj6+4C+ABgJpvZ4oCwd9DkiTcuHEDbm5uhY7P\nnz8fZcuW1WsMhUKBxYsXw8jISH2sdOnSqFKlCh49evRW5ysQvA30Me5XAdgpFAqrP4Ok3QEcfE0T\nA6A5ACgUiqoAHADcf5sTFQj+CpIkYfHixbC0tCzyPS8vryLHLl26hLy8PJw7d05Wn5OTA29vb6xe\nvRoPHz58W1MWCN4KssadpBLAEADHAUQC2EUyXKFQDFAoFAP+lE0D4KNQKMIABAP4nuTzf2rSAoEu\nVCqVusiXgYEBJk2ahKtXr2o02K93XDp//jwePnyILVu2FDpOEpJUOIz0/PlzbN26FTNmzFAHYCVJ\nKpRpIxD8W+jlcyd5hKQ9SRuSP/557GeSP//5/1iSLUnWIVmb5BbdIwoE/xxHjhxBv3791K8rVqyI\n1q1bo3nz5oV0SqUS1tbWhY61b9++0L/5dOjQAaGhoYWO1ahRAwEBAepzAMCyZcswa9ast3MhAsHf\nQOxQFbx3rFq1Cl988YX6ddWqVTFv3rwiusePHxfZxGRvb49atWqhVatWhY6bmZnh/v2insbRo0fD\n1NQUFSpUAAB8/vnn2LRpE5RKkQks+HcRxl3wXvH48WNERUXB19dXfWzixImwt7cvor1//36RlTsA\nzJ49W70Sz8fa2lqjcS9dujSWL1+OYsWKAQCqVasGNzc3HDt27O9eikDwtxDGXfDeEBERgTVr1qB3\n794wMPj/P+0OHToU0T558gSXL1+GlZUVMjMzC32vbdu2hV7n5ubCzMwMERERiIyMLDLW6+P369cP\nq1atEvXfBf8qwrgL3hs2bNiAGTNmID09XTb3PCcnB+PHj8fSpUuRkpKiU2tgYIDJkydjw4YNepUb\nSE5OxokTJzB8+PA3mr9A8DYRxl3w3pBfg71Vq1ayu04tLS1RqlQpdOrUCSYmJjq1xYoVU+9QdXJ6\nvaxSUT755BOUK1dOFBoT/KsI4y54pwkNDcVvv/0G4JVxX7BgQZFyvQCQlZWF7du3q18bGhqiZs2a\nGDVqVBHtzp07kZubW+hY7969YWxsDDs7O/Wx33//Hffu3Svy82ZmZti9ezeSkpIAAHfu3MGRI0f+\n2gUKBH8RYdwF7yxKpRK9e/dW56q3bt0aQ4YM0ag9fvx4EQMbEBAAZ2fnItqJEycWaYZdpkwZzJkz\nByVLllQfu379OjZs2KDxfI0bN0ZgYCCUSiVKlSqFQYMGFenuJBD8kwjjLngnycrKwvz58+Hm5qbO\njBk2bJhGd8yTJ0+wZ88efPbZZ4WOf/XVV0W0+eV/Xy8DDAC9evUq9Lpz587Yu3cvnjx5onGOQ4YM\ngYGBAczNzfHdd99h2LBhyMrK0u8CBYK/iTDugncOSZLw6aefYuXKlYXy1wtmyBTkhx9+wJ49e4rU\ngNGknzt3Lh48eIDBgwcX+d7r+tDQUMTFxaFLly4az6tQKNQ/M2DAAMTGxqJZs2aIiYnRfYECwVtA\nGHfBO8e1a9dw4sQJZGVlITY2VlafnZ0NpVIJb29vWW2bNm2gVCoL5clrw8vLC8WLF5fNtgGAlJQU\nZGdn49KlS8L/LvifIIy74J3j8OHDMDc3x4kTJ/TKXsnNzcX48ePh6ekpq/Xy8oKxsXGR8gOaqFKl\nClavXl0k+KqJSpUq4fDhw/D29sbhw4dl9QLB30UYd8E7Q15eHkjixYsXuHz5cqHa6gUhWSjP3cXF\nBRMmTNDrHIaGhvj+++81VpHURMeOHdGzZ88i59dElSpVcOrUKVSrVg1ZWVmFuj0JBG+d/A/C//rL\n3d2dAoG+ZGZmsk2bNjxw4ACzsrK06pRKJbdt28Zx48apj+Xk5GjUJiQksGXLlkWO5+bmFjkWEBDA\nK1euMDMzs8j3Co6/Z88ejhkzhkqlUuscJUliVFQUnZ2d+fTpU606gUATAK5RDxsrVu6C/zQpKSm4\ncuUK2rVrB1dXV7Rv3x6lSpXSqh8yZAjGjx+PPn36qI+VKKG5V7uvry9u3bqFgwcLtycoXrx4odf5\nufStW7dGWlpakXEKjt+mTRscOHAAn3/+udbMGIVCAQcHBwQGBqJ58+YIDw8v1N9VIHgbCOMu+E8z\nY8YMNGnSBA0aNMCMGTN07jxNTEzEzz//jKSkJL1yyg0NDZGRkYFPPvlEp65OnTowNDREcnIyKleu\nrFP74sULkMS+ffs01o8viL+/P3788Ud4eXlhxIgRol2f4K0ijLvgP8v9+/exePFiFCtWDJUqVZI1\nfidPnkSpUqWwfv16vTJjqlSpgsDAQFmDbWBggNmzZ8PY2Fhd/VEbZmZm2LVrF6pXr44TJ07IzqFk\nyZKoUKECTp06hUOHDsnqBQJ9EcZd8J9l6tSpGDlyJB48eICAgADZejHXr19HcHAwOnXqpNf4devW\nxbBhw/TStmjRolCNeF24urri4sWLWjc3FaRt27aIjo7G4sWLMX/+fBFkFbw1FP/Wo2C9evV47dq1\nf+Xcgv8+eXl5SE5ORpUqVfT+meTk5CJ12HWRnp6OMmXK/GP6lJQUlCtXTuvmqtfJzMxETk7OG12D\n4MNDoVD8QbKenE6s3AX/OSRJws6dO2WNYnx8PMLCwnDnzh0A0GkUN2/ejOvXrxc6pslQZ2RkIDw8\nHBkZGUW+97r+0aNHWLJkSZE+rPlUqFABBgYGSEtLQ1BQEOLj43VeT6lSpbB7927Rg1XwVhDGXfCf\n4aeffsLly5fh7e2Nffv26dwcdO/ePfj6+qJDhw54/lx3L/acnBz07dsX7du3R3h4uE7tyZMn4ebm\nhgULFujUvXjxAl27dkVAQIBspktqaipGjBiBFi1a6PSr5+TkICIiAs7Ozti7dy9+/vlnrTcOgUAW\nffIl/4kvkecuKMiyZcsIgDVr1mRwcLBOrSRJbN68OQGwVatWGnPPC3Lu3DkC4IIFC2TnkZ6ezpIl\nS/LKlSuy2qNHj9LIyIhLliyRne/IkSMJgGZmZkxLS9OpDw8PZ5MmTahQKNinTx9KkiQ7F8GHA0Se\nu+BdYdOmTRg6dCjs7OzQsmVL2UyXzZs3IzY2FqtXr8Yvv/wCIyMjnfoLFy5gzZo1GDFihOxcSpcu\njZ49e8Ld3V1W27p1axw/flx25a5QKDB37lwcOHAAVlZWmDhxok69o6Mj/Pz84OLignXr1mHUqFEi\nTVLwxoiAquBfJSMjA0FBQfDy8kK1atVk9SRx9epV1KtXT+9A5ePHj2FmZqb3nBITE/Hxxx/rrX/T\n8W/cuAEnJ6dCteG1kZqaikuXLqFWrVowNTXV+xyC9xd9A6rCuAsEAsE7hMiWEbwzSJIkq8nf+anP\nYuTWrVtvY1p/GX3PTxIpKSmyQVN93h+B4HWEcRf8z9m/fz927dqFvXv34uuvv4aFhYXWcgFKpRIj\nRozAN998Azc3N1y4cEHn2FevXkWjRo2wceNG2XlcvXoV3333XZGWeq9DEosWLcLu3btlx7xx4wY+\n+eQT2fOnpKSgZs2aGD58ONq3b6+x81P+uevWrYtOnTph3bp1OHfuHBYsWCCyaATy6BN1/Se+RLbM\nh0dCQgK7detGAKxYsSK//vpr7t27V2v2SHJyMlu1akUANDIy4oULF2THNzMzo7W1NefPny+bZbJu\n3TpOmzZNr7kfPHiQw4YNk9Xt27eP7u7uLFWqFK9fv65TGxMTQ0tLSwKgo6Mjo6OjNepycnJ48uRJ\nBgQE0NzcnADo7e3NyMhIveYueL+Antkywucu+J/w4sULTJs2DQkJCVAoFKhUqRLmzp2rtcKjSqXC\nihUrkJ6eDlNTU5iamqJ27dowNjbWeo4TJ07A2NgYbm5usqUKACAyMhI1a9bUS5uvd3R01Et7//59\nXLt2DV27dtU6fmZmJkJCQvDkyRM8efIEWVlZCAgI0LoLliRmzpyJ8PBwkESpUqUQGBgIe3t7veYk\neD8QAVWBQCB4DxEBVYFAIPiAEcZd8J9CqVS+kT4+Pv6dyCaJi4t7I/2bvg8CwevoLk4tEPxFYmNj\nsXbtWigUCnz22WeIi4tDXFwc4uPjMXLkyCJ+6KSkJKxatQonT55Ul/n19/dHpUqVNI6flJSEuXPn\nYsuWLTh79qxsz9OQkBAUL14ctWrVkp37oUOH0K5dO1ldWloazpw5I6vNzMxEmzZt4OLigsmTJ8PK\nykqrdsWKFahWrRr27dsHY2NjDBs2TKN+06ZNIIlq1aqhevXqCA0NxdWrVzFgwAC9moYL3n+EcRe8\nVR49eoTAwEDs3r0bKpUKH3/8MYKDg9VGqFq1alAqlepWdtnZ2Zg5cybmzZuHzMxMfPTRR9i1axes\nrKw0pvuRxP79+zFixAjExMQAAGJiYnQa97CwMMycORPdunXTy7hru6G8zr1797B+/XoYGBjAz89P\nqy49PR137txBaGgofvnlF/zwww8YNmxYkcYfJJGWloaQkBCcOnUKsbGxWLJkCXr16oXZs2cX2jWr\nUqkQFRWF4OBgxMfHIzo6Gg8fPsTSpUvRpEkTzJkzBx4eHnpdh+D9RARUBW+d7OxshIWF4Y8//kBG\nRgZGjRqlU08SiYmJiIiIQHh4OLp37y7bHQl4ZTTj4uJQunRpmJiYvK3pv3VSUlIQGxsLExMTlC9f\nXjY7R6VSYfXq1bCwsICTkxPMzMxkSy3s2LEDsbGxcHd3h6urK8qXL/82L0HwH0JkywgEAsF7iMiW\nEQgEgg8YvYy7QqForVAobisUirsKhSJQi6aJQqEIUSgU4QqF4ve3O03Bf53MzMw30pN8J7Jc/mu8\n6Xv2pr8XwfuDbEBVoVAYAlgOoAWAJwCuKhSKgyQjCmgqAPgJQGuSMQqFQv/Gl4J3kocPH+L06dM4\nd+4czp8/D09PTwQEBKBChQqoWLEiypUrB0NDQ7U+LS0N58+fx+XLl3HlyhUkJiZi586dqFq1KkqX\nLl1kfJVKhZCQENy8eRNhYWEICwvD4sWLdWaCxMbGIiYmBrGxsXB0dJTdTapSqQrNUQ599ImJiTh1\n6hRMTExgYmICa2trrT72tLQ0+Pv7w8zMDM7OznB2doa7u7vG+vQ5OTlITEzEiBEjkJCQgPr168PT\n0xMNGjQoVCqZJF6+fImUlBQkJyfj0KFD+Pnnn9GgQQN88sknaNSoEZydnfW+ZsG7iz7ZMp4A7pK8\nDwAKhWIHgI4AIgpoegDYRzIGAEgmvO2JCv5bVKhQAXl5eYiKikJUVBQqVaqECRMmIDk5GSkpKUhN\nTUXp0qURHR0NAPjoo4+gVCpx/fp1HD9+HNWrV0ePHj2QkJCAzMxM3Lx5s1AzbENDQ6hUKpw6dQo7\nd+4EALRo0QL79u1D/fr1Nc4pOzsbK1aswObNm/Hrr7/KGvenT5/i+vXr+PTTT2Wv99q1a8jNzYWP\nj49OXXp6Onr16oUGDRrgxx9/hI2NjUZdVlYW7O3tkZ6ejoyMDLRs2RIWFhYaa7y7ubkhKSkJxsbG\nyMjIwO3bt6FUKuHo6FioVMFnn32GCxcuoGzZsqhQoQIqVKiA4sWL48mTJwgJCYGLi4vemUCCdx/Z\ngKpCoeiCVyvyb/983RNAfZJDCmgWASgOoBaAsgAWk9yka1wRUH1/iI6OxosXL+Dl5aWX/unTpzh3\n7hy6deumlz4uLk7dkUhbLZqCREREwNTUFOXKldNr/LfNpUuX9H4vFixYgDZt2uhds+b48eMwNTXV\nK6UTePW7SU5OhoeHh941dAT/bd5atoyexn0ZgHoAmgMwAnARQFuSd14bqx+AfgBgbm7u/ujRoze6\nKIFAIPjQeZvZMk8BFOwhZvrnsYI8AXCcZAbJ5wDOAHB5fSCSq0jWI1nvTdqYCQQCgeDN0MfnfhWA\nnUKhsMIro94dr3zsBTkAYJlCoSgGoASA+gAWvs2JCv4dVCoVEhMTERsbi9jYWFSqVEnW76xSqfDy\n5UukpaXh5cuXcHJyEi6Bf5jo6GgUK1YM5cqVQ7ly5dQ7gLURFRWFyMhIdeC3WrVqsj8jeMfQp+g7\nAD8AdwDcAzD+z2MDAAwooBmDV0HWWwCGy40pmnW8G5w8eZJ169YlAAJg165duWnTJoaFhTEvL6+I\n/sGDB/Tz81Prvb29GRoaSpVKpXH8zMxMjho1ih9//DFNTEzo6urKhIQErfORJIlr1qyhn58fR44c\nydWrV2ttcpHP4cOHuWfPHq1zeJ0TJ07opSPJ8+fPc9WqVTo1CQkJ3Lx5M8eNG8fOnTtz7NixzM3N\n1arPzc1l+/btWaNGDVapUoWdO3dmfHy8Rq0kSbx37x579uypfs9dXFx46dIlrdo9e/ZwxIgRar25\nuTk3bNig9/sj+HeBns06RCcmgSySJHHPnj10dHTk0qVLOXz4cDZu3JjVqlWjp6cn+/fvz3Xr1hX6\nmUOHDtHOzo6dO3dmo0aNWL16dbZr145z5sxhVlZWkXMcOHCAVapUYbVq1WhjY8ORI0dqNWgkuXDh\nQgKggYEBz549q3P+2dnZtLKy4ldffSXbnYkk69aty9TUVFndwoULWbJkST58+FCn7unTp6xcuTIB\nsHfv3hpviuQroz516lS6urqyRo0aLFmyJBcuXKjR6K5fv57+/v40Nzdn3bp12adPH1auXJkrVqyg\nUqlU644ePcoRI0awSZMmrFatGj08PNivXz+uWLGCtWvX5pIlS5idnS17rYL/Dvoad1F+QKA3KpUK\nubm56jxsSZLw4MED3LhxA7GxsRg2bFghfW5uLp49ewYzMzPk5OTg6tWruHjxIkaNGqWxVkpiYiLC\nwsJQq1YtHDx4EF26dEHFihW1zmfr1q04ceKEbKVFAAgODoatrS0sLCx06kgiOTkZ5cqVK1LY63We\nP3+OCxcuoEOHDjp1WVlZmDBhAkqUKIEZM2ZodVGRxMqVK+Hr64vMzEwUK1ZMa17/mjVrYGpqCh8f\nH5QrVw7JyckgWSTVcefOncjJyYGbmxtq1qypdr2QRGZmpsY9BoL/NqK2jOCDIDs7W6/0yH+bd2We\ngv8+oraM4IPgXTGY78o8Be8PwrgLQBLr1q2Dm5sbXFxc4OLigkuXLun8matXr6Jdu3bo3Lkzvv76\na2zcuFGnPiEhAYMGDcK4ceOwYcMGnD9/Hnl5eVr1SqUSc+fOxf79+/Hy5Uu9rmPfvn148eKFXloA\nuHz5st5aALLvSUFycnKwefNm6PNknJubi+DgYEyZMgUpKSk6tSEhIdi+fTumTp2KPn36IDw8XKf+\n1KlT6NOnD7p06YJWrVphz549OvVxcXHw9vaGs7MzXFxcMGHCBOTk5Mheg+A/iD6O+X/iSwRU/3uc\nOXOGdnZ2LF26NE1NTdmrVy/u2bNHa3AxNDSUDg4O6qyY9evXMy0tTev40dHRtLa2VuvlgpbR0dGs\nVKkSixcvzi5dusjqz58/z0qVKhUJKmpj1KhR3Lt3r6yOJCMiIti6dWu9tIcPH6atrS2XLl2qU6dU\nKjl69GiWLVuWBgYGPHbsmE59bm4u+/TpQwAsW7Ysg4ODtWpzcnJ44MABdurUiQBYuXJlHjp0SKs2\nKCiIAQEBtLW1ZYUKFVipUiVu2bJFrwC04H8LRLaM4K+QmZnJjRs3Mi0tjXv37uU333xDU1NT+vr6\nctGiRbx7924h/cuXLzl48GBeuHCBAwcOpKmpKf39/XnkyBGNWSHx8fF0d3fn8OHDaWZmxnHjxvHZ\ns2da53P69GmWKFGCVlZWPHjwoOz8mzRpQgDs1auX1qyUfEaPHs0qVaowMTFRp06pVLJ+/fps2rSp\n7PkXLFhAAKxatSozMzN1aq9fv043NzeWLFmSy5Yt06rLyMjgkiVLaGNjw549e9LDw4MhISFFdJIk\n8fLlyxw8eDBNTU35+eef89dff2VgYCAfP35cSPvs2TOuX7+en332GU1MTNi5c2euW7eO8fHx3Ldv\nn85MJcG/izDugreGSqXi5cuXOXHiRLq5udHPz0+rNjs7m/v27WOnTp3o4OCg0cC+fPmSSqWSSUlJ\n/PHHH2lhYcEnT55oHfPgwYOMiIigt7c3T506pXOuJ0+epJOTE+fNmyd7XUuWLGHPnj0ZFRWlUxcf\nH8+hQ4dyxIgRsmMGBwezdu3anDNnjuyYjo6OPHnypM6bllKppLOzM4cOHapOuUxJSdGo7dSpExs3\nbsw1a9YU0ry++h47dixtbW05bNgwnjhxQqRCvmPoa9xFtozgjUlPTy9UjVAbWVlZGsvXvk5ubi5K\nlCghq1OpVDAwMNC525Uknj9/DmNjY9ldsSTfaOesvvqsrCwolUqULVtWp07fksP6vj/6vt/p6eko\nXbq02DX8jqJvtoxokP0BkZeXh4ULFyIhIQHGxsaoXLky2rZtq7P/6IEDBxAeHg47OzvY2trC1tZW\np9GKjIzEb7/9hoYNG+pVuTAtLQ2HDx9Ghw4dZHOuDQ0NQRLBwcFo1qyZRuOkUCjwet2i8PBwjXPR\nZtzu3bunsVSvNv3r48sZ2IsXL8LV1VUvQ6xUKhEUFISaNWtqLR+cT6lSpXD//n2cO3cONWrUQPPm\nzTXqypQpg5ycHNy7dw93797F3bt3YWRkhP79+2vt1ZqVlYWdO3fi+fPneP78OQDg+++/17kPQfAv\no8/y/p/4Em6Zf4e0tDR26dKFAFimTBlu375d52N5Xl4eBwwYoN6qvm3bNtlzjB8/ngBYoUIF2aAi\nSc6YMYNly5Zl3759efHiRdkg3tSpU9mqVSvev39fdmySDAgI4K+//qqXliQ7duyoszxAQSIjI9m2\nbVu9tMnJyezfvz87d+4sq719+zYDAwNZvXp1dunSRfY9CQoKYo0aNQiA7du3l53/jRs3aGRkRABs\n1qyZVlcP+cotd/LkSdra2hIA69WrJ7srV/DPAeFzF2hDkiQuXLiQ/fr141dffUVTU1MOHTpUY5Au\nXz9z5kzWrVuX9vb27NKlC69cuaJz/KFDh7JMmTJ0c3Pj77//rnM+SqVSHQgdPHiwrCFLTEykkZER\nP/roI65cuVL2eufOncsyZcowNDRUVvvixQsaGhrK+vZJ8vnz57SxsaG/v7+s9uTJk6xevToByJZL\nIMm1a9cSAE1NTZmUlKRTe/v2bbZt25Zly5Zls2bNNJZ3yOf+/fscPHgwzczM2LRpU/bo0YM5OTka\ntY8ePeKUKVNoY2PDtm3bcvz48ezfv7/O8QX/PMK4C2TJX7GnpKRw5cqV9PT0ZN26dbl8+XKNBuXx\n48dUKpXcvXs3PTw82LRpUx49elSjMVapVDx27BjPnj1Ld3d3du3aVedq7/Hjx+zXrx/d3d05ZswY\n2UyXAQMGsHz58ty8ebPsde7cuZMA6OrqyuTkZJ3aLVu2EABHjhypU6dUKtm1a1cC4Pfffy87hz/+\n+INVqlShp6en7M1rzZo1tLa2ZkBAAE+fPq1Vl5KSwlGjRtHGxoY7duzgmTNntKai/vHHH+zevTtt\nbW25bNkyZmRk8MmTJ0Xq1mRnZ3PHjh1s0aIF7e3tOWPGDHWwWwRe/xsI4y74S4SFhXHEiBE0MzOj\nv78/f/vtN406SZL422+/sXXr1nR2dubmzZu1VhVUqVRct24dLS0tOXHiRK0pgkqlkllZWezbty8b\nNWrEuLg4rfO8d+8e79y5QxsbG9mV8NWrV/nFF1+wf//+OnXkK8P68ccfc/LkybLalStXsl27dtyx\nY4dOXUxH+K7bAAAgAElEQVRMDK2trXn+/HneunVLqy4zM5PffPMNmzZtyvj4eK25+pIkcdWqVbS0\ntOSUKVOYkZGhdczg4GD6+vrSzc2N27dv13rTvHXrFocOHUpTU1N+9dVXPH36tMhx/48ijPsHTGpq\nKleuXMmjR48yOjpa1v8qSRL37t3LS5cuqR+5c3JyuGfPHs6ePVvjz1y+fJkRERGUJImhoaGcOHGi\nTmMQExPDkJAQTps2TTb/myTXrVunl/siJCSEf/zxB8lXbgRtZGRk8Pjx44WOabt5nDhxQuN79ro+\nJCREp9//8ePHVKlUjI2N5dGjR7Xq8nny5AmnT58u+9RCkrNnz2ZoaCjDwsJ06pYtW8agoCBKksQn\nT54wKChIo27btm1cuXKl2veuVCp58+ZNbtu2Tfb3pVKpGBMTw1OnTnHVqlV6x0IEfw1h3D9wTp48\nyXLlyhEA69Spo3N1R77y21avXp3FihWjj4+P7Ac0KSmJ9vb2tLW15ciRI3njxg2deqVSSW9vb3bq\n1IlnzpzRa1X46aefct68eXrtNiXJb775htevX9dLS5J9+/bly5cv9dJKkqSXbz2fZ8+esVWrVnrr\n9+7dy7p16+oVyI2MjGT//v1pYWEhuwErJiaGU6ZMobu7O8uXL8/w8HCd+vyAe+nSpVmyZEnZXbOS\nJLFbt27q8svLly+Xnb/g7yGMu4ChoaGsUaMG3d3d6e7uzh07duhcFUZFRbFatWosX748hwwZonPn\nKPnqhlChQgUaGBjwl19+kZ3PzZs3WaxYMQLgnj17ZPWHDx8mANavX1/WKJHkDz/8QGNjY0ZERMhq\nSdLFxYVz587VS3vq1CkaGBhoDT4WJCkpiS4uLmzXrp2s9tmzZ/z8888JgNOmTZPVh4aGsmzZsnpn\nLoWFhbFixYo0MDDgkSNHdGozMzM5c+ZMmpiYsGTJkjqfNvLdcn5+fqxTpw4rVqzIAwcOyM5H8PcR\nxl1A8pVr4MWLF7x27Rq7detGOzs7Ll26lOnp6Rr1kZGRvHr1KufMmUNzc3NOnTpVq5Z8lYL3448/\n0tXVlQMHDtRZW4YkJ06cSG9vbzZv3lw2uKlSqWhra8uPPvqI165dk73WPXv2qJ9U5Fa0JFm+fHlW\nqVJF9qmG/P+yBvfu3dOpy83NVddzGTt2rOy4z549o5mZGY2MjGRvpnl5eRw4cCC9vb3Ztm1bnU8/\nSqWSc+bMoZWVFX/66ScuWLBAp3bt2rXqIO7Dhw+13giUSiV37dpFDw8PNmnShIcPH1a75gT/G4Rx\nF2jk3r17HDJkCM3NzTlp0iSdLe2SkpI4ZswYWlpacsWKFVpdBpIkMScnh5MnT6atra1Wvy75KuMi\nNTWVixYtYq1atWSNZVBQEDds2EAvLy/ZFLzbt2+zY8eOeuWRJycn09HRkfXq1ePVq1d1auPi4ujn\n50cHBwetAeaCTJ8+nW3btuXu3bt16iRJ4jfffMOAgADZ1n6pqals1aoV+/bty9zcXJ03r/DwcNav\nX5+9evViUlISJUnSeCOQJIkHDx5k7dq12aNHD52/i4yMDC5fvpz29vbs2rWrzlRYwT+LMO4fAI8f\nP+bly5f1ClCSr4KkV65cYV5eHhMTEzllyhSam5tz4MCBWvuQhoeH8/79++zVqxcdHR25d+9enSvG\nY8eO0dXVlf369ZOt4njw4EGam5vrlVP+/fff09/fnyqVSmvetyRJVKlUrFOnTqEYgKZ5KJVKhoWF\nsXHjxkW+p+npY8SIEdy4caNG/3/B8VNSUmhubs7ExESt2UM5OTl8+fIl586dy9atW8sGUB88eEAn\nJyfOnTtX53ufl5fHmTNn0srKimvXrtU55sWLF9mwYUP6+vry2rVrvHXrlsb5JiYmcvLkyTQ3N+eg\nQYN49+5dSpLE8PBwvZ6O8ucVFhaml2tNII++xl3Uc3+HMTExwerVq1G2bFnUrl0bU6dOfXXH1kKJ\nEiVw+fJlVK5cGb1790b58uVx9epV1KlTB23btkVgYGCRn3n27BkaN26MypUr44cffsDq1avRpk0b\nreepWbMmVCoVEhISUK9ePWRkZGidT/v27bFr1y74+flh7969Oq91xowZyMrKwp49ezBkyBAkJCQU\n0SgUChgYGGDSpElYu3at+rimmuSGhoawt7dHampqkXGmTJlS5PoSExNRu3ZtjbVgvv/+e/X/9+/f\njx49esDY2FjjVv7c3Fx88cUXuHfvHjZt2oQdO3bobOcXHR2NWrVqYdCgQRg9erTOejDt2rXDqVOn\nYGxsjBo1amjVjRs3DgMHDkSfPn3QpEkT9OzZE0FBQUXmu2nTJtStWxckceXKFdSvXx+TJk2CiYkJ\n5s+fj8qVK2s9B/CqDaKnpyfKli2LQYMGwczMTKde8JbR5w7wT3yJlfvbQaVScdCgQTQwMKCrqyuP\nHDkim4kybtw4AmCtWrXUG1SUSqXWTUbTpk0jAFapUoUPHz4sUj5Wm97CwkJnXnc+I0aMoKGhISdM\nmKAzYJmZmUmVSsU+ffrQyclJa1lalUpVaIXdqFEjvYKV5Cu3UZkyZWRTDPM5dOgQy5QpU+iYtpV4\ndnY227VrRzc3N5LU6euXJInr1q1juXLl2Lx5c9l5JCYm0svLiwDYqVMnndqnT58yLS2Nnp6ear2m\nv5n4+Hj1HF++fMmOHTsSANu2bSv7tHHjxg22adOGhoaGbNasmc64jeDNgHDLfDhIksSff/6Zly5d\noq+vLxs0aKBzy78kSRw4cCBXrVpFCwsLLliwQOeHVaVSsVWrVvz000/ZokULnZuLSDIrK4u2trY0\nNzeXTaUjX+WnGxgYsEaNGkXqxWti5cqVBEAPDw/ZoCxJenl5sWTJkrxz546s9tixYwTAGTNmyGrT\n09NpYWHBEiVKyGqVSiW/+OILAtBrM9WLFy/YsGFDAtCrjn1kZCTt7OzUN2BdZGZmcuDAgaxfvz4b\nNGig8z2UJIl79uyhjY0Nx48fzyFDhui8KUVFRfHzzz9nnTp1uH//fm7YsEFvt6FAP4Rx/4AJDg6m\nl5cXW7VqpTXLJN+/mpCQwN69e9PFxYXnzp3TOmZKSgolSeLq1atpZWVVZEPQ64SGhvLOnTu0t7fX\nK2VvzZo17NixI2fOnCmrvXHjBhs1asQvv/xSVkuSbdq0YYUKFfQqHvbDDz/wo48+Yvfu3WW1V65c\nYe3atVmtWjW98vYXLFjABg0acP369bLaw4cPs1atWlyyZIlsnv/ly5dpaWnJoKAg2ayV8PBwOjs7\n87vvvmNubq7OgmHR0dFs3bo1mzdvrq55ry2O8PDhQ37zzTe0t7fnli1b9N6bIHhzhHF/j4iNjX2j\nuh6pqal8+fIlDx48SGdnZ3bu3FlnMEuSJB45coQuLi7s3bu3bKAsPDyctWrV4pgxY2Tzvp8+fUpn\nZ2e98snT0tLo7OzMgwcPMjs7W6shUSqVzM3NZe3atQttWtL2HqWlpdHJyalIQxBNc1cqlbSzs9O4\nmn1dL0kSzczMGBcXp3GueXl56ieipKQkmpubMz4+XudGpaysLEZGRtLS0lJrkLsgBw4coJWVlWzG\nT/6N2cLCQvbGnJWVxcmTJ9PKyoqbNm3SuVKPi4vj0KFDaWVlxZ9//pmZmZl6B1rJV++3rp3FgqLo\na9xFQPUdgCTq1q2LRo0aYfz48Th79qxO/UcffYQePXpg1apVGDRoEHx9fdG5c2f06tULDx48KKJX\nKBS4ePEiatasiZIlS8Ld3R2rV6+GJEkax3dycsK4ceNw8OBBeHp64v79+1rnYmJigtOnT2Pbtm1w\nc3PTGMDMp2zZsti/fz+GDRuGyMhIDBgwQGMTbUNDQxQvXhyzZs3CmDFjXq1SAEyePFn9/9fHbdmy\nJYKCggodnz9/vsaxC/6rSx8WFgYrKytUq1ZNY/B0+vTpUKlUAIBZs2ahT58+qFq1KooXL67x+mfP\nno1r166hc+fOWL16NWxtbTXqgFd13rt3747+/fvj2LFjqFdPe++GlJQUdOrUCTNmzEC3bt3QsmVL\nrdrjx4/D1dUV0dHRaNGiBX799VeUKlWqiC4pKQljx45F/fr1UbVqVUydOhVnz55Fw4YNtY6dT2Rk\nJGbOnAk/Pz9YWloiPj5e9mcEfwF97gD/xJdYub8Z9+/fp4mJCQFw8uTJWle1+SQlJdHOzo4A6O/v\nz+zsbK5evZrW1tYcOHAgnz59WkifnZ1NFxcXAmDTpk3ZuXNnenl5ad3OL0kSvb29aWhoyDJlysiW\n3s3IyGDlypVZpkwZnXnw5KvdoA4ODvTx8WHHjh215rdLksQmTZqo/foeHh5a68cfOXKkSPkAS0tL\nXrp0qYjWzs6uSDpkcnIyS5cuzRcvXqiPzZ07l9OnT9d4vjNnzrBEiRKUJImPHj2ipaWl1lIHkiRx\n7NixLF++vLpXrS6ioqJoaWlJQ0ND2X0CZ86cYaVKlViyZEkaGxtrdcM8fvyYXbp0oZeXF3v27EkA\nrFixYpHg+cuXLzl9+nSam5tzypQpTE1N5Zw5c9T9AfQJRO/du5cGBgYsWbKkXvsGBIWBcMu8f4SH\nh7Nv377s0qULPTw8eP78eZ36yMhI+vj4sHbt2gwICGBGRgazsrK4aNEiTpkypYj+1q1bNDExoaWl\nJU+ePMnjx49z8ODBWse/ePEiDQ0N6eTkxJ49e8q6aPLL6To7O+vcPEW+KhzWp08fAmCLFi20BuX+\n+OMPdemDJk2asGTJkrx582YRXXp6eiHDn5qaSgD84osvimiXLl1axMUzf/58AihUgvfAgQOMjIws\n8vNJSUk0MzNjuXLlSL6KEezbt0/j/CVJYkBAAAGwefPmnDp1qk7/fU5OjrpcwdChQ7Xq8hk9ejRb\ntmxJAwMD/vTTT1p1c+fO5erVqxkZGck6derQ1NSUu3btKqLbvn07x4wZw+fPn1OlUnHRokW0tLRk\ns2bNZAO/d+/e5aeffkovLy+OHDnyjRqoCP4fYdzfU/IDVb/99htdXFzYo0cPnamJycnJzM7O5tix\nY+ng4MAzZ87oHD8yMpK3bt2io6Mj58yZIxsoPHDgACdNmsTGjRvLlh7Iycnh0KFDaW1trVc5gWPH\njql9+/rw2Wef0cjIiNu3b5fVnj9/niVKlKCVlZXWlMp8lEolGzVqxBIlSujVWer3339njRo16ODg\noNe8t2/fTicnJ72Cyc+ePaOtrS0HDRoku2pXqVTs378/O3XqxP3798umL/7yyy+0sLDgkSNHNN60\nChIdHc2GDRuye/fuTExM1Jlxk5aWxu+//55WVlbq0tAi4PrXEcb9A0CpVHLlypW0sLDg1KlTZVPO\n8rM7hg0bJpt3nJKSwg4dOrBLly6yRpskZ86cSS8vL9nUREmSeOHCBdra2srWUsnMzGRqaiqtra31\nCi7GxsayY8eOsgFD8lWW0MyZMzlv3jzZG5gkSQwODmb37t1lbwTkq/xwa2vrIq4vTWRkZNDGxoa3\nb9+W/Z3k5uayUaNGXL16teyc8/Ly2LNnT/r7+8tWmlQqlZwwYQJdXV1lU1ELrtb37t0rq12/fj0t\nLS05YcIEvStwCnSjr3EXAdV3GENDQ/Tr1w8hISFITk6Gs7Mzdu/e/equrQEPDw9cu3YNpUuXhru7\nu87AbPny5bF//364urrCx8cHt2/f1jmXwMBA+Pv7w9fXV91AWRMKhQLe3t4IDAxEly5dkJubq1Vr\nZGSEcuXKYdq0aRg9erTO8wNA9erV4e/vj+3bt8tqP/74Y1haWiImJkbnrs/8OT9+/BhmZmaoWrWq\n7Ni7d+9Gly5ddDYez2fevHno2LEj7O3tZRuEDx8+HLVr18a3336rc855eXno0aMHihUrhs2bN2sN\n4AKvAqNt27bFw4cPcf78eZ1NuO/evYsmTZrg0qVLuHr1Kjp37qxVe+HCBdSvXx+HDx/GqVOnMG3a\nNJQpU0bn9QneMvrcAf6JL7Fy183Zs2ffKKWMfOVS8fPzY8OGDWXrmr/JKv7o0aO0tLTk/v37Zeew\ncuVKOjs7y250IsnBgwdz4MCBsjpJkujj4yNbXIt8tRKuUaOGXqmj58+f56effiqrI1/tutXHJUOS\nPj4+etWVj4mJoYWFhV4bsVavXs1GjRrJrsKzsrLYvn17Dho0SDbofuPGDdrb23Pp0qU6nwTeZLX+\n+PFj9ujRg66urjpbBGoiPT2dwcHBejUr+ZCBcMu824SGhrJChQr09PTkpEmT3qi7zeHDh+no6Mhv\nv/1Wp+sjOzub48aNo4ODg2wT63v37tHNzY3jx4+X9Zdu2rSJTk5OsmUK8t0Mq1at0qkjX7XKq1On\njl4f/B49euh1I4qJiaG+f4d9+/bVq2b9w4cPWbNmTb02Nfn7++t17efPn9fLjZWRkcGWLVty1KhR\nsufftGkTra2tZbtdRUdHs0GDBmrfuq5zT5kyhRYWFly5cqXePvXk5GTOnz+fvr6+LFWqlF51/j90\nhHF/Dzh+/Lg61fDy5ctFvh8TE8MBAwZw5syZPHjwIO/fv6/+UOfm5nLhwoU0NzdXN5HOycnhlClT\nuGLFCoaFhalXdvmGc/z48UXOsXXrVm7dupWpqanMyMhgz5496efnp3VVePnyZe7fv587duygvb29\n1gqO+YSHh7N69eqynZxI8uuvv+bKlStlfeq//vproR2mFy9e1KjLy8tj9erVixzXFOxt3bq11tV4\nwfHnzJkj23/16tWrDAoKoqurq6wRTE5OpomJCbdu3apTJ0kSmzdvzokTJ/L8+fM6b0Tjxo3jJ598\nwtjYWObk5PDw4cNcsGBBkd/ptm3bCq3WJUniw4cPuXnzZn733XdqY3/+/Hna2NhwxIgRhZ5C4uLi\nGBQUxEWLFrFfv34a/4YfP36sTtnVt3HKh44w7u8Jq1at4qJFi+jg4MDRo0cXcaFcvnyZlSpVIgC2\na9euyAc0ISGhUGrgo0ePaGZmpq7Nkp/3nJ2drdGo5e/uLFGiBNu1a8e7d++qe5ZqQqlUsn79+rS1\nteWECRP0KhjVoEEDdu3aVdaV8+LFC6anp7N9+/Y6V7y5ubmFbirt2rXTWsDs+fPnRY41bNiwSHA6\nJSVFo0skJSWFrq6u6tdZWVk6Sx3//vvvdHBwYF5enmzANSMjg9999x2rV68u62ZSKpVcuHAhvb29\n+fHHH2u8rnxu3rzJxMRE9u7dm+XLl2f58uU11t2JiopSG3ClUqnOfzcyMiq04n/69Km6PEFBJk6c\nSAAsVqxYkZuTSqXi8uXLaWFhwTVr1jAgIEA05NYTYdzfIyRJYmZmJgMDA2lnZ1dk5ZqfutixY0c6\nOztz165dOv2tt2/fZpUqVWhnZyfruiHJO3fusHz58qxcubJeucmhoaEsVqwYjYyMZLfFk698+viz\n6qSuG0c+M2fOJADOnz9fVkuSzZs3p5eXl16ugqdPnxIADx06pNfYAwYMYMWKFfXSHjlyhKVKlWLX\nrl1ltbGxsepNZT/++KOsPi4ujlZWVgQgu8onXzX3dnBwoIGBAQ8fPqxTm+9ysbS0ZOXKlWWLwZ09\ne5a+vr709PSkm5tbkfcyLCyM3t7ehbKPhGHXH2Hc31NCQkLo4eHBL7/8stBGoHwDfePGDXbq1Im1\na9fm9u3btRq00NBQZmVlqV038+bN07kJ6dChQ7x06RI9PDz47bffyqZHjh8/nqNHj2a9evUYGxur\nUytJEj09PWllZaVX/vu5c+cIgA0aNJC9MZFk06ZNCYCLFy+W1eZXnNSncuPvv/9OhULB8uXLy2qz\ns7PZq1cvAuCSJUtk9c+ePaO9vT3t7e0L7YrVRGZmJrt27cru3buzX79+su33Zs2aRVtbWwYHB3PL\nli1atZIkcefOnbSxseHIkSOZnJysM1B8+vRpNm3alF5eXjx69CglSSr0+8nKyuKECRNoa2sre0MR\naEcY9/cYpVLJRYsW0cLCghs3btT4YQ4NDWWXLl3o5OTErVu36ly1JiQksH///nR0dOSvv/6q0zjk\n5uZy8uTJdHBw0FlFMj/wuXnzZtrZ2cnWdX/69CkvXrxIa2tr2UJS2dnZ3LlzJ83NzXW6H/L56aef\nWKNGDb0yePbv308TExP+/PPPstq0tDS6uLgwMDBQVqtSqeju7s6tW7fKbhDKyMhg/fr1uW7dOlnX\nTUJCAr29vTlu3DiqVCqdAed79+6xQYMG7Nmzp2yGzvXr19mwYUO2bdtWo8slH0mSeOrUKTZu3Jif\nfPIJT5w4ofHv5/Tp03R0dOTw4cNFvvvf5K0adwCtAdwGcBdAoA6dBwAlgC5yYwrjXpjs7GyuW7eu\nSOVCXTx8+JB+fn709fXVuvkkLCyM3bp1o6OjIzdv3qzzwx8SEsLGjRuzVatWjIiI0HnuK1eu0MnJ\niYGBgbJlB06fPq0uSSvHnj176OzsrLMUbT6zZs3ikCFDZHXkqwwafbe7a6oto4knT56wZs2aeo25\nbt06fv7557I6pVLJTp06ccKECbLa27dvs2bNmly9erVOXX5FSEtLS9m+rs+ePeO3335LJycnrU2y\n88cMCgpiw4YN2ahRIwYHB2s06klJSfz222/p6ur6Rn1XU1JSuGnTJr1uyB8ab824AzAEcA+ANYAS\nAEIBOGnRnQJwRBj3v0Z+QaWGDRty2bJlGo3m6x8gSZK4Y8cOWlpacvbs2VrzoMPDw+nv708HBwdu\n2LBBq5HPb85ga2vLgIAAndkuGRkZHDJkCN3c3GQLRkVERNDe3p7r1q3TqSOpTo2Ty+nOzs6mvb29\nXsWqtmzZoldOPam/cV+zZg1Hjhwpq0tNTaWlpaVsEw2SHDlyJHv06CHrgz5z5gwtLS1l/d/x8fFs\n374927Rpo9M9lpOTw3nz5tHc3JwLFy7U2Qz9+PHj9PHxYZMmTbQW/sp36VhZWXHWrFlFxtPUtFuS\nJO7evZsdOnRgiRIlNGZvCd6ucfcGcLzA67EAxmrQDQcwGMAGYdz/OmPGjCEA+vr6aqyjHRQUxBYt\nWvD777/n3r171Y/tL168YJ8+fThv3jyd40dGRvLLL7/ksGHDdOoyMzM5ffp0dujQQXbO+R92OWP8\n7NkzNmvWTNbVIEkShw8fLlsHh3xV20afXPHExES9DDFJDh06VK/uQStXrtTpmsrnzJkznD17tqwu\nNjaWnTp1ks2MycvLo6+vr2xjDpLs3r07V6xYIXuzCAwMZP/+/fUq6Na8eXPZfRGnTp1i8+bN1U+U\nSUlJPHbsGKdOncp27dppLGKmUqk4bNgwdbE4UX9GM2/TuHcBsKbA654Alr2mqQHgdwAGwrj/PfLy\n8jhx4kQGBgayVq1aGgNYu3btoqGhIQEU6eojSRJTU1N57Ngx3rhxg0+fPtVodAtm0+TXe3n06FGR\nLBttRuH27duF/LZyxiMhIYEvX77UOysiNzdXr52bBdGVgqiJN+3r+ab6ly9fyu4SLYhcZ6SCSJLE\n3Nxc2Y1iBd/vzMxMjRUzX9flv3727BnPnj1bqOSyputRqVRMSEhgWFgYg4ODGRMTU2RlfuXKFZYs\nWZIAOGHChCLne/LkCX19fdmlSxdOmTLljXdnf0j8r437bgBef/5fq3EH0A/ANQDXzM3N/zfvxDtI\n/h/+b7/9RhsbG86ZM6fIh2rHjh1s2bIlnZyc+NVXXxUJQm7dupVGRkYEQGtra1nDd+nSJVauXJlG\nRkasV6+erM/9yZMntLGxobOzMwcNGiS7ksvKymKDBg34xRdf8OjRo3rtNPX39+fy5cv13o4+atQo\n2WBlQeQacr/Od999p7f2xYsXercBlCSJBw4cYNOmTbXWri+ovXz5MocOHUpHR0dZ4x4ZGcnvvvuO\nPj4+rFSpktYNXfkkJSXRz8+P5cuXZ7FixXRm05CvDHvr1q0JgAA4ceLEQn+rKSkpHDt2LC0tLdm1\na1eOHTu2iGHfu3cvLSwsuH79eo3uGkFh/qduGQAPADz88ysdQAKAT3WNK1bu+pGUlMRu3bqxWbNm\nRT7IKSkpzMvL48qVK2llZcUxY8YU8pHfuHGDlpaWdHd3p7W1NadOnaozYJvfBKJMmTLs0KGDrCG4\nd+8eq1evTgCcPXu2rBG+c+cOy5Qpo9bLcfHiRQKgo6OjzuBePkuXLqWxsbFeufLkqxTJ5cuX66W9\ncOGCuj67HHFxcaxTpw6//vprWW1ISIg6VVNXvfV8jh8/TgMDA71y8SVJ4i+//MKSJUuyRIkSPHny\npE793bt32a9fP1aqVIllypTRuRM4JSWFP/30E11dXVm/fn2WLVu2UMmHnJwcLl68mBYWFpw0aRLT\n0tLUfXjzefnyJfv06UMvLy+9GqMLXvE2jXsxAPcBWBUIqNbSoRdumbeMJEnctGmTzmyH9PR0Tp06\nlebm5pw/f77ab/v8+XM+ePCAT58+5fTp02ljY8OOHTvy8OHDGn2asbGxPHXqFH/55RfWr1+fTZo0\n4fHjx7Wupm7dusUJEyawZ8+edHZ25qlTp3Rey/bt2+np6UkbGxvZ1T75anepQqHQq8n2jRs3CIBV\nq1bV2TM2HwcHB1arVk1nj1Dy/zs+AZBN43vx4gXr1q1LAFy7dq3sHEJCQmhkZEQLCwvZp4jo6Gi6\nu7uzYcOGHD16tE5tREQEW7VqxcaNG3Pu3Lk8cOCAzjl0796d9vb2/PnnnxkaGqpxv0H+U0OfPn1o\namrKgIAAhoeHMz09Xf3ElB9Itbe3Z//+/bUGca9cucKaNWvyhx9+EIXC3pC3nQrpB+DOn1kz4/88\nNgDAAA1aYdz15O7du5w1a5ZeG3HIV632fHx8+M0332jN5oiPj+egQYNoZ2fHLVu2FHHnKJVKHj16\nlJ9++qnsaj4/h7lFixZ0d3fn7t27Nd4Q8g3/xYsX6enpyc6dO+tsJPHs2TPeuHGDjo6OnDZtms7A\n2fXr19VVKS9cuKBVl39tLVu2pL29vV5VIU1NTWlmZib7VBAVFUVnZ2eWK1dO4zb91+nQoQN9fHx4\n+5rjykkAACAASURBVPZtnbrHjx/T3t6e+/fvl12Fb9++nRYWFvzll1+YlJSkNXidlJTEgIAA2tnZ\ncc+ePTrdHGfPnqWfnx9dXFy4bds2rUa24Cq9QYMG3Lx5s8aA8+nTp+nh4cGOHTtqdesplUpOnz6d\n9vb2sp3E8klPT+fq1asZHBysl/59R2xiekcYNmwYixcvzu7du2s0XpIkFdqhmJeXx6lTp9LBwUFn\n3vDt27f52WefsW7dulpXyAVX8x06dND52H716lV+9tlndHR0LBLELYhKpeLGjRtpZWXFsWPH6jSy\naWlp7NGjB5s1ayabpXH9+nVaWlrKulxycnI4ePBgzpo1S6dOkiTeuXNH7zz1Hj168NChQ7IpkvmZ\nQ9nZ2Tp9x/Hx8XR0dNTYyq4gOTk57NevH318fGQ3d+U3bpk+fbrObJ+TJ0+yQYMG/OSTT3jo0CGt\n87x58yZ79+5NMzMzDh8+XOvT0J07d9iuXTt6eXnprDL5+PFjNmzYkF999VWhGFB6errGWEN0dDSH\nDBnCcuXKsVGjRm8UnH6fEcb9HSEjI4P29vYEoPWDvmjRItatW5djxozh8ePHmZGRwYsXL+q1Vf/C\nhQuyK9P81bwuo51PZGSkXnXNX758ycWLF8t+ICVJUledlOPKlSt65Yo/f/5cr/eGpF7pluQrl48+\nue8xMTF6BXVfvnzJo0ePyupUKhXXrl0rm2ZKkmvXrtVrE9zOnTtlS/2S5IkTJ7h582bZIO/NmzfV\nTwm6ePbsGXft2sW8vDxeuHCB06ZNY+PGjdmnTx+tu6w/+ugjlilT5o1KXr/vCOP+DnHp0iUuW7aM\n9vb2XL58ucY/9JEjR6qLa2nKkIiIiODy5ct5+PBhtR9UIPhfk5OTw+joaJ48eZJr1qzRGIPJysqi\nh4cHAbBly5YaYw0nTpygpaUlN23aJLsD90NDGPd3DEmS+Pz5czZv3pzffvttEXeGSqWiv78/+/fv\nT2tra+7evbvQTUCSJC5atIgKhYIA+NVXX4mUMsH/nEWLFqnTIr/99tsiTxyXLl2im5sbe/bsyWbN\nmhV5GpIkifPmzaOTk1OhIK3g/xHG/R0lLy+PI0aMoLe3d5FMg+zsbObm5jIqKorNmjVj69ati6SQ\nHTx4kNWqVaO3tze9vb3Vj8Hkq00y06dPZ9WqVVmpUiVWrVpVNp/90KFDrFu3Lt3d3dmoUSPZbkR3\n7txhx44d6e/vz8DAQG7evFnnhzM9PZ3Dhw/nzJkzee7cOdlAqCRJXLJkiWyaZkEOHDgg61ooiD5Z\nPAXnI+c3L0h0dDR//PFHveqzh4SEcOnSpezbt69sPvuJEyc4adIk9urVi61atZJtcRcWFsZmzZrR\n09OTtWvX5pIlS3S60FJTU1m7dm1WqlSJxsbG7N27t3qTmSRJPH36NDt27EgHBwf13oyCv/ekpCT2\n79+ftWrVUs/t9afLzMxMfvnll/Tz83vjDWwfEsK4/0fRNyi0ceNGWltba+xeQ/6/r9rS0pJTp04t\nZCzyMzouXbrEbt260cbGhvPmzVN/YM6dO8eaNWvS1NSUNWrUYJs2bbh06VKtGS5hYWGsXbs2ixUr\nRkdHR06ePFlnJsjdu3fp6Oio3kYuV/vl4cOHNDU1JQD6+PjIbv2PiIhgiRIl6OPjw71798puU8/f\nMq9vNUIPDw+9/OsqlYpDhw6VLV4mSRLPnTvHTp06UaFQyLaSkySJ/fr1UzfGkIsLPHnyRK2vVKmS\nzptTfHw8lyxZQm9vb5YsWZJVqlTR6vt/9uwZN27cyG7dutHExIR2dnY0Njbmtm3bKEkSc3JyuGnT\nJtatW5dNmzblwYMHqVKpCmUUSZLEjRs30tLSkjNnztSa7hkTE8N69epx7NixepUd+JCDq8K4/0fZ\nsmULFyxYoFftkitXrtDGxoYbNmzQqklOTuaQIUPo6OioNdvl0aNHHDNmDE1NTTl06FDevXuXWVlZ\nDAoKYl5eHs+fP8/x48fTzc2NNWvW5IgRIxgUFFTohpGZmcnFixfz4cOHnD17Nl1dXVm3bl3OnTuX\nMTH/x95Xh0WVtv/fYAvGqqh0h4iFggoGKFgLxqIYayzGGmuLXa+ua4uFrYC1ItgIgpiAjViooCCg\nlIR0zTDn8/uDd+Ynzpzw+xq4y+e6uC7nzMfnPOfMOfdzP3e+lTtnbm4uhgwZgkOHDqFdu3bo1asX\nzp8/z/rixsTEQFNTE23btsXo0aN5HYP/+c9/ZDV4+LTgV69egYjQtWtXXo0wMTERRIQzZ85w8sRi\nsaw+u6+vLyeXYRjMmTMHRISBAwdy7mQKCgqwZMkS6OvrQ0dHh9PpeufOHYwYMQL6+vpYt24dRo8e\nrTAZ6MOHDzh48CB69+4NAwMDLFy4EI8fP4a3t7esWQZQITDv3buHlStXwsrKCoaGhpg+fTqCgoJQ\nXFyMO3fuIDMzE5mZmVizZg309PQwduxY1haJz58/R8+ePeHs7IyEhATW6wgLC4O+vj5OnjzJyvl4\njidOnMCaNWt4uf9UVAv3KoqysjIYGxujZcuW2LZtm0Ihn5OTg9evXwOoyHa0tbXl1fYePHiATp06\ncWZcFhQUYMeOHTAxMcGqVasUclJSUnDo0CG4uLhAQ0MDc+bMYR3v5cuXWLlyJczMzNCvXz85oSUV\n5AzD4Pr16xg8eDBMTExYI2NevXoFsViM3bt3Q1dXl1PjLy0thbu7OxwdHQX1FzUxMUH//v15F43L\nly/D1taWN3IoNzcXs2fPRsOGDXnHjI6Ohrm5ORYsWMBpXiksLISxsTGWLFmCgoICzpj6fv36wdbW\nFn5+fjK7tqKFc8GCBdDR0cGMGTNw+/Zt1oVl37590NLSgoODAzw8PBATE6OQe/r0aWhra2PZsmWc\nVSbDwsJgaGjIa8aLjY2FsbExHj9+DKBit6BIWZBIJDh58iTMzc1Rr149hZx/C6qFexXGhQsXQERo\n06aNQkHHMAzGjBkDS0tLrFu3Di9evBAUCldeXi7InFBeXi4ocaqsrExQCJq0cbIQ8HVlkiInJ0dQ\nGKVIJBJ0b96+fftVtvJ8sedSFBUVCXIM8jUUl0JonfN3794JygBNSUkRZLbKzc0VtOsUiUSCzWAJ\nCQnYu3evzAegaHyxWAxXV1cQEW8D8n86hAp3pQrut0enTp0QGRn5Xc79vQGANm/eTE+ePCEA5OPj\nQ7Vq1arEKS4uJhsbG3ry5AmNHTuWvL29SVlZuRLn1KlT9PjxY7KwsCALCwsyMTGh2rVrf8tLqUY1\nWMEwDCUkJFB0dDRFR0eTiooKzZw5U+453rZtG82ZM4eaNGlCDx8+JD09Pbmx1q9fT2fPnqUhQ4bQ\nzJkzqX79+t/oKqoelJSUHgLoxEsUsgJ8jb9/s+YuhUQiweTJkzFo0CCF0RxxcXHo378/2rZti3nz\n5ikMj5w2bZos9EzRFriwsBDv379HdnY28vLyUFRU9K92RlXjfwfDMCgqKkJ+fj4+fPiAjIwMhb6M\nFy9eyArFsYU97t69G/r6+hg8eLDCxiMMw2Dx4sWws7MTtCv9N4CqzTI/BhiGgbu7OxwcHBQmHhUV\nFaGkpARz5sxB+/bt5ezQDMNgyZIl6NSpE3R1dTFr1qxKpo+CggJMnTpVtgCYm5sLekmEmDqq8c+D\nSCTiNR+Vl5fjl19+kT1Tffv2reRLKCgowPr166GjowN7e3uFykt6ejp+/vlnODs74/379wqLt0mj\nkQYMGCDIFPRvQbVwryJgGIbX9sgwDFavXg0bGxvOaI7Lly/DwMAA27Ztk9O+k5KSUFRUhC1btkBX\nVxczZsyo5OgLCQmBpqYmbGxsoKGhARcXFxw7dgw5OTmysMoRI0bAysoKTZo0gbe3N2cUyqNHjzBz\n5kwMHToUNjY2WL58Oec1ZmVlYf369Vi4cCGmTZuGmTNncsael5eXw9fXF4cPH8apU6cQFBTE67iM\njIz8LEfb5zaE+Bx+VlYWwsLCOAVlbm4ugoODcebMGRw9ehSHDh3ifFYYhsFff/2FyZMnw93dHatW\nreItZHbixAlZMa+pU6dyFiiTlgVo2rQp2rZtiyFDhmDz5s0oLS1FaWkpLl68KKsI2atXL6ioqGDv\n3r2ya8zPz8fatWuho6ODefPmIT09HampqXKKQkBAAPT19Sv9X0Vz+e233zBs2DDeaplisfhfJfyr\nhXsVwpQpUzhLrkqxdetWWFpachbRysrKgouLC/r06cParq6oqAgeHh7Q09PD9OnTZUJRGoVTVlaG\n4OBgTJ48GTo6Oujbty92796N/fv3o0OHDqhduzbs7e2hqakJQ0NDODk5wd3dHYcOHcKtW7dkhczC\nw8PRvXt3EBG0tLSgq6uLQYMG4T//+Q/Onz8v68gjxYsXL+Dg4AAiQsOGDeHi4oIdO3bg6dOnCk1F\nSUlJsvFr1qwJX19fzhf93bt30NXVhY6ODvbu3ct7v/39/bFlyxZeHgBcunSJNcLoY1y9ehXm5uZQ\nVVXlrHookUgQHh6OFi1agIhgaGjImtOQkJAAb29vjBs3DhoaGrId2KdVErOyshAaGooNGzZgxIgR\nMDU1ha6uLpSUlGBqago/Pz9IJBIUFhbi4cOHOH78OJYtW4ahQ4eidevWaNGiBbp27YrmzZtDW1sb\nmzZtwpEjR+Dq6goNDQ0MHz4cvr6+yMvLQ3Z2tizsMi8vD3/99Rd0dHQwf/58Vmd9UVERpk6dik6d\nOiEmJob13pSVlWHo0KFwc3PjjXl/+PAhhgwZ8q/aaVYL9yqEa9eugYjg4uLCGi3y+PFjxMbGwsvL\ni7foFcMw8Pb25l0wioqKsHXrVs4mEBKJBLdu3YK7uzsWLVoEhmEQFBQk2ybn5OTg7t278Pb2xsKF\nCzFo0CAMGzas0lyCg4Px5MkT5OfnIzw8HDt27ICbmxu6d++usH3b6dOnsX//fly5cgXLly9Hjx49\nWBe08vJyrF69Gg4ODnB1deWshAlUZICamJjwltAFKiJ3jhw5IsgHce3aNd5zAxWhfYaGhggNDeXk\n5efnY8CAARgxYgTGjh3LaSr7+eefMXv2bJw7dw4XL15kbWA9fvx4DB8+HOvXr8fly5dltnAvL69K\nETPLli1D3759MWvWLOzZswc3btxAenq67Lc6f/48ysrKcOjQIUycOBGBgYGcu7jQ0FAsWLCANwIr\nJiYGy5Yt4xXE6enp+PPPP5GWlsaaaVtYWIh58+ZBWVmZt2/wPw3Vwr0KgWEYdOjQAUTEmpBUVFQE\nY2Nj9O/fH8HBwdVOz08gNEQQgOD6+F8Ln3P+z7mufwsePnyIcePG4aeffmLt0HT37l3Ur18fDRo0\nENx39p8CocK9OhTyG8HPz4/i4+Pp3LlzdP36dYWhXDdv3iQ7OzuqU6cOXb9+nbp27Vrpe7FYTEuX\nLiWRSETdu3enbt26UYsWLb7VJVSjGv8T8vPz6c6dOxQeHk6pqam0efNmatKkSSVOcnIy2djY0Lt3\n72jbtm00a9YsuXEAkJubG6mqqpKpqSnNmDHjW11ClYDQUMhq4f6NAICUlJRoxYoVFB0dTf7+/lSj\nRg053h9//EGpqalUWFhIfn5+9NNPP1X6vqCggBwdHenevXukr69PkZGRci/Iy5cvKTMzkxo0aEAN\nGjSgRo0akZqa2le9vmr8e5Gbm0sfPnygwsJCKigooFq1apG1tXUlTnl5OTk5OVFISAhpaGhQeHg4\nGRgYVOKIxWKaPXs2vXz5kurWrUsBAQEK35E///yTIiMj6cyZM6SsrExKSkpf9fqqGqrj3KsoGIbB\n6NGjWdP6CwsLZeV7zc3NFUZDZGdno02bNujVqxdsbW3lbPT5+fn49ddfZaFqU6ZM4XRMiUQixMXF\nVccRV6MSysvL8eLFC84eswzDYN++fbJnzcbGRi5bOSkpCcOHD4elpSWMjIwUdnTKycmBg4MDJk2a\nxJndevToUXTq1Olf3a+Aqm3u3w8ZGRmcYX6lpaXo2bMnduzYwTlOUFAQ9PT0cP36dbnv0tPTIRKJ\nEBwcjNatW2P8+PGVUtIZhoGPjw+aNWsGJycn6OrqYu7cuXj48KEsCWXhwoXQ0dGBsrKyrHt9fHw8\nq72/sLBQcLo9UOGs5esj+ikSExM/qzxvXl6eoC5O3xPl5eWCywVIwVbbhQ3x8fGC+sZKIS0ApggM\nwyA1NRWhoaEwNzeXNR3/9ddfZQEBb968wZo1a2Bubg4bGxvo6+tj6dKllRy3RUVFWLlyJfT09HDw\n4EGUl5crrK3z+vVrmJubY+vWrZzXfP36dRgbG3PeS4ZheMsj/+gQKtyrzTJfAfn5+eTs7EwnT56k\nli1bKuTk5ORQt27daP/+/WRra8s6VnR0NP3yyy+0fft26t+/v0KOWCymPXv20JYtW2jLli00dOhQ\n2XevX78mIyMjys7OJn9/fzp+/Dh9+PCBFi9eTKNHj6YrV67Qn3/+SVlZWdSlSxd6/vw5JSUlkaam\nJpmbm1OHDh2ofv36FBAQQNeuXSM3Nzdq1aqV3BwaNmxI48aNo6KiIgoNDaWAgAAKDAwkY2NjcnV1\nrcSdNm2abLstkUjo/v37FBAQQAEBAZScnEyrVq0iJSUl+vXXX+VMTkRECQkJMv6tW7coKiqKzMzM\nWO9hXl4eBQcHk4GBAVlZWbHypAgLC6MePXrw8lJSUigwMJCcnJxIQ0ODlVdYWEhmZmakoaFBzs7O\n5OzsTO3atVNoTti9ezdJJBLav38/5efnk5OTEzk7O5O9vT3VqVNHxjtx4gRlZWXJPt+5c4cCAgKo\nb9++5OzsTAMGDCA1NTUKCgqi+Ph4ufMUFBTQihUrqEuXLuTs7ExNmzale/fu0YsXL+jNmzfUvHlz\nMjc3p/T0dEpNTaWlS5fSqFGj6M6dO7Ro0SLKzc2lUaNG0ahRo0hfX59evXpFJiYmsvGjoqLI1dWV\nhgwZQsuWLaNGjRopvDevX7+mPn36kKenJ/3888+s9zAjI4M6d+5MFy9epNatWyvklJSU0MSJE2n6\n9Oly/qp/EoSaZWp+i8n829CwYUOqW7cuWVlZ0fnz58nS0lKO89NPP9GMGTNIX1+fcywLCwuKiIio\n9GJ/ilq1atHMmTNp1KhRVFhYWOk7Y2NjIiJq1qwZTZ06laZOnUqJiYmUnZ1NSkpK5OjoSI6OjvTi\nxQsyNzcnoordXHJyMr148YISExOpoKCACgsLSSQSUWlpKRUUFMjNQVovRPp9QUEBFRcXk0QiUciX\nQiKRUGFhoeyPqELwKCkpkUQikeMDkI1fWFhI5eXlxDAM5z0sKSmRzV8IiouLBfE+njsXABDDMDKb\ndEFBATEMo9Ce/PE1FRUVyf5PWVlZpWegqKio0n0ViUQkEokq3XsiYv29pL+NdPxmzZrRgAEDaMGC\nBaSvr081a1aIhtjYWDIyMpLNVVNTk3bt2iW3OH0s2ImIDA0NKSgoSO74pzA0NKSrV6/K2d8/RYMG\nDeiPP/5QqFgQEaWlpdHgwYMpMTGRjhw5wjnWvwZC1Puv8fdPNssAgKenpyw1m80+GB4ejoYNG2LT\npk2sW+qSkpIq02bs48QVISgrK5OVchUChmHw7Nmzz8o2TE9Pr/Jde8rLyz/rvgFAVFSUoKYVUrx8\n+fKzfCbp6emfZWL72mAzxTEMgxMnTkBbWxvbt29XyJFIJLJ6+ePHj/+a06wSoGqb+/dFUlIS5s2b\nB3Nzc05h5ejoCCLCmDFjFJZmzczMRJ8+fbB06VI8evSoygj6alTjf0VCQgI2b94Me3t7ViVgy5Yt\nICJoaGhwLgBDhgzB7NmzERgY+DWnXCVQLdyrABiGwbx58zB//nxWzu3bt2FlZYX27dvL0vo/RWRk\nJOrUqQMiwp9//qnwPKdPn8bx48dx/fp1xMTE/KujCarx/VBaWor4+HhERETAz88P3t7eCktGBAQE\nyJq5Hz16VOFYYrEYLi4usLa2hqenJ+s5T5w4gV69ekEikfwrlJ9q4V5FUFxcjFatWnE2dM7JyYGn\npyc6d+7MurX28fGBsbExjIyMFEbPZGZmwt7eHkQEJSUlheVTgYotbFpaGu7du4fAwMB/xctQjS+D\nsLAwhIeHIykpibUBSFxcHBo3bgwigpGRkcIG7LGxsbC2tkbr1q0xc+ZMheNIJBKMHTsWEyZMQFFR\nEavZMj09Hbq6uoKayvxTUC3cvzGePHnCKihv3brFa54BgHXr1sHOzo6VFx8fj6ioKFhYWGD+/Ply\nD7xIJML06dPRoUMHmJiY4Oeff0ZgYKDMdpuYmIiBAwfKYpLbt2+PvXv34vbt2woXlaysLBw6dIh1\nR/EtIbSrD/D9U/o/5/yfc11fCxKJBPv27VPY57SkpARRUVE4fPgwBgwYIHt2LC0tKxU6u3//Pn77\n7TdZmd8+ffrI3QeGYbB3717o6enJCsspqjPDMAymTZuGESNGcPodpOYYrtpJT548EXAHfixUC/dv\nDA8PD3h4eLB+v2bNGkRFRfGOs3z5ct6iU8XFxZg1axZrn883b95AIpEgJCQEgwYNwurVqyt9HxER\nAQcHB4wbNw5Lly7FwIEDoa+vjylTpkAsFsPLywsODg6oUaMGatWqhV69eqFbt26wtrZG+/bt4erq\nKjdedHQ0ysrK8OjRI3h5ecnqcCta8EJCQnDs2DHcu3cPGzZswIABA1gXEIlEAg8PDzg5OWH8+PGs\nzZilePv2Ldq1a4eQkBBOHlBRA+bs2bOCdi93797lPTdQEbNtYWGBiIgITl5hYSFcXV3x22+/Ydq0\naZwL//Dhw7F8+XJcuXIF165dw4EDBxTmIkyfPh0TJkyAp6cnbt++jcLCQuTk5MiqQUqxcuVKtGvX\nDlZWVrC1tYWdnR2aNGkCIkLHjh2xfv165OfnY8+ePdDS0oKjoyPmzp2LpUuXwsLCAqdOnao03oUL\nF2Bra4tjx46htLSUVbN/9OgRBg4cWKkptyIkJSVh7NixvAXGsrKyMHnyZNa8jMuXL8PNzY1zjB8R\n1cL9G+P8+fNQUlKCv78/K6eoqAgbN2785kXB2ITXp5qVVEsqLCxEYGAgZs2aBQsLC1y/fh2vX79G\nUlIS0tLSZNEpUVFRMm3OxMQELVu2RK9eveDu7o7jx4/jxYsXlc795s0bDB48GEQEVVVV9O3bF2vX\nrsXt27cVCoP09HT069dPVvLXy8uL05eQnp4OExMTNG3aFDt37uS9L6dPn8aqVasECffTp08L6t0Z\nGhoKHR0dNGzYkHMxF4vFCA4OlpX8tbCwYG0I/vTpU+zcuRMuLi5QU1MDEaFTp064e/duJV5SUhLO\nnj2L5cuXw8nJCTo6OjAzM4OSkhI6dOiAoKAgWX+B9PR0vH37FnFxcXj27BmsrKzg5uaGEydOyCp0\nfqo15+bmKnx2v4dpz9fXV6HJR4rHjx+jQYMGWLly5beb1DeCUOFencT0hfD8+XOysLAgLS0tun79\nOhkZGSnk/fLLLySRSOjIkSOsiR0pKSmkoaFRZWpmMAwj1/fy8ePH5OnpSSkpKZSamkq9e/emLVu2\nsM45OzubPD09KTMzkwoKCqhu3bq0fft2qlu3rkK+RCKhv//+mwoKCkhFRYXq169P1tbWpKuryzrP\nu3fvUqNGjcjU1FRuvoqQlpZG6urqvLz/C//t27f06tUr6t27N+s9ycvLoytXrlBxcTEVFRURwzA0\nduxYUlVVVcgHQKtXr6bXr19TgwYNqGHDhjRx4kRZLoMieHl50ebNm0lDQ4M0NDTI1dWVnJycKnEY\nhiElJaUq87ylpqayJoWVl5fTkiVLyN/fn968eaNwzgUFBdSnTx+6e/cuHTlyhMaMGfO1p/xNUV1b\n5hujuLgY06ZNg6WlJacmc+zYMRARTE1N5WpwSBEeHg4bGxsEBARUOzyr8a/BgwcPMGTIENZdV0FB\nAfr27Qsiwty5cznHmjBhAiZOnCioBv+PBhKoufOrN9UQhHr16tGuXbvop59+omvXrrHynJycyNDQ\nkOrVq8eqBXbr1o2MjY3J2dmZunTpQsnJyXKcoqIi+uuvv8jLy4siIyMFZ1VWoxrfEmKxmJ4/f04n\nTpyglStXUkpKihynuLiYhg8fTlZWVpSQkEBTpkxROJaqqiqpqamRtrY2ubi4sJ4zLS2Nrly5Qp6e\nnoLKTfxjIWQF+Bp//zTNXYrg4GD07duXk5Oeno4pU6Zg6dKlnJzmzZvDwMCANcHj+fPnsrZrrVq1\nUhh5kZGRgUePHiEwMBAHDhxgDZGsRjU+B48ePcLu3btx7tw53L9/H8nJyXK7TIlEImukXbduXdYE\no/T0dHTs2BGNGzfmbE14+vRpdO3aFWlpaZx+q8WLF2Pt2rX/twv7AUDVDtWvj097WAIVzqW2bdvy\nhmAVFhbCzMyMM/794cOHuHXrFvT09FijL+Lj46Gnp4cuXbqgS5cuuH37dqXvnz59ikGDBslC2Hr3\n7o3169crbOX37t07rF+/HhMmTEBCQgKePHmisDwrgEqJKZ9TiU9oqYCioiJekxTDMCgvLxeUpv9x\nG7kvCb7IDylEIpGg8wtNPhN6H1NSUio5q9l60CYmJiIqKgpxcXFYtWoV5s+fr9DB++bNG2zfvh2j\nRo2SPVNWVlYIDQ2Vc54PGTIEbdq0QcuWLRXmZgAVTmAzMzP4+Pjg4cOHrNeRnp4OPT09vH79mvN6\n8/Pzoa2trTAc9enTp4J/r6qMauH+DWBsbKzwZXzx4oVMi+Zq6PzixQtBMdHR0dEKY5ClSE5ORkFB\nAcLCwuSEuxR3796Fg4MDjhw5go0bN8LX11f2XXZ2NqZOnSrLGGzYsCGsra3h6OioMEIkODgY9vb2\n8PLywqhRo6CtrY0BAwbI8T7Wrh48eIDRo0dDX1+ftURvUlISJBIJjh49Cn19fTx9+pT1mkUiEVau\nXIlBgwaxZjhKIV1whw0bxtsC79q1a+jXrx+OHz/OycvPz8fy5cuhpqbGW843Ojoa7du3x6pVu+b7\nqAAAIABJREFUqzi5hYWFMDIywtq1a1FSUsJZ+8Xe3h59+/ZFUFCQ7D4r0mYXLFgAdXV1ODs7Y9u2\nbXBxccG+ffvkuEePHkW/fv3QtWtXtGzZUia4BwwYUKkuzq1bt2QN0Lt168YaSvr27VucPHkSEomE\nsxl2YWEhq+D/GGVlZZz2c+l7JhaLFYasMgyD3r17c0bY/CioFu5fGaWlpSAirFixgpPn5+fH2/D6\nW4ItsxAA0tLS4O/vj9WrVyvUht+9e4ehQ4fKXvzJkyfj4sWLChOgCgsLMXr0aJw8eRI2NjawtrbG\n8ePHWRe7hIQE6Ovro3Pnzhg8eDBvoa0NGzaAiODg4MB5TUDF7oaI0KFDB9ZG3FLExcWBiODn58fJ\nKysrk90LrvBXoEKwzJ07F0SE4cOHc3Kzs7Mxc+ZMWTYyW4NohmEQGhoKJycnmJmZYefOnfj999/x\n9u1bhXO9efMmli9fjtq1a4OI0LlzZ9ZQzb1798Lb2xtxcXGsuw2JRPJZhc2+Jt6/f48tW7Zwcs6d\nOwci4twp/yioFu5fGe/fvwcRoX79+pwa1uXLl6GlpcXbYIDN/FFVwDAMrl+/jpMnT8LHxwd79uxh\nXbTevXsnawhuZ2fH+0KlpqbC0NAQRARra2veTN64uDjUrVsXbdu2xeHDhzl3RwBw+PBh2NraCjZl\ntGvXTlDTZbFYDDc3N8yaNYuTxzAMgoODZUXiLl68yMt3c3OT5QPwRXy8fv0a48aNAxGhZcuWrPy3\nb99i9+7d8Pb2xokTJ3Dx4kXee/e98fbtW85ql2VlZejevTvWr1/PyiktLYWRkRGICJcuXfoa0/ym\nqBbuXxkpKSmYPXs2xo4dy9kJ6Pnz57L2Y1ydctzc3Hg70fwIePXqFfr37w9nZ2dMnz4dBw8e5Lym\nwsJC/PHHH1i6dCmCg4N5hSrDMNiyZYucjZcL/v7+n1VI7fLly4K5EokER44cEcx/8uQJVqxYwds1\nqaSkBBEREVi3bh3Gjh3L69MIDAzE3Llz4eLigh49erBq/D8SAgIC0L17d9bfmWEYTJo0ibP4GFAR\nprxp0yb8+uuv1Zq7HImoHxHFElEcES1S8P2vRPSUiJ4R0W0iasc35o8u3IGKSBQTExNOTm5uLho1\naoROnTpxOoOCg4NBRBg4cCBrKn50dDTmzp2LGzduVJktcTWq8TlgGAaPHz/GypUrWXcwZWVlmDdv\nHoiIM+rlw4cPGDp0KBo1aoRr165xnnf48OGftWhXZXwx4U5ENYgonogMiKg2ET0hIvNPODZE9NN/\n/92fiO7xjfsjCndFGoSZmRmnB55hGMTHx0NbW5vTLCAWi9GyZUvUr1+fU7vYuHEjiAjNmjVT6PQr\nLy9HcHAwfHx8sGXLFixZsoTXiVRQUMDp9KrGvxfJycm8DuOcnBwsWbIEGzZswMGDB3H27FmFO6V7\n9+7JzCMjRoxg1cgTEhJgZGQEJSUlTpMnwzBo06YNoqKiOIvbMQwDHR0dOfPOj7pLFirchSQxWRNR\nHIA3AERE5EtEgz6Jlb8NIOe/H+8SkZaAcX84BAQEUF5eXqVjQ4YMocTERNb/o6SkRAYGBuTm5kb3\n799n5dWsWZN27dpFkyZNUpi0JIW7uzuNHDmSSkpKFLaNq1GjBunp6dGZM2do3rx5tG7dOrp165bC\nsd68eUNz584lLS0tmj9/Pu3fv5/1vAkJCXTr1i168OAB7du3j5UnRWlpKXl5eUkXf04EBARQUVER\nL+/Zs2eUlpbGy8vLy6OXL1/y8oiIHj16JIgXGxsraI4ZGRn05s0bXl5paSmFhYXx8gCQv7+/wpaD\nn+LkyZOV+qqy4ezZsxQcHExxcXEUERHBygsODqbly5eTjo4OjRkzhh48eKCQ9+zZM9qxYwctXLiQ\n9uzZQ02aNCEVFRU5Xq1atSgzM5M6dOhAhw4dYi13UFZWRgYGBnTy5EnS0dFhnd+7d+9kfX4V9dqV\nIjc3l6ysrKhBgwaVjh8/fpz1//wjwCf9iWgoER386PMYIvLk4Lt/zP/ku9+JKJKIInV0dL7u8vYV\nMHbsWJw8eZKX97+0fRNSVKyoqAhhYWG8zrDr169j9OjRCsP/nj17hrFjx6Jt27aoVasWnJ2dWeOM\nz507h0aNGqFJkybo3r07Dh8+rJCXl5eHR48e4fTp0zA2NsaMGTNYu+cAFbbQyZMno2vXrkhNTeW8\nlufPn0NfX5/XZioWizF37lzeIl8MwyApKYnXrCbFiBEjEBwczGu7DwgIgJ2dHcRiMadmmJKSAhMT\nE17namlpKUaOHAkHBwdeDdrDwwM6OjrYtm0bkpKSWM2AV65cweDBg9G8eXPUqFEDmzZtUjjXuLg4\nzJ49G0pKSjA2NoaLi4vCapv5+fmYO3cujh49yvn8MgyDp0+fspbd+Bj/S3E9Ic5wafXOHxH0Bc0y\ngoU7EdkT0Usiaso37o9mlikvL0ezZs0wZswYXu706dO/wYyEQcjWUyQSKYyjF4lEmDt3LlRUVKCp\nqQk7OztkZWUpHKO4uBg9evRA8+bN4ejoyBn98+HDB7x8+RLt2rXDwoULOUu7Pnv2DGFhYTAwMFCY\nNPYxJBIJBg8eDCMjIxQVFXFyAUBfXx/6+vq8WbsxMTHo2LEjmjVrhtjYWE4uwzDo27cvHB0decM5\n4+PjYWhoiJCQEFy5coVzzIMHD0JfXx+hoaHIy8tj9bmkp6djwoQJaNmyJXR1dVkdsSKRCGPGjIGO\njg4aNGiAgQMHKsy5SE5OFuSMrkomjv/85z+8Ia9bt24FEXHmj1RVfEnh3pWIQj76vJiIFivgtaUK\n27yJkBP/aMI9IiICRISmTZtyOjPz8vKgrKzMm0n3uQ2NvwdEIhFvVAdQ4QCTlv5t2rSpXCnaj3Hu\n3Dn06NEDenp6gsLSfvnlF9SoUQN///03L/fp06cgIrRo0UJQaKmJiQmaNWvG+zswDANbW1sQES83\nOzsblpaWICL4+PjwzuHx48dQVVWFkZERb7z+s2fPYGFhgb59+3LmV7x79w4WFhYgIpiZmfEKOqBi\nxyPkt/6eYBgGDx484OSUlpaiefPmvIlRvXr1AhFhx44dX3CG3wZfUrjXJKI3RKRP/9+h2voTjg5V\nRNLYCDkpfkDhnpSUhHHjxmHfvn2cL/jt27dBRJgxYwbneDdv3sS4ceN4z/uta7//X3Du3Dns3r0b\nT58+5ZxvQkKCrAXbunXreMd9+PAhiAh6eno4ffo0L3/37t1o1KgRZ32Sj2FnZ8fZYOVj3Lx5Ew0a\nNBDETUpKgrGxMSZMmMDLvXfvHqysrEBEOHToEC8/KCgIysrKUFJS4tX237x5gyNHjmDPnj1VSrNW\nBIZheOe4Y8cO3t/L29sbRMTZc1Was2FpacmrhFVFfDHhXjEWDSCiV//VzJf+99gUIpry338fJKIc\nInr83z/ek/9owh0Afv/9d5w/f56T4+XlBTU1NfTv35/T3vzgwQMQEa9GumXLFkHp2VUd0mSTQYMG\nwd/fn/PeSDFy5Ehs2LBBEBcAZs+eLahbkhQLFy4UPDYA3mSlj5Geni7XsYoNEokEx48fR/fu3Xm1\n5/Lycly9ehVubm4wMTHhtcP/CIiJiYG7uzuncH/y5Anq1KmDffv2cY7l7u4OFRUVLFiwgJOXnJyM\nH1EGAV9YuH+Nvx/lxn788gsR7iUlJZg5cyZOnDjByXvx4gWICAYGBpzOxJcvX0JJSQkrV67k7Kjk\n4eEh62rEh4iICLx69YqXFxMT88U0vvT0dFZ7vSKIRCLeOjCf4nN7vX6uWexz+Tk5OZ+18youLv6s\naygqKvpijaEZhhH0excXF8PX15eX9+bNG6xduxbr16/n9D34+/ujTp06nO9LWVmZzIxy7NgxzvPG\nxsaiW7duvIv2p8L9cxb5741q4f4FUFxcXKn/aEREBGfcrRSRkZF4+fIlJyctLQ2enp6CGvguXbqU\n19b4+PFjdOrUCWfPnmXlJCYmYvjw4SAiznLDQEXKvq6uLoYOHcrJ+/DhgywrlU/rLC0txahRowTd\nw2XLlvH2IQUq+rEKsW1/+PCB95qlWLRoEW8JBKDCBPBxk2g23Lp1S1Dbv9TUVIwZM4a3d2hZWRl+\n+eUXQVr7uHHjcO3aNd4CdUuXLoWZmRnmzJnDKbhPnz4NIoKtrS3nMxkbGwtTU1PWMr9SpKamYtKk\nSbz+hpSUFEH3OzMzU1CyUmFhIc6dOyf7fODAgS+2UH5tVAv3L4DVq1fzCjegQgv4ms4oodqzWCxm\n1UAYhsG9e/dw9uxZeHt7czaQPnPmDJSVlXkXgejoaHTp0gV6enoICgrinFtpaSl+/vlnzJs3j/d6\n9uzZI0j7EolEMDc3F9R43NfXF5MmTeLlARXVPoVo6Xv37uXd/gMVC4uuri6Sk5M5eQzDYPLkyZg4\ncSLvPTp69CgsLCx4S9hGR0fD1NQUPXr04AzjlQptIuIMI42KisLBgwdx6tQpXLt2jVMoCy358LX9\nAUKE9tq1azF48OCvOo8vhWrh/j8iMTER9erV4228AQBTpkwRFLv7IyA2NhZTpkyBl5cXXr16xfri\nicVidOrUCUSEkSNHsr7kDMNg586dcHZ25tUKgYoaKa1atRJkwtm6dSsmTpzIf1GoyFHg2tV8DKHC\nPSkpSXCs9O7duwWF0YrFYvTr10+Qw9nHxwdt2rTB9u3bOesbrV+/XpbVzGXqSklJgZ+fH2bMmMHp\nrP3R0L9/f97nbvHixSCiH6KZTbVw/x/h4+MDFRUV9OnTh5MXFxeHmjVrCrJ1821RfyT89ddfaNWq\nFXbt2sUpCKWlVq2srBR2ipIiIyMDUVFRghoylJWV4eLFi9DV1RXUfMHb2xtaWlqC7NlBQUHQ0tJi\nTdT6dB4WFhZYs2YNL1csFqNt27Y4d+4cr78jPz8fHTp0gK+vL2cYo1gsxm+//cZbelokEsHPzw89\ne/aEi4tLlY+cEYqrV6/y7u5KSkpARJVMMIowc+ZM1K1bF4sXL67y96dauP+PyMjIgLGxMa9dc/To\n0SAinDp1ipMXHR0NBwcH3vOWlJRU+YdLLBYjIiKCd57l5eUwNzdH06ZNsW3bNlbTFcMw6NGjBwwN\nDQWFMd65cwdKSkro2bOnIOFub28PJSUlbN68mZe7a9cuEJGgMMbQ0FDUrFkTjRo14uWWlpZi/Pjx\nUFJSwq5du3j5ycnJMDQ0RJs2bVgzLhmGgb+/P4yMjKCioiLIAf306dPPcmx/LwhxcC5YsIC3Ucub\nN29ARLCwsODMT0lLS4Orq+sPUVxMqHCvbpDNgrCwMOrRowe1bNmSlVNWVkYtW7ak1q1bU0lJCed4\n+/fvp8jIyIoVlQO3b9+mmzdv/p/m/K1Qs2ZNsrW1Za0NIsXp06dp0KBBFB8fT7NmzaI6deoo5F2/\nfp3CwsIoLy+P6taty3v+iIgIAkC9evWi5s2b8/KVlZWpQ4cONGvWLF6uk5MTERE5Ozvzch0cHGj0\n6NGkrMz/GtWpU4cGDBhANWvWpPDwcEFzVlFRoWfPntGBAwcUcpSUlGjo0KH04sUL2rBhAyvvY7Rp\n04aaNm3Ky/ueeP/+PXl5efHyIiMjeescZWZmUpcuXcjc3JzS09NZeS1btqSePXvSjRs3Pne6VRdC\nVoCv8VdVNXdpCN6iRYt4tQKgwpb6119/cWqxYrEYzs7O0NPTQ3x8POd4x44dw/jx43nPe//+fUGR\nNjk5OYLCHm/cuMHr8AMqtEWhsdWKugIpgoODA/r168frt8jLy0NpaSkGDRqErVu3svLEYnGl8gMD\nBgxgjX9XpCF27txZzhlYVlamUPPLzs6uZHf/9NyfIjg4GCYmJpBIJLwadG5uLqZOnQpNTU3eCBpA\n+P1OS0sTlDSUmZnJ6XiXIj8/nzc6DKgIh71w4QIvb9euXZg7dy4nRyKRoH379rC0tERKSgorj2EY\nXLp0SZBv5vnz53B0dERpaWmV3t1QtVnm81FeXo6RI0ciISFB1nxZ6P8TAoZheOOeJRKJILOMRCLh\ntGEDFXHQkydP5s18ZBgGHTt2hKamJmfMfUZGBiZOnAhjY2PebXNubi4MDAx4wx7fv38PMzMz3nrc\nQIXjevfu3bz200uXLmHEiBGyz2yNK8rLy6Guri53XJFpqG/fvqwLxMfjb9y4kdcGHxYWhsuXL8Pa\n2pr3eUhPT4e6ujpv8w2RSARTU1NER0dz8oAKB+PkyZM577m0VlDjxo15C3HduHEDw4YN4xSyQMUz\nKzSChu++CFmcPh5LCFf6zjMMA0dHR0EFyL4HqoX7Z0IikWDChAlo2LAh74MgkUh+iHZdQh/+wMBA\nGBsb8zp8PT09Za3zuKIzkpKSMGnSJEGOxsOHD2PQoEG8vMePH6NVq1aC2sKNHTuWt68pUGHX7tCh\nAy8PACZOnChI64yLixMcQfPLL78IctyuWrUKM2fO5OUFBQXB2toab968Yf3ty8vLMWXKFBAR7w7x\n0aNH6N69O/7880/ecwNVq3gYG8LCwniVIqCiNIWtre1ndfD6VqgW7p+JdevWgYjQrVs3Tp5EIsGk\nSZM4ezZKwTAMb3JGVcC1a9cECc3OnTvD1NSU0xxUWloKXV1dGBoaci4AQEX8t56eHq85hmEY2NnZ\nISAggHeOxcXF0NTUFJSEdPv2bUELC1AhYLnqlXwMa2trPHv2jJcXHx8PfX19XmFTUlICMzMz3tIK\nZWVlcHJyQtOmTTk1+LS0NPTu3RsNGzbkvU8Mw+Dy5cs/hOAW8q6Fhoaie/fuvPd85syZsqYiVa3r\nmVDhXu1Q/S9sbGzI0tKS+vTpw8phGIamTZtGBw4coI4dO3KOxzAMLV68mMrLy7/0VL847O3tqXbt\n2pyc169fk4mJCUVGRlLbtm1ZeTdv3qSkpCSqU6cOZ+MIPz8/WrBgAU2ePJl0dXU5z33mzBmqU6cO\n/fzzz9wXQkSXLl0ie3t7qlevHi/33bt3nM0gPoaOjg69e/dOEHfEiBF04sQJXp6BgQGNGDGC1q1b\nx8mrW7cubd++naZOnUpHjx5l5ZWUlFB5eTllZ2dTQEAAK69ly5YUEhJC7u7uFBQUxHluJSUlcnR0\n5HWeVwWsWLGCt6GKpaUlhYeHk5OTEye3U6dO5ODgQJ07d6YaNWp86al+GwhZAb7GX1XS3BmGQc+e\nPXHlyhVOW9/Tp09haGgIIuJM5y4vL4ebmxvvLkB67h+hpnReXp4g7W3GjBno168fr71SWkKXq3RA\naWkpioqKYGxszNsqEACysrIwdOhQ3gYYQMWuYePGjdi4cSMvF6hocDFy5EjeNH6gIhnIyMgImZmZ\nvNz8/Hzo6+sjPj6e048RFhaGn376CaqqqpzOVbFYjFmzZsHW1pb33ICwxhbfG6mpqYJCI2fOnAlb\nW1veZjkGBgZQUVHhTFiSSCRISUmBrq5ulTPNULVZRjiuXr2KHj168AqvhIQE6Ovrczr0JBIJ3Nzc\nQERYvHgx53iFhYUYMWKEIGfijwCGYbBt2zbe7XFBQQFq1qyJnj17cr6IoaGhsLKyEmRvBgBXV1eo\nqKjw5hwAQHh4OFRUVGBqasob/SMWi+Hg4ID69etj+/btvGPfunULWlpaaNOmjaB5+/j4wNLSEps2\nbeKcw6RJk0BEgnIBDhw48EMIbiHIysqCjY0Na+MRKfz9/UFE6Nq1K6dJMCQkBL179xaUVDh79mzB\nCsC3glDhXm2WoYo467/++ot36/nu3Ttat24dDRo0iJWjrKxMS5cuJRcXF+rWrRvneKWlpVSzZk3q\n3r07J6+goIDWrl3LyZFCSF/OV69e0fHjxyknJ4eT9+zZM/L29qbi4mLeMf38/CgjI4NmzZpFNWvW\nZOWFhITQiRMnaPDgwRQcHEyNGzdWyLt//z75+vrSgwcP6OXLl6x5BPHx8RQYGEhEFTHNIpFIoZlH\nJBLRoUOHZJ8tLCyoqKiI2rVrJ5fL4O3tXak/bc2aNcnBwYGKi4upTZs2suOXLl2ipKQkuXMZGxuT\nRCKht2/fElFFn1a23wUAPXr0iKKioig4OJguXLigkFezZk3at28frVy5kgIDA+nYsWMKeVJMnDiR\nVFRUaO/evZw8Kfbu3UuPHz/m5BQXF9OZM2c4ewFLce/ePSorK+PlnTx5kp48ecLJadq0KXXp0oVy\nc3M5ed26dSM7Oztas2YNNWzYkJXXp08f2rBhA2VkZPDOb9GiRRQTEyOoh22Vg5AV4Gv8VQXNPTc3\nF6NHj8bs2bMF8T/HqcQwjKDY5C+NyMhIXk5YWBgaNmzIm905bNgwKCsrc2qUQEUYnpaWliBNsX37\n9jh//jyvk+qXX35Bu3bt4OjoyLktnj9/vkybtra2ZtWyHj16hN69e1c6pqOjo7DypKLaMllZWahb\nt24lU8v8+fNZw0xDQ0NRu3ZtABW7hE/P/TEkEglmzpyJxo0bw8jIiDcM8N69e9DU1BQU9WFhYcGb\nW3Hq1Cn89NNPMDY25uRJSyhs27aN97yRkZHfxQn7Oe+c0PkdOXIE3bp1qzJVI6naLMONmzdvQkdH\nB0TE25KtrKwM69evF2T3/RHw6NEjQS/okCFDoKqqyvlQp6amYtq0aRgyZAjvy/L06VNYWVnxnjcz\nMxM6OjoYNWoUZ7VNkUgEHR0dWcLJnDlzWAXjoUOHMH/+/ErH2GrksxUO+7R+y4kTJ/DHH3+wzm/+\n/PkoKysDwzAwMzPjvI8Mw2DZsmWwtbXljWkHgMmTJ/OGUTIMgzVr1mD06NEICwtj5RUXF8PU1BS6\nurq8571586agjlE/AvLy8rBw4UJeP0pxcTEaN26MBg0a4PDhw989cqhauPMgMjISDRs2hI2NDSfv\n2rVraNWqlaC6MIDwLMHviby8PEEazsCBA7F//35OTkxMDIgIampqnE0ZSkpKMH/+fEE9K7dv3445\nc+bw2u7PnTtXqdsRV2bo9OnT5bpesYUBsgn3T/kxMTGcz09ZWZnsGtavX89Z3EsKHx8fQe0XIyIi\n0Lt3b05HY0FBAdq3by+o49fdu3cFCXcAVTp7U4p3794JapSyYMECqKmpwcfHh1NoT58+HXXr1oWX\nl9eXnOb/CdXCnQNFRUVo164dLly4gIcPH7LyXr9+DU1NTRARrl69ysqTxgL36tWLtwPTj4SdO3fy\nainSPqd8WuTMmTPRvHlzQZEsHTp0ENTg2tnZWVB6PFARnSMkRR4QXvJXIpGgRYsWguKgU1NToa+v\nz8stKSmBlpYWr8nl6dOnUFNT443Tf/jwIWrVqoUDBw7wzlFIQ5EfBdHR0ejQoQOOHDnCqcikpaWh\nTp06qF27Nuc7HhMTg8jISOjp6X336Dahwv1f51AFQJMmTaKBAweSs7MzWVpasnLv379PampqNG7c\nOLK3t1fIyc3NpT59+lCfPn1IWVmZhg8fzjrehw8f6OLFi7Rx40beeNyqgGnTpvE6mYuKimjkyJE0\nZswYTl5iYiJlZGRQQUEBKyc7O5uCg4OpVq1aZG5uzjleWloaPX/+nHr37s3JIyKSSCQUFxdHxsbG\nvNzPgbKyMhkZGdHr1695uerq6mRhYUFXr17l5NWtW5ecnZ3p2LFjFBcXx8pjGIby8/MpMjKSczxL\nS0tat26doOdt2rRpvJzvDYZhaM+ePeTr60vJycmsvNatW5OjoyONHTuW2rRpw/obtWzZkqZNm0b9\n+vWj4OBg1vFMTU2pY8eO5OHhQS4uLryFAqsEhKwAX+Pve2nuu3btQr9+/Xg1qBs3bsDY2BgpKSmc\nK7+0033z5s05C3QlJCSgTp06UFVV5W0VdvToUZw6dYq3Vkd2dvZndWn6Gnjx4oUgR2rPnj3x+++/\nc3KioqJQo0YNdO7cmbeImVAzB8BvPvkUQjV3QLG5hw2fmpEUoaSkBK6urqhRowYOHjzIyd27dy9U\nVVV5zyuRSAS1A/y/4HMcmHzmnJycHFy6dAkeHh6cz3VKSgoMDAxARJzhjIWFhdDT04Ouri5u3rzJ\nyhOJRCgpKYGdnZ2gLOTFixcLKgn9tUDVZhnFSEhIwPHjx3mLT2VnZ/M2jQAqEm3u3r2Lp0+fcvIY\nhsGcOXNw/fp13jGXLFmCHTt2cDp6GIaBk5MTdu/ezTnW27dvYW9vz+tAffz4MQYNGoTt27fzLhjT\npk0T1Npu5cqVskSRcePGsdq49+7di4MHD+Lq1asgItbopcDAQKxcuRL79+/ndFBGR0fL7NZv376F\nq6srXFxcFBYx+1To+/n5QV1dXc43MGbMGLnnITc3FwsWLECfPn1kv6uHhwdrE2epA3j9+vU4deoU\nawmLI0eOgIiwadMm3LlzBzNmzFDIYxhGlh7/9u1bDBs2TCHvY5SWlsLOzo6Xd+HCBVhbW+Pu3buc\nvJCQELRt25a3x++tW7dgZGTEWe6gpKQEf//9N0aPHs07vzdv3uDXX3/l9LMAFear2NhYQZVMc3Nz\nERsby8mJiorCnj17eK/3a6JauH8CiUQCf39/tGvXDtra2oKyzgoLC79oOKMQB8/nQCQSISgoiFMr\nZxgGgwcP5m0Off78eVnjYz44ODjwLmZAhUNWKhy4tLbffvsNFy5cgL+/P7p06cJa52bRokXYt28f\nunXrBmVlZXh4eCjkeXp6YtmyZQAqnIpEhIYNG8p1YioqKoK+vn6lYwcOHAARYerUqZWOu7i4IDw8\nvNIxadlZIpJFo5w5cwZubm4K5xUSEoL69eujfv36ePDgAWeXr0mTJmHx4sVITk5G27ZtWXl5eXko\nKytDSUkJtLW1WXlSMAyDFi1a8PJmzJjB2+EJqOi9amZmxvs+Xb58mbfW0OfiS79PfJmtQMX9c3Bw\ngJaWFnbu3Ckoc/ZLo1q4f4K0tDQYGRmBiDgbBTMMg1u3bmHChAn4/fffv3vY05dAVlYWbxcisViM\nli1bYt68eZy8Xbt2QV1dHVOnTuW9NxYWFpxt4qTo0KEDkpKScPr0ac5oIzs7Ozx58gQm8jqmAAAg\nAElEQVRmZmawt7dnXdSGDh2K0NBQ2eeGDRsqrGyYmJgIa2vrSsdSU1NBRHINv6dMmYIzZ87IjREY\nGAgikkUKZWZmwtDQkPUaZs+eDSJCTk4O1NXVWQVUSUkJ9u3bB4ZhoK6uLqiwm7a2Nq+w2b59O1RV\nVXmzp48fPw4i4nUenjx5UtAu7kfAtm3bMHjwYFy4cIFTYXrx4gVq1qwJFRUVzoCMr4Vq4f4RpGVO\nnZ2d8ccff7AKJZFIhFGjRoGIoKenx2tLTktLw6lTpwRHYXxPcMWLS7FgwQLeUrlSDZ8v8Ss5ORkt\nWrTgXQBEIhHU1dV5a91LF5/y8nK0b9+eNQGLYRhoaWlV0iR79Oih0Ib+4MED/Pzzz3LH7e3t5YTk\n8uXLsW/fPoXns7W1rWQeaNOmDesiJRKJYGtri7dv36Jbt26cUUHS+9G7d288fvyYlSedR48ePXDj\nxg3O3abU5MOnkcfHx3MmXkkh5Ln63sjKysKRI0cQFxfH+TxKJBI4ODjIev5y7TYXL16M2bNnw97e\n/ovvSPggVLj/46NlRCIRjRo1ioqKiuj06dO0fft21giQe/fu0d27d0lTU5OOHz9OjRo1Usjbs2cP\nGRsbk7q6Ol29epVMTU2/5iV8EbC1uPsYbm5u1KVLF06Ora0tERGNHj2akzdx4kTKzc3lrXgYGxtL\npqampKSkxNmuLjo6mszNzUlZWZn27t1LLVq0UMiLiYkhHR0dUlFRkR3btm0bNWjQQI6bkZFBampq\ncse3bt0q1+5PTU1NYbq6kpIS7dy5k+rXry871rNnT9ZWibVq1SI/Pz8iIurSpQvdvXtXIY+IZPej\nXbt2vCn6Z8+epejoaHJ1deUs/zBkyBCqX78+9ejRg3M8fX19Wrx4MSeHSNhz9b3RtGlTKikpISMj\nI9LU1CR3d3eF1VqVlZXpyJEjpK2tTVlZWbKyForw559/0tatW6l///7Uu3dvyszM/JqX8H/CP1q4\nFxYWkrOzM6mrq5OPjw/VqlVLYflOAOTh4UETJ06kU6dO0dWrV8nGxkbhmNHR0XTq1ClKSkqiX3/9\nlTw9PRUuFuHh4dS6dWsyMjIiIyMjOnbsWMVW6RMEBgZSTEyMwu8+Rn5+vuDywQzDCOJ9CjMzM9LS\n0uLkNG3alFxdXTlDSImIDA0NSSwW06hRo1g5SUlJtG/fPjI2Nqbs7GzO8e7cuUNdunQhJSUl6ty5\nMyvvxo0b1LNnz0rHOnTooJCbmZmpULi3a9dO7piamhrrC/zp+FzCnYhIQ0ODtLW1qUuXLnTnzh1W\nHlFFPRctLS0KCAjg5Do5OVG9evXIwMCAM3xVVVWVhg8fzruIKykpCQozVYTPef746hsREaWmppKv\nr6/CdyQ8PJzat29PBgYG1KpVK9aeqr///jtt3ryZMjIy6NKlS3Tt2jWFPHV1dQoNDaWIiAg6ePAg\nTZ48mUpLS+V4Ujkyf/58mjp1KtnZ2clqCVUZCFHvv8bftzDLrFq1CqtXr5ZtxdjsaP7+/hg4cCCv\nQ+XFixcwNTXF+fPn4evry7r9LS4uhr6+PlRVVWFhYcHZ3KJnz54gIhgZGWHRokWsETJr166Fk5MT\nr+MqJCSE124OAHfu3BHkVH727JmcI1JRdb5Xr15VatHn6emJ4cOHy/GSkpJkdtz379+DiFC/fn28\nf/++Eu/9+/cyc5dEIsHYsWMVNuvIz8+vZPMdPny4wsQmiUQil4K/adMmhbVobt26JfesSEv+foyn\nT5/K3Rvp3E1MTGSf4+LiFIZ2pqSkwMLCQmZ+SUlJkYvIKS8vR6tWrUBEsu5fWVlZCptxbNiwoZIz\nt7CwUGGtoU9/P0X3hg1Xr17lNbWtWbMGvr6+vCaQ+fPnw8XFRSGvrKwMHh4e6NixI4gIzZs3Z42M\nSU1NRf/+/VGzZk1oaGhwvm/Hjh3DgwcPYGNjw5twKBKJ4O7uzuqfEIvFsrmfOXOGN8z1S4Gqbe4V\nD1BycjK2bt2KgQMHssaNSyQSwZ53odEz+fn5OHbsGK+Da+rUqRg3bhz8/f1ZbXdlZWXo1q0biAjW\n1tZyglCK169fQ0NDA0TE20tz2rRpmDRpEm+o2/Tp03H8+HFODlARvvlxXPbVq1dx//59Od62bduw\nbt06ABX3vXbt2li0aJEc7+TJk7JSv6tWrUKLFi2we/duOUEQERGBIUOGAKiwO2trayvM7kxKSoKl\npWWlYwsWLIC3t7ccV1Gc+5MnT+RKUEyaNAlnz56V+/8AYG5uLnve/vzzT4VlF0JCQtC4cWNZ/L+P\njw8WLFggx/Pz8wMRybo7Xb58GWPGjJHj5eTkYO/evbLPUVFR6Nevn8L5fYyXL1/y5gEUFBRgxowZ\n6NKlCyevsLAQP/30E2rVqoUrV64o5JSWlmLkyJEgImhoaLA+z2VlZbh8+TJmzpwJR0dHztwUhmFw\n6NAhFBcXC8rp+JzCfmznLS0txejRo7FixQo8f/78i0fvsEGocP9Hm2V27dpF2traNG/ePJo9ezZp\naGgo5CkrK5OSkhIlJSVx2kCJKmymQtCgQQP69ddf5Wy3iubo4+NDQ4cOZS1TWrt2bQoPD6ecnBza\ntWsXJSYmKuQZGRnRoUOHSE9Pjzw8PFjPWVBQQFFRUXTgwAHe7EqpXTg/P5+T16JFC3r//r3sc7du\n3cjKyorz/ygrK1OrVq3I3d1d7rvc3FxZOWCRSETv378nkUgkZ3JITk4mLS0tKikpoYiICNLU1CRV\nVVW58T7NUE1LS6PMzExq1qyZIHNX48aNKTMzk9LS0mTHjI2NWe+fnZ0dXb58mdLT00lLS0thNmW9\nevUoNzdX1uGpcePGCsvauri4UNu2bXlNZo0bNyY3NzfZ5/fv37P6JqTIz8+nu3fv8ppp3r59Szt3\n7qTk5GTOzFkfHx9iGIY8PT1Zs7oTExPpjz/+oPT0dEpOTqbmzZsr5NWuXZscHR1p+/btFBISwumT\nUVJSovHjx1O9evU4fQ4f87ne5efPn9Pz58+JYRjWTkx16tShNWvWkKenJ7Vu3ZqmTJlSpTqv/WOF\n+6tXr+jw4cOkqalJa9euZX3QHj58SKNGjSIdHR2ytbWVq+39tfE57csaN25MnTp1Imtra1ZOv379\nKDo6mtTV1Vnb3DVo0ID27NlDKioqnHZCiURCN2/epKNHj/LWBW/evHklhyNf2z4pNm/eTE2bNpU7\n/rFwb9q0KRkZGdHUqVPleCkpKaSlpUUSiYR69+5NGRkZCuuNv379upJwv379Oh09epQWLlwoaJ4L\nFy6k6OjoSosmm3DPyMigBw8e0O+//06vXr1iFe7du3enIUOGyK6fTbgrKyuTh4cHq4P/Y3x83zMy\nMlgFpxR3794ld3d3evLkCaffQ/qcbNmyhYyMjBRyJBIJJScn08uXL+n3339nFcampqZka2tLLVq0\nEPz8KykpfdNWf7q6ujRp0iRSU1OjgQMH0vnz51l5x48fpxYtWtC1a9coPDz8m82RD/844Q6ADh48\nSH379qX//Oc/dOnSJZo/f75Crlgsplu3bpG/vz+VlpbSlStXSE9PT46Xl5dHe/fupRUrVtDEiRPJ\n3d29SteGUVFRoTVr1igUmlK0b9+e/v77b876HDVq1CALCwvKzc2lJk2asPJEIhExDEMJCQm8UR2f\nwsHBQeHx3NxcmTBr2rQpbdy4UeGCkZycTJqamlS/fn0qLy8nDQ0NhTuGT4V7586dqby8nAYNGiRI\n0xs6dChJJJJKCyubcG/evDl17dqVxGIxNWjQgDQ1NSklJUXhuBs2bCB1dXUiImrUqBFrQ4revXt/\nlnCT/hb169enDx8+sPKaNWtG2dnZpKWlxfm8JCUl0erVq8nV1ZWVo6ysTOvWrZNdT1UEwzC0ZcsW\nGjduHC1evJh27txJb968keOpqqpSYGAgaWtrU0BAAF29epV199qvXz8KDQ2l06dP04wZM2jx4sWV\nmr18Nwix3XyNv69hc8/OzoaLiwv69OlTybmnCCEhIbCwsICbmxu8vLxYkxEkEgmCgoJk1SGdnJxY\nbeMnT57Evn37cObMGYSHh/O2BasK4EvCKCsrg5GREattGaiwX7Zp0wZEBD8/P87xPra5c2HatGk4\nffo0gIqYeTbn3LBhw2T1zxs1asQaDz5w4EDcvn270pybNWumsEyxIpt7WVkZ1NTUkJiYKDtWXFzM\nmhWak5MDNTU1vHr1Cvn5+ZyJTVJna0JCAjp37szKk4LN5v4x4uLiZM5qrnyNpKQk1K1bl/dZjYqK\nqvIJfVlZWbhz5w4uXLiAQ4cOYdeuXQrt5WKxGO7u7iAi1K5dG15eXqy+sfT0dGzfvh0rVqyAnp4e\nDh48yGn7LyoqwtSpU2FlZcVZa+p/Af3bHKo3btyAoaEhPDw8OB0br1+/hrOzM2xsbDjrQ3z48AEb\nNmyAsbExnJ2dsXTpUixdulRu7LKyMly9ehXr1q2DtbU1iAi1atXCrFmz5BokJycnIzY2FoMGDYK3\ntzdrdI5YLEZmZmYlQaII3+pl8/f3l0u9/xQ7d+7kzWiMjY1F//794ejoyOvwHTVqFGcJVilsbGxk\nAvqvv/5i5bVq1Uru92DL2mUrHLZ582a5e66jo8MaxXHo0CFZTZPmzZvz/l45OTkwNTXl5BQWFmLk\nyJHo2LEjq8MSqHg2mjRpwloKQYqioiLebNUvBb7rz8/PR2xsLKtDtKSkBOfOncOoUaMQEhKCd+/e\nVeKWlJRg06ZNaNy4MYgI+vr6WLZsGS5cuKBQITt69CgmT56M8ePHQ1tbG+7u7pzPb2JiIoYPH46O\nHTsq7OD1Mc6fPw9dXd2vUv/9XyfcT506hUePHsk+MwyD2NhYOY/4jRs38Pfff/M+aDExMViyZIlM\nwLJ51vPz8zF06FBs2rQJO3bsgKurK2vTil69esHCwgLKysogIjRu3FihduHo6IgePXqgUaNGnJrw\n2LFj4eXlhT179nBey4IFC3gfRgDYsmWLQh7DMJUiUI4cOSLXOT4nJwe6urqV7uvFixcrzV8kEqFx\n48ZQUVGppCnduXOnUvZncXExBgwYINeq7fXr11i7dm2l8+rq6srGkv5Gubm5mDNnjoxTXl6Oli1b\nyv3mIpFIYXU/RcJ92bJlChfbXr16VQq927lzpyw0UyKRyISPubl5pYxHX19fXL58udJY5eXlUFdX\nr1RcKzQ0VC5aSapEfKwZRkVFyTXv7tu3L+7cuVPpWGJioqzujhSKFrKMjAxMnjxZ7vinSElJwbBh\nwzjfJx+f/9fe+UdFVad//P0BYhB0E4QCUdQRzERA1FBTWc0ImKR0QUvCX2uLrtHBo27kD8SgQiW0\nTfKrmJlKq9tqS2BoyxEzXNIyNPmhGBAaKgoiIKj8muf7xzB35869d2Yqfgje1zmc4/3ch3s/jzM8\n93Ofz/PjEzpy5Aj5+vpKGu7Tp0+TUqkkHx8fGjJkiCDzNT09nasECYDc3NxozJgxoiGmVVVVtHz5\ncoqKiqJt27bR/PnzJdtPar8z1dXVtGXLFkHZCTG++eYb2rdvH29MrVZTYWEhT7+rV6/Shx9+aPR6\nv5aHzrgTaQzM5s2baebMmeTg4ECJiYntfg9DmBKCVV5eTtHR0XTixAnJeiHNzc00bdo07ou8aNEi\n0Zj069evk7u7OwEQrXui5cyZMzR06FBKTk42mC5++PBhUqlURnU4ePCg6IpQ/0GUmpoqMJ5z5syh\nGTNm8MaOHTvGiyFPTEykPn36kJ+fH+9N6ezZs+Tv788dt7a2kpOTk2AeV69eJW9vb+74559/Fm3v\n19raSv379xeMixl3lUol6sJavHgxHTx4kDt+9dVXRePx/fz8eC6jVatWCdrVrVixgiwtLXmlkRMS\nEgQ9bOPi4nhx9ESamj/6JQU+++wzgdFNSkoyaaW+du1aio2NNSiTkpJCkydPpr1790rKFBYWUq9e\nvcjW1lbUZdba2krx8fFkYWFBAMjFxUU0d0Arm5ubSwkJCfTf//7XqA4dVeZaiqNHj1K/fv3Iz8+P\nYmNjjfau/a2YatyN7yR1IyorK5GUlITS0lKsW7cOy5cvF8gQESoqKlBSUoLS0lKUlpZizpw57VJC\nwJSNOWdnZ8TGxhq9TkZGBhoaGrif+vp6Xko9oGnsEBAQgKqqKixatAhjxoyBi4uL4Hpubm5wdXVF\neHg4+vbti1mzZoneV6VSYc2aNThz5gxcXFwkIy38/PywbNkyqNVqXkRESEgIT87DwwPvvPMObywo\nKEjQ6EA/jHLcuHG4c+cOJkyYwLu+QqFAY2Mjd3zo0CE4ODjg2rVrvDDXpqYmXlq8/maqltraWpMi\nUADA1tZWNJtSf1PV0tJSsJl28+ZNPP744zh69CgGDhwIOzs7NDY2ClL3fX19kZiYCHd3d27sxo0b\n8PT05MkFBQUJNl7z8vIEGaUhISGCTdjDhw8jOjpaUs+WlhaUlZVhz549BjfHi4uLERYWBjc3N8lS\nBvfu3cPLL78Mc3NzzJgxQ/D9BTRZ5C+++CJCQ0NhY2MDGxsbyZIGZmZm8Pb2lsw41seUv0dTuHXr\nFrZt2wZHR0colUoMHToUAwcOFIRI+vv7Y8eOHZg9ezZycnIwefJkKJXKdpnDb8KUJwCAAABFAIoB\nvClyngH4oO38eQCjjV2zPVfuNTU1tHLlSlIqlZScnEyRkZGSr4lqtZrCwsK4zRRTGy08yDQ3N9OX\nX34p2RZPrVbTnj17yMbGxuDKvKGhgRYvXkx9+/Y1WDmTSFPMSixJSRdtGzrd1Xd1dbWg6FdlZSWN\nGDGCO75//z4pFApBtmZJSQkv2Wbs2LEEQLByLCoqIl9fX+74ww8/pJiYGMH8SktLacKECYJxsZX7\na6+9xluha/niiy/oz3/+M3e8bNkyQeZjfn4+933TugEiIiIERdoaGxvJ3t6e94YQFhYmyLhVq9V0\n8eJF3tjEiRMFY/rcuXOHnJ2dDW4I/vTTT9S3b1969tlnDQYlrF27lhhjtHbtWskV8sGDB2nfvn0m\nZUI/6Jw+fZoee+wxAkDe3t4G69J/8sknFB8fT6NHj6aXXnpJtI/A7wHtlcTEGDMH8CGAQAAjAMxh\njOn3QAsE4Nb2Ew7g/37nM8ckWltbsWvXLowaNQo2NjY4f/48Xn31VWzevFmwYmlqasLevXsxatQo\nVFVVQalUIjMzE3PmzBG99tGjR2FjYwMrKyv069cPu3fv1j7IOOh/D7cuxcLCAiqVChEREaLhcowx\nzJs3D7m5uaiqquIl4uhibW0NW1tb1NTUoKioSPJ+zc3NUKlUeP/99w3G9ZqZmWHw4MG8UDNbW1tB\nYo2dnR0vXE+hUGDZsmWCeGr9lfuoUaPg4OAgeBNpamriwiaPHTuGlJQUlJeXC0ICb9++zcXSa9mz\nZw9qa2uxdetW3njfvn0FK3e1Wo38/HxkZ2fj448/BiC+cnd3d8fUqVMxcuRILnGmsbFRENppaWmJ\n8PBw3kr9xo0bgtwLxhjvTZOIUFxcLBl/DmhCRletWoUpU6agtbVVUq6oqAg1NTWwtLSEvb29qIxa\nrUZWVhaysrIQFxcnuUIODg5GWFiY6Iq9KxD7W/3666/h6uoKhUIBa2tryUJ3Pj4+OHXqFJ544gko\nlUq4u7sjISEBtbW1Atn58+fjjTfewHfffQc/Pz/88Y9/xPr163H37t1218kQpsS5+wAoJqJSImoC\ncADAi3oyLwLQLp9OAejLGOvQYNeTJ09i3LhxyMzMxNdff43169fDxsZGUF2wpqYGmzZtwvDhw3H8\n+HGkpKTgyJEjOHHihOB1UpuFN23aNCxZsgS9e/fGpEmTkJubi4ULFwoMZ1VVFZ566imMHz8e8+bN\nw4YNG0QTQaqrq39zMa/2ZNiwYcjOzkZzc7OkzLvvvov58+cbNO6tra3YvXs3/vGPf0g+KLR4enoi\nLy/P4D3NzMxgYWHBkxFzHYgZ97/85S+CLGBd425vb49vv/0W+fn5sLW15cnV1NQIxszMzHDz5k1B\nkTDtQ09ftry83KhbBgAiIiJ4BcnE3DIAsHr1ap6xNJZl2traisuXL2PAgAGSmZTa+yUlJSEjI8Pg\nZ1ZUVIRx48bhs88+k8zgrK2tRVpaGqZMmSJ5nc5ELFmvsbER27ZtQ3h4OKZMmQKlUom8vDyBgZ8y\nZQpyc3Mxf/58EBFSUlIwZswYxMXFCeSHDBmCnJwc7N27F9nZ2aiqqsLIkSOxYsUKQTKgmZkZzM3N\nsWjRIpw7dw4NDQ3w9PSULIDWEZhi3J0B/KJzXN429mtl2o1169YhMjISW7ZswYEDBzBo0CBRuQMH\nDsDT0xPV1dXIzs7G7t274eHhAQC8VO7vv/8eo0ePhkqlQkVFBTZs2IDS0lJ8+umnyMzM5K5//fp1\nzJ07F+PHj4eTkxMmT56MqqoqnDt3DtbW1ggJCUG/fv1ARFi3bh02bdqE7du3IyEhAYMGDUJUVBTy\n8vJ4c/znP/+JwsJCEBHOnj0rmfyQk5NjUlPeixcvGjSklpaWcHFxwbVr13iGUgtjDDt37uRWgXfu\n3BEkb1hZWWHHjh28B2ljY6NgZXvlyhWUlpbib3/7G3JzcwFofLpivmv9krpWVlYCOUtLS96cx4wZ\ng/DwcMGKXNe4a/WIiooSPHjFVu4qlQqMMahUKt642Mr99u3bWLZsGczMzDBs2DBujvqfYW1tLQIC\nAhAUFMSNiRn3uro6wSpYWyJBl/r6eu670NLSAn9/fzQ1NSEnJ4cnd//+fW5lqV2YvP3224K/F7Va\nzRl8xhgOHz4sudouKyuDra2twYQnQFM91RhqtRrHjx8XPUdEXKZxeXk5du3axXvj+OWXX7Bx40Z4\neHjg9ddfR3JyMhITExETE4Nr165BoVBg1qxZcHJyQl5eHurq6jB37lw4OTnB29sbs2fP5q7/hz/8\nAcnJyUhPT0d+fj72798PKysrLFmyBG5ubjhw4AB3Xzs7O1hbW8PZ2RkbN25EQUEBBgwYgKlTp2Ld\nunWiujz66KNISEhARkYGPv30UwQFBXWOgTfmtwEQAuAjneO5AJL0ZA4DmKRzfAzAWJFrhQM4A+CM\ni4vLb/Y5Xb161WiDayJNNIkpjY5v3bplUsJBfX09HT16lEpKSjg/Y3p6uqA/Y2trKyUnJ1NiYiLF\nxMRQcHAwASB7e3v605/+RFlZWZxsfHw8jR8/npRKJXl6epKHh4eoL3vNmjXk6upK//rXvygzM1My\ntnrlypX0wgsvGC1Y9uabb9Ly5cslz2v1e/fdd2n16tWiMpGRkZwfeseOHbzwQyKNb3jChAkEgPPf\npqam0oIFC3hy9fX1FBAQQKmpqVw0z/fff0+BgYE8ufv375Pu90atVlNFRYWgDd2JEyd4FfqeffZZ\nzv+vy0cffSTaftDGxkbQqOHQoUO0dOlS3ti0adMoLy+PXnrpJa741YYNG2jLli08uYULF1JGRgZv\nP2TGjBm8pCoizWesGxJaVFRETk5OAp/1Bx98QNHR0dyxo6Mj9evXT/BdT0lJ4SJvSktLydfXVzQH\n5NChQxQcHExEhiNMUlJSDLYGJNJ8JqtWraJp06aJ3kutVlN6ejrl5OSQj48PBQcHC6LGysrKKDAw\nkFxcXMjT05NGjBhBK1as4PS7cOECLViwgAYPHsy1hoyOjqZNmzbR9u3bBd2/6uvrub01tVpN5eXl\ndPz4caNN2Ik0SUzGulERaUIqpXr66mOo25gpoL1CIQFMAPCVzvEqAKv0ZHYAmKNzXATAydB1u6pB\ndldw7tw5KigoMBgLXFxczCVfmJmZ0fLlywUG/MKFCxQQEEA2NjYUEBAgGkqpVqvpjTfeoGeeeYay\ns7MlE6Xu3btHXl5eouVxdbl9+zYNHDhQNDytvr6e2/yrrKykQYMGCf6g//Of/9AjjzzCjVdWVpKr\nqytPJjU1lRQKBS/Rp66ujpRKpUA3/dBHbWy4LpmZmbwmy9qNRkdHR57ce++9JwgzJCIaPHiwwFAe\nO3aMQkNDeWPjx4+n0tJSunjxIjfvzZs308aNG3lygYGBglZ02jh+XYKDg+nEiRPcsb+/P1lYWAhC\nEmfNmsVrI+jj4yPabPv555/nFhLXr18XXcBo+8Aay1QuLS2lQYMGSRqm1tZWysrKoqVLl9L06dNF\nNxzVajWtXLmSrK2tycvLi7fI0V5j69atZGNjQwCIMWb0+3n58mWjCXY9jfY07hYASgEMAWAJ4EcA\n7noyzwM4Ak3UzHgA3xm77sNk3E2hubmZ7t69S42NjdTS0iL5IEhPT6cBAwYQAAoJCZFcacXExJBC\noTDYDi8/P5+USiVdvXpVkL2pfy3dlaIUAQEBXCkALWq1mubNm8cb0y2HS6TR3dnZWVCe1sXFhWck\n/v3vf5OdnZ0gkqd///68/4cvv/ySF8GixdnZmSe3Zs0a2rlzp0BOLFrmhx9+ELxJeHh4CMrVJiUl\nCfq1ent78yJPvvrqK/Ly8qK4uDjew9Dd3Z236ly9ejWZmZnxDKpYWeO//vWvgjLHt27dIhcXF6Nv\nuKmpqRQUFCR5Xls2++mnnzbYgnHv3r2kUCho5syZkgl/cXFxBIDs7OwoISFBMrKrpaWFa/ptSu/Y\nhw1TjbtRnzsRtQCIAPAVgAsAPiOiAsbYEsbYkjaxjLYHQDGAnQCWmuISkvkfFhYW6NWrFywtLWFu\nbi5ZJGr69On45ZdfUFZWhhkzZoiWKCYi2Nvbw9raGklJSbhw4YLotdzd3REZGYmnnnoKKSkpknOL\njIzEnj17jHbNmTNnDs8/CWh8uO+99x5vbPLkybwoGwsLCyxatAhjx47lyQ0bNgyXLl3ijs+ePYvq\n6moUFhby5B577DFuA5SIeD53XWxsbHgF38Q2VKUQ21BtaGgQ+KYVCgWampp4PlX9dn7379/Hjz/+\niFOnTnF7Fi0tLaiurub518eOHQuVSoWBAwdyY8XFxXB0dOSVNX7rrbcEZY4PHaB9uXYAAAhMSURB\nVDqEmTNnGtxkJSLExsYiJiZGUubkyZPw8fGBq6urII9BS319PaKiokBEGDx4sKg/uaSkBA4ODsjP\nz0dlZSVWrlwpGdllbm4OS0tLWFlZmVxdVEYEU54AHfEjr9w7ntraWnrnnXcoNDRUdJXU2trKFVAy\n1oQhOjqaXnnlFdHsS937DRgwwGgThJSUFHrttdd4Y5cvXxZcOyIigg4cOMAdnz9/ngAISiQEBARw\nbo/KykoaOXIkubm5CWqveHt7894YQkNDReuziK3cq6urafjw4bwxR0dH3sq7vLycvLy8yNXVlXOv\ntLS0CLJga2trycLCgtco5NKlS4KGGVeuXKG0tDTe2K5duwzulWiZOnWqwUYsly5dovDwcNEG4bos\nXbqUK5gnFa/+1ltvUURERLcolNcTwMNYfkBGnLq6OoOvt/v376fevXtLFiprbm6m2bNnEwBBXRJ9\ngoOD6fDhwwY7x1++fFmwCUok7HiTlJRE69ev547VajX5+PgIHh4LFizg1QQZPXo09erVS2CMJk6c\nyCVGlZSUUGBgIGVlZQnuK2bcq6qqqH///ry6QfobtNp7W1lZce6kGzduiOr6zDPP8FoqpqWlCVxJ\nWheFvq6GKnTeu3ePioqKyNXV1eAez+eff84l5Eh9Vs3NzeTk5ESxsbEGi/EZ+qxl2h9TjXuPq+cu\nI6RPnz4GX29ffvllnD59WhCmqcXCwgLvv/8+hg4dioKCAsnr3LlzB4888gjCwsIMJje5uLigrq5O\n4ObQdyE8+eSTPJcSYwxbt24VxF87OjqioqKCO37uueegUqkELhNdt0xmZiaOHDmCVatWGXRdaFmz\nZg2uX7+OTZs2AdAsisTcCsHBwfD19UWvXr0AABUVFaINYOLj43kuoQsXLuDJJ5/kyWhdFLqcPHkS\nkyZNkpxnZWUlxo0bh8cff1y0TrmWgoIC9O7dGzt27JAMaywoKMDu3bsRHR1tsAuSsbBIma5BNu4y\nAIARI0Zg+vTpkue1XeEN+d379OkDJycn1NTUGGxm0tzcjEmTJuHvf/+7wYSa4cOH4+LFi7wxsS5U\nYsY9ODhYIKdr3CdOnAgAkhnK+rzyyisgIu73pJKQQkJC8Nxzz3HHUsZdX4+LFy9i+PDhBuewc+dO\nWFpaGqyH09DQwGWYijWe0VJcXIy0tDSDrRC9vLzg7+9vcE4yDy6ycZcxmSFDhmD79u0Gs23j4+Mx\natQog8a9rKwMaWlpWL9+vcH7OTk5oaKiwmh2r75xf/rpp0UfVLrGfcSIEXBwcEBoaKjBa2uZNGkS\nlEolZ9zFNlMBzSbwggULuGMp464LEZlk3GNiYvDTTz8hIyNDUqahoQF2dnbYt2+fwTeSqKgoydaT\nMj0D2bjL/CqeeOIJg6/oCoUC+/fvN3gNNzc3LF68GAAMrkKPHTsGhUKBuXPnGryevnFXKBTo06eP\nQE7XuJuZmeHtt9/mRbEYgjGGqKgorsrf3bt3JbM4dd0UFRUVRptUx8TEoLCwULT3qy6PPvoofH19\n8cILL0jK3L17F7t27YKzs+EEcX0XkEzPg5FI2FKn3JixSgCXf+Ov2wMQ7/7cc5F1fjiQdX44+D06\nDyIio6uSLjPuvwfG2BkiGmtcsucg6/xwIOv8cNAZOstuGRkZGZkeiGzcZWRkZHog3dW4J3f1BLoA\nWeeHA1nnh4MO17lb+txlZGRkZAzTXVfuMjIyMjIGeKCNO2MsgDFWxBgrZoy9KXKeMcY+aDt/njE2\nuivm2Z6YoPMrbbrmMcZyGGNeYtfpThjTWUfuKcZYC2NMvDxhN8IUnRljUxhj5xhjBYyxE509x/bG\nhO/2o4yxdMbYj206L+yKebYXjLGPGWM3GWOibak63H6ZUoCmK34AmAMoAaDE/+rIj9CTUYFfR/50\nV8+7E3R+GoBt278DHwaddeSyoCkvHdLV8+6Ez7kvgEIALm3Hj3X1vDtB59UANrb92wFANQDLrp77\n79DZF8BoAPkS5zvUfj3IK/cHsjF3B2NUZyLKISJtgZdTAAage2PK5wwArwM4BOCmyLnuhik6hwL4\nnIiuAAARdXe9TdGZAPRhmopsvaEx7i2dO832g4i+gUYHKTrUfj3Ixv2Ba8zdCfxafRZB8+TvzhjV\nmTHmDGAmgP/rxHl1JKZ8zsMA2DLGvmaM/cAYm9dps+sYTNE5CcCTAK4ByAMQSUSGCwt1bzrUflkY\nF5F5EGGMTYXGuEvXf+05vA8giojUUh2qeiAWAMYAmAagF4BvGWOniOiS4V/r1vgDOAfgGQBDAWQy\nxrKJqK5rp9U9eZCN+1UAA3WOB7SN/VqZ7oRJ+jDGPAF8BCCQiG510tw6ClN0HgvgQJthtwegYoy1\nEFFq50yx3TFF53IAt4ioAUADY+wbAF4AuqtxN0XnhQA2kMYhXcwY+xnAcACGK6p1XzrUfj3Ibpnv\nAbgxxoYwxiwBvAwgTU8mDcC8tl3n8QBqiUi6QPiDj1GdGWMuAD4HMLeHrOKM6kxEQ4hoMBENBnAQ\nwNJubNgB077bXwCYxBizYIxZAxgHTQ/j7oopOl+B5k0FjLHHATwBTW/mnkqH2q8HduVORC2MMW1j\nbnMAH1NbY+6289uhiZxQQdOY+y40T/5ui4k6rwPQD8C2tpVsC3Xjoksm6tyjMEVnIrrAGDsK4DwA\nNYCPiEg0pK47YOLnHAfgE8ZYHjQRJFFE1G2rRTLG9gOYAsCeMVYOIAbAI0Dn2C85Q1VGRkamB/Ig\nu2VkZGRkZH4jsnGXkZGR6YHIxl1GRkamByIbdxkZGZkeiGzcZWRkZHogsnGXkZGR6YHIxl1GRkam\nByIbdxkZGZkeyP8DGlSprx9Cz8AAAAAASUVORK5CYII=\n", "text/plain": [ - "" - ] + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qm8b1P9P/5N86AMpSghZIwGihARInPmQoaKKGmOpIHIV/pKiQyJZKykJESZKmMKESXRII3G5s7/8dzf//v89t13rbU/uNe955z1ejw+jns+6+xh7bXXeq/3+/V6v+cYGxsbayoqKioqKioqZhHmnFUnrqioqKioqKiAaoxUVFRUVFRUzFJUY6SioqKioqJilqIaIxUVFRUVFRWzFNUYqaioqKioqJilqMZIRUVFRUVFxSxFNUYqKioqKioqZimqMVJRUVFRUVExS/HYZgLgv//9b/Pb3/62mWuuuZo55phjVl9ORUVFRUVFxQiQV/W+++5rFlxwwWbOOeec2MYIQ2ShhRaa1ZdRUVFRUVFR8TBw5513Ns997nMntjHCIxI387SnPW1WX05FRUVFRUXFCLj33ntbZ0Ks4xPaGInQDEOkGiMVFRUVFRUTC0MUi0pgraioqKioqJilqMZIRUVFRUVFxSxFNUYqKioqKioqZimqMVJRUVFRUVExS1GNkYqKioqKiopZimqMVFRUVFRUVMxSVGOkoqKioqKiYpaiGiMVFRUVFRUVsxTVGKmoqKioqKiYpajGSEVFRUVFRcUsRTVGKioqKioqKmYpqjFSUVFRUVFRMUtRjZGKioqKioqKWYpqjFRUVMxS/M///E9z4403zurLqKiomIWoxkhFRcUsxZFHHtnccssts/oyKioqZiGqMVJRUVFRUVExS1GNkYqKioqKiopZimqMVFRUVFRUVMxSVGOkoqKioqKiYpaiGiMVFRWzBP/973+bHXfcsbnnnnuaY445pjnnnHNm9SVVVFTMIlRjpKKi4lHD6aef3rzxjW9s/3/OOedsHvOYxzR/+ctfmvPOO69ZeeWV299fcMEFzSabbDKLr7SiouLRRDVGKioqHjXcfvvtzZ133jn+74022qj9ueqqqzbzzTdf+///+Mc/mquuumqWXWNFRcWjj2qMVFRUPGq49957m6c//enj/15nnXWaxz/+8c2GG244/jvfC91UVFRMHVRjpKKi4lE1Rp72tKeN//upT31q86pXvWrcQwK+f/DBB5t///vfs+gqKyoqHm1UY6SiouJRwT//+c/W49E1RmDvvfdullpqqfF/x/cMF39TUVEx+VGNkYqKikcFb3vb25pLLrmk+cEPftAcccQR479fb731mjnmmKP9/9/+9rfNu9/97vb/119//eauu+6aZddbUVHx6KEaIxUVFTMNjIn//Oc/7f8vvfTSLYH16quvbgmrgT/96U8taRUWXHDB5g9/+EP7/7///e+b5z3veeNekvvvv3+W3ENFRcXMRzVGKioqZgrGxsaaRRddtPWEwCtf+cpxo+TFL37xeLsVV1yx+da3vjX+7ze84Q3tz9VXX338d2uvvXZz0kknPYpXX1FR8WiiGiMVFRUzBXfffXfz97//vVl44YXbf6+wwgrNXHPN1Wy//fbjYZkUttxyy1ZhE8YLOMavfvWrR+W6KyoqHn1UY6SiomKmgPHw2Mc+tg29gARnq622WrPddtsV/26eeeZp1TVdz0g1RioqJjeqMVJRUTHD8cc//rE1Hp773Oe2Rkhg3333HfeUSAf/r3/9a/y7rnLmne98Z7PkkktOZ4w4bkVFxeRDNUYqKipmOM4888zmve99b2tghDoGusRVoRqKGQbGhz70oTYlfOAVr3jFeCjn/PPPb77xjW80119/fU0TX1ExSVGNkYqKihmOF77wha1yhlR3mWWWSbZhbCy77LKtSubWW29t1lprrWQ73JEf//jHbbsFFlhgJl95RUXFrEA1RioqKmYIrr322ubiiy9u/5+RAc94xjOm4YjcfPPNzbe//e3xf0fmVWqZpzzlKe3/C8d87WtfG2/zxCc+sdl9993b/19uueXGZb9f/vKXH5X7qqiomPmoxkhFRcUMwbHHHtscf/zx7f/PPffcLV+EEcGYCJx77rnNQQcdNI3Xg8KmW5vmRz/6UbPXXntNc2zHedzjHjdujPC4UOVIG19RUTFFjZHPfvazzSKLLNJOMi9/+cubK6+8stj+f//3f1sy2pOe9KRmoYUWatM/k/xVVFRMLs/IS17ykvF/+//waAT+8pe/tGqZAAnva17zmmmMEd9r18Wzn/3sZpttthk3RnheKHWEbyoqKqagMXLaaae1TPf999+/nXzkDpDOWU6BFLhS3//+97ftb7rppua4445rj7HPPvvMiOuvqKiYxfjzn//cvv8Mg5e+9KXjv//whz88DcdDNtYwRrpF8MwFNing977HD/nrX//a3HfffePtEGEXX3zxcSMGL8Uc9POf//xRutOKiorZxhg57LDDmje96U3NTjvt1BLTjjrqqObJT37yuHu2j+9///stg17cmDdl3XXXbbbddttBb0pFRcXEwN/+9rfWU8Hb+cUvfnFcftvNsgoHHnhgc+qppzbf/e53m4997GPjv3/Ri140/v+/+c1vmh122KH9f16QOef8f1PU8ssv33pDwjtLqcPgOfroo2f6PVZUVMxGxoiX/5prrmle/epX/78DzDln++9I+dwHiZ6/CePjtttua1M/b7DBBtnzqFOhFkX3U1FRMXviWc96VltfBuQNQVpNYZVVVhnPP7L55psn28gnMu+887b/z6sSpNbUsUh9Ha8qbCoqppgx4sVX9Mrk04V/56pr8oh89KMfbTMvIqAttthizZprrlkM0yC4Pf3pTx//hAu3oqJi9gNvxTOf+cz2/eapyCFyjAjt+uSw4447TtM+BXyUrbbaqv3/aoxUVEx8zHQ1zfe+973m4x//eHPkkUe28d2vfvWrzTnnnDONm7aPD3zgA80999wz/rnzzjtn9mVWVFQ8BPBevu51r2tVLWEQ7Lbbbm0otm9Y3HLLLe3/q8D7nOc8p3njG984TRuEdpV8A47LI9I1RnDOLrjggmn+zhwiu2sYI4ceemhzyimnzIS7raiomK2MEe5XLz+Nfxf+je2ewn777ddK8HbdddeWcLbZZpu1xgnvh3TQKTzhCU9onva0p03zqaiomH1w6aWXthlT55tvvvbfSyyxRJvqvQtk1RNPPHGc9yHJ2RprrDFdbZqzzjprmg3HU5/61GaLLbZoQ7wBG5nLLrtsmr97wQte0Oy8887jc88f/vCH5ktf+tJMuNuKiorZyhjBYMeWv/DCC8d/x6DwbzHcFOQB6JLQIGpVKDFeUVExsSAPCN4XrpiNQ3gpuuHbX/ziF811113XhnB4S+Jdl/Z9/vnnH587YmPT/f/wjvKigL9l7PCw/OQnP5nmWhwv2uGhXXTRReOZXysqKiYQxh4iTj311LEnPOEJYyeccMLYT3/607E3v/nNY3PPPffYXXfd1X6//fbbj73//e8fb7///vuPzTXXXGOnnHLK2G233TZ2/vnnjy222GJjW2211cjnvOeee8xk7c+KiopZizXWWKN9pzfZZJOx733ve8k2F1100diTn/zksSc96Uljm2222di//vWvZLuVV1557PGPf3w7h1x44YXJNscdd9zY0ksv3R5ro402SrZ58MEHxw466KCxOeecc+zpT3/62DXXXPMI7rCiomJGYdT1+/90cg8BW2+9desOtSNBWiXLk945dkV33HHHNJ6QD37wg6171k+yPUQ3KaDJ/CoqKiYevM/yf1DI5YioQiiRHfVVr3rVuCS3D2ngf/jDH7YJEVdfffVkmy233LJ517ve1UqIHTcFfy83CQ8Lnlm3UnBFRcXsjzlYJM1sDtJeqhqTTOWPVFTMWgjPCM2qH7Ppppsm25hWcD8YCaS8OYnuFVdc0ay88srtJkcOkhzwUXDN5BR585vfnGwjz4nN0c9+9rM2nIOjVlFRMTHW71qbpqKiYhDd8g08nwimfUOE7L/rPeHFeNvb3pY1RGCllVZqOSTddPApvP3tb2/5KV3PSPd8oDyF+jgQnpFadqKiYmKgGiMVFRWDkHU5cgMJtR5xxBHTtRG61a6bC2TPPfecpg3PRtfwYNhssskmzfrrrz/+O9L/blZWEAaW9VmNK5BIccEFF5wmrTzIZ/TWt761PS6PjL/73e9+94jvv6KiYuaiGiMVFRVZCHn88pe/bM4444y2BhUccMAB00n5pXi/5JJLxmvHhHES0t8wIEh4GQrq2QTwyaKdejQ8IBQxMqziiXQVNnHepZZaqj0G9Uy/WJ60AdIQyGvy/Oc/vznhhBNq+YmKitkc1RipqKjI4qqrrmpWXHHFZq655mq9ELggiy666HTt5PtQEuL8888fX/ildu9C0rJPfOITzcUXX9x85CMfGf89o6Gb5Rl/RHyZt0TopdtO+AdJFYcEJ4WXhYy4C3FpxogCevgohxxySLPHHnvM0H6pqKiYsajGSEVFRRZyf/BAMBJuvfXW1hhIgWGAw8FgwQNJ4eUvf3n7PUKbkEsKPCsK4kWYJ3U+nhXJ03hR1MLJkeLmnnvuNuSjXQ3VVFTM3qjGSEVFRRaRiGyXXXZp3vKWt2TbYcszEg4//PCswcLD4juJE/uckC5kaw7jJQfkWbLgOHcKuC3KTwj73H333TXJYkXFbIxqjFRUVGRhEefp+MxnPpM1MoB3Anm1ZGQI9Sy77LKtYVOCir4MjJIx4loYPlQzJbkgA+ioo45qPSg8JBUVFbMnqjFSUVExDYRS8DvCk/CVr3xlGu4G+A73I+S1+CGIrak8IpH8LBKgbbvtttO0kRNEHZuA3CQ77LDDNOEeqeD7Kd4ZNpQzYYxIuIgn0ofCfDgjvDzCNdLUV1RUzF6oSc8qKirGQZmigi7lym233da+c1H7JfD973+/VblQ1zAQ5AmRjbmrsLHo//SnP23WWWeddvFfZpll2iysDILI1oyISmGz1VZbtcobhfFCutttxzhyLt+T7oaqBxgxT37yk9tQDKND29e//vXTSIXhn//8Z3svvClnn312S7RlSPXvraKiYhat32MTALU2TUXFo4NFF110bP755x/79Kc/nW1z2GGHtfVkFllkkbEvfOELyTZ//etf23fWZ/nllx/74x//mGy36qqrjs0xxxzt58orr0y2ee973zv2jGc8oz2WWlcpXH/99W1drMc97nFjz3ve87LX/pe//GVsnnnmGVt44YXbOlsVFRWzx/pdwzQVFRUt1I6SUwRP5LDDDmuThqWgLg1Pg5whqummYCeEIwIbb7zxNPlGuiDN5ZzlBUFszWVfdU5YaKGFkm3kHZGbBDfETiwF51FdmDfFvZEtV1RUzB6oxkhFRUUL4RmQ2fS8886bLk9IIBb7j370o82qq66aPZ68INyy73znO7NtFM2E1772tdMU2OxCKCWUPN2cJF0IAZ188snNvPPO215fKvqM9Po///M/48eK+62oqJj1qMZIRUXF+OLMEJFNNVcdF3gpyGrf9773FY/Hi7H33ns388wzT7YNLokkamGU5PD+97+/JdHmPCNxvi984QstF6WbubULBs+RRx7ZGiT4KtpWVFTMeqTreldUVEw5IKMOGSKAMPqlL31pvBhdDpKXveMd7yi24a1AYFUJuIQFFligVc6UjJEICe21116td8R1lgySSHe/9NJLF49ZUVEx81HVNBUVUxTeK56Bz372s82aa67ZGiEShfXBQMElYQhQx8jIKhzSxZlnntkqWXgvopovbkbXK0KF43f+fq211hpXssj/IVtqqGj+9Kc/NRdeeGEbJmJcBLrHYzgpusersv32209jGP3jH/9ouSOuRyhpt912aw2Qbt0ccO94MgcffHCz3377tTyYXBiooqLi4aGqaSoqKoo48cQTx1796le3CpSckuW///1vq6556lOfOvaJT3wi+w7uueee7Tu6+OKLjx155JHJNmeeeWbbhhJnhx12SLa55pprxp7whCe07ShtUrjjjjvGNthgg3G1zr/+9a/kdd98881j880339jcc8/d3msK//nPf8bWWmutsdVWW23sFa94RbJNRUXFw0dV01RUVBRx2mmnNd/5znfa/CA8HynwQFDX3H///c1JJ53UehxSCAerXdCWW26ZbPPiF7+4/ckDsfvuuyfbqEcT7eJnHzw03dBKjqz6jW98o/Wy8Lz0K/sGeGJ4ZS677LLWc6P+TkVFxaOPaoxUVExBCHlI/AWrr756q2ZJQXZUEMJhuOQkumEQSL2uYm4KQirctYyMUqp33JAwTHIg0Y0EablI87vf/e7mwx/+8DT3keKiyPYa9W0YaBUVFY8+qjFSUTEF8bWvfa39qeYMMupTnvKUZDseBdwNhkhkRE2BQbDNNts0m222WbYNbwVDhLFRqnPDs8LoyXlGImU85YzjlGhvMrsySnKeEdhkk01aJRHCbTVGKipmDaoxUlExBSEkcckll7Q1W0qGgTDHRRddNKhiQXw94ogjBs+bqk3TBxKsMA7ZbwmrrLJKm8OkJM91b4ccckizxRZbjFcgTgG59Qc/+EHrjZHGvqKi4tFFVdNUVEwR/P3vf28Xejk4/H8q/wclCoUJVYlEYt691Dv361//unnuc587/m+ckqc+9anTtFH7pS//feCBB7JemFHa9Y/pXh73uMe11woME3Vy5Evpwu8dU1ZYKhvckJSk13SIY8LzAv0CgRUVFTNn/a6ekYqKKYJddtmlTfP+yle+cpwj0QceCS8CDwHDJDV5MAjkBRFG+cMf/tD+u2+IAK8LCe9Xv/rV8cq9fQMDKVaekX322ac9VqDbTnIyxyLz7WdNZTQwRBhXBx10ULPCCiu05+uDtJchIr/Iyiuv3Oy5555ZT8o3v/nNtiifa7rhhhuS7SoqKmYwxiYAqrS3ouKR4fvf//64FPakk07KtnvDG97QtiGHzRXLu+2228aPtdFGGyWltbDeeuuNt8nhM5/5TNtmscUWa+W4KVx44YXj57vpppuSbb71rW+NPeYxj2nbvO1tb0u2ufXWW1v5rjZzzjnn2O9+97tskb/nP//5bbstt9wye+0VFRXDqNLeioqKcYSqBL73ve+1noQ+/O7rX//6OKmTJyUFWUuDs3HqqaeOh0j64H0RQvnkJz+ZvS6F8kA6+Bx3hXdl8803Hz9mCuuvv35z3HHHTXN9KV7Ivvvu20p5hW1SHhS4/PLLxz05Z5xxRvWOVFQ8CqjGSEXFFCCrCr8IT1xxxRXNsccem+RCKI7HICHPpVTJpVOPFOrCGbk2YNGXmj1X2RcodahYhmrTKHD3+Mc/PmuMwI477tiGanLGCGywwQZt2OdFL3pRc/rpp2fb3HLLLc0HPvCB9pwf+chHitdWUVHxyFGNkYqKSQ7GB/kuo+RlL3tZth01yaWXXtoWkSspbBBBv/3tb0+XEr4PuUk++MEPDl7fG97whma11VYrtnn+85/fFssLYmkOiveRF+cK5cWx9MViiy3WJnVLAb/k4x//eHPTTTe1/77++usH76OiouLho6ppKiomMZBLeTtyChbhiPBujKp0CVXOEBBgn/CEJzzq7YRgKGZ4NUow9bl/99zthxRyqqKKiooyqpqmomIKgzxVOnSejtKijEtyyimntCnac4YIDoVcI9pAyhBxvptvvnmadPF9w4FhxODpp5Tvtwsjoe/d6LdTcC+VE4RyJu759ttvb44//vjkffH+uGdhm1133bWdLHPAGzGp6quKioqZgLEJgKqmqah4aNhuu+3GFlpoobYI3ve+971km1//+tdjT3ziE9t366ijjsoea4899mjb7L777mN/+tOfsgXunEvRuV/+8pfJNtQyiy66aKucueKKK7Jtdtxxx7F55pln7Ljjjsu2ofRRcI/6J9fm4osvbovu+eTmjgceeGDsGc94Rnt/++23X7aY3ste9rKxhRdeeOwpT3nK2M9//vNku4qKiulR1TQVFVMUFC5f/vKXmzvvvLPNl4EjkavvEqoaKppuno+uN+MrX/nKePgj5z2RBI3HQ7IxpNScJ0KiNZ6Ll770pdk2K620Uls7h/ol1yb+3nlzbXhy5D8R3kG2TeHEE09svwc5WBQFTEH9ml/96letZ2f77bdvw0AVFRUzEGMTANUzUlExGu688842R8gcc8wxtu66646deeaZY//4xz+SOTce+9jHjq2wwgpj559/fvZ44V049thji+f97Gc/O/byl7987G9/+1ux3bbbbjt29NFHF9vwVsw333xjd911V7HdCSecMLb44osX29x+++1jL33pS8c23XTTbJvf//73rfdHf+y1117JNvKbvOtd72qvy1x0wAEHFM9bUVHxf6iekYqKKQaeC3k0ZCv9xS9+0Up1X/e61yU5IxQ28nLgS6yzzjrZY5IC453kco50PRGK7w0RW9dYY43Wy1ACIqkCd/PPP3+xHSnvdtttVyyUx0tz2WWXtR6b++67L9nGeRQMvPHGG1vPyB133DFdm6WWWqo59NBD21T5PE/65Nprry1eX0VFxeioapqKikkCYQkhkFwSsoBXXttRlClCLxKXDUHYYui8M6OdMBJDyH0P3bNjjnIvo6p2hhQ4FRUVTVXTVFRMJeB78IAMLeDf+c532sW7tNhSqQRyi3d/DzOK4TAz2ima1zVEcnsr9xz34v5KezB9I79Ijo8SYIikeDYVFRUPHdUYqaiY4BBakDJd0blS6nWkVqGNT33qU9k2PCZSwR9zzDHFcx5xxBGtzLW0qP/kJz9p5cWlNiTBEpANLfw//vGP22OVIMyiAF4QUlOQWVWStUh7n4IQl8RvW2+99XQy5ADJ8Jvf/ObmPe95T3PCCScUr6uiomIEjE0AVAJrRUUaf/nLX8Ze9KIXte/H0572tLbwXAo33nhjK0vV7gUveEH7dyl86lOfatsgal511VVZ2ewSSyzREltzsmEgzXWsU045Jdvm7rvvbovW5WS14L1faqmlxpZbbrki6fXVr351e75vfvObyTbItdtss03bBvE1Rex1bwcffPB4Yb699947eaybb755bLXVVhsvuocoXFFRMT0qgbWiYpKDzPS1r31tc911142HNtRc6eP+++9vtthii7Y9ma//T4UXhC8++tGPtm14T1784hdnE4CRDX/+859vCaklToXU7DwMOTzzmc9sa+aUatOIM3/uc59LFvfrhkzU05HuPqTIfSDX7r///s0222zT/PznP28++9nPJj1DCyywQFt4TwhIP6SO97znPW+cYIs4vO2227aE4YqKioeHSmCtqJiAEIrYeeedWwNj9dVXb2u7vOQlL5mO4+H1fu9739uSNy2Ycnjk6s7Is6Emyxvf+MYi0dOir7hdLldINyy03nrrNfPNN1+x3Re/+MU2d8cQCZXiRRhmqF8YHHKolO5BrZn//d//bQvw5Wrs/PGPf2zOPPPM5lvf+lbbN6m8J8JLlDUUO9Q1wmRyu1RUVDy09bsaIxUVExB28BbbUkG72LV7xe3yR1GmjNLOMYcMh1nZzv36jNJ21HseVd0zqhKnomKq4N6qpqmomLygnBkyRB7KYgujthtlkZ+V7UaR+j7Ue2aI5MisXVRDpKLi4aEaIxUVEwyKw333u99tORklHH744W0isiElzvnnnz94ziG1Sxg+jyZ4P3hLhq7pt7/97eBxTj755EGPhwRrf/rTn7JtorDfkUceWVQQVVRUJDA2AVDVNBUV/4evfvWrY0996lPHVllllfYnlUxKEbL//vu374wU59dee23yWA8++GCbwn2uuebKtoFLLrlkbIEFFhi7+uqri9e29dZbZ5UsAaoTih/XmAOlylvf+tZiG3MBZYx09UPXtPnmmxfbbLzxxmOPecxjxs4777xsGwUAqWaWWWaZtsBgCq95zWvGn8uWW245dt999xXPW1ExFXBPVdNUVEwe2OHvt99+zeabb96qYyhovvSlLzVLLrnkNO14Cvbaa6/mIx/5yPi/f/nLX053PL+Xb0O6dyTYK6+8MstNkXODkqWU/lwKdXlAHGsoF4gieKUQk/jy2WefXWzDC0HRc9ZZZ2XbKGzHK/LVr341WyjPdd96661t/1IZyY2SIrLqc33GK7Xqqqu2f9PHUUcd1V67tmeccUZLZJWzpKKiYhiVwFpRMZtDYrDddtutufrqq5tnPetZ7efZz352s+WWWzavetWrxtvhNLz//e9v680su+yy03ye8YxnTHNMklUS3de85jXNq1/96raabk4RQwasNo0KuDkwHshdU9Lifju1cJ70pCcV26n/QoJbAkOJyuV973tf0XC5/PLLm9NPP705+OCDk+dliOgz0lx9Irylf7vnkSyNIRUf4RrqnuWWW268HSPk4x//eGsk3XXXXc3vf//79m8liCvV/6momMyoapqKikmCh6IiGYXUGq/8qG1n93YwO1/jqM+vomIyYtT1e7QCEBUVFbMMD0VFMiPbzYxjzqp2s/Lc1RCpqBhGfUsqKmZzcP+PAiGGIVDgCB1UlGEXNwT1aUZ5NtpMAAd0RcUsRTVGKipmUyCNyiSqGBuiqU+OUyIbK17JVVddlT0e0uUqq6zS/OxnPyueV+G3FJGzf07kzyGUitY9VAwdC/cDn2PoGHgd9913X5Ecqz9xQnJGBKPuxBNPbDPRfu9738u2kcEV12fNNdccyVisqJiyGJsAqNLeiqmGc889ty3mFgXbHve4x429+93vTrZ7znOeM96OJDaFs846qy2kp812222XPe+RRx7ZtllvvfWybUhut9pqq7Hll19+7O9//3u23R/+8Ie2iJ8CdSW87W1vy8plA0ccccTYRz7ykWKbo446qi0G+LOf/Szb5tvf/nZ7fyTNf/7zn5NtrrzyyvH+3Hbbbcfuv//+6dqQOUd/+uy5557Ttbv++uvHnv3sZ4+3IR9+17veNXbvvfcW76OiYjKhSnsrKiYgfve737USU4XaFHOLbKt21+qodHfd73rXu1rFCTmt+ioUM111R5An1WD54Ac/2CpdFK5baKGFktlEFYT79re/3UqI3/SmN2XDORdffHGr0KGMKWUcvfnmm5uTTjqpLVBXwoYbbtgsuOCCxTa8Ps95znOKbdTUUedGArNcAjZF8D796U+3/USFk/KQkB5LcLbuuuu2Khp9TCHTBbXNwgsv3NbdoURyn2oEeU4B5yAtVswQXJPaNUsttdRgMrqKiqmGqqapqJjN4JUUomFw+DA2yGqf+9znzupLq3iIEBYSHlNV2OcpT3lKKy8epc5NRcVkQFXTVFRMUFBpWLB8hireVsze4Dnqe6sqKiqmRw3TVFRUVFRUVMxSVGOkomI2ATfm8ccfPygDlf3zox/96GChPDyHL3zhC4PnTaWL72MCRHMf9nXjdQwpdaiLpJ4fOh7uyKWXXjp4Tm26/JKKiqmOaoxUVMxikMgioyKWIji++93vbjbddNPpcl0gt5L5Ik4ipe64444t2TJViXfvvfdullhiiTYFeq7SrHTlO+20U7PeeusVq9Hedtttber5P//5z8X7uOCCC1rJbwn4LyVZbffahoBAO2REHHTQQc0xxxxTNCKOO+64NpTyrW99K9tGbRvk35VXXrn5zne+kzzeIYcc0hx99NHNK1/5yvYjvXy/HRKy1Prk0yuttFIr+VXTZ6j6cEXFZEc1RioqZhF4JKg2nv/857c1VizSUdyNWiUUIRb4d7zjHc2iiy7aHHrooe2CzgihDPn3v/89fjwKGYud4zFWLNQW9W4bsEAq5GYxpD5hbKg/k8IPfvCDVqXimnxyoDqhECkZNeBcjKUSXN8Pf/jDwTbURscee2zW0PB7hh4D4UMf+lBWHSQ3i2O97nWvaw2FlNH161//uv2poKA6Mwy4UDsFKIIU1QvPh7o/L3vZy5pLLrlkvA2D83GPe9y4V4QyaeONN26WWWaZtvDhRPVAVVQ8UlQ1TUXFLIQxTQJ70003tR8JyXgzyD+7YFBYWFWBjc8aa6zRymL7YNTwooQBsdpqq7VF7FLw+gv3SFk+VLxuMsL9ewZULoyEXBuVf0mUGRw+ZNSPecxjput3EmrfL7bYYq1R6Ke5q3+8d77znW37pZdeujVE/PSMaur4ismGWiivoqKioqKiYkKs39UMr6ioqKioqJilqMZIRcUsAo5Hn8+RAu7IkHIGODmHCKQVMwaeiR3fjCx0qCZORcVURTVGKioeRSBRUm1Qsay11lotR8DC1k/PTl1x2WWXNW9/+9tb/gjSaiqFOwPkxz/+cfOBD3yg5SiUirHJBPqRj3ykTfleAm7Kdddd96gWwZsR0D+5NPDda6b6KbVznD322KNVueRIrxLTbbTRRs3mm2/enH766Ulj0TN0rH322acls5Jt98mx2jiH5yiNPX7P4YcfPk6YraiYMhibAKiF8iomOhRN22GHHcae/vSnT1M4zcf/77bbbm27u+66a2zvvfceW3DBBcfbxWeXXXYZP96DDz44dtBBB40ttdRS07Rxji7+85//jH3xi18cW2mllcbb7LrrrslrvOiii8bWWmutsTnmmGNsjz32yN7LzTffPLbxxhtni/J1C+Wdeuqpg33z2te+tu2fEm655Zax8847r9hGgbyFF1547POf/3x73yn89Kc/HXv84x/fFhf88Ic/PPbAAw9M1+baa69tCxPqq3nnnbe9z9/+9rfTtPnRj340Tb8r0LfNNtuMXXfddeNtbrjhhume4WMf+9ix9ddff+ycc84Z78v4znV1266yyipjRx999Ni///3v4n1XVEyG9bsSWCsqHkUpr125z4UXXtgWWDvllFPalOHzzz9/K9UF8tjvfve7bT4LH8nL5KyQN6RbLI5b//vf/35z0UUXtR8S1VNPPbUttNcFL4CkXWSkyt0r3KYQXs4rcvnll7fv2wYbbJC9F54AEt1FFlnkEfeLY6nbMiPmCXOEGj48FymQREsE94pXvKJ5yUte0hYhTLXRhy9+8YtbxRJvhWfVhb5fYYUVWo/V2muv3Xq5XvWqV7U5YALqC5H/khV7fo716le/uv3Ia8IrFrVr/CSN/vjHP96suOKKrXxYob5VVlkleY0VFRMFVU1TUTEbg4Fw7bXXtpJORfCGjBiy06FCed4TeUUYLRUzF4wQoZQXvOAFWcMHTK+MRBWTh4yKa665ps0lowJzRcVkQTVGKioqKioqKmYpqrS3oqKioqKiYkKgGiMVFTMR0qx//etfbz784Q+3HIIccAauuOKKNo17qXAdRyYOiYygUrWXQKVBaVPlvo8c+jFSvefg+X7+859vwzJDSiPtcETuuuuuYjttPve5z7WcnyGlUEXFRMZjH84fffazn21rYHiRkLiOOOKItgZDDibDfffdt51ASdui0FeJIFdRMVHBSFAzBRFUencgz5U+HBFy7rnnbiWh+B2f+cxn2vb4AowHbkxyT+nGtcEn4d70ziGrqmkSReS8g2rYhOtTzhK1ZkiCSXNvvPHGln8Q19A1aM4999yW0CoV/e23397Kjbvk2MCPfvSjts6KtPJSmCPapoA/4XzmgT7Zs0/8lKqeDDkH/eCa8DFKYLyRzq666qpZ3obnEERbxf5SKd/32muvlr/jGUnNrhZP/x7Id5FL9RH+h3mPPHvxxRcfb+M5Mhz0PX7I8ssv39b/UX8ICRbUqdFP55xzTvsB16YA3yabbNJsvfXW7XP+6U9/2s6bSgRE5WXPGaFVXZzdd9+9TU9fUTFlPSOnnXZaOyntv//+7QvspfRy5IpfmVgww00uZ555ZjsxqqKZmvgqKiYDLCy77bZbq7LoLmqKv1HPWNTsnJEV3/KWt7SVW+ebb762jUWMJ0UF2PCkiLda+Cy6oTqxqJ544onT5Ld47GMfO64C8XsLNcOmn3TLwk39YSFljDAOcnjhC1/YGkRybpQStFECyXEylMTN4nrkkUcW21isFbcbAgPOPFIikDLeKFr0Xa72jD7izaBusUFKGVOR4IzS6VnPelZbVK9riIDn1vWeIBJvtdVW7bkDZ511VmtcRJ8zUBkt22yzTXtM9+I4Rx11VKvA6c6r1D/bbrttq4SqhkjFpMND1Qy/7GUvmyYHAT2/nAhyHqTwuc99buz5z3/+2D//+c+xh4uaZ6RiouLvf//72Jlnnjm23377Fdv961//anNP7Lzzzu3f5OB9O//888e23HLLsdtvv32w3b777ls8r3byi4xyH//973/HJhpKfRn4yU9+0uZ3KeE73/nO2CGHHDL2xz/+sdjuPe95z9gnP/nJNsdKCccee+zYJz7xienyl/Txve99b+yjH/3o2C9/+ctiu4qKKZVnhJfDzoyHY9NNNx3//Y477ti6FFn0fdhpcBX7O98/85nPbN2W73vf+6arehmwa+zGXO1KlN6uapqKioqKiooprqbhgkSi4qbswr9zRKzbbrutNV78nbj0fvvt13zyk59sDjjggOx5DjrooPbi48MQqaioqKioqJicmOlqGvFYpDfs8Ze+9KUtQQuZVUw0B3U2WFHxoR6oqJgIuO+++8bJqEMwtrUfBRMgHVDFI3xueCSjKGZuueWWdk40t1ZUTEk1DYa/0Eqw+QP+/exnPztLbEMc64ZkZJ3kSTFhp7ISSo/tU1Exu4MqhfzSAuFjQUEORVTsju3rr7++JZyS7cbnSU96UkvW7MJ7cdxxx7XqFAoWH+/XSSed1KYT76pSKGe0l75cmNRPqd6RYgMWLNcSXk2fueaaq9lhhx2mI35SgzCOkGm968973vOS5FCE0Kc85Snj6etzcE7HKhFMAcF2KAttyKSFeUsQ3iWDRfZMhYH1kz5FRPWRmr1/bjJeqhd/7xPE1i7p/je/+U2raPEMQyHlpxTuCMQBJGIF9RgPCy644Pjnla985XRqQsTeT3ziE22/Izf7UCdR9yAng+dHrWNT59xIslRHFD5ve9vbahi7YuLi4RBY99xzz2kIcIpO5QisH/jAB9riVd3CVf/7v/87tsACC4x8zkpgrZhdYVyfffbZY6uuuup0RdGe9axnja222mptsTO49NJLx9Zdd91p2jz1qU9ti9gdccQR0xAqN9lkk/E2Ctctt9xyLTGyi9tuu60lsnaP96EPfWi6a/zd7343tsUWWyQL7nXxpz/9aWyDDTZo27zmNa/J3vNf/vKXsRVWWKFtmytIB7/61a/Gttpqq2IbOPjggweJpueee+7Y/vvvX2zjOTz5yU8eO+OMM7JtFNtzf/PMM894sbo+fvzjH4/NOeecbTvk/LPOOitZcO/Zz372eJ8utNBCY6eccso0JN9bb721LTzYLY5orjQegtCPmKqvn/e85003dg499NCx+++/f+zOO+8c23DDDceWXHLJ8QJ+8XEfyNF33313sW8qKmYVRl2/H7IxogrnE57whLETTjihfSHf/OY3j80999zjbPTtt99+7P3vf/94+zvuuGNsrrnmag0YVTW/+c1vjs0///xjBxxwwAy/mYqKWYnLLrtsbKONNmqNhptuuqldHA877LCxb3zjG9O0++EPf9hWqn3DG97QKlk+85nPtG370G7ttdceW3HFFceOOeaYZBu45JJLxl7ykpe0C1j/XF187WtfazcBueMAw4F64ytf+UrxXn//+9+PXX755WNDYODMCFAbDb3/KvAOVfZ1DHMUQy6HP//5z62B+Ja3vGXsr3/9a7KN+2IwMn4+9rGPJav/Os6BBx7YGlHPeMYz2rHwt7/9bTrD7iMf+UhrQH3rW99qjZXDDz+8rcrcvWYGx4knnjj2gx/8oDVOlllmmXZTd9999xXvt6Ji0hojYBfHklfymqfEpBlYY401xnbcccdp2n//+98fe/nLX94aMWS+XtCHUha7GiMVEwmjjlOLyii48sorB9swIr70pS8NeiEsfhbJIUxEGe+oGOXeSsZK4IILLhj79a9/PdiOYXrvvfcOtuPdGEWKzFB5JKkSKiomvLR3VqEWyquoqKioqJh4qIXyKioqKioqKiZvbZqKiqkGDsRTTz21redCJeJD3SGV95e+9KVplBtquUifTpliV+AnRcbxxx/fJgDsqlIck+JCGvX4ufPOOzfLLbfceDsqmZNPPrk9hzTglGZ+qu9CRRHw92eccUarDqF0oXCTA6ivWHMvF154YfsdZVsoNVKgTHGeIbULtchzn/vcQeWM2lTdPnik7e644442D1HpvO5XjR11Z0pp1KmWtKPE6dfgcQzPgXqJYspP7fRfwLP+7ne/26bxp+qJn8ZIVwlFEUM14x4pDfW/D1WMtPDde/n0pz/d5meigLKr9FNtr35tmvPPP7/9HRVUfDwPdXdy9YQqKmYrjE0AVM5IxewAJMqjjjqqJYqGmoHagmIEaRWBVTwfJ+H0009vFRbRjqIMsRtJsTuOpWzHo4p2884779hJJ500nToCL2vxxRcfb/eYxzymTRXex/XXXz/N8agvUmqQW265Zey5z31uy+NCkP3617+evOef//znLel1m222Gbv44ouzfXPNNdeMrbPOOi1hvQT9N0R8xXt54xvfONgGgROBPgfcGOTQF7zgBWP77LNPlkOz9dZbt/eovz7+8Y8n2+C8ddVNeG997glyKs5ctKPIoW7q8juMIeNk8803n6bdu971rlY5E/dGUYWbhxDdPe9uu+3Wppp3bs/m5JNPHnv729/eXl8ogHy22267mkK+YvITWB9tVGOkYnYCMqJFhpKC/PId73jH2CqrrNIu7I997GPHlWUUFtr5/Q477NDKM8k8LRrdRVu79773va2BwTBgxFh4fvGLX0xzXsqJN73pTe278LSnPa39SdGWUnp0JcTXXXddlqTJSNLG4peD2jrugZKjBBLVL3/5y8U2FD3UIiWoubPTTjsV27hHfV66Jgv2q171qtZAYATkwIjSB55lDiS62nh+OUmw+4/nwiBE3O9j0003bfvSOY2VF7/4xa0h1wXDz/N/0YteNLbXXnu1EmIS8WuvvXa8jfHkPIssskhrTFHqUACtueaaY1dddVX2PioqHm1UY6SiYibjN7/5zTS7z3/84x9jV1999XQ7Zot+KM6oyBgHKUXHj370o9aj4jtGRk71wYthB89YybVxHgbOBz/4waJ6xML/+c9/flBhUjJWAn3Z6syG8w1dNy/CUDE6xuOnP/3pYhu5WpZffvk2PUEODEzeCsUOc+oZ/c34NJf9z//8T9JIMl54Y8JLEmOiC+chr+6C8TOZVVAVExNVTVNRMYkhsyoeyhDwHGQGrXhkwPN44IEHBuefUZ9LRcVUwb1VTVNRMXkx6oJXDZEZA+ThUTZC1RCpqHh4qGqaiorELvjoo49ubrjhhlahEh9qjH322WcatcPZZ5/dfP/73x+vY+KjZog6IX4Grr322ulUET4UGd16K2rSfOUrX2nVMGqYqIfiZ79Wk1366aef3iowKG/sPHI7dcoeRSqpK0pwH66npDiBm2++uVlyySUHlTPuZeicoWLpVwJ/JMejUqI4oVQpQY0XdWBKqh1qmMsvv7w93mKLLZZsQwH1i1/8oq0/RNnz8pe/fJrvOZ+pr9SzURfHTwqXTTbZZJo2+l+9nK4Ky3PdZZddplE8nXfeec0VV1wxXmvIR60gY647DiiDDjnkkLYf4vPkJz+5bafuTUXFbIWxCYDKGal4tIGPgG/RrQVCAYGA2R2HuBmUNEiJ0Q6Rsc8tEMs//vjjW9JrtJPSO5XO+6tf/erYU57ylGkUNn2SYyhx4nhIr2rFqOGSShfv+pZddtmxvffeu22TSl9O5UEpRHlSyg7r790jzkwJarAMEVrhbW97WzbtesD30q+XoI8/+9nPjm222WbZNpQtOBirr756W9cndQx8HUod/al/KVP6mW1dDyUPAmo8+2233Xa6zKj+TW3VrSejTlAoZ7pwzm47hGecly6Ml2OPPbYluEY75FpclO494B+p+ROEWh+KG3V3KioeTVQCa0XFDMANN9ww9opXvKJVUVhs5ptvvlYF8cpXvrKtr0RKGym/lUYwTqka/Fx66aXbQpEWhoCF7oUvfGH7vYWOobH77ruPXXHFFdMRRiklQsbLEEpJa8lkoxAbA0btpxROO+208UWJUZIjdVIGhWRZobcULMyujRzWfedAUvykJz0pq+aJhVM9FteXg/ORuFLF5MAoDKURYy53nLe+9a1tG7Vi+gTQuB7k4Ogr6pRUinaE1vXXX3+8nTo2/RIXDAnSYvcX7dT96ZJMyY+pi2Ls6C8G8Kc+9anxdua94447rjVOGD6ufdFFF23Hj7pG7ouRohyAujsMSoot41afqQ1GJvxQSnBUVMwoVGOkomIGwWSvUB3lg/8nnVQcjdySsRHwvYWMOkPNkiOPPLKV2FK1dCEXCQOE8kZBOjt5eSb6sJhZTHgY5N145zvfmbw+xs4zn/nMdqfP85ED6SqD5d3vfne2DY8Jj82HP/zhYp8ccsghrRqkhBtvvLH1VJRUNjwE8qrcfPPN2TYWUTlV5NQogUHHaCvVbfHsGGMKfubAeLLYaxeqlpSRyiBdbLHFxt7znvckVSy8YwoY8mQwalJGEkUUo5VhS0Ujj0hfmqv6sfMYIyo/6w9elK6xyEulXtiuu+7aFt2L+kMMwlFrIFVUzAxUNU1FxaMAr88QdyLXRqy/m7k1BVwV3IGhbKR4HDgquA2l6zjppJOaHXbYYTCrKS5FCaNc+6zAKNc1StZWmVRxRIb6QebTddZZZ3AMjMqLyV3/IxlnFRUTYf2uxkhFRUVFRUXFLF2/q5qmYkqDWuKTn/xkq3KgIonPUkst1WyxxRbj7djsX/ziF5uf/exnrVzWZ+655249FmuuueY0u9nvfOc7rdqB8iM+VDH9+i433XRT8+1vf7tV6fjkaruogfO1r32tecUrXtG2y8lH3Yt2durzzTdf9p7dix39q171qunq1vRx9dVXt0qcoR33Lbfc0ip7hnD77bc3iyyyyAxrd+utt7YejCFJrevjmcipjrq1eLQpeZh4LyhsPE/qoxwoY7SjhFpvvfWSbe6///7Wq/XTn/60VT7tuOOO0/S1c6mDQ0kUn3/+85/NnnvuOY1ai4LIeJJXJj7Gg9o0ahQFfvWrXzWnnHJKWzcnPo632267tTV0KipmGcYmACpnpGJmwriK9Nrxwa/oK05kWJWeu9suxb/AK8G56LaTljyVlbOroEA0xC1IxfgRGLWZZ555WiIjpYQsnH1QryDYrrfeeu3fSJueAsKo2jTIkyllTeDEE09siZoImyXIYDqUxRTe9773tVySIVDODBEu8XL0Vwm4HOrh4PeUIK08kizSZ185A35HlUT5g7i76qqrtuOhC5whvBZkVrwbz0vK+r5iyjXhHEUqfh9lAPrKGUBK7dacQX5O1ZzBuXnqU5863k49nr5yxnn9rlu7CM8kVeOoomJGoRJYKyoeIizQFntKEooFagV1P9Rm6S7Y/k0y+cQnPrFdKFZYYYVW/dBXZ5CQUkeE0gVpNbUQW/ApZkKBQxGTIkQ6R3exyclhuwaThTMlC3b8tddeu22D/KrwW8ooQbade+652/4ga87h29/+dis3dc8lIJi+4Q1vKLZB4HRdiJs5IJZamBldOSASM9wcC5k4BQsxQzEK1nXrvwQYHTvuuON4n6oVk1MjfeITnxhvZ1wEkbRvRIWqJ6S5fUMVsRdxOZRXPgy0rmHDWDvvvPNalZexGMaIMRtzpedMmUWmvuSSS7b3GMd8/etfnyXoVlTMKFRjpKLiYYBX4qCDDmp3uRdccEGbS4KclzFhko9qupQMFC5UDJQldsI8EhtvvPE0CxVDwC5atV4eBgu2xadf3fbss89uDQeKGUYQFUbK80Eq6nu7ajvclHFDTcITEDlKrrzyyuS9kuVGHhWeoFxdkz333HN88UrlRQG79fAElBY4HgDGXknhwZjSlxdddFG2DXWT86lYm4M8LI9//OPb/soZbp6n5+tY7jMF/aLAnTaui4ckBR4RRqVFn7GYkg5TX7kmY4Jh5tOXDlNkMQDljvH/DAm5X7oeGx41kmHjkqH03e9+t/WKUS/Fc+QRWmqppdoxx4PEIGOgySczSv6XiooZgWqMVFTMIDBMLGxc9N3CZt0wggXAos+Y6Lvvu7tjRsz73//+pNw18pFYIBkdvBK5sIPvUqGkAIPIIqUIXs6AANdCepwr7AZc+wyuUmIyCyWDKuUJ6IIRllqku9DH2uVCTNEPDLF+fpY+FI9jXJbAEyUJWsmI4vHRl4yAHE455ZTWC6Gqb9/Y7IZdGFmuX46aVCiKp4zkO8Zaqk+1OeGEE6bzlPTbME6GQmwVFTMTVdpbUTHF8be//W0akmMK0sojfw61m8iy0VGuXbr2ZzzjGcU2yJ7IqBO1HyoqZgWqmqaiIvFSHHDAAe0ibeGhOPFTnZUXv/jF0ygYDj/88FbFIh9F99NXqZx22mmtooP6Zumll24WX3zx6erIAFXFD3/4w7ZuCQWGGiEp3Hbbbc25557brL/++s3zn//87L14sb/61a82m2++eVYhwsBwLxQ26qCkarWoaRK48MILm7XWWiu52HZ/R2Gz4oorNkO48cYbm2WXXXawHYWSZzCjjkedQpkU6qWc8eC87l/bkiGi5gyDpqQ2idoyFCz6MIcHH3ywzWHi+W233XbZY6l1Q5F19913t8qZ/rPThsqGgsb9+v+99957msKIruXOO++c5uN4atMYp4G//vWvzfe+971W/cMo89OHsueVr3xl9l4qKmYoxiYAapimYkZBiABnI0iBOACyWvaBQCgzalcRk3LRc6XjjkQbnIGdd955mnAOcMsHsVQbNU38OxVC+dCHPjROUpWeHUkxFdZBlkSQlQIcZyClAgniK37JF7/4xaJC5bDDDhtJOYPHIGPoEIR/SryPAELr0Dld98orrzx4LGGwF73oRVn+SzfUheeT67Pg1OAJeQ790Fs3HEbZpM3iiy+eDHfdcsst7dhBtpXO3bMI7lEXiNH6PzgslC4p5YxnjVDcJdSmas74W5lko53jppQz7k022a6qS5ioomJGoHJGKioKCxtCoDGFKEhhQHUhXXc3lbiFKtr5zD///GP77bffdAXiLG4W3mhnYkd+7S+I/r3HHnuMt7PQpRYv7RRn6xZMS41919c1rNTESak8LDYWSm0QGqVCTy3CpKUIrdQ13/jGN4qF8oL0WgJCKHVQbiEHRhsFk5TpJeA+OGffyOsvvkifUvDnwAhAMnYsvJwUpGjHtwlJbSqNu2fEGAwVFKM2RxSWnj2OZbzl6vngmiC3aoecmiIwI6Aaa1Eg0XOVRr4LfeSakVZjbHgO/eNJV09qzZihDkN0XW655aYr8lhR8UhQjZGKigEgXNohk3NaOC2KDA41QBS06xIB5RPxkxrEwrPNNtu05MiuwaFWy2tf+9r2WHbAip99/etfn6YNI4DqYvnll28NA0XNPve5z023yFJYUMREYT7nT5FVyURjJ23xyZFDyXJjYVK/JEc0VVE22u2///5JDwMvRrRRgC2HXXbZpW1j0c7BTl0bapUcLMBRDDBHtEUYDS9AvxZQt55MFK2z8Oakw4wt3oEwLFN94HeeWxgjvCMpMEp5QngycgohpFdVkBki+oGqijelC9dqXJHwMjr1KcVV93n/8Y9/bH/Po6K/kKkpfxw7yMc8cV/4whfasRUqG7WBjAceqlQ14YqKR4JqjFRUjICuh0AohCLi1a9+dTtRdxe1mKQtQhJk8VxYXChsugi3ugVbATW5H4Rt+ue88MILWwPEgsYA4iVJeSp4BCwo5KI8JCkohsaAsrBYPFNw3YruKSNfCmPIF2JRtLCXCs7ZkUuaxpDLHYsXyHUz+HLhEOoS4ReeiJzXg8dBjg2hEIZJCvo7DErPMIdPfvKTraFogc6BSoXRwsuimGHOuPNsGag8Man7+853vtN6mkhzGReMgD4YtAwauUJ4OBhVfc+JPnYcz4+qS39TGnXnQ8oihorQkzEV4T9jOvpVCMs1u7d99913Gk+J6y+FtioqHi6qmqai4hFAOnJEV6TUHH73u9+1YxJ5NYc///nPLSmwlCpdITyF1Lqkwr4ShJLD+RZddNHsMRBWtUG0zaU6dw7vUzdFeBcIryeccEKbCr+UOl368iWWWCJJig24Zqn1ZxRcm08uhb2+QryU3nzBBRfMtpEaHul4ww03TLaRlh3RU+p0hONcG4RQaeP1/VxzzZVs4zzIuTlFjzYIsiussEL2vrW56qqrstcSbS699NKWcJoj7LoGJGVlAGbHIocVkxO1UF7FlIbF/UMf+lCrbFF51ccibTF+5jOfOc2CSWFjkWNUWDh8uqoE8JoceeSRbc0PtVp85p9//uS5zz777HYRMulbZHIT/zXXXNP84Ac/aBUxucUTfvOb3zTnnHNOq77o17fpgvF0xhlnNNtuu23RSHAvFDabbbbZoEz1oosuau9jqB3lR2mxDFx77bXFei4Pp91yyy03WGOH6sQcUupnoEz597//3R6zBAaEsVBSm+hnCir1ZLbccstiZWb9bMy89a1vzdbZYSBRvbiXd7/73dMooQIMsRtuuKFVPLmXd73rXW1dpP75fvnLX7bfUxQ571ve8pZ2THfbMNpUOPZhePm56aabtuO1omKGr99jEwA1TFPxcCBksuyyy47zG7jw1fDoQ6xd+KKrsEllqJRobJ111hlvJ0yBK9B3byPIyqwZ58QDkP2yr2Txd6HEUROFmiXHYxAOQjKUcTR1DwGhJeEMaoiS2x0xl3IjF/boJkXTdsiFT/WTInr24X4l+xqC0Ecp6Rng0CBmDl2b8+FtlMivobARwkgplwKej5CS0FpuPjJO1AXC6cDnSfUxThCSsGMhtRoniLN9CBN55oilxokxEMnxuhDaEe4KAiyCK9VNisBLyRVjWHsqnj6M1W69JqEk4Z+KioeKyhmpqPj/x84GG2wwbmQstthircyyP5ZwQqKdDyKqtNmphcZCGe0s1qlxaUET4492uAopaPfSl750vN2b3vSm5GLo+lx7tEOgTRFaEREtbtpYnHKpy/EHQiFExZEDPop2CLSlRZ8qw8Kbq9kSwFdB4C3BwuqcqcW0CxwRi2kJFm7X5VnkwBiNdO94LinoVxwgfBPtGI45LgnDIp4T5VKO2CpVf5BpkWZTQFBGaA3DIdUnngv5dxTAkyL+4osvnq4d404Bxzgvw6Z/PMdCKmZMUwB5Z4wn11tR8XBQjZGKis4uz87dhK9KLfIlIh9vQ1fGiLBppyr1OdKpiRghFKmzuxAzFhAgtUUYtNhZnPpGBAWDYmnUDwiISKoWl9Rum9rCIoI0mcvNwbCwcIVxkCOF8tbEYqg6bL/2SaBrLJG5Diln5EXJGSSUN9rol1wb/Ru1Ykqp16MWTin1esiLLag58CqEYZBT2CB+6vO4x1ShPJB2PuTR1Co57wnjJ3KAUCal+sK9U65EoUV5W/rwbNXfMbaMH0ZQyoPhuhT68z0Ss7o//bw5DETjxZjnYeH1Y6hed91103lzjFfPiAdLXSX1iEqeuIqKIVRjpKKih8h3YaJXj4SHw+IuXGFxC0WBnXIYCVzkEotxuVsMwgCwGFFIMHSoJCxoPscff/w04QALweWXX97u9uUEsSDIz9FXqjBAyIDlMWEEkWWmFjxGFWNJLhBJ2VJJ03hMhJBIiy0ucT99SILGSHJNqRBBIErdk4OqqJuCBVUbC2zOnU/CGot+zrPgHY/qszvttFOyDZVRGAb6IQX9K7wU0ttcCMnzZhjoB16bHHi23Jv+pLbJ5RNhaDGmjKlUYjOeCOPEeCIf51HqGyyMAGFDHgz1cIy5fhIyf8t74f5IqKMWTjcE5pnuttturXHheKTsMX71IShYqHgfo4chI5ldVy5cyhFTUTEKqjFSUTECTOq7775764rOZQE1OVvY7HhzBdAYDjKdSiCVSlYFFh1ue4t7KvFVLErknrgQ3Z1r19CwQNx+++3tjjlXKI7RwFBhcKVc9nEsPAm74FyYAIRVlLy32ObgOAw3Bk6Om+FaP/3pT7f9lLq3MN5IYoW/cos+A9AiahHOGSwRlrBgC2n1E9V1PQIRksudz/3InioUwlBIZbH17HiFjj766PbfOc+Pc5H6xiKf8pyQMQvXhcGQwute97r23rr5cPogFyZTj8J8KeCFqLRMDl2ScldUPFxUaW/FlIE6Hh/84AdbdQslDBmtn1QEXWWCGhz77LNPM/fcc7e1aF70ohc1iy22WNumK0OlpjjwwANbFcxqq63WqkTIZtX66NedOe6441pVxQYbbNDKgP1tSsly3nnntcqFbbbZppl33nmbxz72sdn6KxdffHGz/fbbJ+WiAXLhM888s9l1112zxwpVxMknn9zWGUkpYrqSU7VuUgqbfsG9Cy64oFlnnXWmaUON1FcNXXLJJSPVNrnsssvafh6C462++urTXF/qvNddd12rmgm1U65gIFWK+19mmWXaf+fkt9qpUzR0L6TTxqI+zMH1Urr86Ec/anbbbbdkG2PIdVDYUFt94AMfmG5Mea5+Z270PNTF0a5bYyfGq/v6+c9/3vYz1dNee+01Llnvjnvvh76LD/XWuuuuO815yZipbHyMZz/1CzVOLSBYkUJV01RMKQgBcDNHGIAbP+WhEHoJF78Pb0eK5ImwyCWvDRe+GHvKM8AjQgmj3SKLLNISICWm6oN7nJeCW93u2E40RUCNXS8XvcRUpZotOCs8KN/61reKffPmN795JOUMD5Hw0JA6xfFyXoT+rjtV96ePjTbaKOtNCrgmnqAhhY3nhsiZ69sADwcvVirM1T0nTwfeSem8+lWf4PzkPDC8KUJFq666asvv6GdYDfAY4X4grQqvpJKu8QoJ9eGKCOn58Cb1IUzEKyTLr/GJn3L66acnvUNB4I3PZz7zmeQYxj3pthNWrMnSKkqoYZqKKQehCynWY+LdaqutkjJIC0a0w0+gMEiNLYsMmWxwIfqp3buTfqQid16E11y4J5QRQS5NHU+oItKfW5DE9FNkVZwAC5F2wgg5yewPf/jDceVMyXA5+eSTx9PFlwrqCVnpj1yoJbD22muPrb766sXFykKIkyN0U0Kks2d05qCPGDaOVwIDCfFVav8c8GyiUGIqO24YorgywXHZe++9syGzrgF84IEHJtvpz247Ia1cn+EDRTtE1xQYst3aRQiqfXg2lDIMvVD2pI4nDT8DKAx+7cjVKyqGUI2RiikJi4gYuJ0vY4RxIJaPN9FdFBkalAXIlgwTBD7E0P6OmieFeoK6xgLsWKk4PVWGBc4xGRIm9NQijMDomuyOGRC5WjI4GLGIpHazATvy8N7ga+TqqPCgRL6I3OKFDxPntADnyIvInNqQGpdUMXHOnHEGiMTaMFxyYBhFvpjSsYJEi7ybg79nrJSMB4qnyOtROiclVlS7RVzNPUtjMrxsjpviZnhGyKrGmLGBD5J6ljwqVFC8NQxbnoo+qKfUqFFfhzH4whe+MGnsIVYrIeB8iNE8dsZQF3grqkg7H0PJNWpbq/pWjIpqjFRMWTAowpNg8kYG5GEQTpFoKiZ5E23U7hB2EGYxwXNRdxdix7Do8rwwcHgjyFz7xeaEZxg51DUIsXalKZUKGS0vhoXM+VK5I1y/BdrCz9DIyVwZEIylJZZYoq1GmyMhKuJnweSyL+UCcSzvGre9wnIpWLDCsNEfOYlxeHfkUcl5R5BjIwdMFHPrQyG3MAyolVJQ6yc8FDlVjOes1k94k0oLqgVXfzFscl4ihpRxJfSCcJuC8BPvmjbCVrxUfZjXhFNcP++U8dE38ly7Z8hY2XLLLdtxRqLbvTZ9LC8MI5Fi57TTTmt/168mTL4sp45+YMwGKVv4J+B3xrg+YEghXse5ajG9ioeCaoxUVPR2u2Lx4vp2ikIufTBAuJ4ZCBQvJvMUeFkseLwpOe6EBZ+b3y68H3+PxdsCY9dpUSCp7CMWJIue687l+eDet3i4ZsZBqo3FK+TMdss5xYvEXhZiC1ouP4nj8BBZqBgQqfNZsMIbQD3CkOvD3+kjRgvZMOlpzvjhUfDcUjk5ok+peYReLOw5kBQLNbjHnCeDJ4q3gOGgEF4KFCrayFuj71PyaeEZnCReJkZvyovE4ONxkBU1eCR9487v3ReOS06irH9lBzbeGDO5Cs9yn/DMyR8i8V1qnFAoMYCNE2G9ygmpeCSoxkjFpITwi12dhUcMHMEvlY8DL4S00Y6V4RE5HxARTdbHHnvsePxd8rOPfvSjraTWIu134uNc0gETslg/97fdrl2i70PK2d/Jc4tboOQmyeXdkOnyiCOOaDOgllJtWzQk7UqRCrv48Y9/3C58OU9FeIOEgFx3apFx/xYyoRz/nzLI8AfcPyNBX0HfkGDIeC7uv+tB6kqInd9HGMTz6l63dt3rQzIWFunPAfowPCo8AAwA19cH7pDkXTxSOBI5Y0y4jcehFBoDMt+hTLJCfHKO6O8c3Ldny8A1BlPPDvcDMdp4QlQVXurfo+cqlMgw8vwYLbweUUUaPAdGSHCLGCeMaR4bIRvQlzwvkX2Yp02f4q94n1RZ7sNzcq/GAB4UgwcPq8Q7qpg6uKcaIxWTFQiI4uHhuke+S+VksLBIihXt7Ky7GVe7C0Jk4bRLF6KIybkLE/WSSy7ZtrPrt3ik8oXwsNjpcuHbpVtAUouMSZxHALHUjj8XpgCeCN4B4YgScA20HVLOWFgslCXDBbbbbrs2tDEERlAprXxAKIlBOQQhrFIitlgocUmGUtBbzD3fnCck8IMf/KBVMZUUTFHDhqequ9D3wXCQm4XXyzjMHcvYEM5DCE2FcMJo4DkLkjRDqA+qIAothgCPlXb+3QfjEc8k+Dw5oqxxwegRFop21F0p8A51FTZDBOiKqYV7qjFSMZlhFxypvi0gBx10UFKmyVsQtThM5l3OSBcWjKjpIkyTk5oyPsIQYrg4fgpIrjGRc53nwjnUIZElFAE25WmJhTImewbHbbfdlmzn/kI5U0pk5jzaMZZKWTbt2l3fUG2SDTfcsA3tlIrM6XehBllBS+DByC2mKSJtKtwQcD1RQK4UbuCdsYgjMw8lUXNOBkQKPC68XTE2c0ocYRXXFc+UFyNniHSLOArVpcATxcCMdilia1wfL0u0E5ZLgYFHOh7thDhT/cejEyReH17GIQO3YmrhnmqMVEx2MATkzxDXtxDyglig+vFyoRyLDO4Cw8BCkpL8mlgZLuShDAneitRCLexjx8u4WX755bMGCY9CKF2Ei3K7RTtQ7ey2U9cVoL7RDlcllVciFhsLfhhLKW4M8BDFAoJHksu3YWHVhqGW8ioF5LzQjrcoBwRJbRhzpfweFj7t5DzJgTcrCKs5iXGketdG7pEchGWC1JozlPA9EIqjz4TiUuBVCaOAtyNHAubVidwenmcuZb+stbw6xhDPWMrYY4gwKmJMyrqaCkM5Fo8dEjMVjevsGw64PsKYxiLOiNAP46VviAhpOo/r0meUaMZ45ZdU9FGNkYopgQhtmNxxSJA4LcZcz92JOzwJFkQxcrt9adD7hesiVk6VYBHgzk6lU+fpELfnkrbrxiXpGxsmZguqY/K2mLxT9UqMa0aVpGO8I3gQKVgAEGeRIktF6yxMjCp9kUvW5W8jZwS1kZh/Kb+HRQexMafWid07Iy7ntaFeKeW8iIU1Cs0JYeXQ9QLolxRwGCK0kavaazFmsIUXK0dajmKA+tUzyiVVYxgxApFJcS9S8LdktMaXHDLBX0olXDO2jCH8pJTR63zCj4wt4Uv33DdsGFJCRsa8n/7Ns9glKOsHY9qYQKjFOXENQlFdgwV/xFiNmjgRqiqFGCumNu6pxkjFRMeo7t7uosyTIaZPkumDGJqqA4K3YHfINW+R6coVo53dO3e3HSfDJcVL0dYCICxi8ezzHOIeuL3tNC1AfaklhCrFrpRKIyc7Ff5x7bwLSIK5NsI/pMwWjlw/4iH4POc5z2nvNWXc8CoxVuzyg/iYameXb+G3uEbYpN9ONWHJuniTeLC6fdhd7Bg9+gBRubvDj3aep4VXG16dVAgp2jIAhVZyOUWizy3mrinHtaEqYZAxFHOKFp4j3jlcHEZbKssqQ0F4BteFIcyg7T8fvA4eCd4JklrX2G/D8BWaZKx4Po7T72//5vXhCeERiTpG/XaUQb4XWiIhT70vPHb4PowQxnw3jBlE5FFQQzhTD/dUY6RiokMowo6WF0D+BYtcatKzCNhpWgiR+yysvCJCDCHT5dYPNYFQglwLsSuWB0K7kJ9aAJ2Tt4PHwI5UIjW74v4CQ3VDOeP3ZKpCB6lMqNQZZKVi6hbRXPVb3BA8AwZQzkMCjBWLIw9ODrxAQgCOl0uGZuERwnIfDLd+O4uq3+nf4CGkQhQWUHJZHotALKTdBdRi1/d4SLPfbUeBI+dLfxFmBMRCyaDTj55zKHoCDBVGIWWJxdP4SIXbeBXkhvHMclwiYPxZqBlTORgzrpmhkVtwI6W9ir05Mqg2DChjEmfGOExdOwOLkcEQRmrmpegbUjgf7k2fM7aNdWGrblhLCMY44n3xfjCWPF9jJkJ8eEPkwJ4tPo9rxLEShuT9MXZSYGC7NkaTd4NXplYBnnq4pxojFZMBJkSTZbjkVTTtLz7AVR8qAgt5ZDfVFqckFhoE1CCqcknbVZpYTfzdxYgnI2p6WDzJaiUz6y80dqSMHVwUu1nKgtRiZFEX8mH0mJRznAnXIEkYDowdawnauc+ScsbiwXtAhprjrDDCLKZIqLmFxTnCS4FTk5K+Wny6ngyejb5BxXjoh3p4qLpcGX3Q7x+/s3vv8lZSPAshkG5dolytGIaK569dqS4Ow8Z4seiXjAzeOKGeXBVlEB6xyFvYU/WQAsI2DBJjj5GUAiMKpynKGvQzp4JzCDsJJcaYZxB3IYTIkGawSMzm2rTrJnHTJgxs45sXMN5HXqyUESe8x1iMdsZWNUSmJu6pxkjFZIGJLQiG4uO5REzUI9GOAZErRsatHwoWyaRyhgFjICZnGU5zXAjtYtLlps+RS3ltoh1DJyeFDZ6GD09OTrrKOArlTClNusydJUMuwLMxxJsA7nq8jhT/pQu7e8ZSCRZoz0J+ihLcn2sbkg/HPZRkwc4pTOK8OQ5MeGIYGIyWnNekq7ARfkq1Y8TIHBsyc+qTFBhz+jaePYl26njGa9TN8fE3qXbujQcm2vmb3H3gpHTb5QxqY0nILsZTiiiLxIvUGu8YozSXQK9i8uOeaoxUTCYIS2y//fZtKMYCQb2RCnUI5zBETKji6Yq6pdJXC0nYQfNW4DrkDAicCqEO8Xu72lwtFjwB53NtriGHWGykXc/ls7AQRG0UO9+cWsSi5LrieKncKCAkFQsNHkmO1BrKGfdR2rmHCiRH0ASLVBiGqcqzAR4pbXBJSgj5aC4tfngxYqHM5QCxKPLEaMP7lIPxEYaocZcCLw/+RPRtrtgf7xlPQ7RLVXUGhkK003epHDbAOA25cikvijAZsq3wEU5MauwKzeBD8T7iF/E+pd4X74d3hWEmpON59A1b94l/ZUzysiDEMqhKcu+KyY97qjFSMdkQiyguBPewnZc8Gf1dcBAo7abtzpFG+7wEoJKxONk9mvyFbPqqAIYBFzgvi7CIiT2l3jCBS+1uB2yReN/73pcMiwgJWMCETiyGuUXTIs1VL/xTWoD1A6KuZGypzKNxDwwq/eVec8oHnqVYCF1/zq0eu3L3mctU6pnE4isRVympWrTLLarCBNGG0ZeC8EwU0/NJpZ8HnhWcDW1yXhvjRNjIQq7PUiGQgLAWPgkFTc5TJCRkDDJEqY5y/B0qKBwPoRDy5hRwZRCOqXV42hgcqbGIQ8IwVt7AvTBIUx44yjPeQYRnz6yvLnPtjE7GCu6IMeY+u2OIx8R5eOiMQ8d1P66jGiIV91RjpGIiYVQ3bneBNIFyAZsouee7apdwv2uPiGq3Jk9Ev+KuHbyJ02RNNmuiV3ulD20ie6XzSQ3fNzbCtW2HLgyD9Jla+Hk03C/3vvOlqgA7tgXV4sk4SKXhBl4Hi7iMsBaNnBveYmHn7rrshlNueEYcg0pfCYV176kLfa0vGUKxi+63s5N+3ete1/YVwyoWpW47/2+XLeTDKOlmFu22EwZjdHo+CMBdBMlVfyKa8ozwZKSkytr5WDDdg2eYgjY8cAxZxlZ/ge4as+7PeMllxsVr4d1iiBhrqfCRZ80QZtQgMKc4M8DjxsCgDHK/rrP/vBke7o9hhueRCqMwJnj5HEt+EG364SrHx0nBw2L4hJem2865eSz1k3GFNxPn83OULKzx7ComL6oxUjGhYFLjqqceoKbIkTItOFzEFgvVbhkbFiteCztZzH1GgwWaoRIVcu3wLGgWdrvOGEsmQrwMSgleCguUHb/f9QmSdobkn67VLlCoKLVQURmQ3XJ5W4hy3BVKGDtlrvacugYsCkIGKSMp4BzkvoiCOYPEAmFB510Qfuq3i8VN3R+hDLBL77dzHM8IByIWnH6tG8fyDLy3URUWeI76x+Nt6stleSO6CynDRv/3jR4E5xgreCfCA47fX4R5s3gVtOd9ELJIGVpCYgw3RkYp6yxDBCnUOMyBQYHj5P5yXB3jV3FDBhmlS+rZ6WP3blzut99+bVglRfD1rJBGkZV5ufpeQ20YNLxkQpkSsiHm8lx1icb+FkdK6M9YZ1CTCHsGkROFt4rCjOHqHXM9OFUMEp4z15u6F/fL4GIEMdCiiGDF5EU1RiomHEx04WaP1NKp3ZVFOeL5JkMSxqjNgf9BrQJqfZjAtbN7E49nANg1cmMHKDQcxzG57pH0GEYWhy4senavFjN/b0JPhSBcC9WM+DoXOKMoBQum67WoazeURt3iV6qbYuFwH1Q9OWKmhYBBYtFOVQoGRhlPi0VIttpUKnvuetccxph2fXKp62bUdLOQMiQjsVzAYtxPLEcC261hgxAp1NbvPzyGSAbGMEjVWXEfDALtGKtdpUg/hGaHL0TFGM2BESx8JtyTK7jn3qV456nJ5SUBnhchHuEgBl4KvC5hQBjLqSRp+ELGB6luVEu24HehP41d98+7EqqYbkp4z4rHhNFDhWbsxjvkPXNfDF/GmiR93gn3x3iJ97afHybgfYyEdj54L6VMvBWTA9UYqZiQEEroygFzXgU7sGiHgxF8CZ6OLkHTTjzaWfTshi3U3UqysROPdjweeCkpwl+3nQk4V9yse14LYa44nF14tGPgpBKrdRUxQ8oZhN1QYuQmen1g96xdrqJs7Go9AwZO7jkEEG59Sq55/W6hIzUtwYLo2hBqS1BZWLuSB8N98BBol0vGFqRQJE/thJ5yMl4eAoszL1xuR99V2AjDpfrENeB7MFq1E1pJnZMnQQgnxghDI3U8iz+DLdrxFKYMAuOrq5xh9PW5QVFQkLckSMjade+3q/CyOYjU/Ay01LhzDrJihlcoj/rvYMXkRDVGKiYshDjsTqk27MDs3FLP3g6PZ8IiaNJHnEtBWIKnQzgEKbQbNuiCJwTR0AScK+duEbHQc4czDHgaUrBg8EAYt0IxKYUCmOAjnwkjKJeWnUckpJIm/BTPBKhgYqHRLudJQYrVxs49R0IFbvSQQJfyRIRsldw4B2ESbYSTcv0BeDnadROopQirkc6+pF7i1Yn+yEmkGZ0WxzAcc+Bp6Mpfc8/duIxnlUtuxjCLYoU+jNccuoZtTvVlHDG6jEvjN6fAwimhIpMbx3NI5Vgx7o0PhiMvh3HOOO9Df+IpOScj2DFT4w3/iLHleUmo5r0YqipdMXlQjZGKCQsLfngITL6MDRMi93R3V2jStNs1sXO/mzwZMP2J0/c4AxJgkS/anZkU+ztk3hUuZ+d0PiGblEICsZRHg8HknClFQ7jXhQ7wBqSCz41ffBULCcOrZBjwUuCgmMxzHAT3apERRpCoLccfiZwnFi5cg1xYR8hHO2EiXJgUPJOQ1FL25K4tDCAfIYDc9YdxZnEr8WiGJLUhgY12uf5nwIXc1/jIgcfDuEDq9PxzYGTwFDCQcx4lBpBx4XyeZ87QU8PHuHBMYyQFC7v7NDbwo1I5W4wDniTjVXhF6Co1bhnDjGJhIWEx3pV+WM175/55h7SNRHT9QooS7jFmGCuKVIbHJOf9q5icqMZIxaSBCdFCyLNht0+tkgKyHslsyCNz7nETu9ADQl5uYmS4MCAsKKn8HbHIh5TXApBa+O3gEWFdN+9MyjVtXDOEGFsm7lzmVcoZiwj+C9d9DgwaIQ7eilxOEd4h7nptSt4M3gDhI2TFHLj18XRwbvBGchVoGQ1UODxLff5HwE6dceZ9R4LMPR9Zcz0fnjHPutQX7tH15UJIjCfGllBYycjgsbHgM2xzWVuF4zxDC32qBlF4MXBnwmOWU+swJrvy6VRxPiEtRhvOToyt/jh0DgojYz7nRfI3vEgMDEZvzqNGwcbwYaxonxrzDC2cFEaU55OTr1dMDdxTjZGK2RkmzocaM7awIrXazdslpkIaoRiwgxVaSOVXAIsJEqddeC7lNiOI98OkKp9EzsuA0IjYasLPyRRN0BZ0u+BS5lJGjQUh52aPBYHnI+ddAAuvOH+OnxH3YuHHfckt1EFYLCUSi2MhBtt9l8CdzwgswU7c/ZVgd66fJBArFWmLmiilNhZ9Hh3eiVw7z8O4S1Vw7j5jhGQk0hz0Mz6JsEXJQ2C8MWqoXXLAHdIHDNOcZ0s4b5lllmmfTS6JGmOSR5ERzyDOGdXCT94FRNbUtbs3hj6SKm5LqbZSCiFnr5hcqMZIxWwNCz1pH4PBgm9R6bv3uZxNTv3J0a5Y7gMLloyP3MH9dgwXC7EFRC4Lu0PGT1fqaPKTg8Tu0+4/xpdr67rXGSuMDemv+6TWOB4XtVg8xUNqohY64v0QDrA45PgLXO4WTzv10o6Sp8j9d5UqKX4A7kI3f0cf7tm9USKV3i+ESKEwyCVXk3eEgiSQIjLyPnDtd9FvZwHGL+ij287Cak5IGbSeq8WTF8mCXsom61nhCZXIso7n/oWscjD2LOjk3DmDVBvPFmk1J+XWBl/Js/VOMBRSIZyQH4eRbFz2PVKMct4QBO/g6OjDrhFPXcZw52XqljvQf8FLMn4YWYzWvtdOOx47hgcDhCHCIOkbt87Lw9jtG9ft3TWWGWi5itYVExujrt9zNhUVswCPfexjmy9/+cvNYx7zmOYTn/hEs+666zbLLLNM87Of/Wy8zTOf+cxmgw02aH/6/gMf+EBzxhlnNIssskhz3nnnNaeddlpz/vnnN0972tOanXbaqXne857XbLfdds2RRx7Z/OY3v2mOPvro5qKLLmquuuqq5m9/+1sz99xzNx/5yEeaJZdcstlrr73av91zzz2bq6++urn99tubBx98cPzaTj311Gb55ZdvDjjggGaJJZZorr322uaf//xnc999901zHz/4wQ+aFVdcsbn44oubCy64oHnWs57V3HvvvdPdr+O7h7e+9a3Ni1/84uaee+5J9ovrvP7665tVV111unN1seOOOzbPfvazm1tvvTXb5kUvelHbtx//+Mebu+66K9lG333yk59s5p9//ubd735389e//jXZ7oMf/GDbH6APH3jggenabL/99s0666wz/u+DDz64+fvf/z5NmzXXXLO99i4OPfTQadotvvjizb777jvd8Q877LDxvn3yk5/c3ts888wzXbtPfepT7f3+4x//aN7znve0fZmCdj/60Y+arbfeutlll12SbWzYnGeBBRZoDjnkkCYHz805N9988+YJT3hCss1///vf5t///nez/vrrN2eddVb2WHfffXdzwgknNN/4xjfaZ/L4xz9+umu6+eab2/Hv3ly78z796U+fpp1xf/jhhzef/exnm3POOafZYostmlVWWaWZa665xttceumlzXvf+972PfEM9Ilxasx7N8F3b3jDG5qf/OQnzQtf+MLm61//entdK6+8cjsGjVPv0lprrdWOxze/+c3Ndddd1x7L33mvPSffRd/85z//ad7xjnc0Sy21VLPHHns0Z599dvP5z3++WWmllbL9UjHJMTYBUD0jkxd2pjgQnq9dFf5C18NhZ4joFyRE3o6UG9luXQw+2onJh0SxC7tMO/NoJ96ecl8LA4idRztqixx3hGRYG25unoFuBdouuLe1cz8korkcFSHltKPNVZ0F8lw7X6GRUhhCn7nPnAIn4HxrrLHGYBIqu9hcWvYuHCtHeu1CyCIyvuZgZ40zlOvbAE8RT1dOldSviZPj1IDnw5PBu5SrSRTeMTV/eGFyxzOejG0eL16P1NgMDxsPDI8eomxK+WWs8+TEe6FdnzwKPI2evfNph7ya6j9eDM8zxrr+S/GyojpxtHONuUR8PD/Opx0uEcJ4F4jnuENxrFLK/YqJjRqmqZgwEI6w8HM9U7oIdUTJ8jBYuIC5k7mmTWIpLoiFwARtMtVOptVUOnaufcmyIm+HhSlHxFM/JiSfOWWE84bMtBReEYKJPAtIlbKB5voj8jswNnJJs0z4MZkLIeW4KMii2kiKVYrjS4KmHdJhKV8IOWdJZhrgdmcElSrjBh+FwqOEyLOSSwwGziOcol2OFAqu2/hg/OYgrBHGKEMjBWOGgRE5NqS0z40Phlk8K0TYFIRZugYwPk8Kng3uVLRT1C9nTEUV49KCz3DrnpehnAJyso2D94t6KqXGYTQaR8Y5Hg5DpHs8hi7pPsMNn8c95u6zYnKgGiMVEwrxbC3YiKAWY5N28ARM1FQTdqHygdityoHRNxCoADD5yWoZJhZ9noP+4mrBNxk6pgWfxDJFnpO1kxLGuexAKVBShov4vslX4ixqg5xHA1nSRG0xLHkNeFjCc5PLyeA6IpcJpU5kIk0ZX5GxFl8lR2QMo8UHCTPnbZH/QxvpwnNF93ADQu6byuAakF5fG4ZL7nwWMEaedjg+OUhLHtef6zNGLOlzycjgxVCWIDKPOm7OYAkDzgeROQcS7/Bi5Lwixh8vEQ8Q1U6KK6KP8ESMH0Y76Wyq3xC0EaYZybwjkZW4C++E8c+YYuB7FiTTfRgvvo/MrDg9faKya+WtYdzjljBUbChOO+208Ta4J3hV+CfhUfHel7x6FRMf1RipmNCwg+e9sMDbDfcnLIqSjTbaqDVaLNzdnXAYHnaGvC1kiIiFfSJjEDHtDBW1s1DIEpkyXJyfq5l6IeeFcHy7YBM3lU7K1e3YckfwisTknpqMLUx2kJK0lbJVMmiQby1OJaIq5ZD+zOWqAMYMw8y7JoFcLl8IYzHCTX33e59gyiDR9zlPSzdkllMQuce4LqGpFKL4WxwrJy8WqiKDdTyE2xzId40tRkEuyy4jiSeGV4HnI7eoWuSFSvRpLgma8cxwYCAjaKe8Towfz4+Hi5eCId6X4LoGcnMGBtWSfmAY9w0bz5oBy1jnufB33ofuPfAM8qzoB6HIMNa7z9L/U3XxHLp+5NW+J8y7yZvGuJNvJCVRrpi8qMZIxWwH2UpLsfc+ouIuI4HnIpXbAY8DP8TCLlNrKmZvIbfTNalasHKSYLs4RgSFT46bwDCxI7VTV1AsBRO0RYeBUEo8xlixsOCIpPgjfmcBsoPHh0mpWLwTJn+ubjvqriKiz6VgIFgQcvwMxgcj0AJbKgCnnxhRpdwjFjshDO8tT0BKYcIDwYDi/bGrLnl2GJw8MrkQAsjH4fkxXnOKH6omz4XnLJfPRX9KtKdgoD7L5avB7RC24B3KcUV40vR5jJXUc2bE8pa5x5zRZuwz/lxXpLXvg+HBAGGI9LlX3Wfs2eoDxljqul0DbogwFs9bSs7s2AxqkmFqLPlo+sare2Xcux75ZShnRoWxIQxZU8ZPfFRjpGK2g52vxdcukpFhgexOmFHszmTb/b0dGdmkOHMqtKGtyd4O3KSey3VhxymrKsMllyjL5BeS4JCypiZr1X1N6PJm5IDrYSJOucgDXNkSqzGScmDAWRTImXOGjd8jlgoplfgepNAW/1LZdos5D1DpfdOXpRTr4BzCabm6PKWqvX0wOIUnSmCslJLBAZk3L1EJFlYeuZxBA0JPvCslaTVJuDFS4rkw/oxHzyX3bK+44or2veGdyNUbYsjxTDAQcwnZGAPCJD6MsRSEQXnieEwYUqmxxJh3HpsERndqg+GddRxGe5+TZVypJ+S+umDUMSgRvYV7RiFJV8z+qMZIxWwJE3TwF7jwTfzdicpk5HuToTCMGHbsmP2tsIvdlt09L0A/PbxYNRe2RVIFV5N9l9fgXOLVkejMbs6kK79Bd9fq77rJ0MJzwniI67VzSyVM42IPLouwQC6pGu+LhcPknlMlgO+FCvpVcfvgjs8VvusaCLwRXYJwH/rRYuU+UyoN8B3PTvRZziOjj7pu+RQvR4iivwPut0uFJOKew7DST7nrMHcYEz4lA0LohQevv1CmziskUQKvg0rKQ4nSeHvcgzGQqofk2p1Ln+tLxk3fKPFvGW7jeTiud6nrBfS3DOyuB8N9eGfifn3HMOoaGN4x41jeEnwR18oI6fNy/I1xylDznuLaePd49/xOiI13x3sv/NhVbRlnUagw0vLn1GYVEwvVGKmYbdGtUUKB0Odf4CEE+RHfo6tOMSGbUOPveUt4WlKExS996Uvjho+JjkoktQhbeB3HTpc7GVcjpdbxt8iPyJYmVm7q1E7VBB8ZYC0QOe+Bv3VdjC4GTG5nbDHg9VGVteSJAJO8kM3QRC6Gn0vJ3gVXfq4YYBeuLRc+6EK/5VKNd2F3PEpIz30MufKFXZQJGDqvcSgkNnQfxoZdfy5xGTAqLN6eb4nL45o+9KEPteMlx7/xLHn+ELeNUcqiPowdRp1nz4vEI4XInRpzPIdk3Iik3g1eub4HxDmF4pCxeUC0w+9JFTi0oYh6Qj6Ub91x6tq6lYddX/c4vveuetd9LxRV5/rJg5lqjIiDc/WawJGghnYRfW0/AuBDQTVGJhdMPqScdnjcvWLTfVdulIfHzOclIV/sLrBIelEZFcnQwpraVfJmRDsLgwk7BTu+aCcG3s3U2k/BHe2413PhBW7oMKgYRAywFKhwYpI2Cedi/XbNocawK82pWOIdwzEpxei9w9r1PVN9OJfnM7RAC5EwhIaUERbxXPgrwLjQt7lQQr9PShVgg9thES9dm74i4/YpGTUMVSE8817ufMZIqJwYt6nz8gQwLoRxtCupYihsYowwXFPt9EEU+/OR3TjHdWFgRjvE7ZRqhxelKwtmzKWIp96TUH75uIbu2GTAC41aKxjxjJtu+EseFfcunCkEq09qSvjJhZlmjHDpIWRZDMSNWbzimTm5WsDuVmxc2uFqjFQwLEyCJkzhFIuFibZbcRepkStX6MHOkSxVeCYmYwYEo9iCiSvCKOEO7rP5GQzUDJQIDAPemNTiyl3OgKA6yaW1Bi5o49ExLTY5w8XCFcmhKCpSxhJQw2jHyMm59N2zHWV4g0zcqUVJn8Yu1YJOuZOCa44FhLci50mJ8vV4BqVaKoiT2tnh5mAxc4+MwlxfdD1nJRmvnbVnr10qMVhAavVQ/uSgzxmg2uV4CsYlPs5Qzg6EV4ZKtJMqPQXPyVyoDX5Ov9J0QHiEkRq5blJeIM+Ot8R49OFFS3nsHCs4U/qO4dAnnbouYwvXg+eEp4jB0k+Ex8h4/etf3z5PXCb/bwxEO8YRI8X3DFXzP0M7vF1R+ZenkfosDJCqtJl8mGnGiBetWwjKoEKcKu12TOgGtSJM3K/VGKnow2RlUjMxMwL6i5VnTwVgIdYuPBwR/7cbMwZ5UeS/sPPvTrQ8EMHTIMVkIDCk+wuZc5uQGUDcxrmCX4iQ+AmkmBYA5Mr+gm7c21Eycihd7ABTkmATtIVGyME5cwaJeLz+YXhRDuV2+tzrkYAtJ3GFyHzr3cyFYlxLLKy8WDm5byTNKlUKJpeNY+VCF+4pEtLpjxzcfxwr57VhmEYbBOgULJ7kptGuxMtRRVgbhmouSy1+k2fIC5CTUTOkjBsGtrGc4p7oB95BY8ucyWBN1W1BCqd+8qzxUxCr+wnfGDCUQV01GaOx66EwVvWXcah2Dk+k98DY73pOeMH1JaPePcQ1herI+HANPB3GVUoWzSvEEPNOkAXXPCOTGzPFGDEoWbr08l2IP3IL5iAmGpPBKMYIgpQLj49dQzVGJh5wJ3glcgtYroy5XapdW2qRMZHGjowx0ecB2FnxqFgMTPZi6KlxY2F0DsaN2HrKSDCJR54FC2OXu9I1loSbQhLcl6fGuY1hng0TfSr8IEzg/pEHeR7tIlPw7lkAGCSSwqUmcosRT4zFQOgk5/Vw395dC1mOn+FYQmUWnz7Jtws7boaSXW7O0AgPmMXc4poCUqxQiefL05WCXb85xZygH3hoU2Aw4BM5jmy8OVBE8dbkQhFgHAupKCyXSgwWhgFDhHrKOEipWvQnzwVPDW+Ahbn/DBnWjAYLevBI+mPYvblu16Qvw2PSHZdDeXbAuY1fBqB2PCz991UbMmhjyXORZ6ZPAnZeBo73jkdF2LR/X67H++idowwqhdf65+eJyUnpK6agMWJxcVATeX+XkouhmlyEZ8LFO4oxYkKOnUr3U42RiQc7MjwHi7kQX18uaYKx8HbjxAwMZFN/l8tkaocm34cJO0XqZDg7rt2/MGKKvGiSw+1YaaWV2kUyV88kMlCaRHO7cIsBboLFIafWsHMMzkGJ/MiT4lwlFUYYJDkVjsXBPZOo5kInFj0LhIUqV7XWcXiAuOBde4nUaR4opXW38AoB2LikeArg97wTPFIUNDmZsoWfF4aBmCOmGjsMJNefC6WZUyzCCMSlbLL6kbcNUiEm18noYYiU5Ne8GMIeJdkwI1m7XPkBcAwGVIlXY8FnkPNI5/rRfCxU4tnm5lfP1Hj0M6dWEpIxHnkIc7Jx7wdjvLuZZfzpewq5rhGkr0jCeUO9wwzmUor/itkXs4Ux4oXj9usmWaqekakF/I1uXQ7Eyu6OyOJjVx0x8Te+8Y1tPN7fWeD8FPf/2Mc+1u5KTYaxGJiw+mOxD5PwEBHScUoLf2AUVYlrHnI79/OrpNDPtZIC42mojb4easMrMtRmlFh+Kb/JzMAo5xvlukdR7YzSj0J+Q236cvQUGCE5Y61rIA/dG49RzsDqjsUSFyjaDKm4GJrd45irJSQU7sHD4dlgEOproVKhRJsJxrtNR/c91oeMk1DCMd4vu+yy4vkrZl/MFmEagy6IefFBEPTx/7nkPA/3ZipmTyA321l6hly4/TTpYuhY9mGw9N3geA9CIPG9nVy33kns3MXoueNNZP0cC2BiJkGV1Iy7WIydO70/qfMWyJHAq4PAaYeW2+3xvrz//e9vPRSlRY1BZPfpWEOqDvc/tAvEy3CfpR123EvwYIagz0rE0gC1yChx/lEMPEhVQ34kx+M1K1XjDXgWJe9D93hDRq/+UJuGwVwC45okfCgfjIUdn8KYyRUaZNSYY3m1FM5L3bPrYiTJdcOgN1f3VVaeuXfFGDVWhP8k0Osb8c7Hk4nLwnvtPZIPpFs1mtHSJfAyNvoScufi1QpDox9+MaZ5UeIYQk0VExczlcDaZZwbyMIwKQKruCaLuPvhFVEbwv+PMkE+lJupmH0hrIAoiARoAnrf+943zQJvIqWWEbtmqPKgdT0onn2oD3xv8u2GcCLjY0xgYtcpHgjDBpci2gnPpGLpXMbdEueuObWAmKCjii0jO6Sr/cXav0M1432hYGHApBYaPBW7QhM9AyFnCDGC8GsYTiVDyC6UImPIs+P5CI8N7bh5QlO5LlKu+yAOl2AjkwujdPsZz2Lo2iy8lCJDRhWjwXMoVRS2KCojIESQ4z2FlNcuX0gk54ngpbDIa+OT4kswjBjJMsR6/sJHqX4RojI2haCMJ2HIVF0ffSFde4xhIc0UGdtmALk62pUk63gq3XeiS771jIQYKa/iOF1CcNR30p/Go/dFLpYubFRsWLxHjCHvTCW4TmzMVGmv+KGdKamYCcfLEC8XcpNJMoeqppm6iEXV4i8kgxfQTUImHIf8aGI1uZtsyTyDNGkhEtJhyJiwTXYWi+AMIDZi+EeuEGx9C2c/zm1hiXYmRDkhTKJ9cqbrRbyOdnaVqcWBUc1wiEmaJDXlitcu5Lk+KaMljPiuYUWKnFJvuF8LashDGRMpw8W76Z11D5RwufeIseJYODQlt7yduGMNeQHsrj3jUljCs6AYyeVh6UuMc7ye6A/nw6XIQX8zpFw/TkUOPAkMWufkBUgBqbPrBciRji3IYTiUFDvGaciyeRRyniBhk8hWyphOeW1CERbjwxydMkZ5SXg4kKb1iXem76kypvCOqKkYSTyTDKUwbCLzsY2E8/DAMIK6VYy777RSDN61ruzcOfobFc+qVLagYmJgpiY9MxmRTxrAXsaufAs/gMGRQzVGKsCz5Io1hpDe+jvZ/i4qJmaTE4+I7xkuwjsWM1Jbi67jUFowcngVLP4mWdJTO9g4jwWSd4WSQHuTMAPJ2O5mh7RzFv7RhsERkuD+oshQ4rmxAFOLMCZShdi43y0kFCoMBIZLSqFiJ83YMvmTf6a8PN0kZz7S2ufQzWXCU5IjYbr28CzlqugKM2gj1p8rKAhheHVDarnEZfK15OB5SB+gXa7OjWvnYYnEWyl4lhbeoVwhvHiRaMwzyuVQ4mUzD2pnHKb61DhlFIQxyHhOQT8ypIQztU3lh+E95JU2BuXuEOpAwO7CWGIUGcveHQomxnY/ozDDhEFufPGKeL94xbohHJsDBi5PjnPxihj3YeC7XyEY7yfyaqR/h9gAIHbHNeODpTxCZPreF9ec8lJWTGzUdPAVswQWHu7VUbgHYHdtomPEpjIveuYMDZMZD0FfXRNF8hjFFkcTpYW763Ew2QmL+J4LWYr2IG2G+92CZ+Lm4rfrsxsOQp6FLiZRu0ZhRkYUL0P3elwrb6Fju2a7W8ZJ3zPD0LCbde8WDJ6IlAIH+c/Cr2/scFM7YPfge/wWi1ifz9U9p12rXW2p4BzPpndNgq9cXZrggvkwlHLvpbCbNhbYXHjFcwmXfy7EYac9lJ8Er4BBqQ0PVgquk1ckPF05A094g+qDQZYrvGeRFe6zEJO8ptRR7ll/Co/IBIyv1Pdw8WAwDo0VXmbXSP3SNzAoedwflU1wrrqbQGNUyIPyhEHpGUefxxj1TvL4MJr1t37qZiT2LoSMFweL4YpwblPQ9VA4jjAOA4Kng6HeDxNqw6DyblNrpXhBrtnz8C7ZmIw6v+NT4UsNJdqsmD1QjZGKWQIThcnQRC5c188BYcEROxcWiYRcJhW7WoZEDhZrtTFy+SKiAJ7JGuciBROmcACvBK9IbvdsUrdLtVDmYMIWKpJaOwe7TBJMeVFysNu1KKQSfLknC5EP13XOoxiLDeMll1YceIZ8hLpyoRPeJPePk5BL7OWafe+ZlYiinpV7QxLOcVosagw3RmyOTMqYE9LSB6WCghZsi39JgowUavyRjObAW2Yxdl7GZQoUgsIOjJKc/NwYYaxQvkDKA2aRxpEgb82BocNoFarKGfn6mLEi4ViO1Ow6GEbyy+TCXcKQPI28GDn5uTYMW16T3PPXxjUbk7mxRsDAsxThPu0Y3IybPqlVCI4niwctCmxWTAyMun7P4T/NbI577723efrTn97cc889zdOe9rRZfTkVAzj33HObDTbYoP3/Jz/5yc2JJ57YvO51rxv//oorrmjWXHPN5h//+Efzspe9rFl//fWb7bbbrllkkUWaxz3ucc0Pf/jD5pBDDmmWX375ZqWVVmpWXHHF5lnPehbDufnXv/7VtoE55phjunNr8/e//7150pOelL2+//73v82DDz7YPPWpT822cRxtnvKUpxTbDJ0L3OcTnvCEYpvufeXw73//u3nsYx9bbOPe5pxzzmIb153qu4fy90N9Mytx//33F5/tKPdZ6qNRjzHqMxvl2Y8yhv72t78NjsUHHnhg8Lndd999zVxzzfWwzxX9Etfs5/XXX99cffXVzVVXXdUssMACzYc//OG2XxznjDPOaL71rW81559/fvOXv/yl2XnnnZtjjz12vP//+Mc/Nptvvnlz6aWXtv82X3zzm98c7PuKCbZ+j00AVM/IxEOkzuZ+5ort7+jsPqOQHOJb/9naLUURseAUhBvfzp8bWhiAJ0C4xL+5oMMrIOxi11ZSS4Sb3LmHGPu+T9X7SGHUjLOjqsmG7iFgZzmK8kCbUXOCjBpum1Xt3MuoaotRjzlq34zabtTnp90o9xJ1nUa5vlHyrDjvUD6SGP/d0JZcOHhKuCQ4LHgzsth26+zw5gjDxHuMu9UnpcoW3H3P+/3FK+pdN1/gDuXCaxWzJ2qYpmKWwoTCRc+tjoMhXNFPrsRIEdLBKeDO7tex6Bok4tP9/BZi2d2JrptFlDESuQoQQcWu8UX6uRMsUPghXNNCS7gSQhAm0T6EEnAJhIK48YUhUq5z7nkGFsIro8x14ln0J1lhHK5+14l0mEt0JpwlJMJ97Ti5BcvxEVXF6ocMIgtIP99LCvg13TT4OTjnKO+nMEkupXwX+nWUhVnYbcjI8L3EeUO5R4LrM5R7BIlWeK7Uf8I3wgrUWJQmKQinkD7jjAhBptIjCAEJCQlLCEHhX+Cx9PsQ2RiB1HU5ltCP8dcPjzEUhASNO/wSqjME175KjBEjLIirhGfEEMCn6vKWqNhCreMj/NcdA3hWNgpR5bpviDBuEHrxV4RFGRzd6/X8jQPvpvvCE0lJkytmb1RjpGKWIxZfEyB+BaOjO4GbbCJFPA6HScnPbsybQWK3hU+CoIk82i0YRgUgVk4SSRlASaGabyxQ+A/i5KGMsFgzFvoLGK8KRUBMrBb+lLyVXDEqvPrgJ6R2yAyrbjuTaWoRpnLontcikSpuhxOAgBuZasX9U4nRLEr6kQGIs5PjBkTROjvaXMVYQIhlMA4ZLgxLi9eQYYCETAE0NG6MlSGCIiUJA7IERimVCGVPDp6fHT6DNSf3dU3GqnGs31LE1qithNDqGZSqAONSxCLtg4CcMr5kHmVMRzvp5lN9zLCNRGI+VEN949f4Q4gOpZDPG97whum8J8aV5ym9fbRDxI76N4jmjDZGShgj3crP3l/vD9kxbwkeS98QIW/GFyEBNha9L12jl6Hi2hyDARvPoGLioRojFbMVTFRIgzwdMoymJlRyQ5OTBaZLVAyCIJWDRd0kbncXO1iqD7kLEA4t0iZJJFV1UCxGPA48Hkh5CpCZ3C12DJxuYTvteGioDexAnccC61q6BoeJXzE3O0VqAv/v/H3ioGMzkhhBIQlOeRmQGMPQcP+59PVCW91daM7D0K3tZDHIZXOlhAmJ7gEHHJAkrOo/1++5peSmAQuGY/FAlKBfeZZKXg85LRyrtAvWj4xQx8vBePG9Y+UURBZ7YyP6q6su6ecmCQPD2MmFNRi1EX5kGKcWUMYmj0GkOzcu+++Dv9PfPBxhjHh/uv3m/xmJDAXHitw0vCjddvoK2VSIw3iVXsG9UI9FO/fjfIx9189T4TiIqpRK2nk/GWveCwouhg2Pir71vdCRYzKKGDIMWb/nEQ1DhIHJAObRNFZS4SbvDa+NJHdB/q2YuKjGSMWjAgaAUEQ/xXQX3YlRqMVkxduRcpubnEg5LYAMh9iN9WPIwhYmVHLJfm0VE6s4tJ0X74RJXJw5FhrjyA7WYmwSZ4BwkTMmLL4hH7366qvbHR/PigWoK2E0wco+6VhCBRYNHg6hm65ng8FEvWHRiB0zo6S/6+eud0/aWvjlgEgZERYVC6xwEUMjVbhMH1qYLGK8KLmqthbiWIQZIzkeghBbeG1yhdI8V20YaN1Edl1YcLncLUQ5Q8NzjNIAvAe544QkmFE2lNxMu1zoxbiNRGNCb7nz8UiEUZCqHut8xq1nh8ekH1I1XyzsxiQ5tzHqnH2jUljPePKeuAfGqcysXShloESC8wmH8rC5F7/veh+8Z/qADFko0Pj2LkQ+D+OO58j7Fgq4eH4MIp42xriEZ8YuZZj3onvfcT2umcEjPXzKUOalZEAaRzkjg6xZP5M59wvnpaCN+8qNlYpZj2qMVDxqEKrwfOyqJEHq7wZNQhZgC5YFj6fDYhKTjfb9UIeJ1SRb4j5Y4E3mOQmqCVF+B7Hz3HGEYsSiufFzbbiMTZLuL0didf1kqhbH/q65e2+uOSeJDWIeTw9DLBWmsDA6BoOHKz6XKRWvwb0zbkpZSy1WFqBcNWJgdDE4c9WIgQSWJ6qfXKsLC6EQmR12N7FcF5HTxYKf8lIEhBZ4UEoJ1WKnLmldDvqTEeG55ZK8xRj3PX5HqY0xbp7KJYNj0Fo8ndc4SWUY5dlihEQfpcKAzsUwLWXK5Xkgcy89N0aod1O4Mxdi4yEhqy6F83gGGUwlwiyDQQK4/nm6feA9izAe6a9zC632x4v5wb3x3Nh0DBFwK2YdqrS34lEDaeIqq6zSXHPNNe2/t9122+b4449vnvjEJ7b/NsS233775uSTT27mnnvuZqONNmq23HLLZsMNN2zle//5z3+aPfbYo7njjjua1VdfvVlttdVaSW/8fcj7yIR9KkbDKPLU3//+961sugTy5e6zmGgY5fpH6YdR+7Ti/0l8f/vb3zbPec5zxvtM//3yl79sZbqXXXZZc+ONNzZHH31088IXvrD9/vbbb29TAXz1q19tfvzjH7fzPjnwEkssMX5cMmBzjHUBvvOd7zRrr732LLrLihm1fpcF8BUVI0COBBPIS17ykuaf//xnmzuAgRILgInomGOOaW666abm2muvbb70pS+1xkhMUI95zGOaT3/6081mm23W7LPPPu3v5Ik4/fTT25wCcYxXv/rVza9//etmySWXHP9suummzUILLdROco7tWuadd972Iw/CVF44Rrn3URbgiWyIjHr9o/QDTOXxFHlT/vrXvzZ//vOf288LXvCC9l3z/n3lK19pfvKTnzQ/+9nP2o/Nhfc+cgxZjOQLueiii9p/y3fCkAhDBJ7xjGc0Z511VmuI6OtTTjllGkMk8si4Dt/bxFRDZHKgGiMVMwTLLLNMc+CBBzbLLrts84EPfKBZeeWVm69//evN4osv3n7PMPja177WvPSlL22Tm73+9a9vDj/88OaNb3xjO6k8/vGPb84888zW+Lj44otbb4kkSZKj+dv55puvueCCC5qtt966Oeecc8YnMX8PjmFy22KLLdrdFki4xFg56aSTWiNFMifXwGCya3MOP02o66yzzvi9+P3ZZ5/dtvN38XF8XpvugnTJJZe0kyOLn/XvZ/x/NymTa/rTn/7UJnxacMEFs4mnfvOb3zS/+93vWkOrlHjKOe0i9Xsp+ZP7u+2228afQwl33XVX8+xnP3uwncWIh2tGJB8bNRHXQz2e52VMlcBolpBr6F4cz0LquZXg+fLgeXY5GFu/+tWvmj/84Q/Ny1/+8mybu+++u/UqOOZaa601TeI0Cedcjx2nT/y/Rdm4CzjPLbfc0m4Muh/v5qKLLjrezrWceuqp7abAx3jy0/vFQwnf/va323eWAQKuR2LCuAfvhLH7sY99rP23d8A7tMYaa4yfh6EiqVm8m753LQEeE++zDYcNxu677z6+GYl+2W+//ZpPfvKTzWc+85k2kdrBBx9cfCYVEwhjEwCVMzIxILYtHixuLE4vniuG3pfGIoHKH0D1gj/RLZ7lGSP34QIoKCceLEV5ENjwS6gPEE+RBMlOxfyD6Cq2TBIYxEwyRsXoQpETip343gfhrh/rRnhE2uu2E4PvE+nwOuQl6bZzT30yaPRJtKFqQOTrFw7Th7vvvvu4agPpldw5RUKVKwQZkmxSvJ4qJ8VBEHeXS0I/lPgj0qmT3g7l2cAhCYVFCfK+5Misff5DjvcTcC5k5SFQd1CXlK5NH7lX+ThyclFtyMpxdxCG+3OP45O4IpsiW8qRIY9Nn8MR9VeoUIJUjCiaInB6hojJobJBrE3VdEFM7cqCvWepmkSuL+r1+JDJ4mz0FTn4Pt0q0UixcpYYw3hXFEK4WaEmIueN6/L33nHqGt97X91Dl39jzOlH38srgjBLidO9BlwRRHF5WbxTvu9epzkDMVifIF7DKPlqKmY9KoG1YqZg1Oyd2ln8TGx9qWFXcmgSoxpA/gwgZzqHBcEEbZIitw1ypGMh+VlISEolGGPYIFlKxOR7CyZ5IaULmWJUJ0WwpZqxALo2FUmpYCwSiK4W0EgAZbIjQ9YuSqyTDCPzyXUS98QAc6+xQFAmkB6bULtGifZUO6HwoHRxff3EVHF/sThoh8yX6mN5LKKdibqbg6XbjkQ52lFWpNrpT5JK9yERWy7ZGZWP42hTMiIQWhl+QwnYGIwphUoXjAeLfQmUIYyzXI0j98fwjEq78tH0YczJ+WGB14b6J0WkdU9RVDAW6JyyyfVEO2O1TwT1fBjpFvxoR/7cb4fYjEDLSI92DOZugUkkaAu7sW7Mun7t5EeJMcQwppChEDK2fG9cx/EYvgwU162+jHcLydVYiwrS3k/vElm0d8d3rsMmI8aNjQHCru8RpcOg7mZQ9b4yphnnNiCpecK1GJc2KTmZ+sPNjlsx81GNkYqZBgs59nxOEWGyC8a8RcbEbgFPQTsSRwu4BTgFu83IL5LKUukYdoYmK8eRNRS6VWcZMjwMdoo+FkoqA94FixQ1AVVJ7BAtkFE9lTKCccGLwcihvLDL47lwnIDdIsOHbNJu2X1LPkat04WFgAEkP4MF1oLBu5NagBkuVDzuPdWH7p3qKHa0FDYpMHhiESMJzcECHV6ZVLn3AIPGTpunKQeLi37KVRIGC6S+oAzJwXvPs2OBzsGY45Fy7VdccUUx100ov3Lek8hz4iOLagqeteerz3nnUgX1jDleEAs6zwnJcj+hnQWagWLcyv8RhRW7BhxPlarUrodRbgxSSRkP4dlhAMhrwuj2nBkSng3jgKFscbaQ8+I5l2vnrXB/njNjiPLIcZwrxh3PT3gNPSvHYXR4PxgQ+jOl+mKYGUPGd7dMQxeO5/3goUpV7I53mDGkb8Lwzc07IIEaz+ioRkvFzEc1RipmGuRPiEXdzqefT8HkZVK1wJhMTKZ9t7TJort7YRh0E5ClYDefqyQKJjzVT8ONm4Kdr+RhucRiYEcqI6c03IG+S1hYiFeGy7z/+5h4TZ7yL/TbgP6wa2ZM2NF3z9UFea7juPd+yKt7bcIr5LmOlYPFkSFSSiYW3paSzBWcpxTyiV3vUAp2989TNbSTtQDlFqwA2bX+KoVotLGA5qS34Hp4DRiUpTaMFp4zMurcuchZPT9ehNQi6neM8TBSvAP96/c+OU/XU9XvV+dgzHtu3b/vjltjf999922l4bkQh98z+Et97VkxXEpyWs+VIVSqoaONEGxX6mvj0Q2dRTVu/SRFgI0A46Z/HL8T9rRO6M+K2QfVGKmYqZCtMXaP3N59VzbjIlzEL3/5y1sPQjccIU+AXZP4sYW/HxIw4dl9Di1mFWMPKX4+tKBPBRf3KPfHWzDEY4HKWxgNDAz8ob4BywMkyaBkgTKudj1kEb7iFY2SDryb/eNGAjwfHrT6TGYvVGOkYqbCboTLOHgU/UJbID4fk4QwR59cyYPBZRxtuKe7bXgCGDTi8WLgwijdNPF2UdzIapSY6MSiR63MWlFR8cjAY+O9FxrB+ep65RgdPBRCiAwE/BUk3q7XgxEiBBPvPw5O3yvkmEGcRSTuzyHedyEp85BPv9hmxcRZv6u0t+Jhgfzvc5/7XCv5u/LKK9ukZyS3K6644nibXXbZpc0pcMMNN7S5A8jyyH/JLmHVVVdtc45stdVWbZ4CklHy0oUXXrj9fr311mvOPffcNjmaREc+jhMgk5VvwPckmkCm6W9CMkgO7BpID+Pj/HvvvXc2AY9jkkuSE1dUTCaQKXvXSKlzOVMkHPvRj37UysL//w1r+17tueee7d9517bZZptp3kXvqpwggXnmmac54YQTWvktkOwee+yxrWQ4ZLpykUTOTfJl33ev6fLLL2923nnnZvnll28lyqeddlorCQ64jp122qmV+X/3u99tUwnk5NIVEwBjEwDVMzL7y3m5WRVc6/MjPDOETrsnZD5s/b6rFsETIY/3wzEQO7uuVrsdhDukOQQ9EtkuBwWfAlnOGLGLEvrBHXFddlrkjOHmDTUJ7onv7bRIdsWbHT+kkFQuXTgOsp9rpExQz8b98Pj03f7IsK6RTJFCBxGQYqAfcsLxwE3gZibnxdWg5Oin7/Z3VBSIw8i50okjhfZls3ad1ECItzgxQl8pl7V7wWHQppS+G/ALQhZdgmseparqKGGih9Kuz5FIQR8YlyVVj2MIHQo/5oi7+EDqsuA5IIX2nxMeifN8+ctfbqXPuBdIpn0ej3GHAyLk4PmTLFOreG79e0EUV6qAGmWjjTZqx3ZKCu0cJLVUJ3hBa6+9dnvcPrnUvVFdhcSYGoYUOu6Fd5H6rStVN3ZjDPjpfQlFUhTwi3fAdblmpF1KHZ7PfqXh4C5R0eFduYYu/yTUacjBvKHGVX9eEfJFfBXqjVIGkz28OFFRwzQVMwwmiqEJHyzgJhDhmRQsqiZUC36fhIbAF4ukSZUqpetyteiYcP20yFOXcOvGRGSSNWmbxOQhEd4xUZlYTbAWNzk7whhhtDgPkiIFiYXA5BwTLLcyrosFA1ERCTeIco4b7UiDLRAmYJNsTIgMMAqKaCcnCuWOGHjX1YxI2c3xYILWB/0aOM6vT7q5IFKqEYZeN4+K+3D9fSAQK2ymH9znqaeemiXzUouQnZaIr0icjjNkRDA8c0TcrvFgASzBs7DYe9Y5IFbLl8FQzVUTNm6ED/S7/uqqowIW9G5lX2OPoiV13VEJOfqecdjP6+GZU7J024XipatGcY5QCEU7hPEwRFwXMrYaLZRGIRn3TN/5zne2C7Z3l2F+4IEHtvJuRkIcj2FPfeW5ktB7LxyDERFFJoVBXZdnFu+dvsDzck5jFYxpBpiQqvfItSOvyrES929Mu64oFhnGeVdh5Jkx+KlsUsTvqMZsM0D105UJ51DXjVmLaoxUzDBYYLDYeTdyCG+HyYkXw4SRgolJLJmnIie/M4EqsW73lisEZodKsWOCjp2sHRQFR+xiGQgMArszk5Zzm0R5VUzUCnIpZ05ayiPjehgvFi/GBC8ED0dIYk3OJs6YZMW7eV0kcjIxm9zJHeOatbNgMox4P/Sh/3eubv9ox/Nhouc5sjC65n5uEYuQ3a5rcW7tU8nQ9F8YXhaXnNpDvJ9Bpl2uDdi9urdSLhB9S1pNjlwCo4+iowT3ZFEvQR97tlFhOQXGAb6C6yqRGhmx+iAlGw/YhWtj3Ob6wXgkd9bnDL2U8osnTV/Kr6MtD0H/GYZUm+SXp4xx4PzdythB2uTlCGPYMXniop2/dS2umeyXl4a6y98y9nhDYjwxJBksvG2epfcgxjGDxZj1s3tP3TwoSKbGkuefSrwH5LmeGW9bDjYYPI+lonyku66fwiYMrhR8ZwOQks1XPHqoxkjFDEUkbuLZSElw7dBMaHZSKTe3cICJLHZJqfLqfYwSHkgRZ7twvlL11zBiupkuGRz98IXrtfB1d7nus2sscdPbhfa9SHa50WcmajvRlKdJ/9gNhpIo541iRNmF8sTk2rgnSclMxiWvlgWJt6LUxnel6+ne/6MJz2hIOWH3ncoB0gVDVThgaJwxDkqSZ0aAscM46CeyCzA8jCXPmDckdf2eSXcx7mcjBUYDr2D39325snHvWP3wRffYpPelyr8g3DdUFde7OpTcTj+XpL6g3yLcp59SxjYPi7HPqGJ89UnrxgVPj80DD0ut6DtrUY2RihkKk0TwKezsUu7sSHduZ28R7HNDyPa4cIU+lJLvT8QmTvk2qpx3GKNmwQ1P0VC7qY5R+mCUvgyeUkUe3nuGEwVO35AwZ4SXZ7HFFptm08JIkUcmPFm8NX3vIcOJ0RihKMeqmLWoxkjFDIewBbcv9zKSZh8mDhyKcB9H+vaAiYdnJSYKhkl3p2mBJe+N9NTcsdy+EVM2yUt8hJtiIhOqifBLRUXFrIMQIi8LmT0SsJBPlzwrtMW7ypBgRPBYdAnYDA1hoJgbhDP7nh4ekW4bidf64J0RDjVP4XYNeWIqZj6qtLdihuOtb31rc+edd7aVQVXT/OY3v9m86lWvmqb891FHHdXsttturSxQBc8TTzxxvNIqOTApL9ntTTfd1P5btdEA2R85oMqip59+enPrrbe2VUsdD8j+Ntlkk2b77bdvq+8Gdt111/a8/p48+MMf/nArEY7KrX6+9rWvbTbaaKPp7kllXpVInUdVVpLEioqpAtWkn/zkJ7cydlWi+3JfVXY/8pGPtJJg76X3hfTdXKCiNnz/+99v54N4lx2LPHj++ecfP4754NBDD22lvN4xctzllltumgrK5L4B88CLXvSiaa5FGoEvf/nLbTXheeedt9ljjz2m+V41Y/ODqr/aqSw8VLm5YjbC2ARA9YzMfuEBOx+7FzuhPvAekF6pPyhF+tlV7aAw5hHqMOvJgrtSRbskckPeFXFfyY5wMboelqgx4sOdy1sS40NIKUiAEVbCiwg3O26GOiFduS+Sand8uU8xefF6MkxeGkqGPnhleGckcJP+GveATDe1I3OPeAV2iTgfCvulSLyOKVRl54inQsqbS4OvrR0jHgCOwBA/pmLGgBfQMzFGeO5y3BXjgLKEJ486DHE5J4HmBUSipWyilMp5/fCz8CUQwam7vE+pYxoL3jOyeWPT+bu8nijc2FVoUdv4neP5eL+Rs7vZloVY4+95SL2rUWlYccpu6EQ/Cct6z32HLM6j2YXjUZshGyObere78L5Lde/69CUCej88g8yK5EtJhsvl/a0e09kDNUxT8bAR5dGHgHFP8ZKTalokN9tss1YaSp3SRfBCECO5U8V5uwtuTOLakQNSzSCrdV27CrGRPjJEGCQUJhQEIfc1aXMHM4jkEOG6lU+EYYLUSMESKet9KFioWUglSQ8jd0l8SBp32WWXsQMOOKANF1EXWTikse62MyEytChHTNYWFQuDOHi3HfWBaydZDtIvgym4N/ExkTtfl9DLHe0c+qXbVp/0J3KGD3UH2aXFxr2lJmrZbU3onhljMzeZe05yolBOlTLeCsH1n3sKXfJwDkiIyNElMPQYjq49x6lx7er4cOVTbPUl1GDRXnDBBduPUCJJa99odD0W0G7fU8Z0Q5PIyorVhRKnG54866yzxsc5JZN7o7TptsPRMj48awRo45mhEKHM+Ah7eEdct2dITuzfnqP3szuOFMrD5yLVdn/d4wihGNMMHJJp5xeSZdD4nhrGfbsvBnJkVvV7Y4wCKoi7rhmJlLqMmsl7IB9QV66vDSWa68In0xf+vvvsGBmu1Xuck5YzsFy793xI6uscoxDjK2YcqjFS8YhgkrDLz1XIxMBHNrOw96vSdmGxsugzXHJwDoubRSQHihSLtLwRXcQibgIziZK0Ol/A4k6aamFFkPX3Jq2ogMujYDKlbODdINmNidqELsEVlZDxx9CRl8Sky4CyU2O4ODbibRgbJm+7RUYKY8eiFzChSkilnVwJjB8Tdr8om0k75LkmYlwc8sk+LGTS8oeMlzQytwhHPpNSbg55UJzL8yjBgte9rxR4CyToGkrRr+9yctAAo2YoPwnjx6JUUk9ow2h1fzk+gUWTYerDuEl5HfR75PUgZcen6h+PAWqMMJS1Y5Rr1/UC2uXzKkhWFou+/jcew4vBCxBGjAR6vCK8eo5nPPPM2DzE38q/IY+J99dxXZ//Nwbck3wixjZj0rGNU0n0jGPvNW+kceR3DAZteHa67xRDTO6WeP/63iHHYZRTfuWePwOPhzJXZTneT++B9z8H85AcKq6l73XpgneVwdivnFwxc1GNkYpHBC+/PBbcsiai/i7Z4m8hRSjLyWstIOGlGAWjuFVHaTNKfZq+W70vS3We7uJix9gPleiDvgSYERG73jhOSvLoeBamUhuQJdXio02ucJvv7Jp5fUqEPYsqg68fNuvDzrGU5yEwSiG5RxujXFNp8QvwQHTzeqTGmEzBDLKcTF0bz8P7I/yQkj5rE9fM+2FM9MeUNt3xIYeOkE63nTb9jYNxwYPR9f70x4dz9383SqG5Ud6xGfU+g/vXj6nn6/olWmT0pbwnjJ5IMscIq3h0UY2RikcMu6Nw4cqd0F8wuaAjI6W23RTtwGXKw2AnJuTSz71g0iMRFqYYSks+lTHqhG2iroUCHz2MOmYrd2FsMA2/eaCfU8R3EqTZ8PAe9hPqGe9+F5mTeU774N0JbpiQUi7RYsXMQzVGKh4xhDXCGLHDSkHoINpwafd3Vchp4c4Wvxau6U7OJiBuYROFMAe3czcbKBes2hZ29NzKdo9DyZUqKipmHRjEiLrCIrgkQpnqOgVsSswnSOHBW0Hm7oKB0i2ngLfTN+p4KiOnCG5LypuHc4YvpQ2uVMWjj2qMVMww7oiJg7GQSr0tTmvXIi+I+G8qYRlyWnhQupNSl8AYRDuTSl8Rwq0uPt4lfnaLlKktg9chTIGYiLjHgOm7sY0fxg2DBqFuFOJk3dVWTBYMjWU8D15KnBm1kOQJ6YdwcKjU8pH6HjEXP4V6LEJQQpdI3l1iLGOk67HTBqcqvqd8618bYybqAfF8pOYV3hScHMZGKpW/959XVnp53z+UkHHFjEM1RipmCILZjtjJUEhJTDH4xbG99EhrfVcobwmSJZcqQqfJqu/dIKFF5GPUUHwo7tadoMgXY4eDhIdH0ZX3Ia7525jgnI8s0fVz5zKI/F13kpSdMTw5SI94HBQw4spUB3ZmOX6F3R0XsNo0JZjMuZr1X6mqrXsV5vrc5z43yNdAwHPuIe6De/O8ciTk/vmnKka5dwm4hkoYeL5qHzGmh8JljHLjcyjUg9yrCvBQ9lcGtvHM05i7H3VoGA8IzDyU3lvcsLhWhnq3WKSPDUYkJvQ97kt4Or2vPJnxDiEhe3+QZuPvu4XywPtEAWfzQd1FIdd/L9wz0jaDR+ilX8vG8ZzXMWxEGFB9AnQUWzQfMWRqRd9Zh2qMVDwkkLoOTYwWaane+2neA/6eIgDTvm+QBIOdNFe+AQz+/gRrIrNwkjNSPCju1ZXqaS/nCIKokuomQ5NV7JoQ9YSNeGAUwCN5lKuEcoKxYeKllImcCtoxsKhb3BtXsUmwm3eB4kXWWLkSkBXlbDChR14F10Hqi8xopyafA8OIGoKXxjWEcsbvqFBkqNRXjA5cGvcQ1VQpH9y/vgjioXEvDTZvj+PE9Tle950wAVOcUBNRXTi3xaX/3pjM7X4tXmSu8sH0S80HkJPJlxW3K6Xp93wZc0P1aTzfrlcrBX3TlXCXDATjtmRM8Orpc56wnDHomeov+S0YeSk1jsVPn5OIM6Y9577RyLiI3TxZLIWHXCBdT5+wpXHiuxhjPHqMZUom94KEycilUuN1iOfNODaWETmdy9gxVkho/b3xHJ5D8l/3JYePcAgPQVQmjo93lXHh+ygGGVJ3snZyctfDG2Kj4ffeP1Jd7zj1WbefhVyMY+PS+ftSbM/B8RkZxhUZet9QFo7VJ47BSEopX7ynvLGpLNAB/WbsDxn2JfVNxYxBzcBa8ZAgC+OKK67YnHTSSc1LX/rSZJu11167WWKJJdpMpbljnHXWWc3nPve55lnPetY038nKCLIuXnXVVc0RRxzRZmztYpdddml/7rXXXs1WW23VtulmRH32s5/dXHzxxc0TnvCENtPitdde2xx//PHN0572tPZ7mV79e7311muzrR5zzDHNN77xjeacc85pnvKUp7SZY88888z2GAceeGCbJfLKK69sLrvssvaaZHXdf//92z447LDD2uuT3fWXv/xl+/nZz37WbLvttm1WRxklQfbWyy+/vM0g6fP3v/+9PZ8+kgFS1kqQwfL8889v28gUudlmm7UZKrWTifa+++4bv0/XqP3GG2/c3pPMmM95znPa7JW//e1v2zayzZ522mnNDjvsMH7/zvfc5z63+cc//tHcfPPN7Xn8/f333z/eBmTZ1Jf33HNPe+2+l1Uzhbnnnru544472mvac889s+PniU98YnPJJZc0z3/+89vrzeHnP/95c8YZZzQHHHBAts0vfvGLNoPmQQcd1JTwgx/8oHnFK14xXdbQfhv3t9JKK7WZeFPwTC699NL2ecsonLp+GXrj+r0D2jzzmc+cLkPo73//+/FxoX+NuYUWWmiaNsafZwPGh/Pr58UXX7y9l/POO6/NUOp9MjYC2mrn/DIUn3vuuW2/P+lJT2p/ev6ymBonMpS6b9lIPRPvtn/rd2PmHe94R7P00ku375h3Q5bVVVddtX1/ZVJ9z3ve054f/HudddZpjjvuuGbJJZds3xP95FoC+vZDH/pQs+OOO7bXor/inQ8ssMACzSmnnNKOa/fpuvpYfvnlm4suuqhZbbXV2n/3jxHzkPewn6G1C/PHK1/5yvY9SUGfv+9972uvOzffVTzKGJsAqJ6RRwd28hIQ5ZJGKT9uB+Vnajfq+djRPdrVWx8O3F/Jle670s6L58eudKgQF28CL0fkI8nBDpEHgqcilYirG/YR0hK3T1U07d4fL4n8EqXzus9cFeH+8SaiUqcUGuuGOIaSZckqzFORqkjdBe+ZXT3OQwnqqsjBIvxYgmy9PAFI3aVnxOvHc+ZZ5kISPFJD9zlKf81qhMpGeCYF3hDeHqHaVJ9JTBfE16GKzhWPHDVMU/GQQa0SLlxu2X4WVouRrIu+p3zpF8IDIQsuVGGPVKIicmCTMBf7VOYpVFRUTA/cM+EdhNO+UcUQ95309PIf9Y12Br208RFqirT1AfONkJYwUMxxFTMf1RipeMjwskdc2Q4vtcNCGAuDRWbEfmplO6vI9IlXYQdvgulC3Nv34s6ympo0ggRnwrADxaMwcdjd93ejE3GHXlExVdB/P5FLeXZwpXCvvNtdThkOGk8R3g7eC55X37OEXxK8Kp9+Nl7zRnBSfE/pk/OCBZG9XzqhYuagckYqHjJwIVTCXGSRRZo3velNzRZbbDFemTOw4YYbtvHn3/3udy1/oV8VUwwWb+NlL3tZy6vAHenGlgEf46c//WkbG/70pz/dxrxXX3319juxZPFsvJH3v//943+jEq+YtO/F4nffffeWoyA2jlfio5Loa17zmra9axO3xsUQK/fx/xtssMF0sf6A67377rtbPkVFxWSG6tbe3eCFpID75J0J3lL8ND/4W9/tvffeza9+9auWI6PCL47GkUce2XJMwHu+7rrrNr/5zW/afz/vec9r33scqO614Kx4Xx0XJ6XLs4EXv/jF7TsMeCl4YV2YF3zvp/nG8fpQcVgFcHyXZZddttlyyy0fYS9WzFCMTQBUz8ijh/CGUA/wkqTY6FKU81aoA4Jd38+sCuLc2PzUIfII9KV3WPL4J1j7FC0UBt0dlZ3Oe97znvGdkF0TtUb3e/LEUBDY7fCoREychLCby8BHnDjUFzwxvDwStckey/XrOvq1b7q7N9wPaaX7FUO7IP8cqqEC+qwvX07BmJc4aoiHQwGCw9LPgpu6vlKdj8BklULq71Hujdpo6NlQUHUT9JXCn8KSQzC+R1F3UKJoW7o+tZeoqpRkSPFAeCZU0CWXj8q+PBcRmjU+Q0EUH2oZMuPoQ4oeKp34XnmIrkfDMah8IgOq970f+pXcjHyYN8S7TKXUh/xGQr9UTM6RUnXxrJgDJFrDqUoBp8b9Vqnvo4sapqkowsKfI4DF93T6iGA5WCAlG9t5552n+04eEd+bbNSMMBH0Qb7JsCEhlIXVhNiFSc+ESnIpeyJyrZhwFyZbUkbkW7JL8eBuUT73SEock2kUE+PSZVQIGYX8Nj6MMPflOJK+OW58xw0sB4lcCaqsyhfBsFGkj/Hj/FLny6liMheGMoHH/SDFMn7kSCADFRvfe++9W8OkC3wcxfMYSBK+Me5SVWv1r3sw4cv/kHM9M0C0c/1ymeRgsSCPjro5OTDqyGCHMEr6bdcj4VYJxlKpAF4sfo5VCuMxxiygpYrDUQjOIklGm2rnekNmjXtAet1f9B1HuNN7FDk7PJ9ujh3Gs/wfxrlxEPJZxnkY+Qx3Y8F7IG+H74RAjWuhTNfivhjKEv6RzsaY9yGTN14t9N0ij90xb5FX38jmw/mNJe+k8aItInRwNLQhm/WdscwIcO3d+7cZsBHRR8YJ+Xh/LEhC5j0gw3ePDIo+GNfxTnt/UhJ00mlJGeVNyYGR53pLRqE+rFLfGY9qjFQMQs4NeQZyOyxF34Z2+fggpfwT8ZIPLTa+zyUYi1wDJq/Uzt8EFYoQ19yfcHBh7GJVEHUtFpiul8X1UxCJSZuQKScYE3ZZFhSeCZ4ZC4DdpLaMIhO0nyb37sTO2LHwWBRM1s5rwozquvExWVscKGjC0OBx6tYE8mGEMXy6u0YLmgWsb0hZnLqwkNrxLrLIIuNteJxScL9yXkhGpZJxyRDh7UplvewCn0iOiiFYyIcqqRobPFkl6GMcpb6XrQuLjX6Xs4P3IJUQjuEWvALGoMWyz43SJozb+Oi77tjjJZBgrGvMhoeA8QqOa8fPWOjmkPEx1hjN2jBGvK+4EHL09McHQ5PhzBOhmq6xF9lLGQqyDcvfYuwyjr0njCjH7L4LPAbGPm4F44KB01f8eM9sIMzHDPFuRd9uG8nL4jnknm/33DmMknOm5K0E16ovS2OH16Tvual49NbvOfynmc1B506vjyvQzZdQ8cjwxS9+sXnjG9/YbLPNNm0OgX78WM4CeQXkBZCfIBVfPvnkk9tcGeKwKRhepTwQjyaGrkV+DrFv+RBS+MMf/tDmYZDDpMsrkaPjJz/5SZvTwkc+CPkUujki4vzi63Kb+Iinn3jiidPlWwFj/Uc/+lFzzTXXtB8cmpe//OXTtfOM5OVwfh+5I+RgSEHukltvvbXNcSE/Rwn4M/3rnwwY5b7woeRpMfaNhdSYMRY++tGPttyDF77whW3+HHNU6vnIz2Leks/CR36N1DE//vGPNzfeeGP7nHGu5NGQs6MPYxDXyjNcZZVVmpVXXnm6fBzeS/lI5FdJnctYvPPOO1sORw6xNMwO72/p3f3jH//Y5jbCX8Fr6UPOFjmMPvWpTzWbb775dN+fffbZzetf//pmscUWa6677rqZcv1TGfeOun6PTQBUz8jMARdxZBLFmUi51OVM8L0Uz6ldjGOI51LWpNKT80oIVeBb5J5fqex9RUXF5Ib3P+Wd9TtzjtIPqbnFfMIzKQzV9wiCsFJksMVN6xfxdHzevUhvz9NYMevW78m39akYGVQlsUOmSpGVsI+dd965zXh6yy23tOoaGTv7x6B6sfuwo9t0003bHX9foWNnb5cp+yM2fWQwjZ3oWmut1ey0006tEse5+g47WUCDTV9RUTH7g8eQiqabXTh2yrLMfvCDH2zVescee+w0Xg9KuIMPPrj18pmf7KZ5iroezEMPPbRZdNFFW9UMJd3b3/72ac5hLnvLW97SekzA/8tQ24VsybySMdfwAFfMQoxNAFTPyMwDomJUv8yRu/AD1NrgHUkpZ/AX7Dw8I3VbUhlE1a6IGDcyW5/74d/d2hlIdF2eiRg3oiqipuuQdI3HJbwq4uE4BfgHSKXqdsiOWuIZ4AtQQwxl1VRor6JiosL4HVIGSUaImJprh7eizo65AgcJ7wRXpFtnCNcKV8W7i3/F64qfFMqV8ESEN9YHx6ULbaPKt8+KK644nefUcVxDtOmTvwO8JXg3SLKpQoOOg7PlmhGNaxLGmYNKYK0YCTFRIMgxElIhE5VfkRYZGpQkKVnciSee2KpIGC1co30CoRddsiPkQcx3ZLL+y09BYvKIsBACXH9CpHKJSQjpr0tuU2isqyLwEWYKBr57QOZzD9QSoZxhCHVduK4Lgc9kxuihYshBqXUTbq7QHOjTUUh4DCoyxiEIjaWUB30wLk3aJbjXVCbdyRJKG+W6GaNDqh+LWSoraB+Kx0nhPgQE2KiGWwIF0RA5k6SbYdAPQ3TJvypaU+0oMtndLHj+CNwM+1DeeM8RmBGm3S8iKwJsl6ht86J4YhTXdExE7yD++tlXf+nnXXfddfwYEqD15wDvk3nIPGHj4d992JiYJxB/zQcpsjKCsGv0PuVI1Mccc0x7HM++Sn1nHqoxUjEdSN9yyhd9i11fylPBGLDroWrpw4TgexMs9UBKGWNiJb1U24YnJbUAmMztVuyOSAv7Xgu7PBMllYD8CHY93Xuy+Mgd4vcq8FI8yF8QY4eagjoi8pPELs2/yUcZVf0y6iZWvBjXY9I1OVPd4MmE4oKkkjwSIz9ygpjgHI96wsRr0eBlkqG2K1PVd7w5+sQx7dJwePrPSjseH9dhYaDYSRlBFqWofupecuXnLST6gvS6tBhbOFVQHqq3QrY61Mb3Q7lQPGOS7SEwyIbkvhRPDNIS9tlnn3YnX1J2UN541mTBqfEPKuQau9oxzFM5esjXScAt5LgKZPF9pQ4Z9/rrr99eF0+fsYc30X1GzmUcqRodlYKN9Q996EPjz4C6xmIbeT66hoR3yLsVnIqut8L7+/nPf35cgkxWbwMRqiBjof8MtZGinZeBGssGpg+GiDmGgo/KKGVEMDBsWhgh3p0UtNFHDJncuHWuIXm6DVgpCytjqnpLHjmqMVIxHXgaGBM5g8SLRwIbu50URtlBlNrEy91PgtZFLLAp2WUcIxIb5SSDFtAoTpdK8iWJmfo5ZLWO0Z08eR54FOSHYIjYNfK6SPLkO8aCibc7wVtkeHvkrzCJ26mSj8b3jCO7OLtTE30YLI4bi0kYNq7JsbohMd6LrlfIQkbC2b9/kzgjpWtIpYqxuf/ueXMeGQslY8XOulQ4kPHJgBqSapI5D3l/GJT6achg0caiXmpD6lvKrWIcRj9YcHOeJBLY6CtyasfrL1SM/SiF4MMIENro5t+Q94Yh0ZXxOp56TTHeydQZFRtttNE08mFjyN+SpxuvPBeMzu45HYs3j0xbIUV5fPS3PuA15OXrJnTz3CRRI+H3dzwKfSOBMWtOYIDnFmhj1XvPa5Ezft2fvzVmc16cILOWjADnGaWwY6kND5GNU64NQ0buoopHjirtrUhK4BBOSQYRTlPluQ888MC2XDz54MILLzzd99KlI5dJz557FohhKUni7Agy11JKbOQ7Mk8SyZS889prr22uvvrqtlx5pLRH8iUXRMSLj3NceOGF06TGJ8k99dRT2zTY8THGpdMmF+2my/7yl7/cXgtino/rlmabzDhAUvyVr3ylTXstLX98llpqqVamGvDKf/e7321Td5NlIxanJJFwww03tCS/oRT57lHq/1zJ9u67PMo7PGq7X//6121q8ZL8VH+QbK6wwgotGTtFtDSu3QMyNblsV26NMHn++ee3/Rsff4Nc+YIXvGCa57T//vu3feB5K3Pgg3y52mqrjbdD3lbOwPP3DvogkC+//PJtivLuvRxyyCHNEUcc0T4n9+mn57nrrru275h7+9jHPtbKeMmGfdd/Bu7JuPLdw30PZifoe+gTUgPf+MY3mrvuuqstadGHvjfHffazn23JtanxSgL8zne+s9l3333blAYVjwxV2luRhDCCvlR9N+VVsJvyvayfuZ0wFytXbC4Dp52YcESX3NaFnVdu9zSZUV2+FQ8VU23M8IzkvJ28MzyGQjCpfkF4lxyQhys1vwixhofLMVLgyQovE+9JxSNHlfZWJBE7fLsvO/o+yOns9nhR1l577TZ5Uh92DXYVm222WfO6172u3VF2YcdOhisRlJ37ZZddNs33kk45roJ7pHm8C30HnZ3qD3/4w/Y6JoDzbiTMDsmjKiYWJsuY4V3iYZTArw/v+EknndRstdVWzRprrDGdx4PH0DwhQdu73vWu5j3vec80/cLbccwxx7Rz1xlnnNG84Q1vmM6TZz7hueQ5BHNXH84jhUAg5Q2tmIkYmwConpEZB6meETxxE3LeCeQwsWeF5XLcDsQ5z4TcFpeiD+S9IM45Vp+MZmejBkrsQsTGEVu730tCFGnTSfyQLcWkA5deemlbs4LqRewch0I9mBQnxvEQ+8TsIxV3DgiK4vKTUe471XbaU62fvK+l2jzBPypxtnCsTj311JZT0a2j04XvvWsHHHBAO58gCR911FHj74XjI/0iZCtFgCBrPummW/eOIeoGeZYSr68c4u3ocqX6tanAPMYTG21yHllzn7mIYih3/4i4CoDihVXMGFQCa0VyUgpiF1UAJn0KyHFUJyaRnKxVKAYznsGhWm4Kfq9uBrdpKheACSHqtZgg+lJeoB6JyUroiNqmey+IZt36LAi6ZLmAOKiwWFTkjTZUBl1FBDKdkBSJLpIf4wcRM6WGYAxh+zsvd3JUCe6T+UzSUR04lZuFOzqIutqlcrMAxYPJVZsSsZhBiAxbWmRcC3XJ0GKVynbZR+56ZzVGuS4EzqE+MF5LkmfPQ18jnubkw91ndtFFF2XbdK85NeZca4QuhA4Y4X14FxgRDHHvAJltnwDuffBeW3C9t0IW1CTdMcyYYKx7B4IoLbSLCBwyW8d1310Ct81JV0FH5YSIHd97z9Wx6sI9kdlHfR3E3dT4dz8UQBRkqU2APrOZcSyfFJB0zQEIuOrqpED6T1XnHU+R8IfGTEUa1RipaCcNu5XcgkN/n2O1gwWatDA3iXrBGRAUEik4NomuiT0n0zMRmmQs3lLGp2ByZHBssskm7STbh0k4JJUrrbRSqwjqXidvSHhyfEhteVFCVWKiNRl2J1eTMA9RTOJ2gl2VSlQ9Jdnt3i+VBaNJSXTF9UyAJIT9SY+CQ1sGkMnezq4PhpdJlgyTYoJnKAV96/qpXshGUzCR4vqYbHNtYicq90qqEnMXniu5acmDgH/E4C0VSdS3JKwpKWj32vVVzujtGmQWrtxuHhhsduC4AaU2lCuRgyYFz0ZBRIu6sZeamxg9jGyLv+dICdOv7Mv7QPFkbHtPyMNJwLsLn2sw1hjKYbwbs93F37sYEt0w3hkUxnBIfT2HSH3e/Xj/vOeeJYOBJF4fhedTfpWuIeFeeTmMce2Mv/44YIyQAFNh4XGkjAjH9N2mm26affcZLMYZflrKAwuMel4Y718uJwtVGA9Obrz6W/2Uy9/jHLnkahVlVGOkooWFsZSzwUJP/ldCaUc+I9zdDIIhMJ5KOSycR64OmSRzMPGriJva+Zs8GWe+Nzl3vRkMLlVRTa4mamORe9liEIsLg6dfdZXcV9/GDtUCY7Kz0MVu0E7ORNwl7bkXC1IYSBaVKBXfv2cTbJyPByp1/9pFUisfkuN+bou4vjDaeJNSu/QYD/qBO7v07IwtC2jKM9QFI68bfktBGIBxl4N7FLKzsOcMcG2E8/QrYzLl+dCGoRp9JfdLKmcOb0jXwEUI7/epBY7c17jpegi6z9EO3PvJqO3KeIU3IoeGa7r55pvbccLg7Mq2GXJk4pG8zMYgjGXVfRmw+q77DBjAvJrGFIMx9Y4yXEmHS5428uNSsj9gRAx5FEZ5/x9J2GzIq+i7kkTcs/bculWzK0ZHNUYqWtjB2OHlXng7CTkIcm5kEKfthkdSL3MuJ8jsiFFyFOQmL3/Lday/wpXLzS4Vtp2TuDQvj11w16tkYekuXj48Iv0F37GUbbe7ZUhKNKU0fd+Acu63vvWtrapJfgjqAIuLTJl9SDJl8bF7tDj23eUB+U94RDzrUh9Z8GSvHFpk3P9Q9lCwyA4dKwyvIQglpDIAd2EB5RmRmCw1bvUtQ4XhaOfeNyBAHzJ6GJx29ssuu2z7rCzu/YXMs2GsMGwYojwKfaWa++PF6I4Pye145LrXLcTIK+X65UTpp2T3/66h74HpInLcTBbOTCpUGvB8eRZzY957zsi12cghEsPJxVLx0FGNkYoWXrTgUqQWWJOOnTeDhHs6Bbt+u0kLba66pgRN6lXkJjFu5Kn8/BgwDEI/7VI9i1RcmofGDndoceb2HsVj5TilsMXDSfleCu11MWqK7VFj8aMezxgcpa12o9zz0M66ex9DXiBwrFToKq6HsYDcyYD13oza35MN+qOUmIzHSsgxt5FiCPMO8WKm4L1Ye+212/kxl4mVwRnG4U9+8pNHcDdTF/dUY6QC3vCGN4zXesnFPCOtOV5GikRmlxUxZNyG1OJmh+Z7u/iU+9vOhMveLoVbOjXBCIfYlU8kL0tFRcVDg3cfgZznLKVa4wFCPDdfpLgkjDkhIl4mXqvUXMJTGSTcVFZdc1jMezkFjutg7ESbIYVdRRrVGKloQfXBlYwHkduBUljwfOAShBIlVQ8iVC8miv4E4Nh2IV3yZ/98DJ0g0DGOKGW6xxGyQHgTonAt+Btdb40QhkmIS1XBO+cQ602FAhg0jCLeGmGTnIFj12ln1ZUV9+EaXcdQmvvZVWFSguuuKoGJq5QYGnNItKV5k/dFeK7E/fBuqNYrxbz2/XffvyUjM48IT+InCSF2SwPw9vj+Va961XgxzH6KfmULLP7BlfL//XMJV3ZrR6VIrQi/keLfsVJSf6Ed0mTfI5nn3m3eYIR3881ECl3NTqjGyBRFn3DmBeI65vXIEVX9nrcC6S1HABUvRdD08uYMFnVZgtFPMZICqXCpjcmOoaKN0FG/UJ5JU4w+JiOKhu6EzJUaioP44M102fz6CHcCPyIIqeS6/QlJ35199tltngP8DpN2akLiLkZE5dnRB6k2Jj/xf8YPWXSqTYxv35nIc5NfeJ5KLmzeLIYoDkVpEiV1tIsstZHHgdql1Ca4NEN4KBP6UFsGxBCB0g7YIlqC+1OnqGRsMnh57UpkcIugcaZCcy7847vgbOTmM89XGIdxnstyjPCrKrPwaErNAq5VvgyLP55JamfvvbbB8D4iJCNO94niDI0+lwWfpttfNgXxPU6M9ya3ofGxEenDPSi0F3mHcplYo430BLkxgp9FgVaqL0O5xHhCfM/BMRCj++dx71M1fPZQUY2RKQpqgZSMDqktdn+53ZTJrbS4YfQjSObaOL4FPrfYgklaArPcwg4mYmRAE0WOo2ICUc1Utdx+G5MEkiWeTMh9o41rFK7aeOONp6lmqm0YciYahkO3ABmPjjZdToDzkBF385yYRPt8gNjN8Rz53uSPC9CFZFCMKIsDsillTMp1bCeItCr8RqYrb0QKiI76x3FSoTdwLxYO1x2FB1Mg7WSoWoByHgTGlkWPDLPEmyBhtVDklDrAiNL3OSln8JgUK8zlwQGGCtKo/sotHJ41b1xqpx4wduy0EcFV981Jlalm7KLdI+JryrhhPFjM7cpdO49DH/FsI4zAo9A/Fu9Dt9IueXF/TMkFEuFVHx4ARldX9dNVd/mssMIKLdG524bBavx7X7yTKVUb5ZRxLXdJLpzBu8hDm5PxxruCx1EyIG2GyLxLhFJeFmOS8ZeDTUSuaGjMkcZpajwbo7m/rZgW1RiZoiDlswsqQd6D0q7TZPJwXZIlFn+gtBB1d6sp+WkXCKEllY97MKmldmFhGJkgTfZ2PwE7Mt4CE7XKvxYQagkLYOCaa66ZpuqtD4lq9/6d37kZBNHGJNoPGTEULZi+tzAwJFKl0XlLwvCxgOYIdUJTcT5GXc5L1ZX7WjxzBOeQk3K954icEnFF3pXS2OFBKu1ogcTasXI5PsJwtviVcqZYrBgPjpXaqQfXKYxSRkJKmWGcdJUujMWU54MXxmIf7RjmfeONUeH5dCs6M0y6/eH/GZk8el2pb//aus85PIlkvDEGGdc8A4xcUl2qKn/DoxbA3TBnIHDmjCxGDqVWych0zZGrpATvzYyYH9zjw52jhrgf5oRSThEbB4bdKJ7AirFqjExVkCsKpZR2BBayUtInE/1QjLS/C5tqQMhlMNklSrpmJ8aoCEPDQoCrwxiweAktMQL7k5ydYHf3apFKTcYWkCDkMUjsHlOeEwaK731IhMX7UwaEZ2z3zeWdkgMH8Gl4TxhnJdjt5rwBXQgbDB3LMfRDKcdFhBcZhEMLD4OFQZmDHS6DwHNIJXvzHuhXRn6EELvJ7gK8L7wKMhfH82TMpjgW/QymDMOu4cLQ9juGAq8HabCwQjdEKnTEYPPTAsl45w0aVRU1GcGgKimfYm7LQR8K/QrjptANJY1iNFWMVWNkqoKLWF+ZuHIudTt4C1Eu/m0ys5u3G8wZJPJMIJLmFgwLivBAJX3lwXhhPNpNW8x5PlK7Tzti4Q8GJOMl533yLMTuzzzzzOKE7Jkcfvjh7cQ8BOGqUh6HwLnnnjtoPIRxM8qYKOW96UJ4aZQcJcJ6ZNMlcM3zXDEuS8diEDBMSonaLFRChYyvFDma4cKAxQkRWn3961/fPt/6vpQNjZyXL8aMVAa5PmRQ4ogZ+yl4r2wczJ+5Z8v7EwZkaZxU/D9UY2SKYoMNNmj7Sjw9l6Z9ww03bNuU4t8ycGojw2Pq5eYZwCPA/8i9lArdccnnFhZeBTr+VIbLioqKqQHhLcYsIzoFxjAvIz5Oiu/GGBWCwqGhnMsZ/jg/5rRUbR/gxQpDo1u7KoB4HHlJfBiTFTNu/Z5zZlYErnj0se666zZbb711s/baazfbbLNNss18883XzDnnnM3CCy/cXH311ck2L3nJS9qfH//4x9vy3X3MM888zQYbbND+vbbf/e53p2vz3ve+t/nlL3/ZrLXWWs2rX/3q5re//e003y+00ELNH/7wh2bRRRdtllpqqWafffZp/vnPf07T5vzzz2/Lfb/xjW9s9tprr+aLX/zidOdRQlzp7+985zvNkUce2Vx44YXZ/vnrX//aHH/88c3111+fbfO3v/2tOeSQQ9q2Odx7773Nueee25Rwzz33NBMR//73v5vJjol4j0Pj6a677mouvvjiYhtj/4Ybbsh+b4N6+OGHN9ddd137/yncf//9zcEHH9ycccYZzY9//OPmgQcemK7Nz3/+8/b9f8tb3tLOR/7/wQcfnKaN9/Q1r3lNM++88zZvf/vbmzXXXHO6aznssMOa5z//+c2hhx7azg9PfepTp2nj3BtvvHGz3377tfPAtttuO921/OxnP2vnIHPNHHPM0aywwgrTtbn77rvH/9/caI7sY6655mo+9alPtd8fddRR7bEqZiDGHgZorxdeeOG2NsLLXvayYpVPqgmJsMS7fViWo1QF7aJ6RvLQJ303NQKguGYOSHuUAxQlOfgeqRLXIef25LJE5JIPJNdGPQc7FuTHFPzdTjvtNK4aSMGuSWp0bfopwYWUkOu6vAvjswshC9fqXoJMmpLzCS1JkESBoV3Os0T+TOqLGJgrJIjjgXSor31yx0GCw9lQjTWF4GDY2eUUL9zLuAJCA7lYN/gOObekQvA9xcRQmITCYkjuS32F01CSQHp+PGO4NiXys1g+mXKJfGgHTYFTqk/k/jwzCqESh4QiTH/lQkA8g5GqPUe0Fhbi+YtjpPg03l+KLAo4zzfVn3bk8usY+zlPpf6Tdp7qRQgp1ZfaIGJ7H71zKVWMc5nbvSOSjuHSRLXe7n2FJN6HN7ZPNtY/odLBlUolSuSVdS2OlfJEAO8DDyyVT46PZD2xtghN54B87r7cfw6et2N473PP3buckguPknl3quKemRWm8QKaqC0yJkgDzUDI6f2VkSZfE582YLG6SQBTaoFHejNTESbN3EIWSLG+h2LTSHEm7lI7izxeSGkRMYFYuEopyf29+jdDyZkYWLlxxn0rR4LwVJ+x7/4RR03WoQzpuoQjn0hX4eDTjy27F/F9fJvIlZLK7ohYSVarjZ9kgDlCqhg3wrGQVh/eGTwCCgmGP/5BChYMlYERTZFIU8/MYkderH9sDnKTrarIIQPN5TFhQETVYveWWyTwl9ybrLu5MaIonT5C9M0RLz0r123eydW6EeO3MYpryhkZ5p9QI+XGtlwx7k/F2ly5eSotiy2SKRlyio/imqKgIEJ56vnpY4RXxq1PijhuQRYOjXHpHvr9ybCwYHeVXX2Sufc5QhU+xpSied26Ld5TJF3P36LL0Hcf3WsydhjaeC65nEPg2EOVbvVviUAd9z9UzNN1l6TgoM9yUvhAakwMqWaM/xShuWImGyNe+O5LZWDKnVDaafQfHEleKdFMH9UYyYP8FC+jBJPCUGXMWc3bGIW4Z4c91M6EM1QIzMTd3+2ZzPSRjJVyJjAyugmnLDaSNkn8JgkaIwL3pk9OtKuKhdrHwt/fNZlcMfZjQUjJkxldFmDHYmTkvCIm18hYabebMzIQM+OapPTP9ZGxFIqdXL0OKh5tXFvJy2Ijol2p2qmFSBtE3hwYmlHRNmeM2vUH+ZDRmYLnG/fnk/PQMn5i0cZTyBlJPDCx+9f3KVjIeORiTKQqCjMUu0UUKW1ShPHIXuyj3kqXP8GgkJ/EcYw5OXHk1+nmmHH/EpjxDPm9zSEDrftOeX/c15BEP1d4rotRkoLNasKu9WhobuT5LfUH45UhWfEoGiNeSrvCflZAk1vJ5d+FSdALbMLPASvfhceH+7kaI2kwDPVNKd+GRcGnBF6H0iLOMzGKqmIqAzGOFwCJTqjMrrefU8TEF+ms7YhNdP3QSpQsj4XHApOa/C1i4c3xXvKKpMIYXbe6hTGXv4PXQRsGV7/6bBcWM14hk3AJvDUMt5LaxWIgBJczfPo5NUoqIUYf7wCvQA4WFfJbx8pVajX/MN7kHUmF/boGQhhJpVwmX/jCF8bDgwzHfsVeBotrimR3kY+mC31o7Nj98zTLRSN0M5VlvKNgSDEm9CUMnAODtWQEM6Z4rRiKqWSTFWMzxxgRG3XQbs2B2HnzmIwC5ZjtNkoPjsu+6y6PTzVGpoccBPqmZAzaRZXkaiBfg4UxB30v10Ep6yCpcM1KOFZceIWSeE9yOQpMbhZxi5LnJmlaTvFEYWAx9L6Uwp5CQGLhJYM1wj28CkMVai2CpSya3XkBr2QIvApDhq5+Kck2uws7JdhQO6n7JRUr7XgZN4wEXINc1mJ/j0fgPaROSxmD2gjrMH4YoowveUFSMC96jyySODcVedjQlgxdBh2VTQ7mw1KKA2MovG25Z4FbFetTKu9PxdjsaYwI5dhtlOKMUD0jo4MrX98gcOY0+HaKEUfOTdKxEy/FePEtuH5z+RrsuJE/c+RH57arsyjOavfs7AreCV6VoVCTZ4ArNOROZwCV0vN3UTJWuxh10s2REh9uAr1Rj2ehH6VoIQNulMRVwnqlJIIBob++16MPzwGnKSdjrfg/IjJSby58YuzjqzDacwjuU85bZS2xKdYmxyPp5hTJkaJ5GiNUVyq2OZVxz+wWplHpFXF1lJ1SH5Uzkl9oLEgMAC9CbgHDivfcxMtzuwBpuvWxnVsub4i6E9ogJubcw87BZZmKjceELW21Oi2psWA3KtSBj4EUlnKPmoxMIMjUdj+lBRk/g5t8aDHMqWK6C3XJnQu4EUPF5Ia8DhUVgVyl6cAoRivPQCkrrizCQmSlcSvUYX4pvWc8P955PxmDKY8Fb5pwscq9qdozNqFUd7yCvH45w9B8VuL88JjgYmmTUgzBbrvtNs61SoUt9RlxhlIB2vGk9aHP9L8NIS7OEBF3quKemUlg7cZaDToS0BKBlRoAY74kuSuhGiPTov+CqatS2tV68fEYSoagzJ0mALve3MTkOXpBcy5mQPxk2JQkmF5cIZ/cZOv3DB6ksJTRw3gwmZhwEEH7k61/Y+lTMRg3VCspMp3JlVqAcYQkmrsek77dD3d9jrgn9MII42HKse/t9tw7wz03ScoS6RzSgJc8Bgi3Upfn3MdB9uW1zHkieQ+8U5HZNQeeLP1Z2vUzin1Sk3bAOXjN9GdufFB8MFjxMbq1gFKLqGfHIM0ttoxWMlfk7FxfCosY964nFw7TlxJiuS7nyhVvpKwpLUjaOI4+cm25nb+MvAxoKexzcx75taJzFvZcyJtUHnHWeMt5ioTcvCNCYH1Sd7+Nd01W5pQ3icpMG+FeXKLUMzHOeHBL44iCDfm2FMa3saX0KRlQjDD9l3tWPsYG70ruXdRGmM4GLlcHSht90lV5mVdyY2kq4p6ZKe21CLCmhQU8TJN9TMB4B918ESYMli63pAkkPqO4UR/qzUwF2D1wUZaAtzFUDKqPoZTaMApZzs5/qD6Jc40il8tNAAEvvIUtBWPFwmf8Ifv1r8nfbrXVVq2rlmeJnLE/gZhoxO67UsiUQYeAGrssRNGUsUaaGFVWLQ4pjoTF3EQsHCaklspfweixYItl2yGmzuVe7TBNkqXwHQMDcdm15/gk+oDElVeTFyrn2bFBYYy5JrmFSgXwGHa5McxgicJ1ubwRFg/VmrVxzpSh6br1jeeBo0FenoK/1ZfyH62xxhrZ8UqpgnCMw5PK5eJ8DHr35jma7/rvizYMUgaCejkMidR7x8MWfeA+U22UB4hxadHtey38O7hiPoz/lBHBqME7YmjzVqZy4gh1MKKQiC26qQWeUTwUDmTs5wyeLqwPQxjyCI06X7neUea+LobuQaG9HOl5KuKemZkO3u4udP88Jd1duReamz0QCXT6H6S7GX0zUwGklHbypbwd3JQkvyWMUpdkqsOiwpCxCJukxfr7Ml0TjwWIocIrIilVPwZtUYykbSGt7U+UwlEhJ7Wgp8Y6Y4mHkSdSOCxHFo5YNyOjtFNnFGnnXc7Fu50zrlsukJwRGaouxk+uTah1fEqkwShFkMurEsZPHKuUwyTa8BDl7k9BwWiX86A4x5prrtm2oRDKLbq4CowNZFbeghQYJHG+VE4UHiHpD6JN/zgWdYvdNttsM17tmSeta3AzsnBseEWFR5CYbRJHWcSnMobmRcY4nkgJPFupxGhTFffU2jSTEzHplzJtfuADH2gn9KHjDGXCHSLjTXWYmIKQmysSx2jkuubtsBgwVFJVXKPAoYXMIpOaFP0+Fii78NQibJdnhxteA+dM7fwYVSEjtfvOkZLxZLQRMiuRPXlitLN7zsF1MKZcX2kHzTPgWCXFjgU5CIi5HXC40EMenQNvkyRf2uXCzZ5bSLJ9UpwHYPxFYj1Gat+4EX5wjqjsy4hNyah5v4Q8eTe0yYW/3KMwFM9PX1hQMTadwZ+TtUdfytFSKviI4G+slHKoSKjn3aqG3/+hGiOTEF6W8DThTOQQXIlSmAOvY4h0bKefy3gJuA1cs0PXPJUh10guk2kAP8AChvuTk7jaLXumvGKIvbkkdZKjxe69xBESZhU2cs7SteEJ2X0PVSgl2WfUDD1vY1OpgSEjj+qun0m3D4m73Gtp8XA9vCg8FSUwCHikhDNKBhBDn8HIS5ICA/HEE09s045HcrJUnzDMGHp22bzLJXKo90yo5KGGEyYThsaVZ1PKXRXGfK5IXng5c4TWgMyz2uTGJsJ8GKy5MhBTDfdUY2TygXEhdm/HK0dC6gU1qYXUTDw4BxyJIYPFxCyWnpsIwjgqhQJ8Z9dWmkyG5KmzK2aEoeUYsr6WFhq7acYFImGJC+RYOCA8C0MLl9weJt8hcDmPku+Cp2aIBwTCBaPsGBEHS0ZGgGFWClmCvnC/ucRVAdclcdzQ/VpwGPOlhc05LY522kMyXhLjHInyoWCiGv6uuzQHMLxxv3LgGRMWyfGCwLMw33Uz0uYMjXPOOSf5vWcUWXBRFXIhOHM0zo+MzRVj1RiZjDCZIkJyE3LjpiZroRf8BHwBu9CUO1FsWbpvH4tNDtzpYtclhYQdInd5bqI3KXNbqqeRI7biOJi0c3VA3KdrECcvuaJNajg1Q6W9ESlLha0cx2RTmiBNgMitpQXTJHrttdcWlQFhNJTIdvoW4XvIaONRGCVLrucwajbdUdJ+Qy7M08eo7/Co7eyIR0k77p5HOaZnz+AbMua0G0ojDp7ZkFfJsx8iUhpD/ZQKfQgdDdVnoXQZMnyIFEp95Vot/KWx4Z6oZ4TAct5VxisSOY9FjhjN4DNP5fKFdNU+Ob6HvjO/aJOrceM9xZ2SAiHHt3M/5jqCDYTmFJDOGdy8hLkCilMN91RjZPKg+5KZAEoTjoXLx8RkcksZAF58HhEkwtJuCmdkKGun8MFQsiyT6FB+GdyLXBw+jCy5R3Jpw5H17I6ME7uT3MKgENkQgZosUBsKghzIOBl8uUlJv9o9k19SO+QmSRMpoqUMnqlnEaozxEjk8NLzskAgtpYWNTtDYYGS8aMvtckp3lwD44MKJSdhDPmkZ1Jye4cCb2iceRZItqX7l0GWEVlqIwNujswawFXJFRwMWGSFMUuGpuuVKty8letL3C8hHcZ2rkq09wJnh8czJ9PGaRE+Ir/NPRPGscUWETm3eWCIRZtccjsGIB4LpRJeS2q8GV94axb2nOeKIS/cXDJknQvHpjSm/T0peOlZML6p63KGkWfNQyX8klOfmT9wgPR1ydCgtmHcBKa6WOCeaoxMHliEhpJlTRXy2pBsmMcjNRmbbBgyCI14ELn4sjwHoTChpEkt2tzuERdWGyYlr+XliTa4OSm5Ir6GiZ+nK+c+lteFi9pCkyqW574QS/090hy+QgpCQa5BWK0rve8Dn4PsVrgnBwuQBZ0kOrdIMEB43WI3mvJE+VvPAp+DcZfrAxM7gi+jLmdoRv4JFXRL4UkLu37iQcsRtC1Ynolinrlr4pkU6rSrdx8pcq/5ijHCQ0mxkxoDFmrkWuPAs+kvqJ6vZxqF9hiJ/XdAG7vxGG+8lSlvkXsml3YsIdjUM+HtYUAwkr0rqdAbI4JhM/QuDn0/GaB/Srw6YHANVQuezKjGyCRBVDUtcTu4XRHlSrATQqScjDHnGQW7QmqQkvvdxCNBmp0z6W8qTNMt1c6QTJEPtRFbDgVNqrKtCT/yl1hsUs+Hdwuvh+uYZyAH8WtEVIXkcl4RBq9FUVzcsXK751j43COvTumdDYMtZ7REvhCfXDI9uT1KFW3D+JGjRRvx+hzsjhmayLulRI1ypVD+6NechNpYEBI1FtxHCkI08ZxTRpLdeFy3D4OqD/3CsAu5by6MoA88G6EECb1y8JwZWbmQxVTBKPPdUNiLR2vI0+b9NEamKu6pxsjkQOSCKJHgTDwmxdLLxc2fmui6sLiOEiufyuDGHeJH8GbI+1DaDfG6eK5CObl2EgrGIsVbwYDpIyTBvAu5nb5dclTtZUDkagfJkBznE37K7WwtquE9KvEGLOTa4SAMyXjxk3JgPEUNplJq/+AOMDRy49QiTJGkHb5CKQNw9EXunIw1WXBDRp2qnSN0JnSiDe5DysBDnBUaDOMn9ZzBuOMZYtyVeB/uXeh0iNg72TE0Vw1xcBhtQmil48gBI7dOqa9Jwo3JURK+TUZUY2QSgNwwJsTcLs5EbaeuTSkPhPj2kPdE7ZkS2xyG6rwwZqayBNHzGCIImpRk3yzlceGd4TGRoyTHp0DUDXY/JUDOXWwHrI2FrkRGFqLRzi6uRArldja5ltQkwAtj4Sy567m53YNkcSWEdyRnSHWzqWpX4g/Y7eI8CLPkwMiKDKa4SrnzMQ4YGdrJtZIzIng2eLmEPnLggaEiGuoL3IVRyLOTGUOkZWHJoQzOPFKldzXk9KVNxRZbbNG2EdJLgZESc3ipsN9kRjVGJgEUnkICk47bbjsFu84Y7DnGeVQ95r7OKTJY/7wrQy+MxaVUwdRx7FBLsBOciB6WoWseNUZu5zt0LH0oVFA6JqOAxwOnoHQ8i+Ryyy03WPXWs+cRGFLtIJyOkkGZV6/kFQmQLQ9xnsI7MlThV0hDWCTnXQiQbzJISmUp9D3JsnaluUcoBlGXx6V0XsRIBv9QqYZRxkdc3xAm4ns2NM8j1g6NKzycUmFLz8KcWJIDyymjTa5oH0SCO2M4BQZRJMuTwn8qJkK7Z8T1e86mYrbFW97ylmaJJZZo3vjGNzYf/ehHk21+97vfNS9+8Yvbz80335xs88Mf/rBZdtllm8UXX7y57rrrkm1+9rOfNU9+8pObn//8582///3v7DX99a9/bb761a9mv59jjjmas846q/n+97+fbeP46623XnPPPfdk21x99dXNIYcc0vz3v//NtvnnP//ZnHrqqdnv41xf+tKXGN3ZNn/+85+b4447rtjm0ksvbc4888xim4MPPrj5wQ9+UGyjn51vCFtttVWzyy67NI95zGOS3//xj39s++/GG29stt9++7bfU7j99tvbY7guzz+F3//+920/L7jggs1pp53WPO5xj0s+93gWxtoHP/jB6do8+OCD0zyvDTbYoNliiy2mex79/tl1112bl73sZdO16+Lxj398s99++zXPfe5zx3/3wAMPTHcNCy+8cHP00UePf5fra9dm7Pz0pz9t36EU9NsBBxzQfPnLX27OOOOM7HNddNFFm3PPPbc58MADm6985StNDksvvXTziU98onniE5/YlKCv3f+tt96abfOLX/yi2XfffZu//e1v2TZ33HFHc+ihhxbP9dvf/rZ9P0q4/vrrm2uuuabY5oorrmjHdgkXXnhhc/zxx7fvbQ6u9/TTT89+r1923333Zr755iv2zU033dTcfffd2TZXXnlle4zbbrst2+ZPf/pTO+7uvffe5LP3/i2wwALtu/eSl7ykufPOO6dr450y/84555ztOzPXXHNlzzflMTYBMNU8I1zEkUjMziZFkuzueCJp0FBhqJBbPtTvum1GSUQ1ynMaqmop1FOS+toVIvIhZubuOwqckUTmMpZ206znssm6bzsfbXLyUjtsWUO1yRXvQyDGjcANSCljQOiGJ4uXqrT7E95Q4KwUNrMLk3a8lPE07k3su7TTxoEJqXOunRAD1Ugg1Y70Vs6HLvrt9DESZh/ddvgtPH05d722PBZCXUiiOeBw8GiUEvfhDoQHKgdhIbydXDIs8I7y7lAQCYemxpHrlpdHWLVb46sL72CkwieJz4WGeMO0yd0bbsxKK63UhplyXjPX6Nm7/1Ta+m6adB64kueKl2CoCJ7nMeTx0Y9D6kLHGPLwDc15Q7lfHF+b7hjMVQnuzpulUh6TETVMM4EhQZjkRCWM4v6eiC7aGQmLEV5DiT8g4Rpug5BYzoXqWRh/JnehsFS/KngW4bLtttsuOVaj0irZqBBM6jikmxYsxNbURGgSRjSm3iDTzFWsjbALqWvOgPS3juV6csoZ5yMBZdDl+ESu08JmAS1lyjR5C+/kOBhdjguDrT/Rd+F8lD8IxaVQC14AvlVp8dJPkcMldz6cFeEfhmLuvZInhGEjr0QuFTjODgNJ6DVlJAgf4BNFbZuUkseYDUIyoyR1zQww96WP5J7JLZLCY8JuFB85I0A775LNwVSeU0a5d3PFEJ9FqHsqcX7uqcbIxEQUJisZIxYODP0SLBDyQQxhKuQCGCKTliYZXhfxZ7HlXF9ZZMWF7WhzUkBjN4qxIUamkiaRZoZBYxFN7TJ5XRyHVyC3C7Vbthha9HJybuOD0cvAKslA5V2R30PSrdwuMbwrFk8eltx14V/wDMlxkVN24SMx5vTBWmutlTQinI8SQrx+5ZVXbpViuety/dptsMEG2Xu0cLt2sthccb5I4ObDI5cz8HjiPB+GYuoYyKlRoJBxmmrDkxWkWFk/c7wSXsEhtZLxzfM3pBxxvCGezWTH0Fzo/RwibZP5DqkW5ecxjqaKYXdPNUYmHtxfkJ1yrn4g89RmqPIp92oJdnBD6pmh0M9kB2/JUB/Yqcp/UfLAMBAYEDmPCFioPFcqj1zWxmDv+2ifOpbsmdQudsa5a1J/JY6jgnMuPX7IZZE4S/kUhCi0ExbKnZNBF+fMLY4MHoaPNqXK0xLGxbFymUuFFeK65OjIwd/LlJszELo1hBh4+jZFjhSGiPP5pHa/jBgJ3kLdlOsryijKIAZuKVRgcdxhhx0GF7apbmiMMo8xXEvw/HlRS0YLyT5DshQWlu9nSKY+mVCNkQmIcOOXjBFZFKNN7gWzsMgnkUtDHhAKyE3kAS7uoYluKH472TGUzyEqx5ZqlFhwGKIWllzYwe+FARgG0l+n0PWuyJGQk/tK7hY5OXI1gcB1h1qgNKFzPQ8Z0a5FG169Ujw/0vEzknKwqIfRUqocjecR/ZE7J3ULj402OBS55xPGYkmmaRFiRGlTyhYrPIZjVPKAWvQYXUO7cfc1UYtNzggIiwwZG7g8pXBeGAm5FPhAVl7i6QDeTHg/c/NmGCOM0alQv+aeaoxMLJjsLCRiweqUpCZ1i34Q13xyL1fsvHJlzrsvllodJa+AOPkQ6Yx7e0YVXJtIGDVB3Ci5V9TeyeUqCDAcpQwv1flRvM9zJdEtyQjJFeX3GDonL5ykTkMxbrv4HDehLx8vSSW71VGRIksILo8dawmRPK5UHFDok0HF0Cst7EIiDEK5fXLPlLdj1113bfk/Q/eJzDqE4CCM4tafjDl+huYO3t2hTKlCVSXPh37DryFHzwHp3DhiRObk2Z57zM+58JmwL/K5uXeUStcTHVXaOwExzzzzNMstt1wrISU97ONf//pXc8455zRrrLFGs+mmm7b/7oOBSU7p75dffvnsuUjWtt566+bpT396URq48cYbtzLSHMjeSENLclYgfSzhH//4R/Oa17ym2IaUjkS1BNLkSy65pNjmG9/4RnPZZZcV2xx++OHNBRdckP3+P//5T7PXXns1Z599drbNtdde20plSaFz0lvHcV8kuCS6Odx3332tNJLkecUVV0y2Ia0lnSQhdM6UjPDvf/97c8opp7TXduyxxzY77LBD8prIK0kwyUxJP5/3vOdN08bz/vrXvz4uoSWT/NSnPjXdfZ533nntMcB3K6+8crPTTjtN0+biiy9ux1BgoYUWatZdd922bYA88le/+tU0f/e6172uWW211Zp55523/bd7SsnbPUtyZDLfG264oW3Xx/zzz9/27yKLLNKOVVLuFLwzl19+eSvVPPLII5NtSHePOeaY9vpIgnNwnyTcxhlJdO4dIj02zj75yU8WJbpHHHFEK0POgdSVPPo3v/lNto0+Ij8uvc/3339/UX4Lxs5FF11UbKOPTj755GKbu+66K/m8+hLcIbm852pc52CMbrLJJs3LX/7y9j3KyYo9/4985CPZNnPPPXezzTbbNEcddVSz6qqrJtt4N9/0pje1qRSe+cxnFq97SmFsAmCye0bsfKgxRmnXteSHWNsTjSBVcpEGz6Ek04Tdd9+9VcaUIORQKj4o7ILfIZyQqzjLkxGu1hz/IXgNdtHap8BLIBRC9ZJ6nlz1fo9kigtS2rXzUDlXyWWNEEmtUwrNSAjm/nnecjJEUlD3FhJt2Sr7cK3CQN0Mlql6KHgmffUJz113/FLqpMicvCKxc7b7zWVBFSKiVFG1mecxB25zyeR4IEv9qHYPL08pRPeZz3ymfR48VDnCK8Isb6jQlIy6fehf4Sp9bTedeqftrqNitT5IwXwRqetL8uMo8FhKQoegTH2TqyUE+s4xhrLvDiWAm50wynzaHzNDczSvzpBnb6Kjhmkm0ADnRs4R5wJqTeQqzXZfhKmsjjHhDrl0qTWQzEqLiHg+aWmpvxFWjUm8m1w4JNKJc+tb4PvwrKKImpwSKRUKNYzFyDFyGXad36TumpFpc5B7wsKnenEJXNVD45HigxKnhOCIDD2TlDHSh/4pcUiAeqyU4h0YJEJApUqrjFQLP2MiB8aF6xZmyT1/xhgDkus+crT0xytSb6isUkoez4zhHK5/BnnOiKDSEVLLzQFIrAwxxyuBhHcoi7J5K1dAcKqgRFgP2ESUjBjP06bntgKfbKKjGiMTBBHjt4vOwS7ULkxOhSGS5JD1PkTimuwYZQKRKyO1S+2CpNQOOrfzsRBZZCwOEnSl8OMf/3h8kbHYpo4V9WIc67DDDktyApQKkHcE+TL3/PElTIxIrbnFyoSIx8CbURprkdY8tcB2jyWnhvh6Du4F2dqiLtFZaXFTHZhxVyo2htcSC3Zpcudlef/7319M0CWvCK+G9yXHNcFpYUySDafytPCG4W2FQiqF7373u60XShtS69yY3Xzzzds2pQR2KjiXxht49oi4ubwy3XNOZchjMzSXknjnjMPAK1/5ymyl6TBqGcdLLrnkpDXuqjEyAWAyi8UotzM0EUb9g1K1WBOMompDYRB5IB6pd2GyY8i1qn+EDEqTlYRW1DEW7hzsvD3Xt73tbVniIXVNhHpyYSzyz8hNklJecIfLe0FymMv8CvIjkLguvfTSRc8Bg8axJMvKFRFjXFiofZBgc/eH9CrHB0lsThWDzO3enFNCsNwiy1hzPt6fnBeJd8B9auM+cmBM6lcFCBkuqUWEpyYKFabCWa6JgRHveE5ey2hhtHnPc3As3qqhUvSM6FKm2FHH+GTHkNRZOLhU1BB4tRjSJYJ/hMakWsgBKb1pmjYz8WQ0AqsxMpvDjitKsfvYJafcxZGGnFQ3B0mftOmm4u5D5kjJduS5yMHiKoQxVOp6iLcx2TFK7BiPZKh6r/i+RGCl41kQSQFznhq7qRhDJs/UsYSIoo3cM7kQFf5KtCvxbizi2tjN5bgQUYjMJydDjhTy2vAO5I7lenkGtcsVjIydapwzxWEJ4z5y+aiimzOSKCFkSdWOQZKCdzauKxfWcPxQ86RCdd3wIYOsVCbBsyUrHaVsw1SG+WmoD3g1Swoxf88bWeLyCZ3HJiAXqgvPN6WOtAwpSO7XNE1rmJdKYExUVGNkAoAr2ELDjZcKnxjswTtIZXSMxE6RsCmXSdNkzl2oTSnJ2QEHHNDGnUu7JouinW4JJuAhg8bCM0oNitkl6dookslR6vb0c30M7d7svErhBN4Ez9XuPTcBC3FowxgteTx4OrST2bM0mfPAaZcio3afncVePLy027vsssvaYwn7lCCNvHa8HzkYT3FtavzkwJtDwlvyVrj/II7yWuT6gxFho4A7lIO/JbcvZbqNcOxDITN6N4YW3dlJ6iv0MYShnEXmpqHKzbxUpdBIGN6M6ZLcm5FhnORkw7ERMGd6x3JevQizCrGlnocQ/Xvf+97WIzk7Pa8ZhWqMzOYwidi9yZVQmlC43eWCKJHpTGBevlJaaJMmJUHJpWgyZMmXwBgZSi0tHj2kjBEuKu2Yg7tRipFHOCCneAnYtVr0crAgCYeIuecmgzPPPLNVanCp59q8853vbBed0u5G/wsT5HZJAYsu70RJsSBvgvTjJe8Kb4F8F4zeXDE0njX9SJGBd5IyHhAkI++HHZzz9mHn3/W8LbXUUq3qpAt93DUoGBBCJt1slNdee22rLumPKQtDZD41DlMZYb0LQieeE88UdVXqeTmfOcW42GmnnZLeIn3q77WT+Ta3mBrrFjbHyXGyHEsfc9uXwq122NpY6HLvqgUbKZYBl8ucq19xerzzOTiH51MqGyEkaZPimeTg3obmDYa6PhoyNHgCh0BpVYJ+E0IpLezmXmTvUhvvTsmTDMYHYyL3/vGemZf1YW5j5W///Oc/t2O+NDYmKqoxMhvDRCEcMpRM7KEOzMloVQ+B23poNyUWbxHMIUIKJQVJFMIj+cyR/+yOteFuTxkbno/EWkISDLqUJ0U4zcREGUPVk4N7tmNn1OUmQkaFhd795zxVroH3wuTNGMmFliQ1M6GCRTCVrEkIhVclwIPWl24yxPrJ+PAqun2K18J46kO4I4wzBoC+TrnHeTQsAt4f3pmct0E7u17hmFxqbs/MfenHkvEsFbzwT8l4dizjh7Q2R7BlzFiQZXFNJeliNCHMRjgqZ4gzUH1Pxp0DAwNfpxT64uHCZRhSO0ngNRWzwD6UOXeU+XzfffcdJM9PNFRjZDaFycRkLv10CVzJDJYSLEJTIYNfCaNImYfyjnDp8x6UwizCIHbmJTe6AnDGaU5lYsGNRcSilAoRIB9SXiCsWrBShgYvF0Ic+WlpAeBRcxztc+DxEGZw7zmyLYOCwiZ4TbnJEr+pu4CmPDFCFbLDdtEPHQklMtj60C4mf/fNPZ7Kh2HSj/dCPD7H57BTdY1CQBb/nFHnnJRqnm/Ji6l0gvcaFyG18PBEIJoLlzHuSuGoCL2lwBALBQ41Tu69IOM1ZkvXbIxsuummY0McjKG0As4xFTdD3f4eypmC1O6ZlvrpuOOOaw3fUp6XiYZqjMyGMBmZhNwLl34Ods2UA6VCSna9dqFDdSvstB8ql2GyYSiuzmsyRDblgh+qgswjYvHLcW4Uv4v4sZ10CvJWxGKU4xhIOOVcXPUpEp5FVsp4xsEQTwEX6QMf+ECxDQPJrr/UjyZYYza3OAYoh8iYS5Bbxf0PKT4YB0OGppDQkMpMojMeFBytHHgxFcnzvqUS2HkfcWgYbYzEFCGd4cObFd6zXD8yDkLunYOQjzal2lLBORrakZcS4AWmOil2iKcCNpk5dVkYLKTX2uW8uXfccUf7XHmsSp7RiYRqjMxmENsVa4+FJlX10wsv/hhywVwYx07FTt6EVrKyDeZS6fR4QUo5JSr+D0M7Q/3I21HaHcm74bnin+TAG6aNxGO5Z4uLEdlfU+EXoYxY9IRfUqEMiyojzOJZUhUg4JGT5jKbBonaPTmf+88ZEUJXFETCIyUvjDwZoYjJqUsYXHg+DLJSf+ofxxKOKXmI3CMCb47LY5Hx/urXlMfSu4tHU3q/wT3pc+94rp88L+E8NUxKYGgOZW5mANuQVOTBizZUewnvo1TEMjxjPFGlek/bbbddOz5WXHHF7Nhecsklx5MlDvHzJgKqMTIbAgFQKXMTWooMZ1LlVo/BmoIFJNogT6VglxZKAOTEHOzOJe8qSQ4jjFGSHFb8X2igRPIDnpUhT4VF0UJUGuvGkAUtl5eDOzgWRbyN1K5W6MJkR6ZbKjKmZLqFkxorp1AJzo12peq+vIHaufYcIVsYMwwpu8PcsXg8huS+QjkIxRYI15YjPjLeSIx5PnJJ2vSp74PMmrt2BOBcNtXutWtTksjzogxlSmWsllRDFf9PXVMyIvSj+RbvJRf2NafKYYPPk9u8heHrY9ylQqiRbj/ezRRxeo899mg3msbSZMioXY2R2QzccoiCGNo5MqUBL54szbbYcR8WFQsHd3hJWsndbFIVU88lMMNf4Hovycm8CPJSDHlXvOwm35Ir12I9kfIjDMW/7Wof6kRhEhs67kYbbZRVvegfu2bPPlWnJdpENVuTWU4lIsSnjQU2pTSKZ8EY0U54MXftJvpRcorY5cU5Sx6kuLbSYsyY9z5pl5NVdqWVPmGM9MeZRSMypQYpNjUWGZORDyJ1HGBgIMTGNaXa+J1d9pCMt1SdOYdRpPCzC7djlPd9KMQUnJ+SbNiciYeRC41GmoWhzRuCuzZCjTmvFs5QbBRTRHeheknOGDa5qtRXXXVV681ibA8pDicCqjEyGwIjfWgBY6iY3Ev5ICwedOmlmDq3cqlkNng5h+KSDJuhnCF2jaVy9YCQVZKpgpezdByTl11paTJ1rRaWEiOdG1VK8FxiLIjidTm5NOPSeShVLHipRd81MECEb0pjl4t40UUXbSfeXPjC5GQSs4BZyFITOe4D9QSFjQUxtfMW+tMmEi2leDBhqGrLGOGh6Ke9xkNy79HPQkbuob8bxOuIRVVOB+fsE1hdS/dZILBqR1kQEGfvPwsGmXbBrSKJ7Xtc9FOkUmeMkLqmCK2MI9cfeVZyHiwhGs+BJyXHtRFm0g5ZNUdCtfFAUFbccCjTp8VWm1yadyE3YTTj8dBDD82G0twXD1eO12AMC6PZfJQMBbt+svsSfF9KSw9I2KUaUeY379YQGBtD8ypuTYns7TpsFEvGnPtxzaW8Ocak7L+l+0JANq8OqQDPP//8wUyxEwHVGJmNYOI2mQzlzHB/o4ZDZpfdzaO9WxqKoZqUhDlKkxMDTKigZBzxCBlzpfivMEfJbW+S1MZHkqXUZGiBtBsbKvAm34FYMgMhNxna3Wljsc2RMbXharaDy6m1tJFIz7NgTKTqJjk+D0dcC8Otn/LabrUvP8V3Qb4sFcozti34Xd4F2XQ/94jJnDs7PITuJ5WFWJ8hDiLXMlZcQwo4JVQqjpNrY4F87Wtf2z6zXBv45S9/2ZJreR5LMCcIleGqpMa+8c4rZQzlPJTdsFyO0Os5IdZqU1LgCRMOhYd4fYZSzpNnDxkIs5MndEbhoczLQxLeBx54oDUeSx6diYBqjMwmYAXbXZpMSi5H5EYZ/0oWdVjnk/ElnpEYSopkoRiSM9rRWpBL3ifeAwtyLqwS6aJLiwQjlZKDMZIr7c4jwJtQSmAFFklGTyl/jUXdORHpcveGOGnnH7k9Uu3E14WBAuTM/XYm234uEMftq7tSVXt5A7rvO6KqFN598P6F505GW0ZMCoi8jBHeI9fEU5AzVD2HUg4PrnbqCm1KC0oU7mNUUQj1Ydx4rqGwSkEfBEesVO6B52iIHG3nz8tVmj9wUHg+SrA4DslYpzqMr6EQE++bvi7xWd761re2nKdckcyJgGqMzGIYOCbKSDudk+lxw0Ua7pLEkptcavhIPJUD1+/DiTVPJZiMh+L1dqwlrwgwHku5YCIxF2lpbpfITR9kzZx8EIcIAVPyqRTfiByQwWKslZK7eX8YT0JmucydOEbdRGG5djxHYueB1MTLYyF5W/8a+kgZI/12jJMNN9wwueMP48bYz6nQPPO4RpyPEs9EHyB2U0eU4Ll6filpLMMMEdEmxLPLkYSFRVwzUnIOxmGEj3JgkHlupXIP+qqfcC7VTynpcsX/g/EmFFMyDoQkhf1w6XLthFE9M+P//EzIONIB+JD0T0RlVDVGZjG42II1H2mnU96QIOEZlKmB5p7tdn0vLp/rAxOxyQoBttRPJupRspZOdeBuDOW54NIuxXRjZ1xKYMS41KaUTlsIJAidqYnNDjvGmWtKPX/GijAHLklucrQQnXDCCS2nJLd7jt+baHMEvO4iKmQ2hJQx0gcin5BRCa5NAjfejdLuX1yftzL+Jsd54PnJVbn2DuEC6fOc7DkIuyWyufcRmRFZMQfPSz6YXDK9AONwqAzDRHf5PxpAyOdFK40hfCCbBGTx3PsUhScpdXJzQEh9m//f2EyFYP297xnIEzE7azVGZjHEyw3WrbbaqvVopAa2kIyYsnuz0+yDe9tuMAZrv84H4CHYnTNWcoREsDPjElY90oKTgp0jl7IXrR/Xr5geQ8ReO2xk0xKkR7dgl4hzPDA8J7nzdSWFuVoadvm+t1jnyJmeu6ydpUUPsToq7fKe5AjH+CPGvkU0Jx03iSNc4n04Z0k6jLdCIWaCz3mZeIi8LwyyUkE9YTrXzxBMcWss2PpcG5uFFHiMgoORk9gDPpE2JY8F/kkq/X0XiNAphV0XQic59VzF//NYGGs8FrzNqXnZPCjcJ0xrk5Bad4RWoqqzeT4VhsPNCV4ZNU9Kis8LFe/u1zJ8OBwu18yrOREToVVjZBYDR8AgZZTkrptRYMCbkHOEQ8WcxJPtnnIucwaE/pHSOmelc9/Hzjln8WPZayPbaO44CLYWD8fJ1WixsHp5sPxz57KgDBWL45lIveT9cw3tFhh9JoYc8TMksybyXLZav8cV8CntmEx2sSAwFFMhA9cSzxI/IZVF199FWMFzTakXok1wM5S671+b52X8hQcGkbNPkvZvx4kFmNejz7uJNu7t/2vvXoB9rcr6gb/K1QuIyJ24CIgXRLFIBhAQL6CQmkkygQhmgaLhoIIm+AfBCymTeMFMUrCyGDXAUgdSwSlDcgZjogjJQLzFpQRlAAXO2f/5vNNz5jmLtd7fEc7e+1zWd+YH++zf2r/f+653ref5PtcVwlMibCZRlGF4iuRoxLgcWvQZeU6i26gXkgC8drkjrs+NcGd0U/W95fkuCEg0DBQ+sYbLteHvXv7yly8j7zwWtfUTfXookdYp1CxoY+SyWM+13CH3ikTZf8bUquR8Pgt51qm0MSfW1VRHUGvAGAna/t8ib/YFb+yskvxZSfXW89TptyBXZ9bnuJap/e575Cq1GhC6D5VVcrlqhltO+NUeodWDB+xJSe7WZ2tMhM+mmtPJ8yK/eTVan4PMnnHGGaPnryZ36RDPUM7PrOT8VRGdjCwyLDwLelapKuU2FQ4whkDDjqfGCPlMnUxrjPI23zc1RgLc1GI3Zla81P0gWgR4awO6Dm7JqWtmeXPhT12PTTxlVboWZbyUWasXAUuYApYo2Irt63TJLY88tsoaeQAc+ua+WgehRVJoNOpqEToJm15A2dXWiPd9F2WqCqRWHWQMculUZ3uoVqrsWuQ0qeowRg5TrceC33vuvGvGlWWXLHdJtDGnxuh1k+9RNQvBXPbuQNwzATfPGebVOOW74GRk+Sh5fSGMUZ4rX0sTOtda7kHWaNyD3CBKp5Qt1orSZUaAe0FyavLHvHk+kR9UG8NLRAFKaiwTegMxR9FArrVWkT0uf2PkGdRIgFwEHin3JbTX2oPIK6U8lasm9GMOWg32wrtn3lvGEgh3WYeta0FAGTBT1XLmluE11XI95rAsRS9hn88qm1UxNCW/7QUhvylvFAJGpk4l/NrbS/9PF8wqXphF+lZFdDKyiEAeKAktvafA6pjlHVhRrKkVNhTKVM8Va4LnYAqsqdZZIDF3yjS5QVu5NOE1ivBEDRG+8Dmtfg/CKMgREjXVglqSZbT6bmXlu2+5CwRvq1pHCa/3hGaETWpgbcnJ4OlgVda+T8lwdBUVuqhZekKNUfETB9lpkV6GiyjBbO2WydtIHWJYm//onRNneJRlqoiM30sqRWIp0lpr9jiQTgkqUlNTtoiy93wOsocAlaCIPEsKhUu+lkAcybPmhEemlSBq7UUSrudaO9/Geo8Otb6vZcjEGVis/6leOlHt04KzkpDwKYOJF2JW/pCw7+pm0S+k3L3ppptmJg5bf+QUj9zqJO87GVkEcHtySXPLud5W22D3IZmQy3zqcC4CQILUrNyEtR2z2rAT8lzzU+A5QBJaIEgpARZgSxBE51NKuGUJRSkny7xGRIURKDfJyj6v1hMi3PBxaq11V7smcW3WsYx8Srx2Tawx18Oa5IWqJVoi18ZEGAJ5YenXyFHupSPsU65vjczKZ+Gcpfx5FHqt1BUBirwSVmlN+ZsHLemDXMghqTUeM38SAyXOHnzwwWNYp4ZokKYKpZXMGgTW9yK+ra6rPFjmTo5XLSfLmOjg6dXyrvF25U6wNXDpG1P2fslwDcJQU83AWPWtPKQV3X9rOzxXz2Gq/f/SpUtHAsmz2PL8GBOdghH61SUZuZORBQZlxTKOmLW6/xJcfhKikBBjSqsxKwgWiaqGqZglIcKq4SZdXWvQFwpT3hWgKFpHzQd08oz+G1OJkRH/r4FijLBE67lGYhyFXAvjUPDOebHWCKRabxrrQdIkNzxS20qQFX+3Ho23jmrgbRAKi+ul6Ep4T3lqJjMSM8t71FehTOoVgsxWc5Qzlmua9Z1DAaqMamfACI+GIcBDJWRRgz4iQo7Iny6wNcS8ee6IZGufWT9CSBKAy+ZsORwWRKPV2TfCVohW67uU7hsz1Q9Ejob1MeV9E6aYOgAxPFBr+6nfs4BI82JO5cSozuExVcrd6kz7rW99a9n6cCxEjeRZ2zGGDJkVjloV0MnIIoB1RSBbdLUSOx4O1pN7oSTKUl7kQrVAZGCzjssFHodjiVMrB/R9tQVJCbB2CXpx7VqSZO1v1mYQ4FPgOp+yAs2fZzJ1eFkkvUUL8xridOdWk7NcPUPR1p4bTwgia71R7i1FixwRfNByo0uwywSrNi68J3lN18bJGygVYDkuSpXL/V6OU6nSaqUeYyluoZFWDoZxknURP/uvRtooZM9eeKpFNPMZOK3qGkmnkavScslT/EJUs8qYJfJKEp5C6wDBX2bNr+mYJfN4veTNMFTkmdQalPkMJAP5O/DAA0dPUi0fJc628eINrHk2jj766PF9Hk0yokZIefJ4aeVVrQ4HmHYyssDg8UAwKP1W6SxigKgQJK1s77CMWi7WOOskxtTObhDHDoUWSXq1DSRubvMoL2bV1ZK1xCl1tmRltzL4uR9n9S1RybIiZGdV9vAIc8y6BwRiagzrh+djytqk8CTctgRNPpiOxVVDdBH1aoUXeOY8e2GD2pk4rpFyFlqYSqD2bBEw63/q+VH8CMSUdynnkVhXU3kGSpERrqmzQniFEHbJnjVFwquEjBD+crxqVqvrkTPimuy9Gtx3VCO1PCNZ2UwlIgr11kr9MzyPVofYwKreJXVF9vqsjtTQ6oAsT0fIg/cLQah9lpwhewA5sJZqn4WwhcxtldeSnfI5chuG8v7oL32ggozUCPKPfvSjMXQmXEeG15KCyRB6QBWPvbmqJ7V2MrKAIPC02a4luAUsTP1GxKhZqjXlTYmJGSIJFlpLqdk0vCdT3T8JPQJWuKcF2evmlZu6JRjE+I3hom7FKCUlSvTD/HNJZgbLUjnw1OmaiNVU86+IYc8640fy4lSsPGK4LcsyLGSJn1ywrXuiKI3JVlDNmjcmMuUJrbKzp7kX0ogx5jx3N41rNocxxnznRNAY43NcjzCA5ya8ktdafI4x1mxYYaUnz+cIPej6Gp6cMmRkDEHoPR4Y38Vdndctch3Wt/VBqKvwyOEVzyvyI1wX70nExaNtu/yZrHyRMGRKYnIkilMspRdITolcE9dHQQhLld4t+zKUiO+QIFjmeyEY3vc5kWRbjvG73OunNsac5iog31VejznIpzIbU94XYpX3rHuvJbwGWPUqVcxnS8EjbAwP4caW7OHREaabOnLA85YcO1VdY4yw5xTZICs1nqvltNhX1hAPEk9SjbRa9/rTCEPyJLQMAPMmF8xzaVXGWJ/6ykiIbp1pZQ8h5Hr5OOeoBmtCIjky0soNufLKK8d9Lj9kqmGi+7N2p3rYrAroZGSBYfNaXK3S0BizIp8DU4dZEUKU9lSjLJ9TnmBawoJnNUyBcJ5KsgXWJCE/ZYlJlqNgCfXadRMmXO42e6tvCMWn/HTq8DGEUIMwVmoLb3nLW0YLp6zYyOSSsAgFVbM8CAL3TJGzZFuhEILUZ2ThVBLR8HTEfSspLEN4BLsx4Z1ihZWufkos+nXI3aiFg+LkXAI1WpGXYZMYk8NB5jMLfMQkvotXJMZlr4A1aJ7D2xC9TrzyfJUdWCNJT8gr9gNCkdeza4xwZiTEIsxlsqr7j+9Uko3Il6WsvEIRPqFkfR6vS4ZnRhlFS3qfk08VzkmIUZ2CJNXykDIZdfhdrTV9XiPyUKaMCvPi+QjxtvIRVNXEnLa63ZofYzyPllfO2jSGQm0ZMLw2xkyFkRAR19zy7lDCKhKFvlvVZPYWmcsTPeVl8fezOvzaO63+JQFErtVJNxPrWQUHZPsvowtqoAut7dWhk3YnIwsEmwDbFe7gfp86HIkCQCJWxrHQa2p+h4065WGihFS9TG14imSqlNdnyMcpe1nUwhwsqtZczyIsCEQcCaBapxYKyfkW4UGokbXy0LnaoXosbHFrQpq1x9VbWoyEvCocv5d3ZB5KEsnSkkNhbSMTvrfsB8OKDguf4jJGKCNbllGpE14Pn+HfyGSe05KMcKmXSeCIRtk5NkpTI2+E4mcpZrgHRMY4Stva8FklEGVjhHxOOumk0YtXgiWu30mMr/VjQczCQ0GZ1g73y8+XUp8KW7lmVUq+q9WDg4co1mGtygkQHu9b863QF4+ZMa1EZojE+qnQgHua6uBsvQiNrakybGXc16c//emxd9RUmBIZ5oXxbFflkNyK6u9HDh0PGRdffPGw++67D4ceeuhwxRVXDB/+8IeHxz3uccuNuf/++4e/+Zu/GV70ohcNT3ziE4fHPvaxwxOe8ITq5914443D2WefPXz0ox8d1lZsueWWw/Of//zm+5tvvvnw1a9+dVhnnXWaY84444zh13/914clS5Y0P+PMM88cn0ULr3nNa4ZNN910eMpTnjI84hGPqI559atfPf7fGJ9ZYpNNNhk++clPjj9/4AMfGJ9/ieuvv35417veNf58/vnnD7fffvuw/vrrLzeG0eD3G2644bJrfv3rX/+gz/rBD34wbL311sN66603Xo/vLOfpP//zP4eddtpp/P3jH//44bTTThs222yz5cZcd9114z098pGPHDbaaKPhqKOOGvbdd9/lxvzrv/7r8IxnPGOcm6222mq8ruOOO278zMAtt9yy7JmCZ/KoRz1qOPLII5tzCocddtg4BwcccMCy3/mOW2+9dblxb3nLW8b7eNKTnjT++5nPfOZ4XRnuwX7yfe7laU972nh/JU4//fRhm222Ged4l112Gb773e8+aMwxxxwzPO95zxt/3n777cf5LrH//vsPu+222/jzFltsMT43zy8jnm8873/+538ePvjBD1bn4uabbx6uvvrq4S/+4i+GxzzmMdUx++233/j/nXfeedh7772rYzzPPGc1eIZPfvKThxNOOGFo4ac//eko92rrHdyr/fdbv/Vbzc+wRg888MDJNbC6wv3Pui9ryxx/5StfGfVDDS9+8YtHGWSvkg+1tXbKKaeM+ub//b//N67HN77xjcPPfvazYbXF3GqAVdUzwmXOsnRt3LclI+YBYcWH1SILunQnspa5tsU+jfH/muvNvetLgQ2z7GYlr7GOZx30tiaDV2JWYqOW31PgIpa/0AJrRKVGdEqdKuVt9Tlh+fAwxLOvQcKcXCJeGqGOmrUkHs5bEt1NrcWaheaeonrG59a8MDwOYfUrH6y57L2f58/3lpUZrN/yNFonj5b9M2oH5QmD5BwIXo9aE0HXETHzqMKpeR51vWWt8x4JrdXWhryUuG5enla/kCh3jmZgtX0mh4NnRxdX312D8ELIBk3npo5xMI+tsGx0duV9a0G+Fyt6Vo7GVKfVWeHjtQFTMgWsBZ4uckPuEI9mbR3JewvPq/y+L3zhCw/6bJ6RWB9CkrVQEy9yjGn1ylls9DDNPAOJcJiSeK4kq1o9v427//77j9cuQ7pWRkeQynGIMXE+R47NCwERoFESXLrMJfMJ/1CK+iVIxhIXz8TH5xBI+VUqBUpuTXWd1jAVUos5i46fLSCGreop4DZvVUYF4jBEyXYt0hsCp6XYJGciM161EE7cb+6S2nrW1lDkNbQ6BOvxkZth1XKlHD9QhsJqIbgaGUEI8voVQhAWKyEXJ8iS8UhELa6POMovQPSFsmrJnjEf0d01zvUp4fwUe00ISzJujRxGW3cv5K4Gnx1n7rQqQig3CZiqkFpw32TH1Hk10ZDx4eyHNQ3lcxMCLWUkopf3iVJxFSxCZ0J5iIcE9ZyYzzBQgBDPX0m4xOAMnxnN67yOPvroKtGJM5KETRHgGhBy5eTCr57xqibDOxmZR1AwPCLYLw9EmWwIBJ+EN5agroy1GKrsa/FzpEYCXU2IElKRm2Cx1SwXpV6RgIe0qHKofU6QHi+VFGWViHi/luAqKFQ+UGrleQkEn4RHyWlTVpYGVbNKziRgzmqopLxzqgInrmlFLLYVWT/lRp5VWui5TikBAo8wmro+jbk8k1bVjmuibIwhDFvzPauhFs+CpF3Pvlae6F49b/k2LLUWWOgU8azEZuveWpqFGhmpzbN9Mgv6rkyd2AvIOqJUMw6stTj63d6sVTwgCFGiOXUUQVQiSfpsAcnIDeVaOSFyCKYwledRW8srorA85xUprZ2qrAnMOswSpg7WzFVwU/tYYjQFXibyxvldkTOEJJcJ/uSISiEGX+wlye613D+EJMbUcoeso2jJj3DWSuPJPh5FOTjrrbde9cwr5AbcXLsAADbySURBVNnn+3vyv9ZXh5xFZBB4BQD6y6xKhKSTkXnu5smKnXrgPBxKdAmulsKlfHTStHBbLZdZZxi0hd1KCmPBE5zYc+u4dq5rwtxilYVdu3aKiOK06BGtmvUo/MFl7HlQbEhJ+VksLBvQ+wRADTaQz7HRWvNoDgn9lscgLGN9W1olwcgAT5IwR1kum6ECQsLhVDKhyiPCIFvsyGi+fkmGpbu0LEVWnpz7zFB4ZSt6IYNcZYFAqD7I38VSiuqVOJgOAc6lkHlMWGKeTVYgSqqN8XfWiDE8KDlJ2BjX7Jkgv7wLJUl0zXFfPIW8c0IVeb7McwhUv7dWkBFrO0pBKaUcAjLOM0SmrWPVR8ItZSdXkDAqyZTyM6ZUFO4TGUEAkEBejnJMlBZHwrAxtTN2vB9hvNqYaHAXTQlr34WE5fNjKNPyvsxrJvbWC0s6Iz9z84UoToUYkVHyyZpvgXcHuePZaVWrkMkUu6TfFjwz8z0VRmDgkV+tHi0+QwWO+SxL44GXNzyMXrWzoawbBpbrNablQWRc8EYz8GqGHVirPIjkaa0jcYzhqRRibH0XQkyuXHrppc0xoT8809aYbOC2rmex0MnIPMPmV/9P4M6KI64Mljplfbf6FZSgmGZ1XCRAp6x4G4Nbcsqr4Ts02iJ8CKlafxJ/T7ggJC0BpHrB+7wCtYZsLDfKztpoWeCUIgU9ddS3EEO0YG9ZupSwkA2yNtWQSpxYFQvhHQK8dAf7nHy93i/duARuvl4CrRSMlEnkf4S3onTFswSjKoX1XAv1IAeHH374+DMrzZiSHCHNSoGRCXFu4RCEIedL6FsTHUp5F4zzeblMVh+S/NkaOyEZ5j9CQhR09oJQ5tFQLMgWDxFlkb+f0vZ5cnBU1cTpvHn+fXYoLASIBW3e8h6NHAzfFeRIzL4M+7juOMyQVep7S6sW0Yp1YO6snwyyI3JVwDX5m4x8/X7mHcinHJegjFj/wsetQx3Dk+a+kKiajMo5Cy2DwPVG7kOrq2wcIMkgqJ1MS7aZF8+Yd6DcL+QMckHWIrs1rx64B/vdfE557Xy+z2iFxsAzI+emZLs9N1VyDUjk1Mm/K4KlK6A/3I9ntCp21O1kZB5gUVD4hK7NQ4i1NrtFzEtB8LdifRlra7KpDS3npbVhESMhoynPh+dB6bQaFlFchK4QVAssVmuMl6XlfYounLvuumt1DE8SJczNy0prWZPc9ty8rj3GlAKH8GWdBcxRGdOn5BG6AOVThsZYtVGOygLj0Shd5izo8EREjw+luxnICpc1T1QoKGGYjNx7I5queWWSjCxJ5M5EKMqCg9wiJfphZETuVTQdQwb8O+dYsUQjoZzFL8QXuR8B802R+z0vRCS9lnOL5MX8e67GlHvUd0QOTI2wQFac5p+nr0Q8e58vkXWqRw7lh8whza1cpUiO9GrtGx7NmPdWEy/k15gpt785kKTbOiPF/rUup04G5hVZFZXoQsC8zpL9t9122+gtQzJbz4oskRIgTG9/6XeyqvQg6aW984AbbrhhLOc855xzhttuu20466yzxnLFAHL3mc98ZnjFK14xlksq+VVe+tu//dvLfY5xSjrPO++84eijjx7H3XHHHc3vjdLOskRwTYAyx+c+97lj2WUNykI//vGPD6961auq7ytTVBaprPryyy+vjtlzzz3H56I8bunSpdUxH/rQh8aSw9YcK9N861vfuuznGpSYKte85557hh//+MdjWWkJJeCXXHLJeC0veclLlpUB5nJA12he7rvvvmWlf8pca2XjyngD733vex9UcnnXXXcNG2+88fizss2Xv/zlw6677rrcGGsr/k758V577TW84AUvWG7Mj370o2Hbbbcdtttuu/HfymCV8mbcdNNNw4477rhszsH+eNaznrVsjLnJJarmAA466KBhgw02GH/2/t13373cZ8d3xecqj1eK6jtzKbXSVXCd1o5n4NoD/n3qqacuu9e4b3OQcfLJJ4/zBbE2zWWG8kyl/eA51Mo0X/rSl47/957nadz/GYHLxsSz/9jHPjZ84hOfGMsz3/nOdw41mPd//Md/HMt9fV4NsT6t5ze96U3VMfH9WgnssMMO1THf+973hhe+8IXDueeeWy1X9Rnm5Kqrrlo2VyWs5SuvvHJsbdDCPvvsM97Xmoif/OQnzfJdMK/m9wUveMFYwvu1r33tQWvfGlW2a03aX3vsscdYkp/LfcnBv/zLvxz1zmWXXTaW49Mvq5XOmFsNsKp4RlgirF4vLseatcALElYJV3xZjscqjZilF3d0ToD1mUIuLBpsmCWoJK+WwMaSxJrlsLA+W0eOry2Y5Q7lbZiywFiuz3zmMyc/n0esdiJzQGhq6kRmeRbhYWmV+8rpcby979JAqvU5PEK+Z6oTr+8Ib0WEN0pYY5HMJ0+l1olSnkWcgyR0prqlhPh5eAqsY16KsmTVEQY5byKqRXK1kbVsfrJnyVoXrssdZXk4yiolz8i4aDcv1FK69VmRcZJvdIkt2277fSRBhhemZZWaf23fjTHHtfCl0AGvmzmxfmqyI3eybVVxxfdMlelGc7lWHlrIMpb0VAhASGSqwsZ9r80n+rp3a0RYjwynn0pvKK8cLxZvKm8bz6k9keWQZ3DSSScte/a8vDxg5bMRyo0xvGO1fa/AIaoueWdXRoPNh4seplmJIPi5uj1gm5hSKzveEUJyHyR/SjYVKy/P8rC4CPTttttuvB9x8trR9tGBMhZVmZRKKObD8rzE6rMyJozF+CX0ibVa3AR3dt0hPe5HolorpMCNPRVbjfmpxYJLrIjbcKrj4MPNwfF3U4ob8pkgNVDaU8euc0tbA1Nn7DiU0DNrVUBEeGGqd4Bnao15tU73JQid7+LZTykNbvYIJQpJlPPr35Jeo7unZNry84TIXG9ez0JI5eF0kmjLrqRId94r0W22TJCNMFGAcK/Nj/uNqjMhghpxkkwaQFhaxyJERUmEm2qdLl1ThH6Q2VqeAaUgRGYMhdTaH/rWIEetjppRmixfqAX79clPfvKk+18SddlGoMSsvdLCih6IuSIH5c2SGb6rVs2Y4Xm0DpQEsktoUM5FXtdInVCk/i1ItKRhRDrrITkzSHjsV88m8ogCCJ0S8BgjDFfe19KlS8d9EWP8XFsDQrOMWWRUflStSsmesA8Rbrpm6nybhUAnIysJNozSWjH+OLSrJqxlVhNqiIMqmSzssnBmFUtOZI2Wh5OB+Ky4n+xzFmPtrAmKKM7l8H9Jk+U1xcFe8XIGRtmOnOKN9yXfsZTK2G54erzn55qAkriGWLH+WoJIZYY5mjry2rzJXZgSQJS90s2pcl+5AxIKp5J+fYd7KclP/rf3y0O6/E48No8vhT6yka1xayh/rvwCc5r7xZi3LJyjhXnZUybmNywgr1YFFWXNi8GrkQ+my3PAm+bZKytvzXvpGagJwGgmlteHZ16uB6S5LJcsyW6QsZLME7B5rlst2a0NnxF5LOU5M+UcRM+UWt4D5YTQuB55LLWW/u5RPpIxuR19ee/xOXlPlwrZmJwHBOX6UjlXJplnJcooqVXe5T1TI/1+N3W4XeSazCqjtz9nJdwb01q32TNTO7cn4BlL1G0llJPXvIeSa+2nPNc8yoyKeG5efs57wJwyGKIpYeSLlXlZ9hB5HmNU0JR9pxAiHjFkU5Wh3KFyvS1ZsmTcH+6bzuFFK8+8MkZisWvgNZVEXfPqAdnF44LckoeLhU5GViJ0QZy1kTUvm7WRubBDGbdq8ykZixTBaHVZ5dGQXObQuBqhAcLIoie4WsljPCXh8rVoa8I4KjC8kCPCPwR92WXUi3CohUKirNRmLv8+QHEYc8IJJ1TfJ5Sjo23N2g1BzDq1SVtleTarMZRiyxNijGtFsEriE5vd/1U+eB6lpRxlscYQPLkpmN95dtmC1tsjCwxWGosrKyJhm+g26m8RUYIyKyLP0noFFU3miqcmJ/f6HGNcB9JrjGvM683nIE3uw/qJMtdMNihnoYWoUmGFlfBdMQasj/LwOIf+5b4mcShgDjtSJmXCpmeXK3NYgjmMQ14gtzwvMSfG5NAOgW4OrZcIhbI48xhJ6LWD+/L1xB7I4RXEIodXna3DYMlKUehGZUuABV6GyZAlfVECtTNqeEKCgJTdd61f38mLVq7VPOfmyvNqnQ3l2TOmzBVPUk0O8oRRojwErUP7EDqeNmNqnmHXbq5i7Zahhqh0CZKAbOQ96n3kmwEZ3iie5NJjhXh4PtEPhseidkIwUmwNINu8zTWPUyh+vXx4RmpjzFdUX5Lvrc+5/fbbx3vgRa9dTwZCVxqIZfNKcuWherlWBjoZWckglC0yls8st9eKNgt6OMCMpzwIFrPY5JSrljXLXTu1UClRHhGWTsvrQZgiLawdwpj1lL+XshS2oIgIRGGB0nLgapX/QPh41rUGcJQaK3/qwC/XEAKodiBaVHpQgBHeqoFQVcXD4olqlBp8B1JTulTzXAnblX0PSoGPnGRFar5LC1l+UbZ4rcXy+inMKJENDwySl8FbEqRG5n3kN2V4DhEPJ4S98sm91pd5jpOqEQwVL1lxxInF4SV0zzxsrN3sYchNzxAepMjf8S6Fha2yJc8hcoUoIlGUs+tCTHKFj7WAQLv2aNmPRGQiG6WpXkHGEISc6xK5HPl5IPmZRKiqMyZ7jaz13MzN8yi7sVLcuXLJc8kKyN5hTeeqvby2rDt7p6wsyqCMeEY9U0ZQbd/E9Xvp5lnzPAp1xBiWe81DouLD++bcviiVqX/LhzJGCXzZoM+9KQUWnkYcEaSy8Rxvge8hj60JxL3lcbWezKn+HFNyzrNHEKZgHXuGU2jlFa1M/HSGHnSfZBbPIeN2sfN6OhlZCfAQuXhZyLEJa229LXgCRayO0OQ2nGK0mHHNIlhbQIC2SgG9h9gI6dSS5whJFogkr9YppggW643SrT0HnxFuVYKxBps4utq6lhokgwrJUIjlabEZ3ME1j1KGhOgyD6DslUBJ5qREite9ZvBOxLxYv+ahHJPJCBLhHrOVj2hE6StSGZ17c4dIa97vkPQ44ZgCocgClJXfx30jTqGocm+NTEZ8dxDOHKrRepv3IYDMRPM9Vm/MYXbrIywRzowEXaXL2RtGcPMG8EKFx6IkI+FVyF6PaNSWlSgylomCJl7ZKxRH3pceoNYJ1DyMxpuvlnHDepavgnSZ01oeBk9LzGftDC0QeozkyZYnNbw/CHjNEEJyPAuktda5NvJ5GB3yj2rXYc97tiuSO7Ym4vbbbx/3zVTejTAN44XsYcAIc5bjfU7kFVqHDJJW9+b5RicjKwEeMDISG7nWipeXhCCIMSy/7A4kzLF/bkeVDYgN67XmXfF9kqmwdMqi1R58bQChOlUdE/1eWjC/OYxQ8yyJEVNCrY3Pssu9LUqwSG10YySK1kAR8D5YI7m/RobvZwGyZqZIqnOQcvdJXoPSgrW+cgM1Qqh0T2cyws3L3Z0/x/jsKWAFc6tn709Y4wQny7v0LoAQot+FZUbB+7fvz8q1bAcflQUEbgDJKQ8kZO0bF43fGAFlPkqEByP51jMok4t9n7kNlGQEuNdz/F4ItMx5yM39Yg5bYVTzJ9cq5qe2BpFKYTTeE3KopqBdQ8x9Gf4KRM8XocDWEQ2IsDHZO1cCyRBCbREFJIYhMeWNXdvOvyllmr2iIsrzr3lq7r333lFPqAhDbq17ZL/Mq0JC47wyLwZP+VyQukiuRfAXq5dLJyMPEwQ9i5ggIPQI9dLqYB3ItA7ri1uxrB7I5Z4hEMqOpCoYhB0kGsW4LHwIKi5hbmeuSRYxK03zrNj4FDcLdMqiWJHs9dUJ7n3KgrCBpw6xi86PLQFNSRDAU90ueQumQkLIZcS2c9vvjMj/MW6qlJeyVYkRidQ1yIXJ3rtaJVQmIwhGWd1S5myIl5ctyqNLKeHJexFJ0hm+I5/aGwf+lUmnJRmJ0t4c0rCHyjkWHjIuPCbuQwJ4BgIhnBTEtpazwkvHWJgiI6497y1CvpUUKBQSjdIogJpXI863EjohW2qudN6FqfbmMcfeN4ct74nwgzFTJ/LyWk0dpGedzDo0clZ+w+oG8nJKviBWuZLHWjNH5DM57UVm5zG8E1FNGfku1u/S9D3kGsMkxgjP1ipr4rl6qdapFU3w2Ps+HnvrrXUUyHyik5GHCALHYuJyJrjEIgneTDI8TNaGhyz/QfId67HsACrGahGI+Upc4zYrs8xZklpth8KSIFZmwovD5zr0sAYz00WMWPrcrK5LEh7llVs0i9mrefd94vG1clzdGxGhqbI/gnpWJjzPRG1zZFAQs1rYP1xratbGI/BrZ/BkRSW23QLrRvJgK/ckW52tc28o8zi9tXUMPK8cTw/im8MVGciDnAgCMJfATpERKEsjKVPXEnF4ZKls9Z3bqMdBfmUejPAQiyxgnHBHeV5RSUaMywmZQMjLvckwzrOJg+hyW/uMfEYLslfzcOY5qJGRTArtWSRCXlMtb8LvwkCRm1QzUKzp2MutZx5hLgZMKz+McjNm6mBD+RW1A98yENhZh9Q9VCBas3LoyN1Z+RjITq0qrJwz3oSWUWa/kt3CfqVnAgkgD+wfsj/vac8QYeVZkxgbIcIcAo3E2njPi37gCcnzZ79Hp2MvOuKzn/3sctfjs8jpICP2PsOn9BYjPK5L2THZL8+tNK7kA/l+h+25NvdQO2V+vtDJyEOExaWSwIJtbUCK2EPNdellJQ2ribBmrUlqItDLJCsCndXGxU9hcbGXVi9FGaW+CAuhzw2fr03MOZ806cXVlz0wvCaEfh7jcyU5xbUjJ1Hq5rpYuoRcdrsSihRFJEbWErYIHpsNsWrFn1nUYp6IU6tU0OcQpM5oaQkz1yPezQJonSNBkEQfiZqQMpfWVtkCPRAVCMhmVuLZQg+LHHEsy3EpHlZJ5C0QRmU+SPQeiVwKc5KTFnMb9igbRhpyHJiApSQJpai+sOYIQ7BWjbd2re/wmiC1MQY8U98T5JpwMyYTR0my1mLAOrLG8hiCWUVJBmFZEpuSjPg+85mTYT1j6y6P8TmUaFw7y14PlDzGHGbhzMOjYiXgWeR59ux4w+SVBEk1Jq45qqPMD8IRQr18XpH3kkNL5Rif43nlEmbPNMZQSN4vPRKeRTx3rvhaA0bkKsZY17WQgOcc31WTdfaKsGHrzJkIQ5JZ5Zov80QQrqnyUkQdCWwZOfaQUFq0EKhdq8RkHitypww3MQJ9B9nuuZQH3JEPpXy0Z/O5WYioMBRikMeVRE94XQ6Z96xZcrY8kJBM1R+InEQ6Nt100wcRac9ERZzv5eHlPY+QZEbIb89JSLkVMo51Qa6vyGnaKwudjDxERN5GBoGeXZDGlD0QShAkUwmLMSY8JcbWPAA2Gfef7xSvrX0vQUNJ8p5YrFmxBChzVS4UlZCA3IOSHWPd/j42GXLEOsj9QyiI2NAhkMXgs7AjwMLS932147NtnIh5Cm/V3NTIVFTX5FNuM8yNBEvhFvdXA0HJO8XjVWbvB7iw3QuF0WrghgQQUDXSE8LY57Nky5AYRRkkgiUfSZf5XnPOBSXLAsvgfYs8DWC9546xrKsy8RMhyIf/5aPPIwyDKAdp8Ozi3BJrKgiJMTl3xnfle7B2jeGZyfdcJvYKN5Q5OCUZMYcsyvL5ZPKjwgtxtm7ieYit8wjmz8nnESnvlTxpTYfSQ+zzWUNKM2N+oipJiDQToUjEjS6uQFnk58UraUzODfO8lOkGEKfyZF33kM9HUiFUrjcWcswh8lLLM5LjwnVfQ/QTQZQyecuw3+UhyIE77LDDqmPIROTA3isPX8zEKToO5+TmjFhvrc7F5FQ0las1jSNLrPFMEHJVFdJF4ZvLyPFivJUEylqyR90v+eVaat5dcpLMs7bs21oyvvlTNswYI09a3bHD+Lz33ntnNm9DYKb6NAG5U3pGPINsUNZ03Hyik5GHCA/K4iI4uL4I3KnGO9EBcCqOv1CYRZBsSpur5fHxe0K1dihbQOkihULxGEsp8RzkzUaJcYXb1ISEuKh/50PhCCAej8iTESPN1+VnLshweSIcNS8Mb0MImKyIMrh/ETBjWseq+z6VNayvVmIs4Rtes1ZXWkIeASurCQiwIJ6URyYVARZLCA0CFoHKJA+py2EPFq+5zV4iQjaHlYQ68gm4cTBdTg6Ng/viOn2vMbxW8Ux8d5AaxMAc+RsWZYxhaeZQijFlfoi1wxqcIiO8cTyBGQg2b114tsoQkPlGWCkICj3yrIRJak3+Iom1PJgukmzzwX0UW7YkI1afFZ7vzsTLXPjuvKbNR27QRamW+WOIThxaCDVlSKm2ZBJFRNGYv1YyauTD2Xut0EiQYy8e4FoyOSMlxvi8Wl4DhR5jWOylMuUhDMMFAUUa8r7wXIX2eAXIC541YZR4NvakfWD9eN6eH09SbkyYYf3wJlnzrSomIP9qXtByzKwT2+cbd95552iQTZXvuk/zZ/6tU+HFqaaRqxUZoQAIOIuItTblxgMKi2VhPIY7K99gMcmIRR3x3nDBZYFC4BPMkutkO7OU9RyoeUEoX5vP/BCeq8I5AYsFSrq2cW0myp0QrpVNE6wSDrlVaxaaObYe45nV8j8QhzgPiGu8daaQCokQmq1NremRtd+yFsG6oCxaJzr7fqSmLE3OwlFoqazGMFfZ3Ys0G5MVBVdvbg+vmghZC0TvkZx3UhKWaAKVP4cCDi8MYRb7Q3gpgDy6d6CoKSjzlRMnzUskunp2FAvrmhKKxmTCXtzW2bILAiCcyVI2d5RUTXkqXwVkOScf+7sYEyEM15kbp9mvZU8RMfncq8XnIEZ5z3suFGXAsy/b/SO62e1fU4aIWe5fkiGPy98guzXvZzxfJA3R8Oxr4ZmowHEP1nFtXwZxM8YzqsHzNYZ3pSb/4owcOQq1MI65Fk5GDBlztX2JXK2tZb6xF+RiMQJroWpzJgRmTTAO7H+hnXJ92B8Ml1j/1vNCneo7b2SE4uA6pzgsILFdCrlllcsaN1HYNUZqY9soUwl2D/VmHi4IGQ8zHljt6GwClMckxrCqSreY2CiPSlj95it3YrS5eBPMJetFrJPFKM6/0JnOqxKmhA4yQ5GV7ZEDhDS3ecsV7BlFb5FaZ1vzjmB6v7TKA/IhwoqL4+VLcMsiMzw6rQob8B7LOHdmLYEgxOF0gezKjTNTMmFBLHKXTXvOmBBk5piij1LXWgiEcPM3uYOm9RuKPc5QMSbnAVjD0ZMl+pfkPJgIH+SDBs1DGTaiuHjCyj4fEev3b7kK5XNClsKSBwRGa+4MYSRCOdZamWcCQlbZq4BklFU6ZQ6AZ55LhpGAUia63uwBKgmzZ5LnoURUJ5En8jBqRIOnKuazFTrxnLwvqb6VqG5OrPVy/WUizHvEMKvJLM9IBVSZG5WxNpOM8FAJufHknHfeeSMJtT7y80fyokmcl30qvFaWT2evH31c89x6FuFFDtmyEPpm3sgIT0h2I1p0FnXuf5Ahe12CVQalkK2IxSYjXFaEJwHIFYiJIiV5s3horDECj0CQFyAsUCau2txyNyKhlAWcBX/MmTnMMU4WZs66t9l9F9c4tzZrTygjK1LeFouYBVRrlON7KNCpTV87n6XEqkSQpq4lkthaLktKVE5MTlwr54slP7XW4hDD1um+FFD0nWmdykuA86Yh6WXJbIC1yoOAsNRO0Q2I12dPI9KRPSVImGvJPWt4PPIzL5W/9ZpDNFCGPCh1XqacG0OwRr+OsL4l+2WlWZ7aqzqiDBvVTu2NiqTwWqnI4cmqHV0QJCqHlrLQzl6tkhwFQclEwvvGZZQGiPBQKzTAyHG9rs2+rq1PJNt6iJbjNauV52hWqS9vUBhJrRACIkVhtQxCf4c4haeqBkpz6vyZ1UVmBGZV+5CvtQoUf8frQBYjiLH3rHn7gYfNnmAoIfNl5RTymBNiN9988wd9j7VAj8YYuUC1dvzWO0+WHCj6R0i2DJ0xHugn14ZM8mS2DLxVmoyY4FrnSwJV4lcNhFp5iiHFnxO5StisLjxe0WBpZZMRi1QCG6HKjU/o+x3WmRNWPXib28NT9ircIjSQ427yLLi+CBNubvFhsfuc58B16/c2OqvDi1DIliNLlrIkAIPFeiF0wXYtVsKeYM+EhtVosRMmhCXBh1xRjgSwZMYsQGwcBMi98TrUkqM8c58l16J1no5NYcNMHVkeAmFWuS/MZ/tiz7Z1PkfcrzlrhR7dB2WaQwSthLxSyQUQWBaOMa38lFNOOWWZW9XPLW8QK17IpSyXzc+GgMpu2zIfiDDyPSHcrP2yG2yZDErQlaXK3MPhZYjD9coThVnr2WKPMuIcNop28Fkh20fuI+aCN4cQzxDOYSgE+SmTbmPv5IRqVUA8nRnl/BDYrTOM7B/P2162J2uVYeRF7FEktJZ/kUNILbIcYQ/PvNVYjKwlB2Y1zysNpHJd1Q4EXFnwfGb1PCJbawctloafhNOWMeU7ePRareDNob+3Znn6c2sG329PCR+S4/QeL6Z5jTJkcjOOnvASJkHayY44ZFOIK5f6Isf2jrUSBIjcPeigg5bJcF5HhohrDx0T4RheEh5cuoj33brM6xUhZnjQZRKh6RBEOies5u8l190bz9+snMNViozY7D607B6KafGY1CBUkTtCAuuVRddCWEHlaz7IiHJIFtXUuQVYKcHbOtYbWDO8G8EyudpKoWMMUiF5yr3wvpRdVuVOWOSEuPGSukrLWPOsOEIa+bGYKMicDJdDSfEyjiCKfhAsJL+PqhabgAL1fggLHiyK19/aALXj6G0OYYsIbdXIBKXLvciL1kqas0m5uo1r5dcggzacNdgiLdzDBEl5Em6GRK6W5UfBmEvx/RopISCiaoQVXfZK8b2SGa2tUNJlLku0UI9ERGOypUowRB5M9LyI2Hp5wrMxkWdgTCgSwjaSXBkAoYB4MbOyQXLL/VWeH4Mw54RRa9IzzdfjbyJfAxB8wjyPkdCYS2vDYMmVUKGY8xoQerHeYy/IW8nJuzEmkx9KvUxqttdzLo89q2qk/JzYS5S7+zCv+RnaB/G8orqM4M8eE/MshGY9REVJzhkB/zYmcoRYtWXzMErIs7DmydMy6TX2BePD2q8dk+AaPAsKvnWAHSWrFUGLyNhLDB3ypxXe4aUlJ4XfWtUhiCfPCpJXM3Dsa3KKLEQEanIXMUDoKVzGXemhFpKIsCxj014KeUyP2f9Roh2yL/KvrDvrKHLIyleQFnJAiCVCiPIiEXafldeBeySPXS/ywDvLCM3G35IlS8a1xsNC5vh+11d6SeLZ26uRJN1KpvfMkS0EqHXoKtgP8qZq62pubScjC+UZWZluvocypqYo8+9sqJqrNawiQkO5b63KxEZhWfJa2di8FuWmxpYJdZuHW4/gRizEy8PCE7OUh5E3YzR6i/uRXJWP0LYWSkEkYTDOStAvpZaAx9qNEAf3Zm1OETlrysaPvh0luCB9DsuiFeIgmIUGkNAWyRQWa505Q/B7Vq6zbFMOSGb8ntVTehEoHPcQh7YRBmWb8mh6FOSRRZyt5tx7JDxOwkfZQxUWl1eQCxZc5DDZ064hiFGsJUoxhx3KhFHz5nlK/A0gPDlPxuciMLkxVC3kQUjnMbXQEsIiZBVCvuzuCohubpSWE2prYS2EkMubsZGbhlk7kXSb5y9IVZCLyJcJIp7zSDxf3pJI3KRUWb3ZiqX4ovLKZ8oFiX44ZUKtZ4dElB4rQGZY6AhCy6OBlArFtUpD7QEND3mbaoaA6zP/CLC1UZPFfufveX/May3U5LmFN8H+KOUb2Sa8GXNuTWZD0XUggkHC/d9aDgJnPZN5WV5JkKazomOzuUACebKjGypSyoDM8hc5c71C6sZ53z2Wcsl3I9PhPWt1hnYNcS8tI2lJ+v186Z2FxmodplkVT+1dXVFaDCWEbQizlqvTQpZYy/Km2Fk+FB/BF39DkPFqWAdcnjw7Xpm0+hsKNxJACa1ScNr4OeO7doombwYy5H2WS61EjRuS4p7K26AIWFQEEjJdA4vDemc5tKwGSotFXFubYdUIC7CuS6FgPqM5GSVTVvFQHBRIWKos+DLHxN+4xvAS8bYhMQFkISd+gmcUFnpODjX3MUaJbpSueuY8ZJQ0IhHPXXJo7ogphJKrUIxDuLIxwv1clqWWpb3hJcgn4HrWmVjyriHQGciJcCmYV8RHnD6qWtxbPM+cqOsVZCi+OyzJOMoh9xQJ4ygUO4PAv/Ma4SGlKEMhs4ZLIoEUsZBjPnkcyjWC0EWuDgu75g30/a1+Idalvep5GlcDgwN5sEZa5cA5X6XVHDAnLVsLpbeZLMqt0BGb7AXyfDKRQHat05gTe12Iz3wgmULP9kQmcIiUZ8eQszclaVqjUx2lEdyppm3gGU2dldWxSAms+cwIC4hQn0pgza5bsLFXpQTWjvlBjZGzhCgS68UaKK0wHhluctYXJV+6IBENno9on19bd0iNNRnu19rZM9y80Ugp95nIIEz1haCsI+RSwvqnTCmNaJJVwj2xBktCk5vnUfiIR6lshEJCqItrszoz5L/k31Gw+YwYn8fzkIkOgZ6rQ6L3SC5f9XPkZ8T1G5M9H8hlGBq8DBKtzWX28PAIxPlA5sqYMvmyJCMEv++i0IMcIUrhIUImuL09W2uIwjfONUZ/lzizxUsII+duhGIy5+XBfVF9FCTX/Pp3Jl3WTj5gkSdKc7AMv8v9XlQRlsdFaBuQ57wWs/e5rZwh98HDiNC0qnQYBNYvbyLDo2aR8yxEGJcHr3bGTD4rJa/JgD0WoSjrr3ZAoL0kXOLZkQGlfGB80C0IdK1UeLEt/I5VsLSXdUvA2LgEm80Qbn25CzkZTZya0CCAMFbWwapa2tux6oDgYY1JQqwJId4YyYfc7qWQD8VD0Fs3tT4JFJ6/DwFbC9VQftEBtiQBWdgTvohESbozKG6CvtUlFmkgqMtGS9mtj8zkQ9+AcsnKyv7MuR1AeeQx8lzyCcKRwJrbjiMrOdGUZW2MJOiA+47OuLmkNIfPxKsjYZRCEwcXNszekkxGEAvhDl4FIZLIc+EFiRwfhDYUX5RYmxP/jt4dFGoQ1vCERGJsEA1z7rllb1PZ5j6UbK50EyrLibHWQBleMXe5wV6tiSDi1kpWda080FM9RYRYXb81SpHXSERUf3kxDGseUDLb+9ZN9kYFzK35t9daidJyHHjKyvOJAvJt7OVZntqONQ/z2vSMFYRt2wQ8JbmWnLuvzE7nKmPpGi9Ovyo3PetYvUD5tFyscTiUNVojNH7HC2Nt5dyHjFAIZTfUANe5mHTkytRA8bKSQyHUgFRQ0pRYVvgZYtEIC4u+bMSXw2EISy5VRPxziEPeTSZXPovrOydo8ibkEFf0psgJdUJC0Zqbgg/ilvOF5CGRF2BsKMZc1VV6RqL3iHsNT5H5z8nEUeoYPUUiny0nRAoZ5SZ3yIzPzNAXJZ+fRHmXnjKeuAyhgSzjkKPcXRgkVkY+UAlhNyTEc+JBqHkr5IeEt0JSaS13TCgq5jN3g82IijthnNr6db3Wr+ttVcvxCvn71hlSro2MX9NOBe9YOejt4Ds6/g88eFNnMfBWlBUVtd4NLW9eVDnkLqYZFHV0gG3lsAg3RfJuWW0SoMCFOFnyrTJqJISSQywyYcmKiPdFCCy/z2rNykT4JbdAp0DLs3J4T3K4FZkqD8YTlonEPkrf/ZVjSjKCvBnHMwKuK8I25ZgIB0Q32pxDpAoph5Qlt5Yl2chq9igIp5TN6mLu4oRiBKYkKAHrTA6S9cDLUlt3cRBhENiaXMs5Gi2ijIB4X4VSK4QhPMer1eq2KSnXPE/lQ/BOdaLRMd/6+5FDR8cajqc+9anDpptu2nz/Va961XDCCSc03z/66KOHc845Z/i3f/u36vt777338JGPfGS49dZbkfsHvf+Yxzxm+PM///PhkY985HD//fdXP+NNb3rT8LjHPW78+dGPfnR1zKc+9anhm9/85vhZv/jFLx70/tKlS4fLL7982HrrrYf3ve99w+c///ll762//vrLft5+++2Hu+++e7jjjjvGv4Fjjz12vL7AFltsMdx+++3L/r3zzjsPb3/725f7vo022mi46667lv37xS9+8fDyl798uTG+97777ht/fs5znjOsu+66w+GHHz5M4SUvecnwqEc9anje8543/jvmLN/DIYccMuyyyy7D0572tPHfrsP157l70YtetNz13HbbbeN9Zbz2ta8d1ltvvWXz9/3vf3+cn/IeAsccc8xw7bXXDkuWLBmuv/76B137JptsMnzwgx8cr9m6ic/OyNd44oknDhtvvPGDxsQ9/87v/M7wyle+sjpP1tsee+wx/Omf/unwiEc8ojrGfH/xi19srqkNN9xw+Lu/+7vxWbawzz77LLc2OjrmA32FdXQMw/DkJz958n1kYf/992++T5kjNVk5l4SFMm+REcr3wx/+8PhzS3GcdNJJwxOe8ITx5y233PJB71MYFMuPf/zj4cILL3yQ4gXX94UvfGGZIr766qvHn9dZZ53lxm2++eYjGUGuHnjggfF37i+DAvvZz362HBn5zd/8zQcp8iBOj33sY0fF1lKuAeMOPfTQ4fnPf/747/j7TAoQtw984APLlLDr8HdZKf/Kr/zKcOCBB44/uwf3474y8n2/7nWvG6666qpx3GWXXfag6/LZiIj33/Oe9wybbbZZ9RnEvJ966qlVJR/PF9lqETPrZJttthnOPffc5jwhRBdffHFzvbjnCy64YCRILey0007LzWtHx2Khk5GOjhUE5dACRfXRj350tERbOO2004anP/3pzfd/4zd+Y3jpS1/aVC4U8Dve8Y4mGYG3ve1tyxQsb0YJyvHSSy8df77kkktGr1EJCvev/uqvhp/85CfDwQcfvIxAldZ3eEaCLCB05edlz0go6O22226Yhde//vXDs571rPHn+PtSab7sZS8b/+/7XUdN8cc1n3nmmcNFF100ehN4uWow9oYbbhiJXOsaY06PO+64KhmBrbbaalTyCGqLeLoXRKPl0TDn559//vD4xz9+aAG53XHHHZvvW4utddLRsaqhk5GOjpWEDTbYoEkkgAJ617veNfkZH/rQh5Z5P2o4/vjjxzBCS8k88YlPHI444ojxWlrkiZcnFCtvQonddtttuOKKK8af//d//3dUniWQFVb5ddddN34flIqVQnUdyMQ999wz/u6FL3zhsCLgNUCq/F32jGTPUnwfUnX66acP99577xhGqYXKnvSkJw3XXHPN8O1vf7tJNHbfffdl1xjhnxLmzHW89a1vbV67Z/Pud7+76XHgPTnllFOGpzzlKc3P4NE56KCDhilMEZWOjtUNnYx0dCwg5I9MgaUrT6AFMf4zzjhj0uL9wz/8w1FptuL8vB277rrrMuVbwt/97u/+7vjzs5/97CZZkL8iZIEAtbw0V1555fC5z31ueO973/ug9+VoRJgHgfjpT3/6oDHyWiJcw2t05513PmiMXBREgydn2223rXob4j6EUOSk1BDzEWStBh6P17zmNZNeMuGqWXkxZf7NL7tOOjrWNHQy0tGximFWDF/uRiS71iBUcvLJJzffRzb+4A/+oElGgMI1bq+99mqGIl7wgheMPx9wwAFNwnLzzTePr9oYny8R9ZZbbhkTiJGbEshFhL6EYcqcjxgT4ZMjjzyyei08I3InJJW25td8GIdMtCAUhWRNgfdqVsJnz9Po6FgenYx0dKxmEL5o5RoEXv3qV0++Tynvt99+zfeFMlSjtDwjQYpcB89EDcIdCARvTmuMhNaf//zno8fjuc99bnVMhCte8YpXNK8F2ZFj0gqvuE73Imm3BRVXf/RHfzRJJCQxtzxBgTIZuKOjYzY6GenoWAMxi6wgCeHZaOHNb37zZJWRyhlVQq3cBfkiQiIUeC3vBCJkgnAgLTV4z/2UZcMZvqPlFcnVSLOqpspqoF92Xjs6Oh4a2qn/HR0dazRmKdbI1ZgiNGefffbkmMMOO2y48cYbm+8jMzwSrTyOIBquRf+UFnhVpiqZYBb5gk42OjoWB6sFGYns+NzToKOjY/Gh8mZqXyIbO+yww+QYng8ho6kxqmWm3g/vTJcRHR2rFnKS+hQeoQ3rsIrjhz/84Qr1Jujo6Ojo6OhY9fCDH/xgbES4WpMRJYC6SnILr0w3KsaG5JikWkvmjpWDPs8Lhz7XC4M+zwuDPs+r/zyjGJoSKoefSg5fLcI0bmCKUT1cmPy+0OcffZ4XDn2uFwZ9nhcGfZ5X73meakUQ6NU0HR0dHR0dHYuKTkY6Ojo6Ojo6FhVrNRnRB8HhZf7fMX/o87xw6HO9MOjzvDDo87z2zPNqkcDa0dHR0dHRseZirfaMdHR0dHR0dCw+Ohnp6Ojo6OjoWFR0MtLR0dHR0dGxqOhkpKOjo6Ojo2NRscaTkXPPPXfYcccdxxNB99prr+Fb3/rW5PjPfe5zw1Oe8pRx/O677z58+ctfXrBrXVvm+bzzzhvPInGeiJcDzGY9l46HvqYDF1544djBeNbJtB0PbZ7vvPPO4Q1veMN4oJ+qhF133bXLj3mY53POOWc8fdlJ0LqGnnjiicPPf/7zBbve1RH/8A//MB5GqQsqGXDJJZfM/Juvf/3rw6/+6q+Oa3mXXXYZLrjggvm9yLk1GBdeeOHc+uuvP/epT31q7t///d/nfv/3f39uk002mbv11lur4//pn/5pbp111pl7//vfP3fdddfNnXrqqXPrrbfe3LXXXrvg174mz/MRRxwxd+655879y7/8y9x//Md/zB1zzDFzj3vc4+Z++MMfLvi1r+lzHbjpppvmtt1227n99ttv7mUve9mCXe/aMs+/+MUv5vbcc8+5Qw45ZO4b3/jGON9f//rX56655poFv/Y1eZ4/85nPzG2wwQbj/83xZZddNrf11lvPnXjiiQt+7asTvvzlL8+dcsopcxdddJHq2bmLL754cvyNN9449+hHP3ruzW9+86gLP/KRj4y68dJLL523a1yjycizn/3suTe84Q3L/r1kyZK5bbbZZu5973tfdfwrX/nKuUMPPXS53+21115zxx133Lxf69o0zyUeeOCBuY022mju05/+9Dxe5do71+Z3n332mfuzP/uzuaOPPrqTkXmY5z/5kz+Z22mnnebuu+++BbzKtW+ejX3e85633O8ozH333Xfer3VNwbACZOTkk0+e22233Zb73eGHHz538MEHz9t1rbFhmvvuu2+4+uqrxxBAPuPGv7/5zW9W/8bv83g4+OCDm+M7Hto8l7jnnnuG+++/f9h0003n8UrX3rk+44wzhi222GJ47Wtfu0BXuvbN89/+7d8Oe++99xim2XLLLYenP/3pw3vf+95hyZIlC3jla/4877PPPuPfRCjnxhtvHENhhxxyyIJd99qAby6CLlwtDsp7KPif//mfURAQDBn+ff3111f/5pZbbqmO9/uOlTfPJd72treNscxy8Xc8/Ln+xje+MXzyk58crrnmmgW6yrVzninFyy+/fDjyyCNH5fjd7353OP7440eSrbNlx8qZ5yOOOGL8u+c85znjabAPPPDA8LrXvW54xzvesUBXvXbgloYudLrvvffeO+brrGyssZ6RjtUDZ5111phYefHFF48JbB0rD47tPuqoo8aE4c0222yxL2eNxtKlS0fv0yc+8Ynh137t14bDDz98OOWUU4aPf/zji31paxQkVfI4fexjHxu+/e1vDxdddNHwpS99aTjzzDMX+9I6HibWWM8I4bvOOusMt95663K/9++tttqq+jd+/8uM73ho8xw4++yzRzLy1a9+dXjGM54xz1e69s31f/3Xfw3f+973xiz6rDRh3XXXHb7zne8MO++88wJc+Zq/plXQrLfeeuPfBZ761KeOFqZwxPrrrz/v1702zPM73/nOkWD/3u/93vhvFY933333cOyxx47kT5in4+GjpQs33njjefGKwBr75Gx+FsrXvva15QSxf4vt1uD3eTx85StfaY7veGjzDO9///tHa+bSSy8d9txzzwW62rVrrpWoX3vttWOIJl4vfelLhwMPPHD8WVlkx8pZ0/vuu+8YmgmyBzfccMNIUjoRWXnzLL+sJBxBAPsxaysPi6IL59bwsjFlYBdccMFYnnTssceOZWO33HLL+P5RRx019/a3v3250t5111137uyzzx5LTk877bRe2jsP83zWWWeN5Xyf//zn5/77v/972euuu+5axLtYM+e6RK+mmZ95/v73vz9WhL3xjW+c+853vjP3xS9+cW6LLbaYe/e7372Id7HmzTOZbJ7/+q//eiw//fu///u5nXfeeayE7GiDbNVKwYva/+M//uPx55tvvnl83xyb67K096STThp1oVYMvbT3YUJ99Pbbbz8qP2VkV1111bL3DjjggFE4Z3z2s5+d23XXXcfxSpu+9KUvLcJVr9nzvMMOO4wbonwRNB0rf01ndDIyf/N85ZVXjq0AKFdlvu95z3vGsuqOlTfP999//9zpp58+EpANN9xwbrvttps7/vjj5+64445FuvrVA1dccUVV5sbc+r+5Lv9mjz32GJ+L9Xz++efP6zU+wn/mz+/S0dHR0dHR0bGW5ox0dHR0dHR0rB7oZKSjo6Ojo6NjUdHJSEdHR0dHR8eiopORjo6Ojo6OjkVFJyMdHR0dHR0di4pORjo6Ojo6OjoWFZ2MdHR0dHR0dCwqOhnp6Ojo6OjoWFR0MtLR0dHR0dGxqOhkpKOjo6Ojo2NR0clIR0dHR0dHx6Kik5GOjo6Ojo6OYTHx/wGlfxmkl1uQXAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], - "source": [ - "%matplotlib inline\n", - "plt.quiver(points[:, 0], points[:, 1], grad_values[:, 0], grad_values[:, 1])" - ] + "execution_count": 10 }, { "cell_type": "markdown", @@ -238,15 +267,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-06-25T21:43:03.271063Z", + "start_time": "2025-06-25T21:43:03.269626Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -260,7 +294,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.3" + "version": "3.13.5" }, "widgets": { "state": {}, @@ -268,5 +302,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..900d57d --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,69 @@ +[project] +name = "SSplines" +version = "3.0.0" +description = "A Python library for the evaluation of S-splines on the Powell-Sabin 12-split of a triangle." +authors = [ + {name = "Ivar Stangeby", email = "istangeby@gmail.com"} +] +license = {text = "MIT"} +readme = "README.md" +requires-python = ">=3.13" # BREAKING: Now requires Python 3.13+ +dependencies = [ + "numpy>=1.24.0", # Modern numpy + "sympy>=1.10", # Symbolic mathematics +] +keywords = [ + "splines", "finite-element", "Powell-Sabin", "simplex-splines", + "numerical-analysis", "computational-geometry", "interpolation" +] +classifiers = [ + "Development Status :: 5 - Production/Stable", + "Intended Audience :: Science/Research", + "License :: OSI Approved :: MIT License", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.13", + "Topic :: Scientific/Engineering :: Mathematics", + "Topic :: Scientific/Engineering :: Physics", +] + +[project.optional-dependencies] +dev = [ + "pytest>=7.0.1", + "pytest-cov", + "matplotlib>=3.5.1", + "build", + "twine", +] + +[project.urls] +Homepage = "https://github.com/qTipTip/SSplines" +Repository = "https://github.com/qTipTip/SSplines" +Documentation = "https://github.com/qTipTip/SSplines" +"Bug Tracker" = "https://github.com/qTipTip/SSplines/issues" +Changelog = "https://github.com/qTipTip/SSplines/releases" +Citation = "https://doi.org/10.5281/zenodo.15742326" + +[build-system] +requires = ["hatchling"] +build-backend = "hatchling.build" + +[tool.hatch.build.targets.wheel] +packages = ["SSplines"] + +[tool.hatch.build.targets.sdist] +include = [ + "SSplines/", + "tests/", + "README.md", + "CITATION.cff", + "LICENSE", +] + +[tool.uv] +dev-dependencies = [ + "pytest>=7.0.1", + "pytest-cov", + "matplotlib>=3.5.1", + "build", + "twine", +] \ No newline at end of file diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index 458f939..0000000 --- a/requirements.txt +++ /dev/null @@ -1,5 +0,0 @@ -matplotlib -scipy=1.1.1 -sympy -numpy -pytest \ No newline at end of file diff --git a/setup.py b/setup.py deleted file mode 100644 index 744749f..0000000 --- a/setup.py +++ /dev/null @@ -1,18 +0,0 @@ -from setuptools import setup - -setup( - name='SSplines', - version='2.0.1', - packages=['SSplines'], - url='https://github.com/qTipTip/SSplines', - license='MIT', - author='Ivar Stangeby', - author_email='istangeby@gmail.com', - description='A small Python library for the evaluation of S-splines on the Powell-Sabin 12-split of a triangle.', - long_description='''This Python library lets you instantiate constant, - linear and quadratic spline spaces on the Powell-Sabin 12-split of a - triangle. Given a set of coefficients a SplineSpace returns a callable - SplineFunction which can be evaluated and differentiated.''', - install_requires=['numpy'], - python_requires='>=3', -) diff --git a/tests/test_determine_sub_triangle.py b/tests/test_determine_sub_triangle.py index 46f40d3..746e836 100644 --- a/tests/test_determine_sub_triangle.py +++ b/tests/test_determine_sub_triangle.py @@ -24,7 +24,7 @@ def test_determine_sub_triangle_multiple(): computed = determine_sub_triangle(bary_coords) np.testing.assert_almost_equal(computed, expected) - assert computed.dtype == np.int + assert computed.dtype == int def test_determine_sub_triangle_single(): @@ -49,4 +49,4 @@ def test_determine_sub_triangle_single(): computed = determine_sub_triangle(b) np.testing.assert_almost_equal(computed, e) - assert computed.dtype == np.int + assert computed.dtype == int diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..e563566 --- /dev/null +++ b/uv.lock @@ -0,0 +1,766 @@ +version = 1 +revision = 2 +requires-python = ">=3.13" + +[[package]] +name = "build" +version = "1.2.2.post1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "os_name == 'nt'" }, + { name = "packaging" }, + { name = "pyproject-hooks" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7d/46/aeab111f8e06793e4f0e421fcad593d547fb8313b50990f31681ee2fb1ad/build-1.2.2.post1.tar.gz", hash = "sha256:b36993e92ca9375a219c99e606a122ff365a760a2d4bba0caa09bd5278b608b7", size = 46701, upload-time = "2024-10-06T17:22:25.251Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/c2/80633736cd183ee4a62107413def345f7e6e3c01563dbca1417363cf957e/build-1.2.2.post1-py3-none-any.whl", hash = "sha256:1d61c0887fa860c01971625baae8bdd338e517b836a2f70dd1f7aa3a6b2fc5b5", size = 22950, upload-time = "2024-10-06T17:22:23.299Z" }, +] + +[[package]] +name = "certifi" +version = "2025.6.15" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/73/f7/f14b46d4bcd21092d7d3ccef689615220d8a08fb25e564b65d20738e672e/certifi-2025.6.15.tar.gz", hash = "sha256:d747aa5a8b9bbbb1bb8c22bb13e22bd1f18e9796defa16bab421f7f7a317323b", size = 158753, upload-time = "2025-06-15T02:45:51.329Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/ae/320161bd181fc06471eed047ecce67b693fd7515b16d495d8932db763426/certifi-2025.6.15-py3-none-any.whl", hash = "sha256:2e0c7ce7cb5d8f8634ca55d2ba7e6ec2689a2fd6537d8dec1296a477a4910057", size = 157650, upload-time = "2025-06-15T02:45:49.977Z" }, +] + +[[package]] +name = "cffi" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621, upload-time = "2024-09-04T20:45:21.852Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0e/2d/eab2e858a91fdff70533cab61dcff4a1f55ec60425832ddfdc9cd36bc8af/cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3", size = 454792, upload-time = "2024-09-04T20:44:32.01Z" }, + { url = "https://files.pythonhosted.org/packages/75/b2/fbaec7c4455c604e29388d55599b99ebcc250a60050610fadde58932b7ee/cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683", size = 478893, upload-time = "2024-09-04T20:44:33.606Z" }, + { url = "https://files.pythonhosted.org/packages/4f/b7/6e4a2162178bf1935c336d4da8a9352cccab4d3a5d7914065490f08c0690/cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5", size = 485810, upload-time = "2024-09-04T20:44:35.191Z" }, + { url = "https://files.pythonhosted.org/packages/c7/8a/1d0e4a9c26e54746dc08c2c6c037889124d4f59dffd853a659fa545f1b40/cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4", size = 471200, upload-time = "2024-09-04T20:44:36.743Z" }, + { url = "https://files.pythonhosted.org/packages/26/9f/1aab65a6c0db35f43c4d1b4f580e8df53914310afc10ae0397d29d697af4/cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd", size = 479447, upload-time = "2024-09-04T20:44:38.492Z" }, + { url = "https://files.pythonhosted.org/packages/5f/e4/fb8b3dd8dc0e98edf1135ff067ae070bb32ef9d509d6cb0f538cd6f7483f/cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed", size = 484358, upload-time = "2024-09-04T20:44:40.046Z" }, + { url = "https://files.pythonhosted.org/packages/f1/47/d7145bf2dc04684935d57d67dff9d6d795b2ba2796806bb109864be3a151/cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9", size = 488469, upload-time = "2024-09-04T20:44:41.616Z" }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e4/33/89c2ced2b67d1c2a61c19c6751aa8902d46ce3dacb23600a283619f5a12d/charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63", size = 126367, upload-time = "2025-05-02T08:34:42.01Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/12/a93df3366ed32db1d907d7593a94f1fe6293903e3e92967bebd6950ed12c/charset_normalizer-3.4.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:926ca93accd5d36ccdabd803392ddc3e03e6d4cd1cf17deff3b989ab8e9dbcf0", size = 199622, upload-time = "2025-05-02T08:32:56.363Z" }, + { url = "https://files.pythonhosted.org/packages/04/93/bf204e6f344c39d9937d3c13c8cd5bbfc266472e51fc8c07cb7f64fcd2de/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eba9904b0f38a143592d9fc0e19e2df0fa2e41c3c3745554761c5f6447eedabf", size = 143435, upload-time = "2025-05-02T08:32:58.551Z" }, + { url = "https://files.pythonhosted.org/packages/22/2a/ea8a2095b0bafa6c5b5a55ffdc2f924455233ee7b91c69b7edfcc9e02284/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3fddb7e2c84ac87ac3a947cb4e66d143ca5863ef48e4a5ecb83bd48619e4634e", size = 153653, upload-time = "2025-05-02T08:33:00.342Z" }, + { url = "https://files.pythonhosted.org/packages/b6/57/1b090ff183d13cef485dfbe272e2fe57622a76694061353c59da52c9a659/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98f862da73774290f251b9df8d11161b6cf25b599a66baf087c1ffe340e9bfd1", size = 146231, upload-time = "2025-05-02T08:33:02.081Z" }, + { url = "https://files.pythonhosted.org/packages/e2/28/ffc026b26f441fc67bd21ab7f03b313ab3fe46714a14b516f931abe1a2d8/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c9379d65defcab82d07b2a9dfbfc2e95bc8fe0ebb1b176a3190230a3ef0e07c", size = 148243, upload-time = "2025-05-02T08:33:04.063Z" }, + { url = "https://files.pythonhosted.org/packages/c0/0f/9abe9bd191629c33e69e47c6ef45ef99773320e9ad8e9cb08b8ab4a8d4cb/charset_normalizer-3.4.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e635b87f01ebc977342e2697d05b56632f5f879a4f15955dfe8cef2448b51691", size = 150442, upload-time = "2025-05-02T08:33:06.418Z" }, + { url = "https://files.pythonhosted.org/packages/67/7c/a123bbcedca91d5916c056407f89a7f5e8fdfce12ba825d7d6b9954a1a3c/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1c95a1e2902a8b722868587c0e1184ad5c55631de5afc0eb96bc4b0d738092c0", size = 145147, upload-time = "2025-05-02T08:33:08.183Z" }, + { url = "https://files.pythonhosted.org/packages/ec/fe/1ac556fa4899d967b83e9893788e86b6af4d83e4726511eaaad035e36595/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ef8de666d6179b009dce7bcb2ad4c4a779f113f12caf8dc77f0162c29d20490b", size = 153057, upload-time = "2025-05-02T08:33:09.986Z" }, + { url = "https://files.pythonhosted.org/packages/2b/ff/acfc0b0a70b19e3e54febdd5301a98b72fa07635e56f24f60502e954c461/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:32fc0341d72e0f73f80acb0a2c94216bd704f4f0bce10aedea38f30502b271ff", size = 156454, upload-time = "2025-05-02T08:33:11.814Z" }, + { url = "https://files.pythonhosted.org/packages/92/08/95b458ce9c740d0645feb0e96cea1f5ec946ea9c580a94adfe0b617f3573/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:289200a18fa698949d2b39c671c2cc7a24d44096784e76614899a7ccf2574b7b", size = 154174, upload-time = "2025-05-02T08:33:13.707Z" }, + { url = "https://files.pythonhosted.org/packages/78/be/8392efc43487ac051eee6c36d5fbd63032d78f7728cb37aebcc98191f1ff/charset_normalizer-3.4.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4a476b06fbcf359ad25d34a057b7219281286ae2477cc5ff5e3f70a246971148", size = 149166, upload-time = "2025-05-02T08:33:15.458Z" }, + { url = "https://files.pythonhosted.org/packages/44/96/392abd49b094d30b91d9fbda6a69519e95802250b777841cf3bda8fe136c/charset_normalizer-3.4.2-cp313-cp313-win32.whl", hash = "sha256:aaeeb6a479c7667fbe1099af9617c83aaca22182d6cf8c53966491a0f1b7ffb7", size = 98064, upload-time = "2025-05-02T08:33:17.06Z" }, + { url = "https://files.pythonhosted.org/packages/e9/b0/0200da600134e001d91851ddc797809e2fe0ea72de90e09bec5a2fbdaccb/charset_normalizer-3.4.2-cp313-cp313-win_amd64.whl", hash = "sha256:aa6af9e7d59f9c12b33ae4e9450619cf2488e2bbe9b44030905877f0b2324980", size = 105641, upload-time = "2025-05-02T08:33:18.753Z" }, + { url = "https://files.pythonhosted.org/packages/20/94/c5790835a017658cbfabd07f3bfb549140c3ac458cfc196323996b10095a/charset_normalizer-3.4.2-py3-none-any.whl", hash = "sha256:7f56930ab0abd1c45cd15be65cc741c28b1c9a34876ce8c17a2fa107810c0af0", size = 52626, upload-time = "2025-05-02T08:34:40.053Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/54/eb9bfc647b19f2009dd5c7f5ec51c4e6ca831725f1aea7a993034f483147/contourpy-1.3.2.tar.gz", hash = "sha256:b6945942715a034c671b7fc54f9588126b0b8bf23db2696e3ca8328f3ff0ab54", size = 13466130, upload-time = "2025-04-15T17:47:53.79Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2e/61/5673f7e364b31e4e7ef6f61a4b5121c5f170f941895912f773d95270f3a2/contourpy-1.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:de39db2604ae755316cb5967728f4bea92685884b1e767b7c24e983ef5f771cb", size = 271630, upload-time = "2025-04-15T17:38:19.142Z" }, + { url = "https://files.pythonhosted.org/packages/ff/66/a40badddd1223822c95798c55292844b7e871e50f6bfd9f158cb25e0bd39/contourpy-1.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3f9e896f447c5c8618f1edb2bafa9a4030f22a575ec418ad70611450720b5b08", size = 255670, upload-time = "2025-04-15T17:38:23.688Z" }, + { url = "https://files.pythonhosted.org/packages/1e/c7/cf9fdee8200805c9bc3b148f49cb9482a4e3ea2719e772602a425c9b09f8/contourpy-1.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71e2bd4a1c4188f5c2b8d274da78faab884b59df20df63c34f74aa1813c4427c", size = 306694, upload-time = "2025-04-15T17:38:28.238Z" }, + { url = "https://files.pythonhosted.org/packages/dd/e7/ccb9bec80e1ba121efbffad7f38021021cda5be87532ec16fd96533bb2e0/contourpy-1.3.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de425af81b6cea33101ae95ece1f696af39446db9682a0b56daaa48cfc29f38f", size = 345986, upload-time = "2025-04-15T17:38:33.502Z" }, + { url = "https://files.pythonhosted.org/packages/dc/49/ca13bb2da90391fa4219fdb23b078d6065ada886658ac7818e5441448b78/contourpy-1.3.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:977e98a0e0480d3fe292246417239d2d45435904afd6d7332d8455981c408b85", size = 318060, upload-time = "2025-04-15T17:38:38.672Z" }, + { url = "https://files.pythonhosted.org/packages/c8/65/5245ce8c548a8422236c13ffcdcdada6a2a812c361e9e0c70548bb40b661/contourpy-1.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:434f0adf84911c924519d2b08fc10491dd282b20bdd3fa8f60fd816ea0b48841", size = 322747, upload-time = "2025-04-15T17:38:43.712Z" }, + { url = "https://files.pythonhosted.org/packages/72/30/669b8eb48e0a01c660ead3752a25b44fdb2e5ebc13a55782f639170772f9/contourpy-1.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c66c4906cdbc50e9cba65978823e6e00b45682eb09adbb78c9775b74eb222422", size = 1308895, upload-time = "2025-04-15T17:39:00.224Z" }, + { url = "https://files.pythonhosted.org/packages/05/5a/b569f4250decee6e8d54498be7bdf29021a4c256e77fe8138c8319ef8eb3/contourpy-1.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8b7fc0cd78ba2f4695fd0a6ad81a19e7e3ab825c31b577f384aa9d7817dc3bef", size = 1379098, upload-time = "2025-04-15T17:43:29.649Z" }, + { url = "https://files.pythonhosted.org/packages/19/ba/b227c3886d120e60e41b28740ac3617b2f2b971b9f601c835661194579f1/contourpy-1.3.2-cp313-cp313-win32.whl", hash = "sha256:15ce6ab60957ca74cff444fe66d9045c1fd3e92c8936894ebd1f3eef2fff075f", size = 178535, upload-time = "2025-04-15T17:44:44.532Z" }, + { url = "https://files.pythonhosted.org/packages/12/6e/2fed56cd47ca739b43e892707ae9a13790a486a3173be063681ca67d2262/contourpy-1.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:e1578f7eafce927b168752ed7e22646dad6cd9bca673c60bff55889fa236ebf9", size = 223096, upload-time = "2025-04-15T17:44:48.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/4c/e76fe2a03014a7c767d79ea35c86a747e9325537a8b7627e0e5b3ba266b4/contourpy-1.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0475b1f6604896bc7c53bb070e355e9321e1bc0d381735421a2d2068ec56531f", size = 285090, upload-time = "2025-04-15T17:43:34.084Z" }, + { url = "https://files.pythonhosted.org/packages/7b/e2/5aba47debd55d668e00baf9651b721e7733975dc9fc27264a62b0dd26eb8/contourpy-1.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:c85bb486e9be652314bb5b9e2e3b0d1b2e643d5eec4992c0fbe8ac71775da739", size = 268643, upload-time = "2025-04-15T17:43:38.626Z" }, + { url = "https://files.pythonhosted.org/packages/a1/37/cd45f1f051fe6230f751cc5cdd2728bb3a203f5619510ef11e732109593c/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:745b57db7758f3ffc05a10254edd3182a2a83402a89c00957a8e8a22f5582823", size = 310443, upload-time = "2025-04-15T17:43:44.522Z" }, + { url = "https://files.pythonhosted.org/packages/8b/a2/36ea6140c306c9ff6dd38e3bcec80b3b018474ef4d17eb68ceecd26675f4/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:970e9173dbd7eba9b4e01aab19215a48ee5dd3f43cef736eebde064a171f89a5", size = 349865, upload-time = "2025-04-15T17:43:49.545Z" }, + { url = "https://files.pythonhosted.org/packages/95/b7/2fc76bc539693180488f7b6cc518da7acbbb9e3b931fd9280504128bf956/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6c4639a9c22230276b7bffb6a850dfc8258a2521305e1faefe804d006b2e532", size = 321162, upload-time = "2025-04-15T17:43:54.203Z" }, + { url = "https://files.pythonhosted.org/packages/f4/10/76d4f778458b0aa83f96e59d65ece72a060bacb20cfbee46cf6cd5ceba41/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc829960f34ba36aad4302e78eabf3ef16a3a100863f0d4eeddf30e8a485a03b", size = 327355, upload-time = "2025-04-15T17:44:01.025Z" }, + { url = "https://files.pythonhosted.org/packages/43/a3/10cf483ea683f9f8ab096c24bad3cce20e0d1dd9a4baa0e2093c1c962d9d/contourpy-1.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:d32530b534e986374fc19eaa77fcb87e8a99e5431499949b828312bdcd20ac52", size = 1307935, upload-time = "2025-04-15T17:44:17.322Z" }, + { url = "https://files.pythonhosted.org/packages/78/73/69dd9a024444489e22d86108e7b913f3528f56cfc312b5c5727a44188471/contourpy-1.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e298e7e70cf4eb179cc1077be1c725b5fd131ebc81181bf0c03525c8abc297fd", size = 1372168, upload-time = "2025-04-15T17:44:33.43Z" }, + { url = "https://files.pythonhosted.org/packages/0f/1b/96d586ccf1b1a9d2004dd519b25fbf104a11589abfd05484ff12199cca21/contourpy-1.3.2-cp313-cp313t-win32.whl", hash = "sha256:d0e589ae0d55204991450bb5c23f571c64fe43adaa53f93fc902a84c96f52fe1", size = 189550, upload-time = "2025-04-15T17:44:37.092Z" }, + { url = "https://files.pythonhosted.org/packages/b0/e6/6000d0094e8a5e32ad62591c8609e269febb6e4db83a1c75ff8868b42731/contourpy-1.3.2-cp313-cp313t-win_amd64.whl", hash = "sha256:78e9253c3de756b3f6a5174d024c4835acd59eb3f8e2ca13e775dbffe1558f69", size = 238214, upload-time = "2025-04-15T17:44:40.827Z" }, +] + +[[package]] +name = "coverage" +version = "7.9.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e7/e0/98670a80884f64578f0c22cd70c5e81a6e07b08167721c7487b4d70a7ca0/coverage-7.9.1.tar.gz", hash = "sha256:6cf43c78c4282708a28e466316935ec7489a9c487518a77fa68f716c67909cec", size = 813650, upload-time = "2025-06-13T13:02:28.627Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d0/a7/a027970c991ca90f24e968999f7d509332daf6b8c3533d68633930aaebac/coverage-7.9.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:31324f18d5969feef7344a932c32428a2d1a3e50b15a6404e97cba1cc9b2c631", size = 212358, upload-time = "2025-06-13T13:01:30.909Z" }, + { url = "https://files.pythonhosted.org/packages/f2/48/6aaed3651ae83b231556750280682528fea8ac7f1232834573472d83e459/coverage-7.9.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0c804506d624e8a20fb3108764c52e0eef664e29d21692afa375e0dd98dc384f", size = 212620, upload-time = "2025-06-13T13:01:32.256Z" }, + { url = "https://files.pythonhosted.org/packages/6c/2a/f4b613f3b44d8b9f144847c89151992b2b6b79cbc506dee89ad0c35f209d/coverage-7.9.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef64c27bc40189f36fcc50c3fb8f16ccda73b6a0b80d9bd6e6ce4cffcd810bbd", size = 245788, upload-time = "2025-06-13T13:01:33.948Z" }, + { url = "https://files.pythonhosted.org/packages/04/d2/de4fdc03af5e4e035ef420ed26a703c6ad3d7a07aff2e959eb84e3b19ca8/coverage-7.9.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4fe2348cc6ec372e25adec0219ee2334a68d2f5222e0cba9c0d613394e12d86", size = 243001, upload-time = "2025-06-13T13:01:35.285Z" }, + { url = "https://files.pythonhosted.org/packages/f5/e8/eed18aa5583b0423ab7f04e34659e51101135c41cd1dcb33ac1d7013a6d6/coverage-7.9.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:34ed2186fe52fcc24d4561041979a0dec69adae7bce2ae8d1c49eace13e55c43", size = 244985, upload-time = "2025-06-13T13:01:36.712Z" }, + { url = "https://files.pythonhosted.org/packages/17/f8/ae9e5cce8885728c934eaa58ebfa8281d488ef2afa81c3dbc8ee9e6d80db/coverage-7.9.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:25308bd3d00d5eedd5ae7d4357161f4df743e3c0240fa773ee1b0f75e6c7c0f1", size = 245152, upload-time = "2025-06-13T13:01:39.303Z" }, + { url = "https://files.pythonhosted.org/packages/5a/c8/272c01ae792bb3af9b30fac14d71d63371db227980682836ec388e2c57c0/coverage-7.9.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:73e9439310f65d55a5a1e0564b48e34f5369bee943d72c88378f2d576f5a5751", size = 243123, upload-time = "2025-06-13T13:01:40.727Z" }, + { url = "https://files.pythonhosted.org/packages/8c/d0/2819a1e3086143c094ab446e3bdf07138527a7b88cb235c488e78150ba7a/coverage-7.9.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:37ab6be0859141b53aa89412a82454b482c81cf750de4f29223d52268a86de67", size = 244506, upload-time = "2025-06-13T13:01:42.184Z" }, + { url = "https://files.pythonhosted.org/packages/8b/4e/9f6117b89152df7b6112f65c7a4ed1f2f5ec8e60c4be8f351d91e7acc848/coverage-7.9.1-cp313-cp313-win32.whl", hash = "sha256:64bdd969456e2d02a8b08aa047a92d269c7ac1f47e0c977675d550c9a0863643", size = 214766, upload-time = "2025-06-13T13:01:44.482Z" }, + { url = "https://files.pythonhosted.org/packages/27/0f/4b59f7c93b52c2c4ce7387c5a4e135e49891bb3b7408dcc98fe44033bbe0/coverage-7.9.1-cp313-cp313-win_amd64.whl", hash = "sha256:be9e3f68ca9edb897c2184ad0eee815c635565dbe7a0e7e814dc1f7cbab92c0a", size = 215568, upload-time = "2025-06-13T13:01:45.772Z" }, + { url = "https://files.pythonhosted.org/packages/09/1e/9679826336f8c67b9c39a359352882b24a8a7aee48d4c9cad08d38d7510f/coverage-7.9.1-cp313-cp313-win_arm64.whl", hash = "sha256:1c503289ffef1d5105d91bbb4d62cbe4b14bec4d13ca225f9c73cde9bb46207d", size = 213939, upload-time = "2025-06-13T13:01:47.087Z" }, + { url = "https://files.pythonhosted.org/packages/bb/5b/5c6b4e7a407359a2e3b27bf9c8a7b658127975def62077d441b93a30dbe8/coverage-7.9.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0b3496922cb5f4215bf5caaef4cf12364a26b0be82e9ed6d050f3352cf2d7ef0", size = 213079, upload-time = "2025-06-13T13:01:48.554Z" }, + { url = "https://files.pythonhosted.org/packages/a2/22/1e2e07279fd2fd97ae26c01cc2186e2258850e9ec125ae87184225662e89/coverage-7.9.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:9565c3ab1c93310569ec0d86b017f128f027cab0b622b7af288696d7ed43a16d", size = 213299, upload-time = "2025-06-13T13:01:49.997Z" }, + { url = "https://files.pythonhosted.org/packages/14/c0/4c5125a4b69d66b8c85986d3321520f628756cf524af810baab0790c7647/coverage-7.9.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2241ad5dbf79ae1d9c08fe52b36d03ca122fb9ac6bca0f34439e99f8327ac89f", size = 256535, upload-time = "2025-06-13T13:01:51.314Z" }, + { url = "https://files.pythonhosted.org/packages/81/8b/e36a04889dda9960be4263e95e777e7b46f1bb4fc32202612c130a20c4da/coverage-7.9.1-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bb5838701ca68b10ebc0937dbd0eb81974bac54447c55cd58dea5bca8451029", size = 252756, upload-time = "2025-06-13T13:01:54.403Z" }, + { url = "https://files.pythonhosted.org/packages/98/82/be04eff8083a09a4622ecd0e1f31a2c563dbea3ed848069e7b0445043a70/coverage-7.9.1-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b30a25f814591a8c0c5372c11ac8967f669b97444c47fd794926e175c4047ece", size = 254912, upload-time = "2025-06-13T13:01:56.769Z" }, + { url = "https://files.pythonhosted.org/packages/0f/25/c26610a2c7f018508a5ab958e5b3202d900422cf7cdca7670b6b8ca4e8df/coverage-7.9.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2d04b16a6062516df97969f1ae7efd0de9c31eb6ebdceaa0d213b21c0ca1a683", size = 256144, upload-time = "2025-06-13T13:01:58.19Z" }, + { url = "https://files.pythonhosted.org/packages/c5/8b/fb9425c4684066c79e863f1e6e7ecebb49e3a64d9f7f7860ef1688c56f4a/coverage-7.9.1-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:7931b9e249edefb07cd6ae10c702788546341d5fe44db5b6108a25da4dca513f", size = 254257, upload-time = "2025-06-13T13:01:59.645Z" }, + { url = "https://files.pythonhosted.org/packages/93/df/27b882f54157fc1131e0e215b0da3b8d608d9b8ef79a045280118a8f98fe/coverage-7.9.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:52e92b01041151bf607ee858e5a56c62d4b70f4dac85b8c8cb7fb8a351ab2c10", size = 255094, upload-time = "2025-06-13T13:02:01.37Z" }, + { url = "https://files.pythonhosted.org/packages/41/5f/cad1c3dbed8b3ee9e16fa832afe365b4e3eeab1fb6edb65ebbf745eabc92/coverage-7.9.1-cp313-cp313t-win32.whl", hash = "sha256:684e2110ed84fd1ca5f40e89aa44adf1729dc85444004111aa01866507adf363", size = 215437, upload-time = "2025-06-13T13:02:02.905Z" }, + { url = "https://files.pythonhosted.org/packages/99/4d/fad293bf081c0e43331ca745ff63673badc20afea2104b431cdd8c278b4c/coverage-7.9.1-cp313-cp313t-win_amd64.whl", hash = "sha256:437c576979e4db840539674e68c84b3cda82bc824dd138d56bead1435f1cb5d7", size = 216605, upload-time = "2025-06-13T13:02:05.638Z" }, + { url = "https://files.pythonhosted.org/packages/1f/56/4ee027d5965fc7fc126d7ec1187529cc30cc7d740846e1ecb5e92d31b224/coverage-7.9.1-cp313-cp313t-win_arm64.whl", hash = "sha256:18a0912944d70aaf5f399e350445738a1a20b50fbea788f640751c2ed9208b6c", size = 214392, upload-time = "2025-06-13T13:02:07.642Z" }, + { url = "https://files.pythonhosted.org/packages/08/b8/7ddd1e8ba9701dea08ce22029917140e6f66a859427406579fd8d0ca7274/coverage-7.9.1-py3-none-any.whl", hash = "sha256:66b974b145aa189516b6bf2d8423e888b742517d37872f6ee4c5be0073bd9a3c", size = 204000, upload-time = "2025-06-13T13:02:27.173Z" }, +] + +[[package]] +name = "cryptography" +version = "45.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "platform_python_implementation != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fe/c8/a2a376a8711c1e11708b9c9972e0c3223f5fc682552c82d8db844393d6ce/cryptography-45.0.4.tar.gz", hash = "sha256:7405ade85c83c37682c8fe65554759800a4a8c54b2d96e0f8ad114d31b808d57", size = 744890, upload-time = "2025-06-10T00:03:51.297Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/14/93b69f2af9ba832ad6618a03f8a034a5851dc9a3314336a3d71c252467e1/cryptography-45.0.4-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:680806cf63baa0039b920f4976f5f31b10e772de42f16310a6839d9f21a26b0d", size = 4205335, upload-time = "2025-06-10T00:02:41.64Z" }, + { url = "https://files.pythonhosted.org/packages/67/30/fae1000228634bf0b647fca80403db5ca9e3933b91dd060570689f0bd0f7/cryptography-45.0.4-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4ca0f52170e821bc8da6fc0cc565b7bb8ff8d90d36b5e9fdd68e8a86bdf72036", size = 4431487, upload-time = "2025-06-10T00:02:43.696Z" }, + { url = "https://files.pythonhosted.org/packages/6d/5a/7dffcf8cdf0cb3c2430de7404b327e3db64735747d641fc492539978caeb/cryptography-45.0.4-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:f3fe7a5ae34d5a414957cc7f457e2b92076e72938423ac64d215722f6cf49a9e", size = 4208922, upload-time = "2025-06-10T00:02:45.334Z" }, + { url = "https://files.pythonhosted.org/packages/c6/f3/528729726eb6c3060fa3637253430547fbaaea95ab0535ea41baa4a6fbd8/cryptography-45.0.4-cp311-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:25eb4d4d3e54595dc8adebc6bbd5623588991d86591a78c2548ffb64797341e2", size = 3900433, upload-time = "2025-06-10T00:02:47.359Z" }, + { url = "https://files.pythonhosted.org/packages/d9/4a/67ba2e40f619e04d83c32f7e1d484c1538c0800a17c56a22ff07d092ccc1/cryptography-45.0.4-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:ce1678a2ccbe696cf3af15a75bb72ee008d7ff183c9228592ede9db467e64f1b", size = 4464163, upload-time = "2025-06-10T00:02:49.412Z" }, + { url = "https://files.pythonhosted.org/packages/7e/9a/b4d5aa83661483ac372464809c4b49b5022dbfe36b12fe9e323ca8512420/cryptography-45.0.4-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:49fe9155ab32721b9122975e168a6760d8ce4cffe423bcd7ca269ba41b5dfac1", size = 4208687, upload-time = "2025-06-10T00:02:50.976Z" }, + { url = "https://files.pythonhosted.org/packages/db/b7/a84bdcd19d9c02ec5807f2ec2d1456fd8451592c5ee353816c09250e3561/cryptography-45.0.4-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:2882338b2a6e0bd337052e8b9007ced85c637da19ef9ecaf437744495c8c2999", size = 4463623, upload-time = "2025-06-10T00:02:52.542Z" }, + { url = "https://files.pythonhosted.org/packages/d8/84/69707d502d4d905021cac3fb59a316344e9f078b1da7fb43ecde5e10840a/cryptography-45.0.4-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:23b9c3ea30c3ed4db59e7b9619272e94891f8a3a5591d0b656a7582631ccf750", size = 4332447, upload-time = "2025-06-10T00:02:54.63Z" }, + { url = "https://files.pythonhosted.org/packages/f3/ee/d4f2ab688e057e90ded24384e34838086a9b09963389a5ba6854b5876598/cryptography-45.0.4-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b0a97c927497e3bc36b33987abb99bf17a9a175a19af38a892dc4bbb844d7ee2", size = 4572830, upload-time = "2025-06-10T00:02:56.689Z" }, + { url = "https://files.pythonhosted.org/packages/fe/51/8c584ed426093aac257462ae62d26ad61ef1cbf5b58d8b67e6e13c39960e/cryptography-45.0.4-cp37-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:6a5bf57554e80f75a7db3d4b1dacaa2764611ae166ab42ea9a72bcdb5d577637", size = 4195746, upload-time = "2025-06-10T00:03:03.94Z" }, + { url = "https://files.pythonhosted.org/packages/5c/7d/4b0ca4d7af95a704eef2f8f80a8199ed236aaf185d55385ae1d1610c03c2/cryptography-45.0.4-cp37-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:46cf7088bf91bdc9b26f9c55636492c1cce3e7aaf8041bbf0243f5e5325cfb2d", size = 4424456, upload-time = "2025-06-10T00:03:05.589Z" }, + { url = "https://files.pythonhosted.org/packages/1d/45/5fabacbc6e76ff056f84d9f60eeac18819badf0cefc1b6612ee03d4ab678/cryptography-45.0.4-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:7bedbe4cc930fa4b100fc845ea1ea5788fcd7ae9562e669989c11618ae8d76ee", size = 4198495, upload-time = "2025-06-10T00:03:09.172Z" }, + { url = "https://files.pythonhosted.org/packages/55/b7/ffc9945b290eb0a5d4dab9b7636706e3b5b92f14ee5d9d4449409d010d54/cryptography-45.0.4-cp37-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:eaa3e28ea2235b33220b949c5a0d6cf79baa80eab2eb5607ca8ab7525331b9ff", size = 3885540, upload-time = "2025-06-10T00:03:10.835Z" }, + { url = "https://files.pythonhosted.org/packages/7f/e3/57b010282346980475e77d414080acdcb3dab9a0be63071efc2041a2c6bd/cryptography-45.0.4-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:7ef2dde4fa9408475038fc9aadfc1fb2676b174e68356359632e980c661ec8f6", size = 4452052, upload-time = "2025-06-10T00:03:12.448Z" }, + { url = "https://files.pythonhosted.org/packages/37/e6/ddc4ac2558bf2ef517a358df26f45bc774a99bf4653e7ee34b5e749c03e3/cryptography-45.0.4-cp37-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:6a3511ae33f09094185d111160fd192c67aa0a2a8d19b54d36e4c78f651dc5ad", size = 4198024, upload-time = "2025-06-10T00:03:13.976Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c0/85fa358ddb063ec588aed4a6ea1df57dc3e3bc1712d87c8fa162d02a65fc/cryptography-45.0.4-cp37-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:06509dc70dd71fa56eaa138336244e2fbaf2ac164fc9b5e66828fccfd2b680d6", size = 4451442, upload-time = "2025-06-10T00:03:16.248Z" }, + { url = "https://files.pythonhosted.org/packages/33/67/362d6ec1492596e73da24e669a7fbbaeb1c428d6bf49a29f7a12acffd5dc/cryptography-45.0.4-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:5f31e6b0a5a253f6aa49be67279be4a7e5a4ef259a9f33c69f7d1b1191939872", size = 4325038, upload-time = "2025-06-10T00:03:18.4Z" }, + { url = "https://files.pythonhosted.org/packages/53/75/82a14bf047a96a1b13ebb47fb9811c4f73096cfa2e2b17c86879687f9027/cryptography-45.0.4-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:944e9ccf67a9594137f942d5b52c8d238b1b4e46c7a0c2891b7ae6e01e7c80a4", size = 4560964, upload-time = "2025-06-10T00:03:20.06Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "docutils" +version = "0.21.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ae/ed/aefcc8cd0ba62a0560c3c18c33925362d46c6075480bfa4df87b28e169a9/docutils-0.21.2.tar.gz", hash = "sha256:3a6b18732edf182daa3cd12775bbb338cf5691468f91eeeb109deff6ebfa986f", size = 2204444, upload-time = "2024-04-23T18:57:18.24Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/d7/9322c609343d929e75e7e5e6255e614fcc67572cfd083959cdef3b7aad79/docutils-0.21.2-py3-none-any.whl", hash = "sha256:dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2", size = 587408, upload-time = "2024-04-23T18:57:14.835Z" }, +] + +[[package]] +name = "fonttools" +version = "4.58.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2e/5a/1124b2c8cb3a8015faf552e92714040bcdbc145dfa29928891b02d147a18/fonttools-4.58.4.tar.gz", hash = "sha256:928a8009b9884ed3aae17724b960987575155ca23c6f0b8146e400cc9e0d44ba", size = 3525026, upload-time = "2025-06-13T17:25:15.426Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/4f/c05cab5fc1a4293e6bc535c6cb272607155a0517700f5418a4165b7f9ec8/fonttools-4.58.4-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5f4a64846495c543796fa59b90b7a7a9dff6839bd852741ab35a71994d685c6d", size = 2745197, upload-time = "2025-06-13T17:24:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/3e/d3/49211b1f96ae49308f4f78ca7664742377a6867f00f704cdb31b57e4b432/fonttools-4.58.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e80661793a5d4d7ad132a2aa1eae2e160fbdbb50831a0edf37c7c63b2ed36574", size = 2317272, upload-time = "2025-06-13T17:24:43.428Z" }, + { url = "https://files.pythonhosted.org/packages/b2/11/c9972e46a6abd752a40a46960e431c795ad1f306775fc1f9e8c3081a1274/fonttools-4.58.4-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:fe5807fc64e4ba5130f1974c045a6e8d795f3b7fb6debfa511d1773290dbb76b", size = 4877184, upload-time = "2025-06-13T17:24:45.527Z" }, + { url = "https://files.pythonhosted.org/packages/ea/24/5017c01c9ef8df572cc9eaf9f12be83ad8ed722ff6dc67991d3d752956e4/fonttools-4.58.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b610b9bef841cb8f4b50472494158b1e347d15cad56eac414c722eda695a6cfd", size = 4939445, upload-time = "2025-06-13T17:24:47.647Z" }, + { url = "https://files.pythonhosted.org/packages/79/b0/538cc4d0284b5a8826b4abed93a69db52e358525d4b55c47c8cef3669767/fonttools-4.58.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2daa7f0e213c38f05f054eb5e1730bd0424aebddbeac094489ea1585807dd187", size = 4878800, upload-time = "2025-06-13T17:24:49.766Z" }, + { url = "https://files.pythonhosted.org/packages/5a/9b/a891446b7a8250e65bffceb248508587958a94db467ffd33972723ab86c9/fonttools-4.58.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:66cccb6c0b944496b7f26450e9a66e997739c513ffaac728d24930df2fd9d35b", size = 5021259, upload-time = "2025-06-13T17:24:51.754Z" }, + { url = "https://files.pythonhosted.org/packages/17/b2/c4d2872cff3ace3ddd1388bf15b76a1d8d5313f0a61f234e9aed287e674d/fonttools-4.58.4-cp313-cp313-win32.whl", hash = "sha256:94d2aebb5ca59a5107825520fde596e344652c1f18170ef01dacbe48fa60c889", size = 2185824, upload-time = "2025-06-13T17:24:54.324Z" }, + { url = "https://files.pythonhosted.org/packages/98/57/cddf8bcc911d4f47dfca1956c1e3aeeb9f7c9b8e88b2a312fe8c22714e0b/fonttools-4.58.4-cp313-cp313-win_amd64.whl", hash = "sha256:b554bd6e80bba582fd326ddab296e563c20c64dca816d5e30489760e0c41529f", size = 2236382, upload-time = "2025-06-13T17:24:56.291Z" }, + { url = "https://files.pythonhosted.org/packages/0b/2f/c536b5b9bb3c071e91d536a4d11f969e911dbb6b227939f4c5b0bca090df/fonttools-4.58.4-py3-none-any.whl", hash = "sha256:a10ce13a13f26cbb9f37512a4346bb437ad7e002ff6fa966a7ce7ff5ac3528bd", size = 1114660, upload-time = "2025-06-13T17:25:13.321Z" }, +] + +[[package]] +name = "id" +version = "1.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/22/11/102da08f88412d875fa2f1a9a469ff7ad4c874b0ca6fed0048fe385bdb3d/id-1.5.0.tar.gz", hash = "sha256:292cb8a49eacbbdbce97244f47a97b4c62540169c976552e497fd57df0734c1d", size = 15237, upload-time = "2024-12-04T19:53:05.575Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/cb/18326d2d89ad3b0dd143da971e77afd1e6ca6674f1b1c3df4b6bec6279fc/id-1.5.0-py3-none-any.whl", hash = "sha256:f1434e1cef91f2cbb8a4ec64663d5a23b9ed43ef44c4c957d02583d61714c658", size = 13611, upload-time = "2024-12-04T19:53:03.02Z" }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490, upload-time = "2024-09-15T18:07:39.745Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442, upload-time = "2024-09-15T18:07:37.964Z" }, +] + +[[package]] +name = "iniconfig" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/97/ebf4da567aa6827c909642694d71c9fcf53e5b504f2d96afea02718862f3/iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7", size = 4793, upload-time = "2025-03-19T20:09:59.721Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050, upload-time = "2025-03-19T20:10:01.071Z" }, +] + +[[package]] +name = "jaraco-classes" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "more-itertools" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/06/c0/ed4a27bc5571b99e3cff68f8a9fa5b56ff7df1c2251cc715a652ddd26402/jaraco.classes-3.4.0.tar.gz", hash = "sha256:47a024b51d0239c0dd8c8540c6c7f484be3b8fcf0b2d85c13825780d3b3f3acd", size = 11780, upload-time = "2024-03-31T07:27:36.643Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7f/66/b15ce62552d84bbfcec9a4873ab79d993a1dd4edb922cbfccae192bd5b5f/jaraco.classes-3.4.0-py3-none-any.whl", hash = "sha256:f662826b6bed8cace05e7ff873ce0f9283b5c924470fe664fff1c2f00f581790", size = 6777, upload-time = "2024-03-31T07:27:34.792Z" }, +] + +[[package]] +name = "jaraco-context" +version = "6.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/df/ad/f3777b81bf0b6e7bc7514a1656d3e637b2e8e15fab2ce3235730b3e7a4e6/jaraco_context-6.0.1.tar.gz", hash = "sha256:9bae4ea555cf0b14938dc0aee7c9f32ed303aa20a3b73e7dc80111628792d1b3", size = 13912, upload-time = "2024-08-20T03:39:27.358Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ff/db/0c52c4cf5e4bd9f5d7135ec7669a3a767af21b3a308e1ed3674881e52b62/jaraco.context-6.0.1-py3-none-any.whl", hash = "sha256:f797fc481b490edb305122c9181830a3a5b76d84ef6d1aef2fb9b47ab956f9e4", size = 6825, upload-time = "2024-08-20T03:39:25.966Z" }, +] + +[[package]] +name = "jaraco-functools" +version = "4.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "more-itertools" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/49/1c/831faaaa0f090b711c355c6d8b2abf277c72133aab472b6932b03322294c/jaraco_functools-4.2.1.tar.gz", hash = "sha256:be634abfccabce56fa3053f8c7ebe37b682683a4ee7793670ced17bab0087353", size = 19661, upload-time = "2025-06-21T19:22:03.201Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f3/fd/179a20f832824514df39a90bb0e5372b314fea99f217f5ab942b10a8a4e8/jaraco_functools-4.2.1-py3-none-any.whl", hash = "sha256:590486285803805f4b1f99c60ca9e94ed348d4added84b74c7a12885561e524e", size = 10349, upload-time = "2025-06-21T19:22:02.039Z" }, +] + +[[package]] +name = "jeepney" +version = "0.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7b/6f/357efd7602486741aa73ffc0617fb310a29b588ed0fd69c2399acbb85b0c/jeepney-0.9.0.tar.gz", hash = "sha256:cf0e9e845622b81e4a28df94c40345400256ec608d0e55bb8a3feaa9163f5732", size = 106758, upload-time = "2025-02-27T18:51:01.684Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b2/a3/e137168c9c44d18eff0376253da9f1e9234d0239e0ee230d2fee6cea8e55/jeepney-0.9.0-py3-none-any.whl", hash = "sha256:97e5714520c16fc0a45695e5365a2e11b81ea79bba796e26f9f1d178cb182683", size = 49010, upload-time = "2025-02-27T18:51:00.104Z" }, +] + +[[package]] +name = "keyring" +version = "25.6.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jaraco-classes" }, + { name = "jaraco-context" }, + { name = "jaraco-functools" }, + { name = "jeepney", marker = "sys_platform == 'linux'" }, + { name = "pywin32-ctypes", marker = "sys_platform == 'win32'" }, + { name = "secretstorage", marker = "sys_platform == 'linux'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/70/09/d904a6e96f76ff214be59e7aa6ef7190008f52a0ab6689760a98de0bf37d/keyring-25.6.0.tar.gz", hash = "sha256:0b39998aa941431eb3d9b0d4b2460bc773b9df6fed7621c2dfb291a7e0187a66", size = 62750, upload-time = "2024-12-25T15:26:45.782Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d3/32/da7f44bcb1105d3e88a0b74ebdca50c59121d2ddf71c9e34ba47df7f3a56/keyring-25.6.0-py3-none-any.whl", hash = "sha256:552a3f7af126ece7ed5c89753650eec89c7eaae8617d0aa4d9ad2b75111266bd", size = 39085, upload-time = "2024-12-25T15:26:44.377Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/82/59/7c91426a8ac292e1cdd53a63b6d9439abd573c875c3f92c146767dd33faf/kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e", size = 97538, upload-time = "2024-12-24T18:30:51.519Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/79/b3/e62464a652f4f8cd9006e13d07abad844a47df1e6537f73ddfbf1bc997ec/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09", size = 124156, upload-time = "2024-12-24T18:29:45.368Z" }, + { url = "https://files.pythonhosted.org/packages/8d/2d/f13d06998b546a2ad4f48607a146e045bbe48030774de29f90bdc573df15/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1", size = 66555, upload-time = "2024-12-24T18:29:46.37Z" }, + { url = "https://files.pythonhosted.org/packages/59/e3/b8bd14b0a54998a9fd1e8da591c60998dc003618cb19a3f94cb233ec1511/kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c", size = 65071, upload-time = "2024-12-24T18:29:47.333Z" }, + { url = "https://files.pythonhosted.org/packages/f0/1c/6c86f6d85ffe4d0ce04228d976f00674f1df5dc893bf2dd4f1928748f187/kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b", size = 1378053, upload-time = "2024-12-24T18:29:49.636Z" }, + { url = "https://files.pythonhosted.org/packages/4e/b9/1c6e9f6dcb103ac5cf87cb695845f5fa71379021500153566d8a8a9fc291/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47", size = 1472278, upload-time = "2024-12-24T18:29:51.164Z" }, + { url = "https://files.pythonhosted.org/packages/ee/81/aca1eb176de671f8bda479b11acdc42c132b61a2ac861c883907dde6debb/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16", size = 1478139, upload-time = "2024-12-24T18:29:52.594Z" }, + { url = "https://files.pythonhosted.org/packages/49/f4/e081522473671c97b2687d380e9e4c26f748a86363ce5af48b4a28e48d06/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc", size = 1413517, upload-time = "2024-12-24T18:29:53.941Z" }, + { url = "https://files.pythonhosted.org/packages/8f/e9/6a7d025d8da8c4931522922cd706105aa32b3291d1add8c5427cdcd66e63/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246", size = 1474952, upload-time = "2024-12-24T18:29:56.523Z" }, + { url = "https://files.pythonhosted.org/packages/82/13/13fa685ae167bee5d94b415991c4fc7bb0a1b6ebea6e753a87044b209678/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794", size = 2269132, upload-time = "2024-12-24T18:29:57.989Z" }, + { url = "https://files.pythonhosted.org/packages/ef/92/bb7c9395489b99a6cb41d502d3686bac692586db2045adc19e45ee64ed23/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b", size = 2425997, upload-time = "2024-12-24T18:29:59.393Z" }, + { url = "https://files.pythonhosted.org/packages/ed/12/87f0e9271e2b63d35d0d8524954145837dd1a6c15b62a2d8c1ebe0f182b4/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3", size = 2376060, upload-time = "2024-12-24T18:30:01.338Z" }, + { url = "https://files.pythonhosted.org/packages/02/6e/c8af39288edbce8bf0fa35dee427b082758a4b71e9c91ef18fa667782138/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957", size = 2520471, upload-time = "2024-12-24T18:30:04.574Z" }, + { url = "https://files.pythonhosted.org/packages/13/78/df381bc7b26e535c91469f77f16adcd073beb3e2dd25042efd064af82323/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb", size = 2338793, upload-time = "2024-12-24T18:30:06.25Z" }, + { url = "https://files.pythonhosted.org/packages/d0/dc/c1abe38c37c071d0fc71c9a474fd0b9ede05d42f5a458d584619cfd2371a/kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2", size = 71855, upload-time = "2024-12-24T18:30:07.535Z" }, + { url = "https://files.pythonhosted.org/packages/a0/b6/21529d595b126ac298fdd90b705d87d4c5693de60023e0efcb4f387ed99e/kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30", size = 65430, upload-time = "2024-12-24T18:30:08.504Z" }, + { url = "https://files.pythonhosted.org/packages/34/bd/b89380b7298e3af9b39f49334e3e2a4af0e04819789f04b43d560516c0c8/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c", size = 126294, upload-time = "2024-12-24T18:30:09.508Z" }, + { url = "https://files.pythonhosted.org/packages/83/41/5857dc72e5e4148eaac5aa76e0703e594e4465f8ab7ec0fc60e3a9bb8fea/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc", size = 67736, upload-time = "2024-12-24T18:30:11.039Z" }, + { url = "https://files.pythonhosted.org/packages/e1/d1/be059b8db56ac270489fb0b3297fd1e53d195ba76e9bbb30e5401fa6b759/kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712", size = 66194, upload-time = "2024-12-24T18:30:14.886Z" }, + { url = "https://files.pythonhosted.org/packages/e1/83/4b73975f149819eb7dcf9299ed467eba068ecb16439a98990dcb12e63fdd/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e", size = 1465942, upload-time = "2024-12-24T18:30:18.927Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2c/30a5cdde5102958e602c07466bce058b9d7cb48734aa7a4327261ac8e002/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880", size = 1595341, upload-time = "2024-12-24T18:30:22.102Z" }, + { url = "https://files.pythonhosted.org/packages/ff/9b/1e71db1c000385aa069704f5990574b8244cce854ecd83119c19e83c9586/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062", size = 1598455, upload-time = "2024-12-24T18:30:24.947Z" }, + { url = "https://files.pythonhosted.org/packages/85/92/c8fec52ddf06231b31cbb779af77e99b8253cd96bd135250b9498144c78b/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7", size = 1522138, upload-time = "2024-12-24T18:30:26.286Z" }, + { url = "https://files.pythonhosted.org/packages/0b/51/9eb7e2cd07a15d8bdd976f6190c0164f92ce1904e5c0c79198c4972926b7/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed", size = 1582857, upload-time = "2024-12-24T18:30:28.86Z" }, + { url = "https://files.pythonhosted.org/packages/0f/95/c5a00387a5405e68ba32cc64af65ce881a39b98d73cc394b24143bebc5b8/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d", size = 2293129, upload-time = "2024-12-24T18:30:30.34Z" }, + { url = "https://files.pythonhosted.org/packages/44/83/eeb7af7d706b8347548313fa3a3a15931f404533cc54fe01f39e830dd231/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165", size = 2421538, upload-time = "2024-12-24T18:30:33.334Z" }, + { url = "https://files.pythonhosted.org/packages/05/f9/27e94c1b3eb29e6933b6986ffc5fa1177d2cd1f0c8efc5f02c91c9ac61de/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6", size = 2390661, upload-time = "2024-12-24T18:30:34.939Z" }, + { url = "https://files.pythonhosted.org/packages/d9/d4/3c9735faa36ac591a4afcc2980d2691000506050b7a7e80bcfe44048daa7/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90", size = 2546710, upload-time = "2024-12-24T18:30:37.281Z" }, + { url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213, upload-time = "2024-12-24T18:30:40.019Z" }, +] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mdurl" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/71/3b932df36c1a044d397a1f92d1cf91ee0a503d91e470cbd670aa66b07ed0/markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb", size = 74596, upload-time = "2023-06-03T06:41:14.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1", size = 87528, upload-time = "2023-06-03T06:41:11.019Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.10.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/26/91/d49359a21893183ed2a5b6c76bec40e0b1dcbf8ca148f864d134897cfc75/matplotlib-3.10.3.tar.gz", hash = "sha256:2f82d2c5bb7ae93aaaa4cd42aca65d76ce6376f83304fa3a630b569aca274df0", size = 34799811, upload-time = "2025-05-08T19:10:54.39Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3b/c1/23cfb566a74c696a3b338d8955c549900d18fe2b898b6e94d682ca21e7c2/matplotlib-3.10.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9f2efccc8dcf2b86fc4ee849eea5dcaecedd0773b30f47980dc0cbeabf26ec84", size = 8180318, upload-time = "2025-05-08T19:10:20.426Z" }, + { url = "https://files.pythonhosted.org/packages/6c/0c/02f1c3b66b30da9ee343c343acbb6251bef5b01d34fad732446eaadcd108/matplotlib-3.10.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3ddbba06a6c126e3301c3d272a99dcbe7f6c24c14024e80307ff03791a5f294e", size = 8051132, upload-time = "2025-05-08T19:10:22.569Z" }, + { url = "https://files.pythonhosted.org/packages/b4/ab/8db1a5ac9b3a7352fb914133001dae889f9fcecb3146541be46bed41339c/matplotlib-3.10.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748302b33ae9326995b238f606e9ed840bf5886ebafcb233775d946aa8107a15", size = 8457633, upload-time = "2025-05-08T19:10:24.749Z" }, + { url = "https://files.pythonhosted.org/packages/f5/64/41c4367bcaecbc03ef0d2a3ecee58a7065d0a36ae1aa817fe573a2da66d4/matplotlib-3.10.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a80fcccbef63302c0efd78042ea3c2436104c5b1a4d3ae20f864593696364ac7", size = 8601031, upload-time = "2025-05-08T19:10:27.03Z" }, + { url = "https://files.pythonhosted.org/packages/12/6f/6cc79e9e5ab89d13ed64da28898e40fe5b105a9ab9c98f83abd24e46d7d7/matplotlib-3.10.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:55e46cbfe1f8586adb34f7587c3e4f7dedc59d5226719faf6cb54fc24f2fd52d", size = 9406988, upload-time = "2025-05-08T19:10:29.056Z" }, + { url = "https://files.pythonhosted.org/packages/b1/0f/eed564407bd4d935ffabf561ed31099ed609e19287409a27b6d336848653/matplotlib-3.10.3-cp313-cp313-win_amd64.whl", hash = "sha256:151d89cb8d33cb23345cd12490c76fd5d18a56581a16d950b48c6ff19bb2ab93", size = 8068034, upload-time = "2025-05-08T19:10:31.221Z" }, + { url = "https://files.pythonhosted.org/packages/3e/e5/2f14791ff69b12b09e9975e1d116d9578ac684460860ce542c2588cb7a1c/matplotlib-3.10.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:c26dd9834e74d164d06433dc7be5d75a1e9890b926b3e57e74fa446e1a62c3e2", size = 8218223, upload-time = "2025-05-08T19:10:33.114Z" }, + { url = "https://files.pythonhosted.org/packages/5c/08/30a94afd828b6e02d0a52cae4a29d6e9ccfcf4c8b56cc28b021d3588873e/matplotlib-3.10.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:24853dad5b8c84c8c2390fc31ce4858b6df504156893292ce8092d190ef8151d", size = 8094985, upload-time = "2025-05-08T19:10:35.337Z" }, + { url = "https://files.pythonhosted.org/packages/89/44/f3bc6b53066c889d7a1a3ea8094c13af6a667c5ca6220ec60ecceec2dabe/matplotlib-3.10.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68f7878214d369d7d4215e2a9075fef743be38fa401d32e6020bab2dfabaa566", size = 8483109, upload-time = "2025-05-08T19:10:37.611Z" }, + { url = "https://files.pythonhosted.org/packages/ba/c7/473bc559beec08ebee9f86ca77a844b65747e1a6c2691e8c92e40b9f42a8/matplotlib-3.10.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6929fc618cb6db9cb75086f73b3219bbb25920cb24cee2ea7a12b04971a4158", size = 8618082, upload-time = "2025-05-08T19:10:39.892Z" }, + { url = "https://files.pythonhosted.org/packages/d8/e9/6ce8edd264c8819e37bbed8172e0ccdc7107fe86999b76ab5752276357a4/matplotlib-3.10.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:6c7818292a5cc372a2dc4c795e5c356942eb8350b98ef913f7fda51fe175ac5d", size = 9413699, upload-time = "2025-05-08T19:10:42.376Z" }, + { url = "https://files.pythonhosted.org/packages/1b/92/9a45c91089c3cf690b5badd4be81e392ff086ccca8a1d4e3a08463d8a966/matplotlib-3.10.3-cp313-cp313t-win_amd64.whl", hash = "sha256:4f23ffe95c5667ef8a2b56eea9b53db7f43910fa4a2d5472ae0f72b64deab4d5", size = 8139044, upload-time = "2025-05-08T19:10:44.551Z" }, +] + +[[package]] +name = "mdurl" +version = "0.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d6/54/cfe61301667036ec958cb99bd3efefba235e65cdeb9c84d24a8293ba1d90/mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba", size = 8729, upload-time = "2022-08-14T12:40:10.846Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979, upload-time = "2022-08-14T12:40:09.779Z" }, +] + +[[package]] +name = "more-itertools" +version = "10.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ce/a0/834b0cebabbfc7e311f30b46c8188790a37f89fc8d756660346fe5abfd09/more_itertools-10.7.0.tar.gz", hash = "sha256:9fddd5403be01a94b204faadcff459ec3568cf110265d3c54323e1e866ad29d3", size = 127671, upload-time = "2025-04-22T14:17:41.838Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2b/9f/7ba6f94fc1e9ac3d2b853fdff3035fb2fa5afbed898c4a72b8a020610594/more_itertools-10.7.0-py3-none-any.whl", hash = "sha256:d43980384673cb07d2f7d2d918c616b30c659c089ee23953f601d6609c67510e", size = 65278, upload-time = "2025-04-22T14:17:40.49Z" }, +] + +[[package]] +name = "mpmath" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106, upload-time = "2023-03-07T16:47:11.061Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198, upload-time = "2023-03-07T16:47:09.197Z" }, +] + +[[package]] +name = "nh3" +version = "0.2.21" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/37/30/2f81466f250eb7f591d4d193930df661c8c23e9056bdc78e365b646054d8/nh3-0.2.21.tar.gz", hash = "sha256:4990e7ee6a55490dbf00d61a6f476c9a3258e31e711e13713b2ea7d6616f670e", size = 16581, upload-time = "2025-02-25T13:38:44.619Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7f/81/b83775687fcf00e08ade6d4605f0be9c4584cb44c4973d9f27b7456a31c9/nh3-0.2.21-cp313-cp313t-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:fcff321bd60c6c5c9cb4ddf2554e22772bb41ebd93ad88171bbbb6f271255286", size = 1297678, upload-time = "2025-02-25T13:37:56.063Z" }, + { url = "https://files.pythonhosted.org/packages/22/ee/d0ad8fb4b5769f073b2df6807f69a5e57ca9cea504b78809921aef460d20/nh3-0.2.21-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31eedcd7d08b0eae28ba47f43fd33a653b4cdb271d64f1aeda47001618348fde", size = 733774, upload-time = "2025-02-25T13:37:58.419Z" }, + { url = "https://files.pythonhosted.org/packages/ea/76/b450141e2d384ede43fe53953552f1c6741a499a8c20955ad049555cabc8/nh3-0.2.21-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d426d7be1a2f3d896950fe263332ed1662f6c78525b4520c8e9861f8d7f0d243", size = 760012, upload-time = "2025-02-25T13:38:01.017Z" }, + { url = "https://files.pythonhosted.org/packages/97/90/1182275db76cd8fbb1f6bf84c770107fafee0cb7da3e66e416bcb9633da2/nh3-0.2.21-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9d67709bc0d7d1f5797b21db26e7a8b3d15d21c9c5f58ccfe48b5328483b685b", size = 923619, upload-time = "2025-02-25T13:38:02.617Z" }, + { url = "https://files.pythonhosted.org/packages/29/c7/269a7cfbec9693fad8d767c34a755c25ccb8d048fc1dfc7a7d86bc99375c/nh3-0.2.21-cp313-cp313t-musllinux_1_2_armv7l.whl", hash = "sha256:55823c5ea1f6b267a4fad5de39bc0524d49a47783e1fe094bcf9c537a37df251", size = 1000384, upload-time = "2025-02-25T13:38:04.402Z" }, + { url = "https://files.pythonhosted.org/packages/68/a9/48479dbf5f49ad93f0badd73fbb48b3d769189f04c6c69b0df261978b009/nh3-0.2.21-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:818f2b6df3763e058efa9e69677b5a92f9bc0acff3295af5ed013da544250d5b", size = 918908, upload-time = "2025-02-25T13:38:06.693Z" }, + { url = "https://files.pythonhosted.org/packages/d7/da/0279c118f8be2dc306e56819880b19a1cf2379472e3b79fc8eab44e267e3/nh3-0.2.21-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:b3b5c58161e08549904ac4abd450dacd94ff648916f7c376ae4b2c0652b98ff9", size = 909180, upload-time = "2025-02-25T13:38:10.941Z" }, + { url = "https://files.pythonhosted.org/packages/26/16/93309693f8abcb1088ae143a9c8dbcece9c8f7fb297d492d3918340c41f1/nh3-0.2.21-cp313-cp313t-win32.whl", hash = "sha256:637d4a10c834e1b7d9548592c7aad760611415fcd5bd346f77fd8a064309ae6d", size = 532747, upload-time = "2025-02-25T13:38:12.548Z" }, + { url = "https://files.pythonhosted.org/packages/a2/3a/96eb26c56cbb733c0b4a6a907fab8408ddf3ead5d1b065830a8f6a9c3557/nh3-0.2.21-cp313-cp313t-win_amd64.whl", hash = "sha256:713d16686596e556b65e7f8c58328c2df63f1a7abe1277d87625dcbbc012ef82", size = 528908, upload-time = "2025-02-25T13:38:14.059Z" }, + { url = "https://files.pythonhosted.org/packages/ba/1d/b1ef74121fe325a69601270f276021908392081f4953d50b03cbb38b395f/nh3-0.2.21-cp38-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:a772dec5b7b7325780922dd904709f0f5f3a79fbf756de5291c01370f6df0967", size = 1316133, upload-time = "2025-02-25T13:38:16.601Z" }, + { url = "https://files.pythonhosted.org/packages/b8/f2/2c7f79ce6de55b41e7715f7f59b159fd59f6cdb66223c05b42adaee2b645/nh3-0.2.21-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d002b648592bf3033adfd875a48f09b8ecc000abd7f6a8769ed86b6ccc70c759", size = 758328, upload-time = "2025-02-25T13:38:18.972Z" }, + { url = "https://files.pythonhosted.org/packages/6d/ad/07bd706fcf2b7979c51b83d8b8def28f413b090cf0cb0035ee6b425e9de5/nh3-0.2.21-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2a5174551f95f2836f2ad6a8074560f261cf9740a48437d6151fd2d4d7d617ab", size = 747020, upload-time = "2025-02-25T13:38:20.571Z" }, + { url = "https://files.pythonhosted.org/packages/75/99/06a6ba0b8a0d79c3d35496f19accc58199a1fb2dce5e711a31be7e2c1426/nh3-0.2.21-cp38-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:b8d55ea1fc7ae3633d758a92aafa3505cd3cc5a6e40470c9164d54dff6f96d42", size = 944878, upload-time = "2025-02-25T13:38:22.204Z" }, + { url = "https://files.pythonhosted.org/packages/79/d4/dc76f5dc50018cdaf161d436449181557373869aacf38a826885192fc587/nh3-0.2.21-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6ae319f17cd8960d0612f0f0ddff5a90700fa71926ca800e9028e7851ce44a6f", size = 903460, upload-time = "2025-02-25T13:38:25.951Z" }, + { url = "https://files.pythonhosted.org/packages/cd/c3/d4f8037b2ab02ebf5a2e8637bd54736ed3d0e6a2869e10341f8d9085f00e/nh3-0.2.21-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:63ca02ac6f27fc80f9894409eb61de2cb20ef0a23740c7e29f9ec827139fa578", size = 839369, upload-time = "2025-02-25T13:38:28.174Z" }, + { url = "https://files.pythonhosted.org/packages/11/a9/1cd3c6964ec51daed7b01ca4686a5c793581bf4492cbd7274b3f544c9abe/nh3-0.2.21-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5f77e62aed5c4acad635239ac1290404c7e940c81abe561fd2af011ff59f585", size = 739036, upload-time = "2025-02-25T13:38:30.539Z" }, + { url = "https://files.pythonhosted.org/packages/fd/04/bfb3ff08d17a8a96325010ae6c53ba41de6248e63cdb1b88ef6369a6cdfc/nh3-0.2.21-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:087ffadfdcd497658c3adc797258ce0f06be8a537786a7217649fc1c0c60c293", size = 768712, upload-time = "2025-02-25T13:38:32.992Z" }, + { url = "https://files.pythonhosted.org/packages/9e/aa/cfc0bf545d668b97d9adea4f8b4598667d2b21b725d83396c343ad12bba7/nh3-0.2.21-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ac7006c3abd097790e611fe4646ecb19a8d7f2184b882f6093293b8d9b887431", size = 930559, upload-time = "2025-02-25T13:38:35.204Z" }, + { url = "https://files.pythonhosted.org/packages/78/9d/6f5369a801d3a1b02e6a9a097d56bcc2f6ef98cffebf03c4bb3850d8e0f0/nh3-0.2.21-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:6141caabe00bbddc869665b35fc56a478eb774a8c1dfd6fba9fe1dfdf29e6efa", size = 1008591, upload-time = "2025-02-25T13:38:37.099Z" }, + { url = "https://files.pythonhosted.org/packages/a6/df/01b05299f68c69e480edff608248313cbb5dbd7595c5e048abe8972a57f9/nh3-0.2.21-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:20979783526641c81d2f5bfa6ca5ccca3d1e4472474b162c6256745fbfe31cd1", size = 925670, upload-time = "2025-02-25T13:38:38.696Z" }, + { url = "https://files.pythonhosted.org/packages/3d/79/bdba276f58d15386a3387fe8d54e980fb47557c915f5448d8c6ac6f7ea9b/nh3-0.2.21-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a7ea28cd49293749d67e4fcf326c554c83ec912cd09cd94aa7ec3ab1921c8283", size = 917093, upload-time = "2025-02-25T13:38:40.249Z" }, + { url = "https://files.pythonhosted.org/packages/e7/d8/c6f977a5cd4011c914fb58f5ae573b071d736187ccab31bfb1d539f4af9f/nh3-0.2.21-cp38-abi3-win32.whl", hash = "sha256:6c9c30b8b0d291a7c5ab0967ab200598ba33208f754f2f4920e9343bdd88f79a", size = 537623, upload-time = "2025-02-25T13:38:41.893Z" }, + { url = "https://files.pythonhosted.org/packages/23/fc/8ce756c032c70ae3dd1d48a3552577a325475af2a2f629604b44f571165c/nh3-0.2.21-cp38-abi3-win_amd64.whl", hash = "sha256:bb0014948f04d7976aabae43fcd4cb7f551f9f8ce785a4c9ef66e6c2590f8629", size = 535283, upload-time = "2025-02-25T13:38:43.355Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2e/19/d7c972dfe90a353dbd3efbbe1d14a5951de80c99c9dc1b93cd998d51dc0f/numpy-2.3.1.tar.gz", hash = "sha256:1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b", size = 20390372, upload-time = "2025-06-21T12:28:33.469Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/bd/35ad97006d8abff8631293f8ea6adf07b0108ce6fec68da3c3fcca1197f2/numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8", size = 20889381, upload-time = "2025-06-21T12:19:04.103Z" }, + { url = "https://files.pythonhosted.org/packages/f1/4f/df5923874d8095b6062495b39729178eef4a922119cee32a12ee1bd4664c/numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e", size = 14152726, upload-time = "2025-06-21T12:19:25.599Z" }, + { url = "https://files.pythonhosted.org/packages/8c/0f/a1f269b125806212a876f7efb049b06c6f8772cf0121139f97774cd95626/numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0", size = 5105145, upload-time = "2025-06-21T12:19:34.782Z" }, + { url = "https://files.pythonhosted.org/packages/6d/63/a7f7fd5f375b0361682f6ffbf686787e82b7bbd561268e4f30afad2bb3c0/numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d", size = 6639409, upload-time = "2025-06-21T12:19:45.228Z" }, + { url = "https://files.pythonhosted.org/packages/bf/0d/1854a4121af895aab383f4aa233748f1df4671ef331d898e32426756a8a6/numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1", size = 14257630, upload-time = "2025-06-21T12:20:06.544Z" }, + { url = "https://files.pythonhosted.org/packages/50/30/af1b277b443f2fb08acf1c55ce9d68ee540043f158630d62cef012750f9f/numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1", size = 16627546, upload-time = "2025-06-21T12:20:31.002Z" }, + { url = "https://files.pythonhosted.org/packages/6e/ec/3b68220c277e463095342d254c61be8144c31208db18d3fd8ef02712bcd6/numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0", size = 15562538, upload-time = "2025-06-21T12:20:54.322Z" }, + { url = "https://files.pythonhosted.org/packages/77/2b/4014f2bcc4404484021c74d4c5ee8eb3de7e3f7ac75f06672f8dcf85140a/numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8", size = 18360327, upload-time = "2025-06-21T12:21:21.053Z" }, + { url = "https://files.pythonhosted.org/packages/40/8d/2ddd6c9b30fcf920837b8672f6c65590c7d92e43084c25fc65edc22e93ca/numpy-2.3.1-cp313-cp313-win32.whl", hash = "sha256:39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8", size = 6312330, upload-time = "2025-06-21T12:25:07.447Z" }, + { url = "https://files.pythonhosted.org/packages/dd/c8/beaba449925988d415efccb45bf977ff8327a02f655090627318f6398c7b/numpy-2.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42", size = 12731565, upload-time = "2025-06-21T12:25:26.444Z" }, + { url = "https://files.pythonhosted.org/packages/0b/c3/5c0c575d7ec78c1126998071f58facfc124006635da75b090805e642c62e/numpy-2.3.1-cp313-cp313-win_arm64.whl", hash = "sha256:0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e", size = 10190262, upload-time = "2025-06-21T12:25:42.196Z" }, + { url = "https://files.pythonhosted.org/packages/ea/19/a029cd335cf72f79d2644dcfc22d90f09caa86265cbbde3b5702ccef6890/numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8", size = 20987593, upload-time = "2025-06-21T12:21:51.664Z" }, + { url = "https://files.pythonhosted.org/packages/25/91/8ea8894406209107d9ce19b66314194675d31761fe2cb3c84fe2eeae2f37/numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb", size = 14300523, upload-time = "2025-06-21T12:22:13.583Z" }, + { url = "https://files.pythonhosted.org/packages/a6/7f/06187b0066eefc9e7ce77d5f2ddb4e314a55220ad62dd0bfc9f2c44bac14/numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee", size = 5227993, upload-time = "2025-06-21T12:22:22.53Z" }, + { url = "https://files.pythonhosted.org/packages/e8/ec/a926c293c605fa75e9cfb09f1e4840098ed46d2edaa6e2152ee35dc01ed3/numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992", size = 6736652, upload-time = "2025-06-21T12:22:33.629Z" }, + { url = "https://files.pythonhosted.org/packages/e3/62/d68e52fb6fde5586650d4c0ce0b05ff3a48ad4df4ffd1b8866479d1d671d/numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c", size = 14331561, upload-time = "2025-06-21T12:22:55.056Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ec/b74d3f2430960044bdad6900d9f5edc2dc0fb8bf5a0be0f65287bf2cbe27/numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48", size = 16693349, upload-time = "2025-06-21T12:23:20.53Z" }, + { url = "https://files.pythonhosted.org/packages/0d/15/def96774b9d7eb198ddadfcbd20281b20ebb510580419197e225f5c55c3e/numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee", size = 15642053, upload-time = "2025-06-21T12:23:43.697Z" }, + { url = "https://files.pythonhosted.org/packages/2b/57/c3203974762a759540c6ae71d0ea2341c1fa41d84e4971a8e76d7141678a/numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280", size = 18434184, upload-time = "2025-06-21T12:24:10.708Z" }, + { url = "https://files.pythonhosted.org/packages/22/8a/ccdf201457ed8ac6245187850aff4ca56a79edbea4829f4e9f14d46fa9a5/numpy-2.3.1-cp313-cp313t-win32.whl", hash = "sha256:6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e", size = 6440678, upload-time = "2025-06-21T12:24:21.596Z" }, + { url = "https://files.pythonhosted.org/packages/f1/7e/7f431d8bd8eb7e03d79294aed238b1b0b174b3148570d03a8a8a8f6a0da9/numpy-2.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc", size = 12870697, upload-time = "2025-06-21T12:24:40.644Z" }, + { url = "https://files.pythonhosted.org/packages/d4/ca/af82bf0fad4c3e573c6930ed743b5308492ff19917c7caaf2f9b6f9e2e98/numpy-2.3.1-cp313-cp313t-win_arm64.whl", hash = "sha256:eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244", size = 10260376, upload-time = "2025-06-21T12:24:56.884Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "pillow" +version = "11.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/af/cb/bb5c01fcd2a69335b86c22142b2bccfc3464087efb7fd382eee5ffc7fdf7/pillow-11.2.1.tar.gz", hash = "sha256:a64dd61998416367b7ef979b73d3a85853ba9bec4c2925f74e588879a58716b6", size = 47026707, upload-time = "2025-04-12T17:50:03.289Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/36/9c/447528ee3776e7ab8897fe33697a7ff3f0475bb490c5ac1456a03dc57956/pillow-11.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:fdec757fea0b793056419bca3e9932eb2b0ceec90ef4813ea4c1e072c389eb28", size = 3190098, upload-time = "2025-04-12T17:48:23.915Z" }, + { url = "https://files.pythonhosted.org/packages/b5/09/29d5cd052f7566a63e5b506fac9c60526e9ecc553825551333e1e18a4858/pillow-11.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b0e130705d568e2f43a17bcbe74d90958e8a16263868a12c3e0d9c8162690830", size = 3030166, upload-time = "2025-04-12T17:48:25.738Z" }, + { url = "https://files.pythonhosted.org/packages/71/5d/446ee132ad35e7600652133f9c2840b4799bbd8e4adba881284860da0a36/pillow-11.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bdb5e09068332578214cadd9c05e3d64d99e0e87591be22a324bdbc18925be0", size = 4408674, upload-time = "2025-04-12T17:48:27.908Z" }, + { url = "https://files.pythonhosted.org/packages/69/5f/cbe509c0ddf91cc3a03bbacf40e5c2339c4912d16458fcb797bb47bcb269/pillow-11.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d189ba1bebfbc0c0e529159631ec72bb9e9bc041f01ec6d3233d6d82eb823bc1", size = 4496005, upload-time = "2025-04-12T17:48:29.888Z" }, + { url = "https://files.pythonhosted.org/packages/f9/b3/dd4338d8fb8a5f312021f2977fb8198a1184893f9b00b02b75d565c33b51/pillow-11.2.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:191955c55d8a712fab8934a42bfefbf99dd0b5875078240943f913bb66d46d9f", size = 4518707, upload-time = "2025-04-12T17:48:31.874Z" }, + { url = "https://files.pythonhosted.org/packages/13/eb/2552ecebc0b887f539111c2cd241f538b8ff5891b8903dfe672e997529be/pillow-11.2.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:ad275964d52e2243430472fc5d2c2334b4fc3ff9c16cb0a19254e25efa03a155", size = 4610008, upload-time = "2025-04-12T17:48:34.422Z" }, + { url = "https://files.pythonhosted.org/packages/72/d1/924ce51bea494cb6e7959522d69d7b1c7e74f6821d84c63c3dc430cbbf3b/pillow-11.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:750f96efe0597382660d8b53e90dd1dd44568a8edb51cb7f9d5d918b80d4de14", size = 4585420, upload-time = "2025-04-12T17:48:37.641Z" }, + { url = "https://files.pythonhosted.org/packages/43/ab/8f81312d255d713b99ca37479a4cb4b0f48195e530cdc1611990eb8fd04b/pillow-11.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fe15238d3798788d00716637b3d4e7bb6bde18b26e5d08335a96e88564a36b6b", size = 4667655, upload-time = "2025-04-12T17:48:39.652Z" }, + { url = "https://files.pythonhosted.org/packages/94/86/8f2e9d2dc3d308dfd137a07fe1cc478df0a23d42a6c4093b087e738e4827/pillow-11.2.1-cp313-cp313-win32.whl", hash = "sha256:3fe735ced9a607fee4f481423a9c36701a39719252a9bb251679635f99d0f7d2", size = 2332329, upload-time = "2025-04-12T17:48:41.765Z" }, + { url = "https://files.pythonhosted.org/packages/6d/ec/1179083b8d6067a613e4d595359b5fdea65d0a3b7ad623fee906e1b3c4d2/pillow-11.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:74ee3d7ecb3f3c05459ba95eed5efa28d6092d751ce9bf20e3e253a4e497e691", size = 2676388, upload-time = "2025-04-12T17:48:43.625Z" }, + { url = "https://files.pythonhosted.org/packages/23/f1/2fc1e1e294de897df39fa8622d829b8828ddad938b0eaea256d65b84dd72/pillow-11.2.1-cp313-cp313-win_arm64.whl", hash = "sha256:5119225c622403afb4b44bad4c1ca6c1f98eed79db8d3bc6e4e160fc6339d66c", size = 2414950, upload-time = "2025-04-12T17:48:45.475Z" }, + { url = "https://files.pythonhosted.org/packages/c4/3e/c328c48b3f0ead7bab765a84b4977acb29f101d10e4ef57a5e3400447c03/pillow-11.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:8ce2e8411c7aaef53e6bb29fe98f28cd4fbd9a1d9be2eeea434331aac0536b22", size = 3192759, upload-time = "2025-04-12T17:48:47.866Z" }, + { url = "https://files.pythonhosted.org/packages/18/0e/1c68532d833fc8b9f404d3a642991441d9058eccd5606eab31617f29b6d4/pillow-11.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:9ee66787e095127116d91dea2143db65c7bb1e232f617aa5957c0d9d2a3f23a7", size = 3033284, upload-time = "2025-04-12T17:48:50.189Z" }, + { url = "https://files.pythonhosted.org/packages/b7/cb/6faf3fb1e7705fd2db74e070f3bf6f88693601b0ed8e81049a8266de4754/pillow-11.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9622e3b6c1d8b551b6e6f21873bdcc55762b4b2126633014cea1803368a9aa16", size = 4445826, upload-time = "2025-04-12T17:48:52.346Z" }, + { url = "https://files.pythonhosted.org/packages/07/94/8be03d50b70ca47fb434a358919d6a8d6580f282bbb7af7e4aa40103461d/pillow-11.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63b5dff3a68f371ea06025a1a6966c9a1e1ee452fc8020c2cd0ea41b83e9037b", size = 4527329, upload-time = "2025-04-12T17:48:54.403Z" }, + { url = "https://files.pythonhosted.org/packages/fd/a4/bfe78777076dc405e3bd2080bc32da5ab3945b5a25dc5d8acaa9de64a162/pillow-11.2.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:31df6e2d3d8fc99f993fd253e97fae451a8db2e7207acf97859732273e108406", size = 4549049, upload-time = "2025-04-12T17:48:56.383Z" }, + { url = "https://files.pythonhosted.org/packages/65/4d/eaf9068dc687c24979e977ce5677e253624bd8b616b286f543f0c1b91662/pillow-11.2.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:062b7a42d672c45a70fa1f8b43d1d38ff76b63421cbbe7f88146b39e8a558d91", size = 4635408, upload-time = "2025-04-12T17:48:58.782Z" }, + { url = "https://files.pythonhosted.org/packages/1d/26/0fd443365d9c63bc79feb219f97d935cd4b93af28353cba78d8e77b61719/pillow-11.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4eb92eca2711ef8be42fd3f67533765d9fd043b8c80db204f16c8ea62ee1a751", size = 4614863, upload-time = "2025-04-12T17:49:00.709Z" }, + { url = "https://files.pythonhosted.org/packages/49/65/dca4d2506be482c2c6641cacdba5c602bc76d8ceb618fd37de855653a419/pillow-11.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:f91ebf30830a48c825590aede79376cb40f110b387c17ee9bd59932c961044f9", size = 4692938, upload-time = "2025-04-12T17:49:02.946Z" }, + { url = "https://files.pythonhosted.org/packages/b3/92/1ca0c3f09233bd7decf8f7105a1c4e3162fb9142128c74adad0fb361b7eb/pillow-11.2.1-cp313-cp313t-win32.whl", hash = "sha256:e0b55f27f584ed623221cfe995c912c61606be8513bfa0e07d2c674b4516d9dd", size = 2335774, upload-time = "2025-04-12T17:49:04.889Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ac/77525347cb43b83ae905ffe257bbe2cc6fd23acb9796639a1f56aa59d191/pillow-11.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:36d6b82164c39ce5482f649b437382c0fb2395eabc1e2b1702a6deb8ad647d6e", size = 2681895, upload-time = "2025-04-12T17:49:06.635Z" }, + { url = "https://files.pythonhosted.org/packages/67/32/32dc030cfa91ca0fc52baebbba2e009bb001122a1daa8b6a79ad830b38d3/pillow-11.2.1-cp313-cp313t-win_arm64.whl", hash = "sha256:225c832a13326e34f212d2072982bb1adb210e0cc0b153e688743018c94a2681", size = 2417234, upload-time = "2025-04-12T17:49:08.399Z" }, +] + +[[package]] +name = "pluggy" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" }, +] + +[[package]] +name = "pycparser" +version = "2.22" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736, upload-time = "2024-03-30T13:22:22.564Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552, upload-time = "2024-03-30T13:22:20.476Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pyparsing" +version = "3.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bb/22/f1129e69d94ffff626bdb5c835506b3a5b4f3d070f17ea295e12c2c6f60f/pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be", size = 1088608, upload-time = "2025-03-25T05:01:28.114Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf", size = 111120, upload-time = "2025-03-25T05:01:24.908Z" }, +] + +[[package]] +name = "pyproject-hooks" +version = "1.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e7/82/28175b2414effca1cdac8dc99f76d660e7a4fb0ceefa4b4ab8f5f6742925/pyproject_hooks-1.2.0.tar.gz", hash = "sha256:1e859bd5c40fae9448642dd871adf459e5e2084186e8d2c2a79a824c970da1f8", size = 19228, upload-time = "2024-09-29T09:24:13.293Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/24/12818598c362d7f300f18e74db45963dbcb85150324092410c8b49405e42/pyproject_hooks-1.2.0-py3-none-any.whl", hash = "sha256:9e5c6bfa8dcc30091c74b0cf803c81fdd29d94f01992a7707bc97babb1141913", size = 10216, upload-time = "2024-09-29T09:24:11.978Z" }, +] + +[[package]] +name = "pytest" +version = "8.4.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "iniconfig" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/08/ba/45911d754e8eba3d5a841a5ce61a65a685ff1798421ac054f85aa8747dfb/pytest-8.4.1.tar.gz", hash = "sha256:7c67fd69174877359ed9371ec3af8a3d2b04741818c51e5e99cc1742251fa93c", size = 1517714, upload-time = "2025-06-18T05:48:06.109Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl", hash = "sha256:539c70ba6fcead8e78eebbf1115e8b589e7565830d7d006a8723f19ac8a0afb7", size = 365474, upload-time = "2025-06-18T05:48:03.955Z" }, +] + +[[package]] +name = "pytest-cov" +version = "6.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "coverage" }, + { name = "pluggy" }, + { name = "pytest" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/18/99/668cade231f434aaa59bbfbf49469068d2ddd945000621d3d165d2e7dd7b/pytest_cov-6.2.1.tar.gz", hash = "sha256:25cc6cc0a5358204b8108ecedc51a9b57b34cc6b8c967cc2c01a4e00d8a67da2", size = 69432, upload-time = "2025-06-12T10:47:47.684Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bc/16/4ea354101abb1287856baa4af2732be351c7bee728065aed451b678153fd/pytest_cov-6.2.1-py3-none-any.whl", hash = "sha256:f5bc4c23f42f1cdd23c70b1dab1bbaef4fc505ba950d53e0081d0730dd7e86d5", size = 24644, upload-time = "2025-06-12T10:47:45.932Z" }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + +[[package]] +name = "pywin32-ctypes" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/9f/01a1a99704853cb63f253eea009390c88e7131c67e66a0a02099a8c917cb/pywin32-ctypes-0.2.3.tar.gz", hash = "sha256:d162dc04946d704503b2edc4d55f3dba5c1d539ead017afa00142c38b9885755", size = 29471, upload-time = "2024-08-14T10:15:34.626Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/de/3d/8161f7711c017e01ac9f008dfddd9410dff3674334c233bde66e7ba65bbf/pywin32_ctypes-0.2.3-py3-none-any.whl", hash = "sha256:8a1513379d709975552d202d942d9837758905c8d01eb82b8bcc30918929e7b8", size = 30756, upload-time = "2024-08-14T10:15:33.187Z" }, +] + +[[package]] +name = "readme-renderer" +version = "44.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "docutils" }, + { name = "nh3" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5a/a9/104ec9234c8448c4379768221ea6df01260cd6c2ce13182d4eac531c8342/readme_renderer-44.0.tar.gz", hash = "sha256:8712034eabbfa6805cacf1402b4eeb2a73028f72d1166d6f5cb7f9c047c5d1e1", size = 32056, upload-time = "2024-07-08T15:00:57.805Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e1/67/921ec3024056483db83953ae8e48079ad62b92db7880013ca77632921dd0/readme_renderer-44.0-py3-none-any.whl", hash = "sha256:2fbca89b81a08526aadf1357a8c2ae889ec05fb03f5da67f9769c9a592166151", size = 13310, upload-time = "2024-07-08T15:00:56.577Z" }, +] + +[[package]] +name = "requests" +version = "2.32.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e1/0a/929373653770d8a0d7ea76c37de6e41f11eb07559b103b1c02cafb3f7cf8/requests-2.32.4.tar.gz", hash = "sha256:27d0316682c8a29834d3264820024b62a36942083d52caf2f14c0591336d3422", size = 135258, upload-time = "2025-06-09T16:43:07.34Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7c/e4/56027c4a6b4ae70ca9de302488c5ca95ad4a39e190093d6c1a8ace08341b/requests-2.32.4-py3-none-any.whl", hash = "sha256:27babd3cda2a6d50b30443204ee89830707d396671944c998b5975b031ac2b2c", size = 64847, upload-time = "2025-06-09T16:43:05.728Z" }, +] + +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f3/61/d7545dafb7ac2230c70d38d31cbfe4cc64f7144dc41f6e4e4b78ecd9f5bb/requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6", size = 206888, upload-time = "2023-05-01T04:11:33.229Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3f/51/d4db610ef29373b879047326cbf6fa98b6c1969d6f6dc423279de2b1be2c/requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06", size = 54481, upload-time = "2023-05-01T04:11:28.427Z" }, +] + +[[package]] +name = "rfc3986" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/40/1520d68bfa07ab5a6f065a186815fb6610c86fe957bc065754e47f7b0840/rfc3986-2.0.0.tar.gz", hash = "sha256:97aacf9dbd4bfd829baad6e6309fa6573aaf1be3f6fa735c8ab05e46cecb261c", size = 49026, upload-time = "2022-01-10T00:52:30.832Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ff/9a/9afaade874b2fa6c752c36f1548f718b5b83af81ed9b76628329dab81c1b/rfc3986-2.0.0-py2.py3-none-any.whl", hash = "sha256:50b1502b60e289cb37883f3dfd34532b8873c7de9f49bb546641ce9cbd256ebd", size = 31326, upload-time = "2022-01-10T00:52:29.594Z" }, +] + +[[package]] +name = "rich" +version = "14.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/53/830aa4c3066a8ab0ae9a9955976fb770fe9c6102117c8ec4ab3ea62d89e8/rich-14.0.0.tar.gz", hash = "sha256:82f1bc23a6a21ebca4ae0c45af9bdbc492ed20231dcb63f297d6d1021a9d5725", size = 224078, upload-time = "2025-03-30T14:15:14.23Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/9b/63f4c7ebc259242c89b3acafdb37b41d1185c07ff0011164674e9076b491/rich-14.0.0-py3-none-any.whl", hash = "sha256:1c9491e1951aac09caffd42f448ee3d04e58923ffe14993f6e83068dc395d7e0", size = 243229, upload-time = "2025-03-30T14:15:12.283Z" }, +] + +[[package]] +name = "secretstorage" +version = "3.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cryptography" }, + { name = "jeepney" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/53/a4/f48c9d79cb507ed1373477dbceaba7401fd8a23af63b837fa61f1dcd3691/SecretStorage-3.3.3.tar.gz", hash = "sha256:2403533ef369eca6d2ba81718576c5e0f564d5cca1b58f73a8b23e7d4eeebd77", size = 19739, upload-time = "2022-08-13T16:22:46.976Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/24/b4293291fa1dd830f353d2cb163295742fa87f179fcc8a20a306a81978b7/SecretStorage-3.3.3-py3-none-any.whl", hash = "sha256:f356e6628222568e3af06f2eba8df495efa13b3b63081dafd4f7d9a7b7bc9f99", size = 15221, upload-time = "2022-08-13T16:22:44.457Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "ssplines" +version = "3.0.0" +source = { editable = "." } +dependencies = [ + { name = "numpy" }, + { name = "sympy" }, +] + +[package.optional-dependencies] +dev = [ + { name = "build" }, + { name = "matplotlib" }, + { name = "pytest" }, + { name = "pytest-cov" }, + { name = "twine" }, +] + +[package.dev-dependencies] +dev = [ + { name = "build" }, + { name = "matplotlib" }, + { name = "pytest" }, + { name = "pytest-cov" }, + { name = "twine" }, +] + +[package.metadata] +requires-dist = [ + { name = "build", marker = "extra == 'dev'" }, + { name = "matplotlib", marker = "extra == 'dev'", specifier = ">=3.5.1" }, + { name = "numpy", specifier = ">=1.24.0" }, + { name = "pytest", marker = "extra == 'dev'", specifier = ">=7.0.1" }, + { name = "pytest-cov", marker = "extra == 'dev'" }, + { name = "sympy", specifier = ">=1.10" }, + { name = "twine", marker = "extra == 'dev'" }, +] +provides-extras = ["dev"] + +[package.metadata.requires-dev] +dev = [ + { name = "build" }, + { name = "matplotlib", specifier = ">=3.5.1" }, + { name = "pytest", specifier = ">=7.0.1" }, + { name = "pytest-cov" }, + { name = "twine" }, +] + +[[package]] +name = "sympy" +version = "1.14.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mpmath" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/83/d3/803453b36afefb7c2bb238361cd4ae6125a569b4db67cd9e79846ba2d68c/sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517", size = 7793921, upload-time = "2025-04-27T18:05:01.611Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" }, +] + +[[package]] +name = "twine" +version = "6.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "id" }, + { name = "keyring", marker = "platform_machine != 'ppc64le' and platform_machine != 's390x'" }, + { name = "packaging" }, + { name = "readme-renderer" }, + { name = "requests" }, + { name = "requests-toolbelt" }, + { name = "rfc3986" }, + { name = "rich" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c8/a2/6df94fc5c8e2170d21d7134a565c3a8fb84f9797c1dd65a5976aaf714418/twine-6.1.0.tar.gz", hash = "sha256:be324f6272eff91d07ee93f251edf232fc647935dd585ac003539b42404a8dbd", size = 168404, upload-time = "2025-01-21T18:45:26.758Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7c/b6/74e927715a285743351233f33ea3c684528a0d374d2e43ff9ce9585b73fe/twine-6.1.0-py3-none-any.whl", hash = "sha256:a47f973caf122930bf0fbbf17f80b83bc1602c9ce393c7845f289a3001dc5384", size = 40791, upload-time = "2025-01-21T18:45:24.584Z" }, +] + +[[package]] +name = "urllib3" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" }, +]